力全章复习与巩固基础知识讲解

合集下载

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

教科版初中物理八年级下册《力与运动》全章复习与巩固(提高)知识讲解

教科版初中物理八年级下册《力与运动》全章复习与巩固(提高)知识讲解

《力与运动》全章复习与巩固(提高):【学习目标】1.知道牛顿第一定律的内容,理解惯性是物体的一种属性,会解释常见的惯性现象;2.知道什么是平衡状态,平衡力,理解二力平衡的条件,会用二力平衡的条件解决问题;3.理解力与运动的关系;【知识网络】【要点梳理】要点一、牛顿第一定律1.内容:一切物体在不受外力作用时,总保持匀速直线运动状态或静止状态。

2.内涵:物体在不受力的情况下依旧可以保持原有的运动状态,说明力不是维持物体运动的原因,而是使物体运动状态发生改变的原因。

或者说:物体的运动不需要力来维持,要改变物体的运动状态,必须对物体施加力的作用。

要点诠释:1.“一切”说明该定律对于所有物体都适用,不是特殊现象。

2.“没有受到力的作用”是定律成立的条件。

“没有受到力的作用”有两层含义:一是该物体确实没有受到任何力的作用,这是一种理想化的情况(实际上,不受任何力的作用的物体是不存在的);二是该物体所受合力为零,力的作用效果可以等效为不受任何力的作用时的作用效果。

3.“或”指两种状态必居其一,不能同时存在,也就是说物体在不受力的作用时,原来静止的物体仍保持静止状态,原来运动的物体仍保持匀速直线运动状态。

4.牛顿第一定律不能用实验直接验证,而是在实验的基础上,通过进一步的推理而概括出来的。

5.运动的物体并不需要力来维持,运动的物体之所以会停下来,是因为受到了阻力。

要点二、惯性1.概念:一切物体都有保持原来运动状态不变的性质,我们把这种性质叫做惯性。

2.惯性的利用:跳远运动员快速助跑,利用自身的惯性在空中继续前进;拍打衣服,清除衣服上的灰尘;甩掉手上的水珠。

3.惯性的危害:汽车刹车后不能立即停下来,酿成交通事故;快速行驶的汽车发生碰撞,车里的乘客如果没有系安全带,会与车身撞击,严重时可能把挡风玻璃撞碎,飞出车外;走路时不小心,可能会被台阶绊倒。

要点诠释:1.一切物体都有惯性,一切物体是指无论是气体、液体、还是固体;无论是静止还是运动;无论受力还是不受力都具有惯性。

10.《一元二次方程》全章复习与巩固—知识讲解(基础)

10.《一元二次方程》全章复习与巩固—知识讲解(基础)

《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C :由原方程,得x 2+x-3=0,符一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【高清ID :388528 关联的位置名称(播放点名称):利用定义求字母的值】【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.【典型例题】 类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.【高清ID :388528 关联的位置名称(播放点名称):根系关系】2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1. 要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x 个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x 2-5x+6=0.解得,x 1=2,x 2=3.∴ 当x =2时,2x =4;当x =3时,2x =6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x 个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.【巩固练习】一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .83.(2015•濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( )A .2%B . 5%C . 10%D . 20% 4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3B.(x+2)2-4C.(x+2)2-5D.(x+2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ).A .k <0B .k ≤0C .k ≠1且k ≠0D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( ) A.64 cm 2 B.100 cm 2 C.121 cm 2 D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( )A .B .C .且D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.(2014秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 .11.关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a =,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________. 15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 .16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2015•十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b 的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B ;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x =2代入关于x 的方程x 2+mx ﹣6=0,然后解关于m 的一元一次方程;再根据根与系数的关系x 1+x 2=﹣b a解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×,整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5,∵20﹣2x >0,∴x<10,∴x=2.5,∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m .11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a -≠,所以1a =-.12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系, 然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++-=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3. 而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++---⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解.14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x --=的两实数根,∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211221212123(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+-= 15.【答案】2011;-2;m=-1或3;m=34. 【解析】由于a ,b 是方程x 2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a 2+a-2012=0,然后把a 2+2a+b 可以变为a 2+a+a+b ,把前面的值代入即可求出结果.16.【答案】50%;【解析】设该校捐款的平均年增长率是x , 则, 整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵ ①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。

【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。

《二次函数》全章复习与巩固—知识讲解(基础)

《二次函数》全章复习与巩固—知识讲解(基础)

《二次函数》全章复习与巩固—知识讲解(基础)【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2. 抛物线的三要素: 开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩ 解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+.举一反三:【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D .②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0, ∴③错误,故正确的有②④⑤. 故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .C .D .【思路点拨】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可. 【答案】D . 【解析】解:∵y=﹣x 2+4x ﹣k=﹣(x ﹣2)2+4﹣k , ∴顶点D (2,4﹣k ),C (0,﹣k ), ∴OC=k ,∵△ABC 的面积=AB •OC=AB •k ,△ABD 的面积=AB (4﹣k ),△ABC 与△ABD 的面积比为1:4,∴k=(4﹣k ),解得:k=.【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( )A .B .C .D .【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x 2+500x+5000=﹣100(x ﹣)2+5625,∵x 取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x 2+500x+5000=5000,解得x 1=0,x 2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

知识讲解_《变化率与导数、导数的应用》全章复习与巩固_基础

知识讲解_《变化率与导数、导数的应用》全章复习与巩固_基础

《导数及其应用》全章复习与巩固【学习目标】1. 导数概念通过具体情境,感受在现实实际和实际生活中存在着大量的变化率问题,体会平均变化率、瞬时变化率和导数的实际意义,理解导数的几何意义2. 导数运算(1)会用导数定义计算一些简单函数的导数;(2)会利用导数公式表求出给定函数的导数;(3)掌握求导的四则运算法则,掌握求复合函数的导数,并会利用导数的运算法则求出函数的导函数3. 体会研究函数的意义(1 )认识导数对于研究函数的变化规律的作用;(2)会用导数的符号来判断函数的单调性;(3)会利用导数研究函数的极值点和最值点.4•导数在实际问题中的应用(1)进一步体会函数是描述世界变化规律的基本数学模型;(2)联系实际生活和其他学科,进一步体会导数的意义;(3)从实际生活抽象出一些基本的用导数刻画的问题,并加以解决【知识网络】【要点梳理】要点一:导数的概念及几何意义导数的概念:函数y=f(x)在x0点的导数,通常用符号f ‘X。

)表示,定乂为:一山y 「 f (Xo +^X)—f (Xo )f(x0尸lim ——=lim ------- ----------- ----- ---瘵T0也X 2°氐X要点诠释:(1)丄[_^= _j—X L,它表示当自变量x从x°变X i,函数值从 f x°变到 f X1时,.X X—X°. X函数值关于X的平均变化率•当X趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在X°点的导数.(2)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率•如瞬时速度即是位移在这一时刻的瞬间变化率.(3)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S从时间1到t2的平均变化率即为t i到t2这段时间的平均速度.要点诠释:求曲线的切线方程时,抓住切点是解决问题的关键,有切点直接求,无切点则设切点,布列方程组.导数的物理意义:在物理学中,如果物体运动的规律是s=s t ,那么该物体在时刻t0的瞬时速度v就是s=s t在t=t0时的导数,即v=s' t。

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。

要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。

代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。

2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。

单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。

多项式是几个单项式的和,每个单项式叫做多项式的项。

在多项式中,不含字母的项叫做常数项。

多项式中次数最高的项的次数,就是这个多项式的次数。

如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。

3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。

另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。

《浮力》全章复习与巩固(基础)知识讲解最新修正版最新修正版

《浮力》全章复习与巩固(基础)知识讲解最新修正版最新修正版

《浮力》全章复习与巩固(基础)撰稿:史会娜 审稿:雒文丽【学习目标】1.知道浮力产生的原因;2.会利用浮力的产生原因、称重法、公式法、特殊状态法,计算浮力的大小,并解决实际问题;3.理解阿基米德原理,知道浮力的大小只与排开液体的体积,和排开液体的密度有关;4.理解物体的浮沉条件,能运用物体的浮沉条件解决有关问题。

【知识网络】【要点梳理】 要点一、浮力1.定义:浸在液体(或气体)中的物体受到向上的力,这个力就叫浮力。

2.施力物体: 液体或气体。

3.方向:竖直向上。

4.产生原因:液体对物体上下表面的压力差。

要点二、阿基米德原理1.阿基米德原理:浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体所受的重力。

2.公式:F G gV ρ==浮排液排要点诠释:1.从公式中可以看出:液体对物体的浮力与液体的密度和物体排开液体的体积有关,而与物体的质量、体积、重力、形状 、浸没的深度等均无关。

2.阿基米德原理对浸没或部分浸在液体中的物体都适用。

3.当物体浸没在液体中时,V V =排物,当物体部分浸在液体中时,V V <排物,(V V V =-露排物)。

4.阿基米德原理也适用于气体,其计算公式是:F gV ρ=浮气排要点三、物体的浮沉条件(1)物体浸没在液体中时:F gV ρ=浮液排,G V g ρ=物物; ①如果F G <浮物,物体下沉,ρρ>物液; ②如果F G >浮物,物体上浮,ρρ<物液; ③如果F G =浮物,物体悬浮,ρρ=物液。

(2)漂浮在液面上的物体:F G =浮物 ,展开为:gV V g ρρ=液排物物, 因为:V V <排物, 所以:ρρ<物液。

(3)沉底的物体:F G F =-浮物支,所以:F G <浮物,ρρ>物液。

2.浮力的应用(1)轮船、气球、飞艇的浮沉原理——调节重力、浮力的关系:①要使密度大于水的物质做成的物体浮于水面可采用“空心”办法,增大体积从而增大浮力,使物体浮于水面,用钢铁做成轮船,就是根据这一道理。

《解直角三角形》全章复习与巩固(基础)知识讲解

《解直角三角形》全章复习与巩固(基础)知识讲解

《解直角三角形》全章复习与巩固(基础) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC. (3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB.同角三角函数关系:sin 2A +cos 2A=1;sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即sin ,cos ,tan ,cot a bab A A A Ac c b a ==== sin ,cos ,tan ,cot b aba B B B B c c a b==== 要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.求∠要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 2.常见的应用问题类型 (1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

《因式分解》全章复习与巩固(基础)知识讲解

《因式分解》全章复习与巩固(基础)知识讲解

《因式分解》全章复习与巩固(基础)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系; 2.掌握提公因式法分解因式,理解添括号法则; 3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题. 【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法 1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法 十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解. (4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【思路点拨】观察题意可知21x x +=,将原式化简可得出答案. 【答案与解析】解:依题意得:21x x +=, ∴3223x x ++, =3223x x x +++, =22()3x x x x +++, =23x x ++,=4;【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解. 【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--, =249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解. 举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+B .229a y-+C .229a y-D .229a y--【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码. 【答案与解析】解:()()()32224422x xy x x yx x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10, 故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键. 举一反三:【变式】利用因式分解计算 (1)16.9×18+15.1×18(2) 22683317- 【答案】 解:(1)16.9×18+15.1×18=()116.915.18⨯+=13248⨯= (2)22683317-=()()683317683317+⨯- =1000×366 =366000. 4、因式分解:(1)()()269a b a b ++++; (2)222xy x y ---(3)()()22224222x xyy x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x y x y ---=-++=-+(3)()()22224222x xyy x xy y -+-+=()()24222x xy yx y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】下列各式能用完全平方公式进行分解因式的是( )A .21x + B .221x x +- C .21x x ++ D .244x x ++【答案】D ;5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答. 【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x xxx +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答; (2)根据(1)的结论直接作答. 【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++②()()271234y y x x -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号. 举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-, =()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=-C .()23434m m m m --=-- D .()224529m m m --=--2. 把24a a -多项式分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 3. 下列多项式能分解因式的是( ) A .22x y +B .22x y--C .222x xy y-+-D .22x xy y-+4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列四个选项中,哪一个为多项式28102x x -+的因式?( )A .2x -2B .2x +2C .4x +1D .4x +2 6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题9.分解因式:()241x x -- =________.10.把23x x c ++分解因式得:23x x c ++=()()12x x ++,则c 的值为________.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.把多项式22ax ax a --分解因式,下列结果正确的是_________.15. 当10x =,9y =时,代数式22x y -的值是________.16.把2221x y y ---分解因式结果正确的是_____________. 三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 已知10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值. 19.已知关于x 的二次三项式2x mx n ++有一个因式()5x +,且17m n +=,试求m 、n 的值.20. 两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】A ;【解析】()244a a a a -=-. 3. 【答案】C ;【解析】A .不能分解;B .2222()x y x y --=-+,不能分解;C .()2222x xy y x y -+-=--,故能够分解;D .不能分解.4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】A ;【解析】将28102x x -+进行分解因式得出()()281024122x x x x -+=--,进而得出答案即可.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题9. 【答案】()22x -;【解析】()()22241442x x x x x --=-+=-.10.【答案】2;【解析】()()21232x x x x ++=++.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y+-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】()()21a x x -+;【解析】22ax ax a --=()()2(2)21a x x a x x --=-+.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=.16.【答案】()()11x y x y ++--;【解析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:∵10a b +=,6ab =,则(1)()2222a b a b ab +=+-=100-12=88;(2)()()2322322224a b a b ab ab a ab b ab a b ab ⎡⎤-+=-+=+-⎣⎦=6×(100-24)=456. 19.【解析】解:设另一个因式是x a +,则有()()5x x a ++=()255x a x a +++=2x mx n ++∴5a m +=,5a n =,这样就得到一个方程组5517a ma nm n +=⎧⎪=⎨⎪+=⎩,解得2107a n m =⎧⎪=⎨⎪=⎩.∴m 、n 的值分别是7、10. 20.【解析】解:设原多项式为2ax bx c ++(其中a 、b 、c 均为常数,且abc ≠0).∵()()()22219210922018x x x x x x --=-+=-+, ∴a =2,c =18;又∵()()()2222426821216x x x x x x --=-+=-+, ∴b =-12.∴原多项式为221218x x -+,将它分解因式,得()()2222121826923x x x x x -+=-+=-.。

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)责编:常春芳【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数;()0ky k x=≠2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质()0ky k x=≠分析和解决一些简单的实际问题.【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】要点一、反比例函数的概念一般地,形如ky x =(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量的取值范围是不等于0的一切实数.x 要点诠释:在ky x =中,自变量x 的取值范围是,k y x =()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定ky x=系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,k x y 、k 从而确定其解析式.要点三、反比例函数的图象和性质1.反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、()0ky k x=≠三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交x y 点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线;)0(≠=k x ky x y x y -==和②的图象是中心对称图形,对称中心为原点(0,0);)0(≠=k x ky ③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.xky x k y -==和x y 注:正比例函数与反比例函数,x k y 1=xk y 2=当时,两图象没有交点;当时,两图象必有两个交点,且这021<⋅k k 021>⋅kk 两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而0k >x y 、y x 减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而0k <x y 、y x 增大.(2)若点()在反比例函数ky x =的图象上,则点()也在此图象上,故反比a b ,a b --,例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较 正比例函数反比例函数解析式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;0k >,二、四象限0k <,一、三象限0k >,二、四象限0k <增减性,随的增大而增大0k >y x ,随的增大而减小0k <y x ,在每个象限,随的增大而减小0k >y x ,在每个象限,随的增大而增大0k <y x (4)反比例函数y =中的意义k ①过双曲线x k y =(k ≠0) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k.②过双曲线x k y =(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的k 面积为2k.要点四、应用反比例函数解决实际问题须注意以下几点 1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.【典型例题】类型一、确定反比例函数的解析式1、已知函数是反比例函数,则的值为 .()32k y k x -=+k 【答案】2k =【解析】根据反比例函数概念,=且,可确定的值.3k -1-20k +≠k 【总结升华】反比例函数要满足以下两点:一个是自变量的次数是-1,另一个是自变量的系数不等于0.举一反三:【变式】反比例函数图象经过点(2,3),则的值是( ).5n y x+=n A. B. C. 0D. 12-1-【答案】D ;反比例函数过点(2,3).. 5n y x +=53,12n n +==∴∴类型二、反比例函数的图象及性质2、已知,反比例函数的图象在每个分支中随的增大而减小,试求42my x-=y x 的取值范围.21m -【思路点拨】由反比例函数性质知,当>0时,在每个象限内随的增大而减小,由k y x 此可求出的取值范围,进一步可求出的取值范围.m 21m -【答案与解析】解:由题意得:,解得,420m ->2m <所以,则<3.24m <21m -【总结升华】熟记并能灵活运用反比例函数的性质是解答本题的关键.举一反三:【变式】已知反比例函数,其图象位于第一、第三象限内,则的值可为2k y x-=k ________(写出满足条件的一个的值即可).k 【答案】3(满足>2即可).k 3、在函数(,为常数)的图象上有三点(-3,)、(-2,)、||k y x-=0k ≠k 1y 2y (4,),则函数值的大小关系是( )3y A . B . C . D .123y y y <<321y y y <<231y y y <<312y y y <<【答案】D ;【解析】∵ ||>0,∴ -||<0,∴反比例函数的图象在第二、四象限,且在每一个象限k k 里,随增大而增大,(-3,)、(-2,)在第二象限,(4,)在第四象限,∴ y x 1y 2y 3y 它们的大小关系是:.312y y y <<【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(-3,1y )、(-2,2y )在双曲线的第二象限的分支上,因为-3<-2,所以12y y <,点(4,3y )在第四象限,其函数值小于其他两个函数值.举一反三:【变式1】(2014春•海口期中)在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( ).A. B.C. D.【答案】C ;提示:分两种情况讨论:①当k >0时,y=kx+3与y 轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k <0时,y=kx+3与y 轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C .【高清课堂406878 反比例函数全章复习 例7】【变式2】已知,且则函数与在同一坐标>b a ,0,0,0≠+≠≠b a b a b ax y +=xba y +=系中的图象不可能是( ) .【答案】B ;提示:因为从B 的图像上分析,对于直线来说是,则,对于反比例函<0,0a b <0a b +<数来说,,所以相互之间是矛盾的,不可能存在这样的图形.0a b +>4、如图所示,P 是反比例函数图象上一点,若图中阴影部分的面积是2,求此ky x=反比例函数的关系式.【思路点拨】要求函数关系式,必须先求出的值,P 点既在函数的图象上又是矩形的顶k 点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(,),由图可知,P 点在第二象限,∴ <0,>0.x y x y ∴ 图中阴影部分矩形的长、宽分别为-、.x y ∵ 矩形的面积为2,∴ -=2,∴ =-2.xy xy ∵ =,∴ =-2.xy k k ∴ 此反比例函数的关系式是.2y x=-【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面x y 积为||这一条件,进行坐标、线段、面积间的转换.k 举一反三:【变式】如图,过反比例函数的图象上任意两点A 、B ,分别作轴的垂线,)(0x x2y >=x 垂足为,连接OA ,OB ,与OB 的交点为P ,记△AOP 与梯形的面积分别''B A 、'AA B B PA ''为,试比较的大小.21S S 、21S S 、【答案】解:∵,AOP AOA A OP S S S ''∆∆∆=-OB A OPA PBB S B S S ''''∆∆=-梯形 且,AOA 112122A A S x y '∆==⨯=OB 112122B B B S x y '∆==⨯=∴.21S S =类型三、反比例函数与一次函数综合5、已知反比例函数和一次函数的图象的一个交点坐标是(-3,ky x=y mx n =+4),且一次函数的图象与轴的交点到原点的距离为5,分别确定反比例函数和一次函数x 的表达式.【思路点拨】因为点(-3,4)是反比例函数与一次函数的图象的一个交ky x=y mx n =+点,所以把(-3,4)代入中即可求出反比例函数的表达式.欲求一次函数ky x=的表达式,有两个待定未知数,已知一个点(-3,4),只需再求一个一y mx n =+m n ,次函数图象上的点即可.由已知一次函数图象与轴的交点到原点的距离是5,则这个交x 点坐标为(-5,0)或(5,0),分类讨论即可求得一次函数的解析式.【答案与解析】解:因为函数的图象经过点(-3,4),ky x= 所以,所以=-12.43k=-k 所以反比例函数的表达式是.12y x=-由题意可知,一次函数的图象与轴的交点坐标为(5,0)或(-5,0),则y mx n =+x 分两种情况讨论:当直线经过点(-3,4)和(5,0)时,y mx n =+有 解得43,05,m n m n =-+⎧⎨=+⎩1,25.2m n ⎧=-⎪⎪⎨⎪=⎪⎩所以.1522y x =-+当直线经过点(-3,4)和(-5,0)时,y mx n =+有 解得 所以.43,05,m n m n =-+⎧⎨=-+⎩2,10.m n =⎧⎨=⎩210y x =+所以所求反比例函数的表达式为,一次函数的表达式为或12y x =-1522y x =-+.210y x =+【总结升华】本题考查待定系数法求函数解析式,解答本题时要注意分两种情况讨论,不能漏解.举一反三:【变式】如图所示,A 、B 两点在函数的图象上.(0)my x x=>(1)求的值及直线AB 的解析式;m (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.【答案】解:(1)由图象可知,函数的图象经过点A(1,6),可得=6.(0)my x x=>m 设直线AB 的解析式为.y kx b =+∵ A(1,6),B(6,1)两点在函数的图象上,y kx b =+∴ 解得6,61,k b k b +=⎧⎨+=⎩1,7.k b =-⎧⎨=⎩∴ 直线AB 的解析式为.7y x =-+(2)题图中阴影部分(不包括边界)所含格点的个数是3.类型四、反比例函数应用6、(2015•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v ≤120.(1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【答案与解析】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.【总结升华】解决反比例函数与实际问题相结合的问题,要理解问题的实际意义及与之相关的数学知识.反比例函数是解决现实世界反比例关系的有力工具.。

《力》全章复习与巩固(提高) 知识讲解

《力》全章复习与巩固(提高) 知识讲解

《力》全章复习与巩固(提高)撰稿:史会娜审稿:雒文丽【学习目标】1、知道力的概念、力的单位、力的作用效果;2、知道力的三要素,能用示意图、力的图示表示力;3、了解物体间力的作用是相互的,并能解释有关现象;4、理解重力、弹力产生的条件和特性。

【知识网络】【要点梳理】要点一、力1、力的概念:(1)力是物体对物体的作用。

(2)力不能脱离物体而存在,发生力的作用时,一定有物体存在。

(3)直接接触的物体间可以发生力的作用,不直接接触的物体间也能发生力的作用,例如磁铁间的吸引力。

2、力的单位:国际单位:牛顿,简称:牛,符号:N。

托起两个鸡蛋的力大约是1N。

3、力的作用效果:(1)使物体的运动状态发生改变。

(2)使物体发生形变。

4、力的三要素:大小、方向、作用点。

5、力的示意图:(1)力的示意图是在分析物体受力时,只需要标明物体受力的大致情况,只画力的方向、作用点、不用画标度和大小。

(2)画法:首先找到力的作用点;其次从力的作用点,沿力的方向画一条线段;最后用箭头表示力的方向。

6、相互作用力:物体间力的作用是相互的,施力物体同时也是受力物体。

作用力与反作用力大小相等、方向相反、作用在两个物体上,同时存在,同时消失,没有先后之分。

要点诠释:1、从字面上看“物体对物体”说明有力的存在时,至少需要两个物体,力是不能脱离物体而存在的。

这就是力的物质性。

“对”字前面的物体,我们常把它叫施力物体(因为它施加了力),“对”字后面的物体,我们把它叫受力物体。

有力存在时,一定有施力物体和受力物体。

例如:人推车,人对小车施加了力,小车受到了力,所以人是施力物体,车是受力物体。

2、物体间只有发生相互作用时才会有力,若只有物体,没有作用,也不会有力。

例如:人踢球,使球在草坪上滚动,人踢球时,人对球施加了力,人是施力物体,球是受力物体,当球离脚之后,人不再对球施力,球也就不再受踢力。

3、力的作用效果往往是两种效果同时都有,我们研究一个力的作用效果时,只研究主要的作用效果。

《全等三角形》全章复习与巩固(基础)知识讲解

《全等三角形》全章复习与巩固(基础)知识讲解

《全等三角形》全章复习与巩固(基础)知识讲解责编:杜少波【学习目标】1. 掌握常见的五种基本尺规作图;理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;2.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;4.理解并能应用直角三角形的性质解题;理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;5.理解并掌握角平分线、线段垂直平分线的性质定理及其逆定理,能用它们解决作图题、几何计算及证明题.【知识网络】【要点梳理】要点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.要点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.要点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.要点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.要点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.要点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.【典型例题】类型二、全等三角形的性质和判定1、已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【思路点拨】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【答案与解析】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD 、CE 特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE, ∴∠ADB=∠E. ∵∠DAE=90°, ∴∠E+∠ADE=90°. ∴∠ADB+∠ADE=90°. 即∠BDE=90°.∴BD、CE 特殊位置关系为BD⊥CE.【总结升华】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证. 举一反三:【变式】如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC , ∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC. 在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA ) ∴BD =CE.2、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB +∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F , ∴PE=PF ,∠PEA=∠PFB=90°, 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ), ∴∠PAE=∠PCB ,∵∠BAP +∠PAE=180°, ∴∠PCB +∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键. 举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB , ∴∠DAE =∠CBA =90° 在Rt △DAE 与Rt △CBA 中, ED ACAE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL ) ∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90° 即ED ⊥AC . 类型二、等腰三角形3、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC的形状,可通过判断角的关系来得出结论,那么就要看∠FAC和∠FCA的关系.因为∠BAD=∠BCE,因此我们只比较∠BAC和∠BCA的关系即可.【答案与解析】解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B,∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE,∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.【总结升华】利用全等三角形来得出角相等是本题解题的关键.举一反三:【变式】如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.【答案】解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形.4、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.【答案与解析】(2)解:如下图所示:(3)解:如图所示:(4)解:特征二:3倍内角关系,如图②.0°<α<45°,其中,α≠30°,α≠36°.【总结升华】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.类型三、尺规作图5、已知角α和线段c如图所示,求作等腰三角形ABC,使其底角∠B=α,腰长AB=c.要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.已知:求作:【思路点拨】作射线BP,再作∠PBQ=∠α;在射线BQ上截取BA=c;以点A为圆心,线段c为半径作弧交BP于点C;连接AC.则△ABC为所求.【答案与解析】解:作法:(1)作射线BP,再作∠PBQ=∠α;(2)在射线BQ上截取BA=c;(3)以点A为圆心,线段c为半径作弧交BP于点C;(4)连接AC.则△ABC为所求.△ABC就是所求作的三角形.【总结升华】此题主要考查三角形的作法,是一些基本作图的综合应用.举一反三:【变式】已知△ABC,按下列要求作图:(保留作图痕迹,不写作法)(1)作BC边上的高AD;(2)作△ABC的平分线BE.(尺规作图)【答案】解:如图:类型四、角平分线、线段垂直平分线性质定理与逆定理6、如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.【思路点拨】(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD =∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;(3)根据三角形内角与外角的关系可得到结论.【答案与解析】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠BAD=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴∠ADF=∠CAD,∴DF∥AC;(3)由(1)∠EAD=∠EDA,即∠ADE=∠CAD+∠EAC,∵∠ADE=∠BAD+∠B,∠BAD=∠CAD,∴∠EAC=∠B.【总结升华】此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.举一反三:【变式1】如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.【答案】证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥AD,PE⊥AE,∴PD=PE(角平分线上的点到角两边的距离相等),∴PF=PE,PF⊥BC,PE⊥AE,∴CP是△ABC的外角平分线(在角的内部,到角两边距离相等的点在角的平分线上).【变式2】如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,金牛纳斯达克∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.金牛纳斯达克。

全等三角形全章复习与巩固(基础)知识讲解

全等三角形全章复习与巩固(基础)知识讲解

全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SASHLSSSAASSASASAAASASAAAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠C【答案】证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB ACAD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:【高清课堂:388614 全等三角形单元复习,例8】3、己知:在ΔABC中,AD为中线.求证:AD<()12AB AC+【答案与解析】证明:延长AD至E,使DE=AD,∵AD为中线,∴BD=CD在△ADC与△EDB中DC DBADC BDEAD ED=⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS)∴AC=BE在△ABE中,AB+BE>AE,即AB+AC>2AD∴AD<()12AB AC+.【总结升华】用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( ) <x < 6 <x < 7 <x < 12 D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、在ΔABC 中,AB >AC.求证:∠B <∠C【答案与解析】证明:作∠A 的平分线,交BC 于D ,把△ADC 沿着AD 折叠,使C 点与E 点重合.在△ADC 与△ADE 中A C AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△ADE (SAS )∴∠AED =∠C∵∠AED 是△BED 的外角,∴∠AED >∠B ,即∠B <∠C.【总结升华】作以角平分线为对称轴的翻折变换构造全等三角形.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC ,BD 是∠ABC 的平分线,且CE⊥BD 交BD 延长线于点E .(1)若AD=1,求DC ;(2)求证:BD=2CE .【答案】解:(1)如图1,过点D 作DH⊥BC 于H ,∵AB=AC,∠BAC=90°,∴∠BCA=45°,∴DH=CH,∵BD是∠ABC的平分线,∴DH=AD=1,∴CD=;(2)如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中 ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。

要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。

要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。

要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。

要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。

XXX∠FAE。

又∠EAG+∠XXX∠BAG=180°。

AEF≌△AGF(AAS)。

XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。

又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。

AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。

BAD=∠CAD。

又∠ABD=∠ACD。

ABD≌△ACD(AAS)。

BD=CD。

又∠BDA=∠CDA。

BDA≌△CDA(SAS)。

B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。

证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。

勾股定理全章复习与巩固(基础)知识讲解

勾股定理全章复习与巩固(基础)知识讲解

勾股定理全章复习与巩固(基础)【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段. 要点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的简单应用1、已知直角三角形的两边长分别为6和8,求第三边的长.【答案与解析】解:设第三边为x .当x 为斜边时,由勾股定理得22268x =+.所以10x ===.当x 为直角边时,由勾股定理,得22268x +=.所以x ===.所以这个三角形的第三边为10或【总结升华】题中未说明第三边是直角边还是斜边,应分类讨论,本题容易误认为所求的第三边为斜边.举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长.【答案】解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得22222151281BD AB AD =-=-=.∴ 9BD ==.同理22222131225CD AC AD =-=-=.∴ 5CD ==.①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32.②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42.综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:2222AM BM CM +=.【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB .【答案与解析】证明:过点C 作CD ⊥AB 于D .∵ AC =BC ,CD ⊥AB ,∴ AD =BD .∵ ∠ACB =90°,∴ CD =AD =DB .∴ ()()2222AM BM AD DM AD DM +=-++ 222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+在Rt △CDM 中,222CD DM CM +=,∴ 2222AM BM CM +=.【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.【变式】已知,△ABC 中,AB =AC ,D 为BC 上任一点,求证:22AB AD BD CD -=⋅.【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:222AB AM BM =+……①在Rt △ADM 中:222AD AM DM =+……②由①-②得:22AB AD -=()()22BM DM BM DM BM DM -=+- = (MC +DM )•BD =CD ·BD类型二、勾股定理及逆定理的综合应用3、如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可.【答案与解析】解:△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1,∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3,∵由勾股定理得:BE 2=AB 2+AE 2=42+22=20,EF 2=DE 2+DF 2=22+12=5,BF 2=BC 2+CF 2=42+32=25,∴BE 2+EF 2=BF 2,∴∠BEF=90°,即△BEF 是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE 2+EF 2=BF 2.【变式】如图所示,已知△ABC 中,∠B =22.5°,AB 的垂直平分线交BC 于D ,BD =,AE ⊥BC 于E ,求AE 的长.【答案】解:连接AD .∵ DF 是线段AB 的垂直平分线,∴ AD =BD = ∠BAD =∠B =22.5°又∵∠ADE =∠B +∠BAD =45°,AE ⊥BC ,∴ ∠DAE =45°,∴ AE =DE由勾股定理得:222AE DE AD +=,∴ 222AE =,∴ 6AE ==.4、如图①所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用123S S S 、、表示,则不难证明123S S S =+.(1)如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用123S S S 、、表示,那么123S S S 、、之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用123S S S 、、表示,请你确定123S S S 、、之间的关系并加以证明.【答案与解析】解:设Rt △ABC 的三边BC 、CA 、AB 的长分别为a b c 、、,则222a b c +=.(1) 123S S S =+;(2) 123S S S =+.证明如下:显然,21S =,22S =,23S =,所以222231)S S a b S +=+==. 【总结升华】本题可以在直角三角形外作的三个图形推及为等腰直角三角形、正五边形等.5、如果ΔABC 的三边分别为a b c 、、,且满足222506810a b c a b c +++=++,判断ΔABC 的形状.【答案与解析】解:由222506810a b c a b c +++=++,得 :2226981610250a a b b c c -++-++-+=∴ 222(3)(4)(5)0a b c -+-+-=∵ 222(3)0(4)0(5)0a b c -≥-≥-≥,,∴ 3,4, 5.a b c ===∵ 222345+=,∴ 222a b c +=.由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况.【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得222311130AB =+=.在图③中,由勾股定理,得22268100AB =+=.因为130>100,所以图③中的AB 的长度最短,为10cm ,即蚂蚁需要爬行的最短路线长为10cm .【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解.举一反三:【变式】我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?【答案】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.。

《有理数及其运算》全章复习与巩固(基础)知识讲解

《有理数及其运算》全章复习与巩固(基础)知识讲解

《有理数及其运算》全章复习与巩固(基础)责编:杜少波【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-. 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《力》全章复习及巩固(基础)【学习目标】1、知道力的概念、力的单位、力的作用效果;2、知道力的三要素,能用示意图表示力;3、了解物体间力的作用是相互的,并能解释有关现象;4、理解重力、弹力产生的条件;5.知道滑动摩擦力的概念,影响滑动摩擦力大小的因素;6.了解摩擦在日常生活中的利用和防止。

【知识网络】【要点梳理】要点一、力1、力的概念:(1)力是物体对物体的作用。

(2)力不能脱离物体而存在,发生力的作用时,一定有物体存在。

(3)直接接触的物体间可以发生力的作用,不直接接触的物体间也能发生力的作用,例如磁铁间的吸引力。

2、力的单位:国际单位:牛顿,简称:牛,符号:N。

托起两个鸡蛋的力大约是1N。

3、力的作用效果:(1)使物体的运动状态发生改变。

(2)使物体发生形变。

4、力的三要素:大小、方向、作用点。

5、力的示意图:(1)力的示意图是在分析物体受力时,只需要标明物体受力的大致情况,只画力的方向、作用点、不用画标度和大小。

(2)画法:首先找到力的作用点;其次从力的作用点,沿力的方向画一条直线;最后用箭头标出力的方向。

6、相互作用力:物体间力的作用是相互的,施力物体同时也是受力物体。

作用力及反作用力大小相等、方向相反、作用在两个物体上。

同时增大,同时减小,同时存在,同时消失,没有先后之分。

要点诠释:1、从字面上看“物体对物体”说明有力的存在时,至少需要两个物体,力是不能脱离物体而存在的。

这就是力的物质性。

“对”字前面的物体,我们常把它叫施力物体(因为它施加了力),“对”字后面的物体,我们把它叫受力物体。

有力存在时,一定有施力物体和受力物体。

例如:人推车,人对小车施加了力,小车受到了力,所以人是施力物体,车是受力物体。

2、物体间只有发生相互作用时才会有力,若只有物体,没有作用,也不会有力。

例如:人踢球,使球在草坪上滚动,人踢球时,人对球施加了力,人是施力物体,球是受力物体,当球离脚之后,人不再对球施力,球也就不再受踢力。

3、力的作用效果往往是两种效果同时都有,我们研究一个力的作用效果时,只研究主要的作用效果,例如,用脚踢足球时,脚对足球的力,同时使球发生了形变和使球的运动状态改变了,但主要的作用效果应该是运动状态改变了。

4、力的作用效果及力的三要素有关。

力的三要素中任一要素都影响着力的作用效果,只要其中一要素改变了,力的作用效果就会发生改变。

要点二、弹力、弹簧测力计1、弹力概念:物体发生弹性形变后,力图恢复其原来的形状,而对另一个物体产生力,这个力叫做弹力。

2、弹簧测力计的原理:在弹性限度内弹簧受的拉力越大,它的伸长量就越长。

3、弹簧测力计的使用使用口诀:看量程、看分度、要校零;一顺拉、不摩擦、不猛拉;正对看、记数值、带单位。

使用方法:(1)所测的力不能大于测力计的测量限度;(2)使用前,应使指针指在零刻度线;(3)要使弹簧测力计的轴线方向及受力方向一致,读数时,视线及刻度盘垂直。

要点诠释:1、物体形状的改变叫做形变,不受力时能自动恢复原来形状的形变叫弹性形变;物体由于弹性形变而产生的力叫做弹力。

物体的弹性形变程度越大,产生的弹力越大。

2、日常所称的拉力、压力、支持力等,其实质都是弹力。

例如,桌面对茶杯的支持力,其实质就是桌面发生了微小的形变后对茶杯向上的弹力。

注意:弹簧的弹性有一定的限度,超过了这个限度就不能完全复原。

要点三、重力1、概念:物体由于地球的吸引而受到的力叫做重力。

2、重力的三要素:(1)大小:物体所受的重力跟它的质量成正比。

公式:G=mg其中:G——重力,单位:Nm——质量,单位:kgg=9.8N/㎏,粗略计算可以取g=10N/kg(2)方向:竖直向下。

据此制成了重垂线来检查墙壁是否竖直,也可改进后检查窗台、桌面等是否水平。

注意:竖直向下及垂直向下不同,所谓竖直向下是指向下且及水平面垂直,其方向是固定不变的。

(3)作用点:重心。

有些力作用在物体上的作用点不好确定,我们在作力的示意图时,也常把这些力的作用点画在物体的重心处。

要点诠释:1、地面附近的一切物体,不论它是运动还是静止,不论它是固态、液态还是气态,都要受到重力的作用。

如在上升过程中的氢气球仍受重力。

一切物体所受重力的施力物体都是地球。

2、计算重力时,g值取9.8N/㎏或g=10N/kg,通常认为g值是固定的。

实际上地理位置不同,g值也不同,如果都在海平面上测量,地球的赤道附近g值最小,越靠近两极g值越大。

重力随空间位置的变化而变化。

3、质地均匀,外形规则物体的重心在它的几何中心上。

物体的重心位置将随着物体的形状变化和质量分布变化而发生改变;物体的重心不一定在物体上。

如:光盘、篮球、足球。

要点四、摩擦力1.滑动摩擦力:(1)定义:一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。

(2)方向:及相对运动的方向相反。

(3)测量:利用弹簧测力计可以粗略测量滑动摩擦力的大小。

2.静摩擦力:(1)概念:物体在有相对运动趋势时,接触面阻碍物体相对运动趋势的力叫做静摩擦力。

(2)方向:及相对运动趋势相反,但及运动方向可以相反(阻力)也可以相同(动力),还可以成任意角度。

(3)判断静摩擦力大小的方法:静摩擦力可以在0到最大静摩擦力之间变化,其大小由外界条件决定,因此它是被动力。

3.滚动摩擦: 是指一个物体在另一个物体表面上滚动时产生的摩擦。

例如滚动轴承中的滚珠在轴承内滚动时的摩擦。

车轮在地面滚动时车轮及地面间的摩擦。

4.摩擦的利用及防止:(1)增大有益摩擦:增大压力;增大接触面粗糙程度。

(2)减小有害摩擦:减小压力;减小接触面粗糙程度;用滚动代替滑动;使接触面分离:加润滑油,气垫导轨,磁悬浮。

要点诠释:1.滑动摩擦力产生条件:接触面粗糙;接触挤压;在接触面上相对运动。

2.运动方向和相对运动方向的区别,f滑及相对运动方向相反,但及运动方向可以相反(阻力)也可以相同(动力),注意:滑动摩擦力可以是阻力,也可以是动力。

3.“假设法”判断静摩擦力的有无和方向。

静摩擦力的方向及相对运动趋势的方向相反,但有些情况相对运动趋势很难判断。

我们可以用假设法判断相对运动趋势的方向:假设接触面光滑,物体若会相对滑动,则说明原来有静摩擦力,且相对滑动的方向就是相对滑动趋势的方向。

【典型例题】类型一、力1.下列关于力的说法中正确的是( )A.汽车拉拖车时,汽车总是施力物体,而拖车总是受力物体B.脚踢球时,脚先对球施力使球飞出,然后球对脚施力使脚疼痛C.物体之间只有直接接触才能发生力的作用D.物体间力的作用是相互的,施力物体同时也是受力物体【答案】D【解析】施力物体和受力物体是相对而言的,主要看以哪个物体为研究对象,因此A错。

力的作用具有相互性及同时性,在踢球的同时脚就会疼痛,不会等球飞出去之后才痛,故B错。

物体之间不接触时也会发生力的作用,如磁铁间的作用力,所以C错。

【总结升华】此题既考查了学生对力的概念的理解和掌握,也考查了对力的作用效果和力作用的相互性的理解和掌握。

举一反三:【变式】关于力的认识,下列说法中错误的是()A.力是物体对物体的作用B.力能使物体发生形变或改变物体运动状态C.物体间力的作用是相互的D.只有相互接触的物体才会产生力的作用【答案】D2.下图四个选项中表示力能使物体的运动状态发生改变的是()A.用力将拉力器拉长B.飞来的网球使网球拍的网变形C.运动员将弓拉弯D.运动员用头将飞来的足球顶飞【思路点拨】题目考查了力的作用效果:使物体发生形变;改变物体的运动状态。

其中运动状态的改变包括改变物体运动的速度,改变物体运动的方向。

【答案】D【解析】拉力器在力的作用下变长,其形状发生了变化;网球拍受到网球的撞击力而发生变形,是其形状发生变化;弓在运动员拉力作用下被拉弯,是其形状发生变化;所以ABC表示力使物体发生了形变。

飞来的足球碰到运动员的头,在力的作用下其运动状态发生变化。

【总结升华】该题通过生活中的实例考查了力的作用效果,解题的关键是先判断物体是发生了形变还是运动状态发生了变化,其中运动状态包括物体运动的方向和速度的大小。

举一反三:【变式】如图所示的活动过程中,其中一个力的作用效果及其他三个不同类,它是()【答案】C类型二、弹力3.在下图中,A、B两球相互间一定有弹力作用的图是()【思路点拨】解答本题需要了解弹力产生的条件,根据弹力产生的条件即可做出选择。

【答案】B【解析】弹力的产生必须满足两个条件:相互接触且发生弹性形变。

由图可知:A、C中两个小球都相互接触,但它们之间并没有相互挤压的作用,也就不能发生弹性形变,从而不能产生弹力。

D无法确定两个小球之间到底有没有挤压作用,所以也就无法确定有没有弹力。

B中,两个小球所受的重力及绳子的拉力不是一对平衡力,所以这两个小球都受到了对方的合力作用,从而发生弹性形变产生弹力。

【总结升华】本题考查了弹力产生的条件,一定要注意只有当这两个条件都满足时,才会产生弹力。

举一反三:【变式】如图所示,瓶中灌满水,把细玻璃管通过带孔的橡皮塞插入玻璃瓶中,用手轻轻捏厚玻璃瓶,我们会看到细管中的水面,从此现象可推测发生了形变,这个实验采用的是的方法。

【答案】上升;瓶子;转换法4.关于弹簧测力计,下列说法中正确的是()A.在月球上,不可能用弹簧测力计测出力的大小B.弹簧测力计上的字母“N”用来表示它的型号C.测量时,要让弹簧及外壳间没有摩擦D.实验室所用弹簧测力计的每小格表示0.1kg【答案】C【解析】月球上的物体是受力的,故而可以用弹簧测力计来测量力的大小,故A错误。

弹簧测力计上的字母N是表示该弹簧测力计所采用的单位的,故B错误。

测量时,弹簧及外壳间的摩擦是不能有摩擦的,会影响实验的结果,故C 正确。

弹簧测力计是测量力的工具,故它的单位也是力的单位,而题目中给出了以kg为单位,故D错误。

【总结升华】弹簧测力计是实验中经常使用的仪器,应该掌握正确的使用方法。

举一反三:【变式】使用弹簧测力计时,下面必须注意的几点中不正确的是()A.使用中弹簧、指针、挂钩不能及外壳摩擦B.弹簧测力计必须竖直放置,不得倾斜C.使用前必须检查指针是否指零D.加在弹簧测力计上的力不得超过它的量程【答案】B类型三、重力5.如下面左图所示,足球运动员把足球踢向空中,若不计空气阻力,则下面右图表示足球在空中飞行时的受力图,其中正确的是(G表示重力,F表示脚对球的作用力)【答案】A【解析】由于不计空气阻力,而且足球已经离开脚面,所以脚已经不给足球施力,而足球仍然受重力,且重力的方向竖直向下,故选A。

【总结升华】在空中,若不计空气阻力,足球只受到重力。

举一反三:【变式】重为6N的小球用细线悬挂在天花板上,用力的示意图画出它所受的重力G。

【答案】6.月球对它表面附近的物体也有引力,这个力大约是地球地面附近同一物体引力的1/6。

相关文档
最新文档