2018-2019学年江苏省无锡市滨湖区七年级(上)期末数学试卷(解析版)
无锡市七年级上学期数学期末考试试卷
无锡市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2018·无锡) 下列等式正确的是()A . ()2=3B . =﹣3C . =3D . (﹣)2=﹣32. (1分) (2019七上·达孜期末) 下列各组量中,互为相反意义的量是()A . 收入200元与赢利200元B . 上升10米与下降7米C . “黑色”与“白色”D . “你比我高3cm”与“我比你重3kg”3. (1分) (2019七上·达孜期末) 为举办广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是()A . 元B . 元C . 元D . 元4. (1分) (2019七上·达孜期末) 绝对值是5的数是()A . ﹣5B . 5C . ±5D .5. (1分) (2019七上·达孜期末) -3的相反数是()A . -3B . -C .D . 36. (1分) (2019七上·达孜期末) 下列运算中,结果正确的是().A . 4+=B .C .D .7. (1分) (2019七上·达孜期末) 下列不是一元一次方程的()A . 5x+3=3x﹣7B . 1+2x=3C .D . x﹣7=08. (1分)下列说法正确的是()A . 过一点P只能作一条直线B . 直线AB和直线BA表示同一条直线C . 射线AB和射线BA表示同一条射线D . 射线a比直线b短9. (1分) (2019七上·达孜期末) 如果α与β互为余角,则()A . α+β=180°B . α﹣β=180°C . α﹣β=90°D . α+β=90°10. (1分) (2019七上·达孜期末) 下面的说法错误的个数有()①单项式 mn的次数是3次;② 表示负数;③1是单项式;④ 是多项式A . 1B . 2C . 3D . 411. (1分) (2019七上·达孜期末) 平方等于4的数是()A . 2B . -2C . ±2D . 以上都不对12. (1分)如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A . 2cmB . 3cmC . 4cmD . 6cm二、填空题 (共7题;共7分)13. (1分) (2019七上·绍兴期中) 代数式的书写有一些规范,比如教材上指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“·”或者省略不写”其实还有一些书写规范,比如,在代数式中如果出现“÷”,通常用分数线“——”来取代;数字与字母相乘时,一般数字写在前面.根据以上书写要求,将代数式(ac×4-b2)÷(4a)简写成________14. (1分)已知|a|=7,|b|=3,且a+b>0,则a=________.15. (1分) (2019七上·达孜期末) ________。
七年级上册无锡市滨湖中学数学期末试卷测试卷(解析版)
七年级上册无锡市滨湖中学数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为________,边长为________.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是________ .(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 ________.【答案】(1)5;;(2)(3)【解析】【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5,边长= ,(2)根据勾股定理可求出图中直角三角形的斜边长= ,然后根据线段和差关系求出A点表示的数是,(3)根据图可知:阴影部分的面积是6个小正方形的面积,即为6,所以拼成的新正方形的面积是6,则新正方形的边长= .【分析】(1)剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长;(2)直角三角形的最大的边就是斜边,根据勾股定理可以算出其斜边的长度是,根据同圆的半径相等得出表示-1的点到A点的距离是,利用线段的和差得OA=-1,从而得出A点所表示的数;(3)利用三角形的面积计算方法可以算出图中阴影部分的面积是6个小正方形的面积,剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长。
2018-2019学年江苏省无锡市新吴区七年级(上)期末数学试卷(解析版)
2018-2019学年江苏省无锡市新吴区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.2.(3分)下列运算正确的是()A.3a2+a=4a3B.﹣3(a﹣b)=﹣3a+bC.5a﹣4a=1D.a2b﹣2a2b=﹣a2b3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.(3分)一元一次方程3x+6=2x﹣8移项后正确的是()A.3x﹣2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=8﹣6D.3x﹣2x=﹣6﹣8 5.(3分)在中,负有理数共有()A.4个B.3个C.2个D.1个6.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角7.(3分)如图,小亮用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图8.(3分)如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了()折.A.5B.5.5C.7D.7.59.(3分)已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,则线段AQ的长是()A.5cm B.9cm C.5cm或9cm D.3cm或5cm 10.(3分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159二、填空题(本大题共8小题,每小题3分,共16分)11.(3分)代数式3x m y与﹣4x3y的和是一个单项式,则m=.12.(3分)已知∠α=76°36′,则∠α的补角为.13.(3分)若a2﹣3b=4,则3b﹣a2+2018=.14.(3分)已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为.15.(3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是.16.(3分)已知∠AOB=24°,自∠AOB的顶点O引射线OC,若∠AOC:∠BOC=7:5,则∠AOC的度数是.17.(3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,10x=7.7777…,所以10x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.18.(3分)下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5所表示的等式为.三、解答题(本大题共9小题,共64分)19.(3分)计算:(1)(﹣2)﹣(﹣3)﹣|﹣4|(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)20.(4分)解方程:(1)5x+3x=2+6(2)﹣=121.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:;(4)点C到直线AB的距离是线段的长度.23.(6分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是;(2)请在边长为1的网格图里画出这个零件的主视图和俯视图.24.(6分)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.25.(8分)如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据可得∠BOD=度;(3)如果∠1=32°,求∠2和∠3的度数.26.(8分)如图是一根可伸缩的鱼竿,鱼竿是用10节粗细不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.27.(9分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.2018-2019学年江苏省无锡市新吴区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.2.(3分)下列运算正确的是()A.3a2+a=4a3B.﹣3(a﹣b)=﹣3a+bC.5a﹣4a=1D.a2b﹣2a2b=﹣a2b【分析】根据同类项,合并同类项,去括号法则判断即可.【解答】解:A、3a2和a不能合并,故本选项错误;B、结果是﹣3a+3b,故本选项错误;C、结果是a,故本选项错误;D、结果是﹣a2b,故本选项正确;故选:D.【点评】本题考查了同类项,合并同类项,去括号法则的应用,能熟记法则是解此题的关键.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)一元一次方程3x+6=2x﹣8移项后正确的是()A.3x﹣2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=8﹣6D.3x﹣2x=﹣6﹣8【分析】根据解方程移项要变号,可得答案.【解答】解:一元一次方程3x+6=2x﹣8移项得3x﹣2x=﹣8﹣6,故选:D.【点评】本题考查了解一元一次方程,移项变号是解题关键.5.(3分)在中,负有理数共有()A.4个B.3个C.2个D.1个【分析】负数的奇次幂为负,偶次幂为正,看准底数进行计算可得到答案.【解答】解:中(﹣1)2007=﹣1、﹣32=﹣9、﹣|﹣1|=﹣1、﹣=﹣是负数,故选:A.【点评】此题主要考查了整数指数幂,乘方,绝对值,关键是准确掌握各计算公式与法则.6.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角【分析】分别对各个选项进行仔细地分析可得出答案.【解答】解:A.应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;B.若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,故本说法错误;C.两点之间的所有连线中,线段最短,故本说法正确;D.相等的角不一定是对顶角,故本说法错误;【点评】本题主要考查平行线公理及推论,解题的关键是掌握平行线公理及推论,线段中点的定义与性质,对顶角的定义和性质.7.(3分)如图,小亮用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【分析】根据三视图的意义,可得答案.【解答】解:从左面看第一层都是三个小正方形,第二层左边一个小正方形,①②的左视图相同;从上面看第一列都是一个小正方形,第二列都是一个小正方形,第三列都是三个小正方形,故①②的俯视图相同,故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.8.(3分)如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了()折.A.5B.5.5C.7D.7.5【分析】根据题意设一件商品原价为a元,买2件商品共打了x折,利用价格得出等式求出答案.【解答】解:设一件商品原价为a元,买2件商品共打了x折,根据题意可得:a+0.5a=2a•,解得:x=7.5,即相当于这2件商品共打了7.5折.【点评】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.9.(3分)已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,则线段AQ的长是()A.5cm B.9cm C.5cm或9cm D.3cm或5cm【分析】根据中点的定义可得PQ=QB,根据AP=2PB,求出PB=AB,然后求出PQ 的长度,即可求出AQ的长度.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5cm或9cm.故选:C.【点评】本题考查了两点间的距离:两点的连线段的长叫两点间的距离,解题时注意分类思想的运用.10.(3分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.【解答】方法一:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);方法二:n=1,s=7;n=2,s=13;n=3,s=21,设s=an2+bn+c,∴,∴,∴s=n2+3n+3,把n=11代入,s=157.故选:B.【点评】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.二、填空题(本大题共8小题,每小题3分,共16分)11.(3分)代数式3x m y与﹣4x3y的和是一个单项式,则m=3.【分析】根据题意得到两代数式为同类项,利用同类项定义求出m即可.【解答】解:根据题意知3x m y与﹣4x3y是同类项,则m=3,故答案为:3.【点评】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.12.(3分)已知∠α=76°36′,则∠α的补角为103°24′.【分析】根据互补两角之和为180°求解即可.【解答】解:∵∠a=76°36′,∴∠a的补角=180°﹣76°36′=103°24′.故答案为:103°24′.【点评】本题考查了补角的知识,解答本题的关键是掌握互补两角之和为180°.13.(3分)若a2﹣3b=4,则3b﹣a2+2018=2014.【分析】将a2﹣3b=4代入原式=﹣(a2﹣3b)+2018计算可得.【解答】解:当a2﹣3b=4时,原式=﹣(a2﹣3b)+2018=﹣4+2018=2014,故答案为:2014.【点评】本题主要考查代数式的求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.(3分)已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为﹣1.【分析】根据一元一次方程定义可得:|k|=1,且k﹣1≠0,再解即可.【解答】解:由题意得:|k|=1,且k﹣1≠0,解得:k=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.15.(3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是36.【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【解答】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点评】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.16.(3分)已知∠AOB=24°,自∠AOB的顶点O引射线OC,若∠AOC:∠BOC=7:5,则∠AOC的度数是14°或84°.【分析】分两种情况:①射线OC在∠AOB内部;②射线OC在∠AOB外部.根据角之间的比值求解即可.【解答】解:①当射线OC在∠AOB内部时,∠AOC=24×=14°;②当射线OC在∠AOB外部时,设∠AOC=7x,则∠AOB=2x=24°,解得x=12°所以∠AOC=7×12°=84°.故答案为14°或84°.【点评】本题主要考查角的倍分关系,分情况讨论问题是解题的关键.17.(3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,10x=7.7777…,所以10x ﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.(3分)下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5所表示的等式为21×13=273.【分析】根据图形计算正整数乘法的方法进行计算.【解答】由图形可知:图1中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为11,右下方的两组交点个数逆时针排列为11,它们为两个因数,即11×11=121;图2中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为21,右下方的两组交点个数逆时针排列为11,它们为两个因数,即21×11=231;图3中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为21,右下方的两组交点个数逆时针排列为12,它们为两个因数,即21×12=252;图4中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为31,右下方的两组交点个数逆时针排列为21,它们为两个因数,即31×12=372;图5中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为21,右下方的两组交点个数逆时针排列为13,它们为两个因数,即21×13=273;故答案为:21×13=273.【点评】此题考查了图形的变化规律,关键在于认真正确的对每个图形进行分析归纳规律,得出规律解决问题.三、解答题(本大题共9小题,共64分)19.(3分)计算:(1)(﹣2)﹣(﹣3)﹣|﹣4|(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)【分析】(1)将减法转化为加法,计算绝对值,再计算加法可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣2+3﹣4=﹣3;(2)原式=﹣4+3×1+3=﹣4+3+3=2.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.20.(4分)解方程:(1)5x+3x=2+6(2)﹣=1【分析】(1)合并同类项、系数化为1即可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:(1)8x=8,x=1;(2)3(x+1)﹣(2﹣3x)=6,3x+3﹣2+3x=6,3x+3x=6﹣3+2,6x=5,x=.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.21.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,CE线段最短,理由:垂线段最短;(4)点C到直线AB的距离是线段的长度.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(4)根据三角形的面积的两种求法,构建方程即可解决问题;【解答】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;(4)∵S=•AB•CE,△ABC∴18﹣×1×5﹣×1×3﹣×2×6=×2×CE,∴CE=.,【点评】本题考查作图﹣应用与设计,垂线段最短、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(6分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是24;(2)请在边长为1的网格图里画出这个零件的主视图和俯视图.【分析】(1)几何体的表面积与原来相同,根据正方体的表面积公式计算即可求解;(2)根据几何体画出从正面、上面看所得到的图形即可.【解答】解:(1)2×2×6=24故这个零件的表面积是24.(2)如图所示:【点评】此题主要考查了三视图,以及求几何体的表面积,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.(6分)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.【分析】本题需先设MC=x,根据已知条件C点将线段MB分成MC:CB=1:3的两段,求出MB=4x,利用M为AB的中点,列方程求出x的长,即可求出AB的长.【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.【点评】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是本题的关键.25.(8分)如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是∠BOC、∠AOD(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据对顶角相等可得∠BOD=160度;(3)如果∠1=32°,求∠2和∠3的度数.【分析】(1)由垂线的定义和角的互余关系即可得出结果;(2)由对顶角相等即可得出结果;(3)由角平分线的定义求出∠AOD,由对顶角相等得出∠2的度数,再由角的互余关系即可求出∠3的度数.【解答】解:(1)∵OF⊥OC,∴∠COF=∠DOF=90°,∴∠AOF+∠BOC=90°,∠AOF+∠AOD=90°,∴∠AOF的余角是∠BOC、∠AOD;故答案为:∠BOC、∠AOD;(2)∵∠AOC=160°,∴∠BOD=∠AOC=160°;故答案为:对顶角相等;160;(3)∵OE平分∠AOD,∴∠AOD=2∠1=64°,∴∠2=∠AOD=64°,∠3=90°﹣64°=26°.【点评】本题考查了角平分线的定义、对顶角相等的性质、互为余角关系;熟练掌握对顶角相等得性质和角平分线的定义是解决问题的关键.26.(8分)如图是一根可伸缩的鱼竿,鱼竿是用10节粗细不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【分析】(1)利用第5节套管的长度=第1节套管的长度﹣4×(节数﹣1),即可求出结论;(2)利用第10节套管的长度=第1节套管的长度﹣4×(节数﹣1),可求出第10节套管的长度,设每相邻两节套管间重叠的长度为xcm,观察图形可知,10节套管共重合9个x的长度,根据鱼竿完全拉伸的长度=10节套管的长度和﹣9个x的长度,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).答:第5节套管的长度为34cm.(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,依题意,得:(50+46+42+…+14)﹣(10﹣1)x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了规律型:图形的变化类以及一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(9分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO与BQ的时间相等得出方程是解题关键,要分类讨论,以防遗漏.。
滨湖区七年级期末数学试卷
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2B. -3C. 0.5D. π2. 下列各数中,是负数的是()A. -2B. 2C. 0D. 1/23. 下列各数中,有最小值的是()A. -∞B. 0C. 1D. ∞4. 下列各数中,有最大值的是()A. -∞B. 0C. 1D. ∞5. 下列各数中,有最小值的是()A. -∞B. 0C. 1D. ∞6. 下列各数中,有最大值的是()A. -∞B. 0C. 1D. ∞7. 下列各数中,有最小值的是()A. -∞B. 0C. 1D. ∞8. 下列各数中,有最大值的是()A. -∞B. 0C. 1D. ∞9. 下列各数中,有最小值的是()A. -∞B. 0C. 1D. ∞10. 下列各数中,有最大值的是()A. -∞B. 0C. 1D. ∞二、填空题(每题3分,共30分)11. -3的相反数是______。
12. 下列各数中,绝对值最小的是______。
13. 下列各数中,绝对值最大的是______。
14. 下列各数中,正数是______。
15. 下列各数中,负数是______。
16. 下列各数中,有最大值的是______。
17. 下列各数中,有最小值的是______。
18. 下列各数中,有最大值的是______。
19. 下列各数中,有最小值的是______。
20. 下列各数中,有最大值的是______。
三、解答题(每题10分,共30分)21. 简述实数与数轴的关系。
22. 简述绝对值的定义及其性质。
23. 简述有理数的概念及其分类。
四、应用题(每题15分,共30分)24. 小明骑自行车从家出发,向东骑行了5千米,然后向北骑行了3千米,此时他距离家的距离是多少?25. 一辆汽车从甲地出发,以每小时60千米的速度匀速行驶,经过2小时到达乙地。
如果汽车以每小时80千米的速度行驶,它需要多少小时才能到达乙地?答案:一、选择题1. D2. A3. A4. D5. A6. D7. A8. D9. A10. D二、填空题11. 312. 013. 214. 115. -116. ∞17. -∞18. ∞19. -∞20. ∞三、解答题21. 实数与数轴的关系:实数与数轴上的点一一对应,数轴上的点表示实数,实数表示数轴上的点。
2018-2019学年最新苏科版七年级数学上学期期末质量检测题及答案解析-精编试题
最新苏科版七年级上学期期末学业质量测试说明:1.本试卷共4页,满分为150分,考试时间为120分钟.2.考生答题前,必须将自己的学校、班级、姓名、学号填写在答题纸上的相应位置.3.本试卷所有答案一律填写在答题纸上的指定区域内,在草稿纸、试卷上答题无效.一、选择题(本大题共6小题,每小题3分,共18分)1.与 -3互为相反数的数是( ▲ )A .3B .-3C .31D .-31 2.下列运用等式性质进行的变形,正确的是( ▲ ) A .如果a=b ,那么a+c=b-c B. 如果a 2=3a ,那么a=3C.如果a=b ,那么a c =b cD. 如果a c =b c,那么a=b 3.直四棱柱、长方体和正方体之间的包含关系是( ▲ )A .B .C .D .4.下列说法中,错误的是( ▲ )A .-2a 2b 与ba 2是同类项B .对顶角相等C .过一点有且只有一条直线与已知直线平行D .垂线段最短5.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a ∥b 的条件有( ▲ )A .1个B .2个C .3个D .4个 (第5题图)6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程( ▲ )A .15x + 25x =1 B .15x + 25 x +1=x C .15x + 25 x-1+1=x D .15x + 25x +1+1=x 二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数____▲_______.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 ▲ 人.9.若2x |m|-1 =5是一元一次方程,则m 的值为 ▲ . 10.如图所示是一个几何体的三视图,这个几何体的名称是 ▲ .11.多项式2a 2-4a+1与多项式-3a 2+2a -5的差是 ▲ .(第10题图) (第13题图) (第14题图)12..小明根据方程5x+2=6x -8编写了一道应用题,请你把他编写中空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; ▲ .请问手工小组有几人?(设手工小组有x 人)13. 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是 ▲ .14. 如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东85°方向,则∠ACB 的度数为 ▲ .15. 如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是 ▲ . (第15题图)16. 按下面图示的程序计算,若开始输入的值x 为正数,最后输出的结果为11,则满足条件的x 的值为 ▲ .(第16题图)三、解答题(本大题共10小题,共102分)17.(本题满分12分)计算:(1)[-5-(-11)]÷(- 32 ÷14 ); (2)-22 -32×2 +(-2)3÷⎪⎭⎫ ⎝⎛-21. 18.(本题满分8分)解方程:(1)6+2x =14-3x (写出检验过程); (2)x +24- 2x -36=1.19.(本题满分8分)(1)如图,点B 在线段AD 上,C 是线段BD 的中点,AD=10,BC=3.求线段CD 、AB 的长度;P AB O (2) 一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.20.(本题满分8分)(1) 化简求值:)2(2)3(2222b a ab b a ab ---,其中1=a ,2-=b ;(2)试说明多项式16+a -{8a -[a -9-3(1-2a )]}的值与字母a 的取值无关.21.(本题满分10分)如图,EF ⊥BC ,AD ⊥BC ,∠1 =∠2,∠B=30°.求∠GDB 的度数. 请将求∠GDB 度数的过程填写完整.解:因为EF ⊥BC ,AD ⊥BC ,所以∠BFE=90°,∠BDA=90°,理由是 ▲ ,即∠BFE=∠BDA ,所以EF ∥ ▲ ,理由是 ▲ ,所以∠2 = ▲ ,理由是 ▲ .因为∠1 =∠2,所以∠1=∠3,所以AB ∥ ▲ ,理由是 ▲ , 所以∠B+ ▲ = 180°,理由是 ▲ .又因为∠B= 30°,所以∠GDB = ▲ .22.(本题满分10分)如图,在6×6的正方形网格中,点P 是∠AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ,过点P 画OA 的垂线,垂足为H ;(2)线段PH 的长度是点P 到直线 ▲ 的距离,(第21题图)DAB CE F 2 G 3 1线段▲的长度是点C到直线OB的距离;(3)图中线段PC、PH、OC这三条线段大小关系是▲(用“<”号连接).(第22题图)23.(本题满分10分) 周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付▲元;若在乙店购买,则总共需要付▲元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?24.(本题满分10分) 某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.25.(本题满分12分) (1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建(第25题图)如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.26.(本题满分14分)如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=___▲____.(n是正整数)(第26题图)(用含α和β的代数式表示).期末学业质量测试七年级数学试卷答案一、选择题(本大题共有6小题,每小题3分,共18分) 题号1 2 3 4 5 6 答案 A D B C D C二、填空题(本大题共10小题,每小题3分,共30分,)7.答案不唯一,如-π 8. 1.1×105 9.±2(全部正确得3分) 10.圆柱体 11. 5a 2-6a+612.若每人做6个,就比原计划多8个 13. 梦 14.80° 15.20cm 16. 5,2,0.5(全部正确得3分)三、解答题(本大题共有10小题,共102分)17.(本题满分12分)(1)原式=6÷(-6)(各2分,4分)=-1(6分);(2)原式=-4-3+(-8)÷⎪⎭⎫ ⎝⎛-21(3分)=-4-3+16(4分)=9(6分). 18.(本题满分8分)(1)3x +2x =14-6, 5x = 8,x = 1.6(2分),当x=1.6时,左边=6+3.2=9.2,右边=14-4.8=9.2,因为左边等于右边,所以x= 1.6是方程的解(4分);(2)3(x+2)-2(2x-3)=12(2分),3x+6-4x +6=12(3分),x=0(4分).19.(本题满分8分)(1) ∵BC =3,C 是BD 的中点,∴CD =BC =3(2分);∵AD=10,∴AB =AD -BC-CD =4(4分);(2)设所求角为x ,根据题意得:180-x+10=3(90-x ),∴x=40(2分),90-x=50,180-x=140,答:这个角为40°,余角为50°,补角为140°.(4分)20.(本题满分8分)(1)原式=b a ab b a ab 2222243+--=-ab 2+a 2b (3分),当1=a ,2-=b时,原式=-6(4分);(2)原式= = 16+a -{8a -[7a -12]} (1分) =16+a -{a+12}(2分)=4 (3分),∴多项式16+a -{8a -[a -9-3(1-2a )]}的值与字母a 的取值无关(4分).21. (本题满分10分)解:∵EF ⊥BC ,AD ⊥BC ,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA , ∴EF ∥AD (同位角相等,两直线平行),∴∠2 =∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1 =∠3,∴AB ∥DG (内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B =30°,∴∠GDB = 150°.(每空1分)22.(本题满分10分)(1)略(4分);(2)OA(6分),CP(8分);(3)PH<PC<OC (10分) .23.(本题满分10分) (1)(5x+125),(4.5x+135)(6分);(2)选择甲店购买(7分).理由:到甲店购买需要200元,到乙店购买需要202.5元(9分).∵200<202.5 ,∴选择甲店购买(10分).24. (本题满分10分) (1)设客房有x间(1分),则根据题意可得:7x+7=9x-9(3分),解得x=8(4分),客人有7⨯8+7=63(人)(5分);(2)如果每4人一个房间,需要63÷4=1534,需要16间客房,总费用为16×20=320(钱)(7分);如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18⨯20×0.8=288(钱)<320钱,(9分)所以它们再次入住定18间房时更合算(10分).25.(本题满分12分) (1)以点A为端点的线段有线段AB、AC、AD,以点B为端点的线段有线段BA、BC、BD,以点C为端点的线段有线段CA、CB、CD,以点D为端点的线段有线段DA、DB、DC,共有6条线段(4分,学生只写出“线段AB、线段AC、线段AD、线段BC、线段BD、线段CD,共有6条线段”也给4分);(2)2)1(-mm(5分),理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),所以2x=m+m+…+m(共m-1个m)=m(m-1),所以x=2)1(-mm(8分);(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行2)18(8-⨯=28场比赛(12分,不转为模型计算正确得2分).26.(本题满分14分)(1)由∠AOM=∠BOM,∠DON=∠CON,得∠BOM+∠CON=∠AOM+∠DON,因为∠AOD=α,∠MON=β,所以∠AOM+∠DON=α-β,因为∠BOC=∠MON-(∠BOM+∠CON),所以∠BOC=β-(α-β)=2β-α(4分);(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOM+∠CON=21(∠AOM+∠DON )=21(α-β),所以∠BOC=∠MON-(∠BOM+∠CON )=β-21(α-β)=23β-21α(8分);②当∠AOM=3∠BOM ,∠DON=3∠CON 时,∠BOM+∠CON=31(∠AOM+∠DON )=31(α-β),所以∠BOC=∠MON-(∠BOM+∠CON )=β-31(α-β)=34β-31α(11分);(3)n n 1+β-n 1α(14分).。
滨湖区七年级期末数学试卷
一、选择题(每题4分,共20分)1. 下列各数中,正数是()A. -2B. 0C. -1/2D. 32. 如果a < b,那么下列各数的大小关系正确的是()A. a < 0 < bB. b < 0 < aC. a < 1 < bD. b < 1 < a3. 下列各式中,等式成立的是()A. 3x + 2 = 5x - 1B. 2x - 3 = 3x + 1C. 4x + 5 = 4x + 5D. 5x - 3 = 4x - 24. 如果a + b = 5,那么下列各式中,正确的有()A. a = 5 - bB. b = 5 - aC. a - b = 5D. b - a = 55. 下列各数中,平方根是整数的是()A. 4C. 16D. 25二、填空题(每题4分,共20分)6. 如果a = -3,那么a的相反数是______。
7. 下列各数中,正数的平方根是正数的是______。
8. 如果x^2 = 9,那么x的值是______。
9. 下列各式中,x的值是2的是______。
10. 如果a + b = 0,那么a和b互为______。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
12. 解不等式:2x - 3 < x + 1。
13. 某班级有男生x人,女生y人,全班共有30人。
请列出一个关于x和y的方程,并解方程。
四、应用题(每题10分,共20分)14. 某商店进了一批商品,每件商品进价为20元,售价为30元。
商店为了促销,决定打八折出售。
请问,每件商品的利润是多少?15. 小明和小华一起去书店买书。
小明买了3本书,每本书价格为10元;小华买了2本书,每本书价格为15元。
请问,他们一共花费了多少钱?五、附加题(10分)16. 请证明:对于任意实数a和b,有(a + b)^2 = a^2 + 2ab + b^2。
2018-2019学年七年级(上)期末数学试题(解析版)
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
江苏省无锡市七年级上学期数学期末考试试卷
江苏省无锡市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2018七上·唐山期中) 如果三个数的积是负数,那么这三个数()A . 有一个是负数B . 都是负数C . 至少有一个是负数D . 以上说法都不对【考点】2. (1分) (2019七上·甘南月考) 向东行进-50 m表示的意义是()A . 向东行进50 mB . 向南行进50 mC . 向北行进50 mD . 向西行进50 m【考点】3. (1分) (2017七上·拱墅期中) 据某市统计局核算,年全市实现地区生产总值亿元,比上年增长,经济增速在全国个省市中居第几位.请将亿元用科学记数法表示是().A . 元B . 元C . 元D . 元【考点】4. (1分)(2017·费县模拟) ﹣3的倒数的绝对值是()A . ﹣3B . ﹣C .D . 3【考点】5. (1分)(2016·漳州) ﹣3的相反数是()A . 3B . ﹣3C .D .【考点】6. (1分)(2020·连云港) 下列计算正确的是().A .B .C .D .【考点】7. (1分) (2019七下·遂宁期中) 关于x的方程是一元一次方程,那么k的值为()A . 2B .C . -2D .【考点】8. (1分)如图中的线段,直线或射线,能相交的是()A .B .C .D .【考点】9. (1分) (2019七上·湖北月考) 如图,直线 AB,CD 交于点 O,则图中互为补角的角对数有()A . 1 对B . 2 对C . 3 对D . 4 对【考点】10. (1分) (2019七上·达州期中) 下列说法正确的是()A . 单项式的系数是5,次数为1B . 多项式a+1与ab-1的次数相等C . 若a+b=0,则ab<0D . 若,则a=b或a+b=0【考点】11. (1分) (2019七上·吉隆期中) 平方等于16的数有()A . 4B . ﹣4C . 4和﹣4D . 无法确定【考点】12. (1分) (2015七上·福田期末) 如图,线段AC=6,线段BC=9,点M是AC的中点,N在线段BC上,切= ,则线段MN的长是()A . 3B . 6C . 9D . 12【考点】二、填空题 (共7题;共7分)13. (1分) (2019七上·长春期末) 比较大小: ________ .(填“<”,“=”或“>”)【考点】14. (1分) (2020七上·泰兴月考) 已知互不相等的整数a,b,c,d满足abcd=25,且a>b>c>d,那么=________.【考点】15. (1分) (2020七上·酒泉期中) 已知3x2ym和-4xny4是同类项,则m+n的值是________.【考点】16. (1分) (2019七上·中山期末) 如图,线段OA=1,其中点记为A1 , AA1的中点记为A2 , AA2的中点记为A3 , AA3的中点记为A4 ,如此继续下去…则当n≥1时,OAn=________.【考点】17. (1分) (2020七上·北京期中) 若-3是关于x的一元一次方程:a-2x=6x+5-a的解,则a=________.【考点】18. (1分) (2020八上·银川期末) “互补的两个角,一定一个是锐角,一个是钝角”是________命题.【考点】19. (1分) (2020七上·大丰月考) 计算:111﹣112+113﹣114+115﹣116+…+2019﹣2020=________.【考点】三、解答题 (共5题;共7分)20. (1分) (2019七上·忻城期中) 计算:(1)(2)(3) +(﹣16);(4)【考点】21. (1分) (2017七上·乐清期中) 化简:(1)化简:(2)已知 , ,求的值,其中x=2.【考点】22. (1分) (2016七上·利州期末) 已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.【考点】23. (2分) (2020七上·黄冈期末) 某市百货商场元旦期间搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元,优惠10%,超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元,问:(1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次的钱合起来购同一商品是更节省还是亏损?说明理由.【考点】24. (2分) (2020八上·银川期末) 如图,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,求证:AB∥CD.【考点】参考答案一、单选题 (共12题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共7题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:三、解答题 (共5题;共7分)答案:20-1、答案:20-2、答案:20-3、答案:20-4、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:。
2018-2019学年江苏省无锡市滨湖区七年级(上)期末数学试卷-普通用卷
2018-2019学年江苏省无锡市滨湖区七年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.-3的相反数是()A. B. C. 3 D.2.下列代数式中,次数为3的单项式是()A. B. C. D. 3xy3.已知关于x的方程2x-a-5=0的解是x=2,则a的值为()A. 1B.C. 9D.4.下列几种说法中,正确的是()A. 0是最小的数B. 最大的负有理数是C. 任何有理数的绝对值都是正数D. 平方等于本身的数只有0和15.如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A. B. C. D.6.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF的度数为()A. B. C. D.7.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A. B. C. D. 或8.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个9.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A. B.C. D.10.在线段AB上有3种点,第1种是将AB三等分的点;第2种是将AB四等分的点;第3种是将AB六等分的点,这些点连同线段AB的端点可组成线段的条数是()A. 36B. 45C. 55D. 72二、填空题(本大题共8小题,共16.0分)11.请写出一个无理数______.12.据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2800000人进行了扶贫搬迁,成功脱贫.其中2800000人用科学记数法可表示为______人.13.若∠A=68°,则∠A的余角是______.14.若单项式4x m y3与-5x2y n是同类项,则m+n=______.15.小明的爸爸现在的年龄比小明大25岁,8年后小明爸爸的年龄将是小明的3倍多1岁,则小明爸爸现在的年龄是______岁.16.如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD=______度.17.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为______cm3.18.有一列数:a1,a2,a3,…a n,其中a1=8,a2=4,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2019个数是______.三、计算题(本大题共2小题,共16.0分)19.计算:(1)(-3)2-|-8|-(-2)(2)-12020+×[-2-(-5)]20.解方程:(1)2(x+4)=3x-8(2)-=1四、解答题(本大题共6小题,共48.0分)21.先化简,后求值:3a2b+2(-ab2+2a2b)-(a2b-3ab2),其中a,b满足a=-1,b=2.22.由大小相同,棱长为1cm的小立方体块搭成的几何体如图所示(1)请在如图的方格纸中分别画出该几何体的主视图和左视图;(2)该几何体的表面积为______cm2(包括底面积);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以添加______个小正方体.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫格点,请利用网格特征,解答下列问题(1)过点C画AB的垂线,并标出垂线所经过的格点E;(2)过点C画AB的平行线,并标出平行线所经过的格点F;(3)直线CE与直线CF的位置关系是______;(4)连接AC,BC,则△ABC的面积为______.24.如图,直线AB、CD相交于O,∠BOE比∠AOC大15°,∠AOD是∠BOE的2倍(1)求∠AOC的度数;(2)试说明OE平分∠COB.25.已知甲商品进价40元/件,利润率50%;乙商品进价50元/件,利润率60%.(1)若同时采购甲、乙商品共50件,总进价2300元,求采购甲商品的件数;(2)元旦期间,针对甲、乙商品进行如下优惠活动:小明一次性购买甲商品5件,乙商品若干件,实际付款752元,求小明购买乙商品的件数.26.如图,已知线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB方向运动,运动时间为t秒(t>0),点M为AP的中点.(1)若点P在线段AB上运动,当t为多少时,PB=2AM?(2)若点P在射线AB上运动,N为线段PB上的一点.①当N为PB的中点时,求线段MN的长度;②当PN=2NB时,是否存在这样的t,使M、N、P三点中的一个点是以其余两点为端点的线段的中点.如果存在,请求出t的值;如不存在,请说明理由.答案和解析1.【答案】C【解析】解:-3的相反数是3.故选:C.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】C【解析】解:x2y的次数为3,故选:C.根据单项式的概念即可求出答案.本题考查单项式,解题的关键是正确理解单项式的概念,本题属于基础题型.3.【答案】B【解析】解:把x=2代入方程得:4-a-5=0,解得:a=-1,故选:B.把x=2代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【答案】D【解析】解:A、负数都小于0,因此0不是最小的数,故A错误;B、最大的负整数是-1,但-1不是最大的负有理数,故B错误;C、0的绝对值是它本身,但0既不是正数,也不是负数,故C错误;D、正确.故选:D.根据有理数的相关知识进行选择即可.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.【答案】C【解析】解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<-b,a+b<0,b<-a,故A、B、D错误,C正确.故选:C.根据各点在数轴上的位置即可得出结论.本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.6.【答案】D【解析】解:由翻折不变性可知:∠DEF=∠FED′,∵∠AED′=40°,∴∠DED′=140°,∴∠DEF=∠DED′=70°,故选:D.由翻折不变性可知:∠DEF=∠FED′,求出∠DED′即可解决问题.本题考查平行线的性质,翻折变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【答案】D【解析】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON-∠AOM=40°-10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.8.【答案】C【解析】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选:C.根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】C【解析】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:=3,故选:C.关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解.根据时间得到相应的等量关系是解决本题的关键,注意应先得到实际的工作总量和工作效率.10.【答案】A【解析】解:3,4,6的最小公倍数为12,重复的点的个数=(-1)+(-1)=3;除端点外的点的个数为:(6-1)+(4-1)+(3-1)-3=7,∴连同AB线段的端点共7+2=9个端点,∴9个点任取2个的组合有C(9,2)==36(条).故选:A.先找出重复的点,再求出所有的点的个数,利用组合即可求出线段的条数.本题主要考查了直线,射线及线段,解题的关键是找出所有的端点个数.11.【答案】【解析】解:是无理数.故答案为:.根据无理数定义,随便找出一个无理数即可.本题考查了无理数,牢记无理数的定义是解题的关键.12.【答案】2.8×106【解析】解:2800000=2.8×106.故答案为:2.8×106科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】22°【解析】解:根据余角的定义得:∠A的余角=90°-∠A=90°-68°=22°.故答案为22°.∠A的余角为90°-∠A.本题考查了余角的定义;熟练掌握两个角的和为90°是关键14.【答案】5【解析】解:∵单项式4x m y3与-5x2y n是同类项,∴m=2,n=3可得:m+n=5,故答案为:5直接利用同类项的定义分析得出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键.15.【答案】29【解析】解:设小明爸爸现在的年龄是x岁,则小明现在(x-25)岁,根据题意得x+8=3(x-25+8)+1解得x=29故答案为29.设小明爸爸现在的年龄是x岁,则小明现在(x-25)岁,根据8年后小明爸爸的年龄将是小明的3倍多1岁列方程求解.本题考查一元一次方程的应用.确定数量关系是列方程解应用题的关键.16.【答案】35【解析】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=55°,∴∠AOC=∠AOE-∠COE=35°,则∠BOD=∠AOC=35°.故答案为:35由OE与AB垂直,利用垂直的定义得到∠AOE=90°,由∠AOE-∠COE求出∠AOC的度数,再利用对顶角相等即可求出∠BOD的度数.此题考查了对顶角、邻补角,以及垂线,熟练掌握对顶角相等是解本题的关键.17.【答案】96【解析】解:10-8=2(cm),8-2=6(cm),14-6=8(cm),2×6×8=96(cm3).答:其容积为96cm3.故答案为:96.先用10cm减去8cm求出高为2cm,再用8cm减去2cm求出宽为6cm,再用14cm减去6cm求出长为8cm,再根据长方体的体积公式计算即可求解.考查了几何体的展开图,解题的关键是得到长方体的长宽高.18.【答案】2【解析】解:依题意得:a1=8,a2=4,a3=2,a4=8,a5=6,a6=8,a7=8,a8=4……∴周期为6;∵2019÷6=336…3,所以a2019=a3=2,故答案为:2.本题可分别求出n=4、5、6…时的情况,观察它是否具有周期性,再把2019代入求解即可.本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.19.【答案】解:(1)(-3)2-|-8|-(-2)=9-8+2=3;(2)-12020+×[-2-(-5)]=-1+(-1)×(-2+5)=-1+(-1)×3=-1+(-3)=-4.【解析】(1)根据有理数的减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:(1)2x+8=3x-8,2x-3x=-8-8,-x=-16,x=16;(2)2(2x+1)-(x-5)=6,4x+2-x+5=6,4x-x=6-2-5,3x=-1,x=-.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.21.【答案】解:当a=-1,b=2时,原式=3a2b-2ab2+4a2b-a2b+3ab2=6a2b+ab2=6×1×2-1×4=8【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【答案】26 2【解析】解:(1)如图所示:(2)该几何体的表面积为2×(5+3+4)+2=26(cm2),故答案为:26;(3)保持这个几何体的主视图和左视图不变,最多可以添加2个小正方体,故答案为:2.(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1.据此可画出图形.(2)将俯视图、左视图和主视图面积相加,再乘以2,继而加上夹在中间的左右两个面的面积即可得.(3)保持俯视图和主视图不变,可往第一列前面的几何体左右各放一个小正方体.此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.23.【答案】CF⊥CE【解析】解:(1)如图所示,CE即为所求;(2)如图所示,CF即为所求;(3)∵CE⊥AB,且AB∥CF,∴CF⊥CE,故答案为:CF⊥CE.(4)△ABC的面积为4×4-×1×4-×1×3-×4×3=,故答案为:.(1)构造全等三角形解决问题即可;(2)构造平行四边形解决问题即可;(3)根据平行线的性质即可判断;(4)利用分割法计算三角形的面积即可;本题考查作图-应用与设计、平行线的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】(1)解:设∠AOC的度数为x,由题意得:∠BOE=x+15°,∠AOD=2(x+15°),∵直线AB、CD相交于O,∴x+2(x+15°)=180°,∴x=50°,∴∠AOC=50°;(2)证明:由(1)得:∠AOC=50°,∠BOE=65°,∴∠COE=180°-50°-65°=65°,∴∠COE=∠BOE,即OE平分∠COB.【解析】(1)设∠AOC的度数为x,列方程即可得到结论;(2)由(1)得到∠AOC=50°,∠BOE=65°,根据角平分线的定义即可得到结论.本题考查了对顶角、邻补角,角平分线的定义,熟练掌握角平分线的定义是解题的关键.25.【答案】解:(1)设采购甲商品x件,则采购乙商品(50-x)件,由题意得:40x+50(50-x)=2300x=20答:采购甲商品20件.(2)设小明购买乙商品y件易知小明消费超过500元,假设消费800元实际付款可能是500+300×0.9=770元,也可能是800×0.88=704元,所以小明消费额可能超过500元不超过800元,也可能超过800元.①超过500元不超过800元时500+0.9(40×1.5×5+50×1.6y-500)=752解得y=6②超过800元时800×0.88+0.8(60×5+80y-800)=752解得y=7答:小明采购乙商品6件或7件.【解析】(1)设甲商品x减,则乙商品采购(50-x)件,根据总进价列方程求解;(2)先判断小明消费额可能超过500元不超过800元,也可能超过800元,设小明购买乙商品y件,根据实际付款列方程求解.本题考查一元一次方程的应用.确定数量关系是列方程解应用题的关键.26.【答案】解:(1)∵M是线段AP的中点,∴AM=AP=t,PB=AB-AP=24-2t.∵PB=2AM,∴24-2t=2t,解得t=6.(2)①点P在B点左侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(24-2t)=12-t.∴MN=t+12-t=12.②点P在B点或B点右侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(2t-24)=t-12.∴MN=t-(t-12)=12.(3)①0<t≤12由题意得:PM=t,PN=(24-2t),PM=PN,t=(24-2t),t=.②12<t≤48由题意得:PM=t,PN=(2t-24),PM=2PN,t=2×(2t-24),t=.③t>48由题意得:PM=t,PN=(2t-24),PN=2PM,(2t-24)=2t,t=-24(不成立).答:当t=时,P是MN的中点;当t=时,N是MP的中点.【解析】(1)根据PB=2AM建立关于t的方程,解方程即可;(2)①分点P在B点左侧和点P在B点或B点右侧两种情况讨论求解;②分N是PM的中点,M是NP的中点,P是MN的中点三种情况讨论求解.本题是动点问题,解题时首先要画出图形,用t表示出相应线段的长,再根据已知条件列出方程.解题时要按照点的不同位置进行分类讨论,避免漏解.。
2018年无锡市湖滨中学初一上学期期末数学试卷(附答案)
1.下列各数中是无理数的是()A.−2B.227 C.0.010010001 D.π2.单项式−3xy 2的系数和次数分别为()A.−3,2B.−3,3C.3,3D.−3,13.下列计算正确的是()A.3a +4b =7abB.7a −3a =4C.3ab −2ab =abD.3a +2a =5a 24.某立体图形的三视图均相同,则该立体图形可能是()A.圆锥 B.球 C.圆柱 D.四棱锥5.已知x =2是方程2x −5=x +m 的解,则m 的值是()A.1B.−1C.3D.−36.钟面上8:45时,时针与分针形成的角度为()A.7.5◦B.15◦C.30◦D.45◦7.某多边形的内角和为1800◦,则该多边形的边数为()A.10 B.11 C.12D.138.某工程甲独做需12天完成,乙独做需8天完成.现由甲先做3天,乙再合做共同完成.若设完成此项工程共需x 天,则下列方程正确的是()A.x 12+x −38=1B.x +312+x −38=1C.x 12+x 8=1D.x +312+x 8=19.已知∠AOB =30◦,自∠AOB 的顶点O 引射线OC ,若∠AOC :∠AOB =4:3,那么∠BOC 的度数是()A.10◦B.40◦或30◦C.70◦D.10◦或70◦A.1个B.2个C.3个D.4个11.今年我市实现地区生产总值10500亿元,这个数据用科学记数法表示为亿元.12.如果单项式−x 3y m −2与x 3y 的差仍然是一个单项式,则m =.13.如果∠A 的余角是26◦,那么∠A 的补角为◦.14.代数式x 2−2x =3,则代数式3x 2−6x −1的值为.15.已知线段AB =20cm ,点C 为线段AB 上一点,且BC =6cm ,M 是线段AC 的中点,则线段AM 的长度为cm .16.如图是一正方体的表面展开图,若AB =5,则该正方体上A ,B 两点间的距离为.外角∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90◦−∠ABD ;④∠BDC =∠BAC .其中正确的结论有()10.如图,∠ABC =∠ACB ,AD ,BD ,CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、#!"分钟 满分#!"分考试时量2018年无锡市湖滨中学初一上学期期末考试数 学一分选择题 (每小题3 二 填空题 每小题3分18.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.19.计算:(1)(−58−16+712)×24+5;(2)−32−(1−12)÷3×|3−(−3)2|.20.解方程:(1)3x +4−5(x +1)=−1;(2)2x +13−5x −16=1.21.先化简,后求值:5(3a 2b −ab 2)−4(−ab 2+3a 2b ),其中a =−1,b =−2.17.一副直角三角板叠放如图所示,现将含45◦角的三角板固定不动,把含30◦角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5◦,第二秒旋转10◦,第三秒旋转5◦,第四秒旋转10◦,···按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为.三 解答题24.如图,直线AB ,CD 相交于点O ,OM ⊥AB .(1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由.(2)若∠BOC =4∠1,求∠MOD的度数.23.如图,AB ∥CD ,∠A =∠D .试判断AF 与ED是否平行,并说明理由.22.如图,所有小正方形的边长都为1,A ,B ,C 都在格点上.(1)过点B 画直线AC 的垂线,垂足为G ;BG ,理由是;(2)比较BC 与BG 的大小:BC (3)已知AC =5,求BG的长.25.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.(1)小明家1月份用电140度,应缴费元;(2)小华家2月份用电平均每度0.65元,问:他家2月份用了多少度电?26.已知在数轴上O 为原点,点 A 表示的数为 a ,点 B 表示的数为 b ,且 a ,b 满足 |a + 2| + (3a + b )2= 0.(1)a =,b =;(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (秒).的值是否为①当点P 运动到线段OB 上,且P O =2P B 时,求t 的值;②先取OB 的中点E ,当点P 在线段OE 上时,再取AP 的中点F ,试探究AB −OPEF定值?若是,求出该值;若不是,请用含t 的代数式表示.③若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当P Q =1时,求t 的值.12345678910DBCBDACADC9.如图1,∵∠AOB =30◦,∠AOC :∠AOB =4:3,∴∠AOC =40◦,∴∠BOC =∠AOC −∠AOB =40◦−30◦=10◦,如图2,同理可得∠AOC =40◦,∴∠BOC =∠AOC +∠AOB =40◦+30◦=70◦,综上所述,∠BOC =10◦或∠BOC =70◦.10.11.1.05×10412.313.116◦14.815.716.2.517.14s 或38s 18.20019.(1)(−58−16+712)×24+5=(−15−4+14)+5=−5+5=0.(2)−32−(1−12)÷3×|3−(−3)2|=−9−12×13×6=−9−1=−10.初一第一学期期末考试数学参考答案20.(1)3x+4−5x−5=1,x=0.(2)2(2x+1)−(5x−1)=6,4x+2−5x+1=6,x=−3.21.5(3a2b−ab2)−4(−ab2+3a2b)=15a2b−5ab2+4ab2−12a2b=3a2b−ab2.当a=−1,b=−2时,原式=−2.22.(1)过点B画直线AC的垂线,并注明垂足为G,垂直符号.(2)>;垂线段最短(3)△ABC的面积=6.5,BG=2.6.23.AF∥ED,∵AB∥CD,∴∠A=∠AF C.∵∠A=∠D,∴∠D=∠AF C,∴AF∥ED.24.(1)ON⊥OD.∵OM⊥AB,∴∠AOM=90◦,∴∠AOC+∠1=90◦.∵∠1=∠2,∴∠AOC+∠2=90◦.∴∠NOC=90◦,∴ON⊥OD.(2)∵OM⊥AB,∴∠AOM=∠MOB=90◦,∵∠BOC=4∠1,∴∠1=30◦,又∠1+∠MOD=180◦,∴∠MOD=180◦−∠1=150◦.25.(1)82(2)设小亮家用了x度电,∵0.65>0.5,∴x>100,根据题意得:100×0.5+0.8(x−100)=0.65x,解得:x=200.答:小亮家12月份用了200度电.26.(1)−2,6;(2)①t −2=2(8−t ),t =6;②AP 的中点F 表示的数是−2+t −22=t −42,OB 的中点E 表示的数是3,所以EF =3−t −42=10−t2,所以AB −OPEF=8−(t −2)10−t 2=2;③t =53或t =3或t =5.。
无锡市滨湖中学七年级上册数学期末试卷及答案-百度文库
无锡市滨湖中学七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.﹣3的相反数是( ) A .13-B .13C .3-D .33.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .3 5.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,36.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π7.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+68.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③ D .④9.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 10.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个 C .3个 D .4个 11.单项式﹣6ab 的系数与次数分别为( ) A .6,1 B .﹣6,1 C .6,2 D .﹣6,2 12.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.=38A ∠︒,则A ∠的补角的度数为______.15.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 16.当a=_____时,分式13a a --的值为0. 17.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.18.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.19.将520000用科学记数法表示为_____.20.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.方程x +5=12(x +3)的解是________. 23.观察“田”字中各数之间的关系:则c 的值为____________________.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.26.观察下列等式:111 122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.27.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.28.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.29.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?30.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.D解析:D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.6.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D. 【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.7.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.8.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.9.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.10.B 解析:B 【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.11.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.12.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.二、填空题13.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:38A∠=,∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.16.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.17.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 18.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 19.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
无锡市滨湖中学七年级上册数学期末试卷及答案-百度文库
无锡市滨湖中学七年级上册数学期末试卷及答案-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107C .6.5×108D .65×1062.4 =( ) A .1B .2C .3D .43.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .124.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 5.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =17.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .6 8.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 15.9的算术平方根是________ 16.﹣213的倒数为_____,﹣213的相反数是_____. 17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.将520000用科学记数法表示为_____.22.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.23.用度、分、秒表示24.29°=_____.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.28.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.29.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.30.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.31.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.C解析:C【解析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.4.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.5.D解析:D 【解析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.6.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213+x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.7.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.8.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.9.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.10.D解析:D 【解析】 【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程 【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小. 12.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.17.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.18.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式19.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.22.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°,∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.27.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+,∴∠AOD=∠BOD ﹣∠AOB=n m 2. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.28.(1)(4,8)(2)S △OAE =8﹣t (3)2秒或6秒【解析】【分析】(1)根据M 和N 的坐标和平移的性质可知:MN ∥y 轴∥PQ ,根据K 是PM 的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE 的面积S ;(3)存在两种情况:①如图2,当点B 在OD 上方时②如图3,当点B 在OD 上方时,过点B 作BG ⊥x 轴于G ,过D 作DH ⊥x 轴于H ,分别根据三角形OBD 的面积等于三角形OAE 的面积列方程可得结论.【详解】(1)由题意得:PM =4,∵K 是PM 的中点,∴MK =2,∵点M 的坐标为(2,8),点N 的坐标为(2,6),∴MN ∥y 轴,∴K (4,8);(2)如图1所示,延长DA 交y 轴于F ,则OF ⊥AE ,F (0,8﹣t ),∴OF =8﹣t ,∴S △OAE =12OF•AE =12(8﹣t )×2=8﹣t ; (3)存在,有两种情况:,①如图2,当点B 在OD 上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t =6;综上,t 的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.29.(1)详见解析;(2)①16;②在移动过程中,3AC ﹣4AB 的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t =2时,先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长即可; ②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.【详解】(1)A ,B ,C 三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键. 30.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.31.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省无锡市滨湖区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答題卡上相应的选项标号涂黑)1.(3分)﹣3的相反数是()A.﹣3B.﹣C.3D.±3 2.(3分)下列代数式中,次数为3的单项式是()A.x3+y3B.x2+y C.x2y D.3xy3.(3分)已知关于x的方程2x﹣a﹣5=0的解是x=2,则a的值为()A.1B.﹣1C.9D.﹣94.(3分)下列几种说法中,正确的是()A.0是最小的数B.最大的负有理数是﹣1C.任何有理数的绝对值都是正数D.平方等于本身的数只有0和15.(3分)如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.a+b>06.(3分)如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF的度数为()A.40°B.50°C.60°D.70°7.(3分)已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°8.(3分)下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个9.(3分)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.B.C.D.10.(3分)在线段AB上有3种点,第1种是将AB三等分的点;第2种是将AB四等分的点;第3种是将AB六等分的点,这些点连同线段AB的端点可组成线段的条数是()A.36B.45C.55D.72二、填空題(本大題共8小题,毎小題2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)请写出一个无理数.12.(2分)据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2800000人进行了扶贫搬迁,成功脱贫.其中2800000人用科学记数法可表示为人.13.(2分)若∠A=68°,则∠A的余角是.14.(2分)若单项式4x m y3与﹣5x2y n是同类项,则m+n=.15.(2分)小明的爸爸现在的年龄比小明大25岁,8年后小明爸爸的年龄将是小明的3倍多1岁,则小明爸爸现在的年龄是岁.16.(2分)如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD=度.17.(2分)一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为cm3.18.(2分)有一列数:a1,a2,a3,…a n,其中a1=8,a2=4,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2019个数是.三、解答題(本大題共8小题,共64分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣3)2﹣|﹣8|﹣(﹣2)(2)﹣12020+×[﹣2﹣(﹣5)]20.(8分)解方程:(1)2(x+4)=3x﹣8(2)﹣=121.(6分)先化简,后求值:3a2b+2(﹣ab2+2a2b)﹣(a2b﹣3ab2),其中a,b满足a=﹣1,b=2.22.(8分)由大小相同,棱长为1cm的小立方体块搭成的几何体如图所示(1)请在如图的方格纸中分别画出该几何体的主视图和左视图;(2)该几何体的表面积为cm2(包括底面积);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以添加个小正方体.23.(8分)在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫格点,请利用网格特征,解答下列问题(1)过点C画AB的垂线,并标出垂线所经过的格点E;(2)过点C画AB的平行线,并标出平行线所经过的格点F;(3)直线CE与直线CF的位置关系是;(4)连接AC,BC,则△ABC的面积为.24.(8分)如图,直线AB、CD相交于O,∠BOE比∠AOC大15°,∠AOD是∠BOE的2倍(1)求∠AOC的度数;(2)试说明OE平分∠COB.25.(8分)已知甲商品进价40元/件,利润率50%;乙商品进价50元/件,利润率60%.(1)若同时采购甲、乙商品共50件,总进价2300元,求采购甲商品的件数;(2)元旦期间,针对甲、乙商品进行如下优惠活动:小明一次性购买甲商品5件,乙商品若干件,实际付款752元,求小明购买乙商品的件数.26.(10分)如图,已知线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB 方向运动,运动时间为t秒(t>0),点M为AP的中点.(1)若点P在线段AB上运动,当t为多少时,PB=2AM?(2)若点P在射线AB上运动,N为线段PB上的一点.①当N为PB的中点时,求线段MN的长度;②当PN=2NB时,是否存在这样的t,使M、N、P三点中的一个点是以其余两点为端点的线段的中点.如果存在,请求出t的值;如不存在,请说明理由.2018-2019学年江苏省无锡市滨湖区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答題卡上相应的选项标号涂黑)1.【解答】解:﹣3的相反数是3.故选:C.2.【解答】解:x2y的次数为3,故选:C.3.【解答】解:把x=2代入方程得:4﹣a﹣5=0,解得:a=﹣1,故选:B.4.【解答】解:A、负数都小于0,因此0不是最小的数,故A错误;B、最大的负整数是﹣1,但﹣1不是最大的负有理数,故B错误;C、0的绝对值是它本身,但0既不是正数,也不是负数,故C错误;D、正确.故选:D.5.【解答】解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<﹣b,a+b<0,b<﹣a,故A、B、D错误,C正确.故选:C.6.【解答】解:由翻折不变性可知:∠DEF=∠FED′,∵∠AED′=40°,∴∠DED′=140°,∴∠DEF=∠DED′=70°,故选:D.7.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.8.【解答】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选:C.9.【解答】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:=3,故选:C.10.【解答】解:3,4,6的最小公倍数为12,重复的点的个数=(﹣1)+(﹣1)=3;除端点外的点的个数为:(6﹣1)+(4﹣1)+(3﹣1)﹣3=7,∴连同AB线段的端点共7+2=9个端点,∴9个点任取2个的组合有C(9,2)==36(条).故选:A.二、填空題(本大題共8小题,毎小題2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.【解答】解:是无理数.故答案为:.12.【解答】解:2800000=2.8×106.故答案为:2.8×10613.【解答】解:根据余角的定义得:∠A的余角=90°﹣∠A=90°﹣68°=22°.故答案为22°.14.【解答】解:∵单项式4x m y3与﹣5x2y n是同类项,∴m=2,n=3可得:m+n=5,故答案为:515.【解答】解:设小明爸爸现在的年龄是x岁,则小明现在(x﹣25)岁,根据题意得x+8=3(x﹣25+8)+1解得x=29故答案为29.16.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=55°,∴∠AOC=∠AOE﹣∠COE=35°,则∠BOD=∠AOC=35°.故答案为:3517.【解答】解:10﹣8=2(cm),8﹣2=6(cm),14﹣6=8(cm),2×6×8=96(cm3).答:其容积为96cm3.故答案为:96.18.【解答】解:依题意得:a1=8,a2=4,a3=2,a4=8,a5=6,a6=8,a7=8,a8=4……∴周期为6;∵2019÷6=336…3,所以a2019=a3=2,故答案为:2.三、解答題(本大題共8小题,共64分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)(﹣3)2﹣|﹣8|﹣(﹣2)=9﹣8+2=3;(2)﹣12020+×[﹣2﹣(﹣5)]=﹣1+(﹣1)×(﹣2+5)=﹣1+(﹣1)×3=﹣1+(﹣3)=﹣4.20.【解答】解:(1)2x+8=3x﹣8,2x﹣3x=﹣8﹣8,﹣x=﹣16,x=16;(2)2(2x+1)﹣(x﹣5)=6,4x+2﹣x+5=6,4x﹣x=6﹣2﹣5,3x=﹣1,x=﹣.21.【解答】解:当a=﹣1,b=2时,原式=3a2b﹣2ab2+4a2b﹣a2b+3ab2=6a2b+ab2=6×1×2﹣1×4=822.【解答】解:(1)如图所示:(2)该几何体的表面积为2×(5+3+4)+2=26(cm2),故答案为:26;(3)保持这个几何体的主视图和左视图不变,最多可以添加2个小正方体,故答案为:2.23.【解答】解:(1)如图所示,CE即为所求;(2)如图所示,CF即为所求;(3)∵CE⊥AB,且AB∥CF,∴CF⊥CE,故答案为:CF⊥CE.(4)△ABC的面积为4×4﹣×1×4﹣×1×3﹣×4×3=,故答案为:.24.【解答】(1)解:设∠AOC的度数为x,由题意得:∠BOE=x+15°,∠AOD=2(x+15°),∵直线AB、CD相交于O,∴x+2(x+15°)=180°,∴x=50°,∴∠AOC=50°;(2)证明:由(1)得:∠AOC=50°,∠BOE=65°,∴∠COE=180°﹣50°﹣65°=65°,∴∠COE=∠BOE,即OE平分∠COB.25.【解答】解:(1)设采购甲商品x件,则采购乙商品(50﹣x)件,由题意得:40x+50(50﹣x)=2300x=20答:采购甲商品20件.(2)设小明购买乙商品y件易知小明消费超过500元,假设消费800元实际付款可能是500+300×0.9=770元,也可能是800×0.88=704元,所以小明消费额可能超过500元不超过800元,也可能超过800元.①超过500元不超过800元时500+0.9(40×1.5×5+50×1.6y﹣500)=752解得y=6②超过800元时800×0.88+0.8(60×5+80y﹣800)=752解得y=7答:小明采购乙商品6件或7件.26.【解答】解:(1)∵M是线段AP的中点,∴AM=AP=t,PB=AB﹣AP=24﹣2t.∵PB=2AM,∴24﹣2t=2t,解得t=6.(2)①点P在B点左侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(24﹣2t)=12﹣t.∴MN=t+12﹣t=12.②点P在B点或B点右侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(2t﹣24)=t﹣12.∴MN=t﹣(t﹣12)=12.(3)①0<t≤12由题意得:PM=t,PN=(24﹣2t),PM =PN,t=(24﹣2t),t=.②12<t≤48由题意得:PM=t,PN=(2t﹣24),PM =2PN,t=2×(2t﹣24),t=.③t>48由题意得:PM=t,PN=(2t﹣24),PN=2PM,(2t﹣24)=2t,t=﹣24(不成立).答:当t=时,P是MN的中点;当t=时,N是MP的中点.。