太阳能热水器控制系统设计

合集下载

基于PLC的太阳能热水器自动控制系统设计

基于PLC的太阳能热水器自动控制系统设计

基于PLC的太阳能热水器自动控制系统设计Design of Solar Water Heater Automatic Control System Based on PLC学院:电气工程学院专业班级:自动化1005班学号:100302516学生姓名:魏天野指导教师:白山(教授级高工)2014 年6 月摘要现在,城市居民绝大部分都使用了太阳能热水器,农村也有相当一部分人使用。

太阳能热水器在技术上比较成熟、造价比较低廉,同时由于给人民提供绝对安全的热水而受到人们的欢迎,且具有节能、环保、安全、便利、长久等优点,所以它的应用会越来越广。

因此,研究和开发先进的太阳能热水器控制系统变得越来越重要。

本设计阐述了可编程控制器(PLC)在太阳能热水器控制系统中的应用,重点研究了系统的硬件构成及软件的设计过程。

指出了PLC设计的关键是能满足基本的控制功能,并考虑维护的方便性、系统可扩展性等。

本设计利用西门子S7-200PLC,进行了太阳能热水器自动控制系统的I/O分配和PLC选型,编写了PLC程序梯形图和接线图,实现了自动上水排水、自动循环、自动加热、PID闭环控制恒温出水、手动与自动模式切换等功能。

并在此基础上,利用S7-200的仿真软件对系统进行了仿真,利用WinCC Flexible 软件组态了人机界面,使用MPI通信协议实现了PLC与触摸屏的通信连接。

把可编程控制器PLC作为太阳能热水器的控制系统,增加了系统的方便性与可靠性,减少了其它元器件的使用。

它使系统接线简单,检修维护方便快捷,增进了系统的先进性。

论文分为四章:第一章介绍了太阳能热水器发展背景及设计意义;第二章介绍了太阳能热水器的工作原理;第三章介绍了硬件选型及系统流程;第四章介绍了系统程序的编写、系统的仿真、人机界面(WinCC Flexible)组态过程。

关键词:太阳能热水器;PLC;自动控制系统AbstractNow, vast majority of urban residents use solar water heaters, so do a considerable number of rural people. Solar water heaters are technically more mature, relatively low cost. Meanwhile, since it provide absolute security to the people of hot and people are welcome, and it has some advantages of energy saving, environmental protection, safety, convenience, long, etc. So it will be widely applied. Therefore, the research and development of controlling system of advanced solar water heater are becoming increasingly important.This design expounds the application of PLC in solar water heater automatic controlling system, especially the designing process of hardware and software of the system. Furthermore, the project shows that the key of PLC designing is to satisfy the basic controlling function, considering the convenience of maintenance and scalability. In this design, the address of I/O is resigned and the suitable PLC is chosen. The electrical principle diagram and the interconnection diagram are drawn, according to the requirement. Automatic water drainage, automatic cycle, automatic heating, PID loop control temperature water, manual and automatic mode switching function have been realized. And on this basis, the system was simulated using the simulation software for S7-200, produced a man-machine interface by using WinCC Flexible software. As the controlling system of solar water heater, PLC greatly reduces the number of other components. Moreover, it has the feature such as simple interconnection, rapid and easy fault detecting and maintenance, and advancement of the system.The paper is divided into four chapters: the first chapter describes the background of the development and design of solar water heaters significance; Second chapter describes the working principle of solar water heaters; Third chapter describes the hardware selection and system processes; The fourth chapter describes the procedures for the preparation of the system, system simulation, HMI (WinCC Flexible) configuration process.Keywords: Solar water heater; PLC; Automatic control system目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题研究的背景 (1)1.2国内外研究现状简述 (2)1.3太阳能热水器市场分析 (3)1.4本设计特点及主要内容 (5)第2章太阳能热水器的组成及工作原理 (6)2.1太阳能热水器的基本结构 (6)2.2太阳能热水器的工作原理 (8)2.3本设计要实现的功能 (10)第3章太阳能热水器硬件的选型及设计 (11)3.1 PLC的工作原理 (11)3.2硬件设备的选型 (13)3.2.1 PLC的选型 (13)3.2.2其他硬件的选型 (15)3.3太阳能热水器的整体设计 (18)3.3.1 PID闭环控制 (18)3.3.2 PLC与外部设备连接方案 (20)3.3.3水工艺流程设计 (22)第4章系统软件框架的构建与系统仿真 (23)4.1系统的I/O口地址及相关的软元件功能设置 (23)4.2系统的程序流程图 (25)4.3设计控制系统的梯形图程序 (28)4.4系统仿真 (35)4.5组态人机界面 (39)第5章结论 (42)参考文献 (43)致谢 (45)附录S7-200仿真监控图 (46)第1章绪论1.1课题研究的背景太阳能(Solar Energy),一般是指太阳光的辐射能量,太阳能是一种可再生能源,广义上的太阳能是地球上许多能量的来源,如风能,生物质能,潮汐能、水的势能等等。

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计太阳能热水器控制系统是一种利用太阳能来加热水并保温的设备。

基于单片机的太阳能热水器控制系统能够监测系统状态,并根据需要自动地调节工作参数,实现高效能的利用太阳能热水器。

该系统的设计涉及多个方面,包括传感器、执行元件、控制算法和人机交互界面等。

首先,传感器部分。

在太阳能热水器系统中,常用的传感器包括温度传感器、光照传感器和压力传感器。

温度传感器可以用来测量水温,光照传感器可以用来检测太阳光强度,压力传感器可以用来监测水流状态。

这些传感器的数据可以通过单片机进行采集和分析。

其次,执行元件部分。

太阳能热水器系统中常用的执行元件包括电磁阀和水泵。

电磁阀用于控制水的流动方向,水泵用于实现水的循环。

在系统的运行过程中,单片机可以根据采集到的数据来控制这些执行元件的开关状态,以实现对水的流动和供暖的控制。

第三,控制算法部分。

太阳能热水器控制系统需要进行一系列的控制算法设计,包括针对太阳能热水器的启动和停止控制,水的加热和供暖控制等。

通过合理的控制算法设计,可以最大限度地提高太阳能热水器的工作效率,提升整个系统的性能。

最后,人机交互界面部分。

太阳能热水器控制系统需要一个人机交互界面,使用户可以进行相关参数的设置和监控。

在设计上,可以采用液晶显示屏和按键来实现用户的交互操作。

通过人机交互界面,用户可以方便地设置系统的工作模式、温度设定等,同时可以实时地监测系统的运行状态和各项参数。

综上所述,基于单片机的太阳能热水器控制系统设计包括传感器的选择和布置、执行元件的控制和驱动、控制算法的设计和优化以及人机交互界面的设计等方面。

这些设计要求兼顾系统的可靠性、高效性和便利性,以实现对太阳能热水器的精确控制和高效利用。

通过优化设计,可以将太阳能热水器的效能最大化,提供可靠的热水供应。

太阳能热水器智能控制系统设计

太阳能热水器智能控制系统设计

太阳能热水器智能控制系统设计智能控制系统主要分为硬件部分和软件部分。

硬件部分包括传感器、执行器和控制模块;软件部分包括数据采集、数据处理和控制算法。

1.传感器通过安装在太阳能热水器上的不同类型的传感器,可以实时获取一些必要的参数信息,如太阳辐射强度、水温、水位等。

传感器的选择需要考虑到其精度、可靠性和成本等因素。

传感器可以通过模拟信号或数字信号的形式将收集到的数据传输给控制模块。

2.执行器执行器用于控制太阳能热水器的工作状态,如水泵的开关控制、阀门的开关控制等。

执行器通常由电磁阀、电机或电热器等组成,通过开关控制电源的通断来实现相应的操作。

3.控制模块控制模块是整个智能控制系统的核心部分,它接收传感器传输过来的数据,并根据一定的控制算法进行处理,最后控制执行器的工作。

控制模块通常由单片机或微处理器组成,具有数据处理能力,并能通过通信接口与其他设备进行数据传输和控制。

4.数据采集数据采集是指将从传感器采集到的数据进行收集和记录的过程,可以将数据存储在数据库或者内存中,供后续的数据处理和分析使用。

数据采集可以通过定时采集、事件触发采集或实时采集等方式进行。

5.数据处理数据处理是指对采集到的数据进行计算、分析和处理的过程,以提取有用的信息。

例如,可以通过计算太阳能辐射强度和水温的关系来预测水温的变化趋势,以及控制相应的工作状态。

6.控制算法控制算法是根据实际应用需求设计的,用于根据传感器数据和其他信息来控制太阳能热水器的工作状态。

例如,根据太阳辐射强度和水温的关系,可以设计一个算法来控制水泵的开关,以实现更高效的加热水温。

总结起来,太阳能热水器智能控制系统的设计可以通过传感器实时获取相关参数信息,经过数据采集和处理,最终通过控制算法控制执行器的工作状态。

这样的设计可以提高太阳能热水器的效率和节能性,实现智能化的控制和管理。

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计一、本文概述随着全球对可再生能源需求的日益增加,太阳能作为一种清洁、可持续的能源形式,已经引起了广泛的关注和应用。

太阳能热水器作为一种常见的太阳能应用产品,其在节能减排、提高生活质量等方面具有显著的优势。

然而,太阳能热水器在实际使用过程中,仍存在一些问题,如水温控制不稳定、能效利用率不高等。

为了解决这些问题,本文提出了一种基于51单片机的太阳能热水器控制系统设计方案。

该系统以51单片机为核心控制器,结合温度传感器、水位传感器、执行机构等硬件设备,实现了对太阳能热水器水温和水位的精确控制。

通过实时监测水温和水位信息,系统能够自动调整加热功率和补水流量,确保水温稳定在用户设定的范围内,同时避免了水资源的浪费。

系统还具有故障诊断功能,能够及时发现并处理潜在的故障问题,提高了系统的可靠性和稳定性。

本文首先介绍了太阳能热水器的工作原理和现状,分析了传统控制系统存在的问题和不足。

然后,详细阐述了基于51单片机的太阳能热水器控制系统的硬件组成和软件设计。

在硬件设计方面,本文介绍了各个硬件模块的功能和选型原则,包括温度传感器、水位传感器、执行机构等。

在软件设计方面,本文详细说明了系统的控制算法和程序流程,包括温度控制算法、水位控制算法、故障诊断算法等。

本文通过实验验证了系统的可行性和有效性,为太阳能热水器的智能化、高效化提供了有益的探索和实践。

本文的研究不仅有助于提升太阳能热水器的能效利用率和用户体验,还为其他可再生能源应用产品的智能化控制提供了有益的参考和借鉴。

本文的研究成果对于推动太阳能热水器行业的技术进步和产业发展具有重要的现实意义和应用价值。

二、太阳能热水器控制系统总体设计太阳能热水器控制系统的总体设计是确保整个系统高效、稳定运行的关键。

在设计过程中,我们充分考虑了太阳能热水器的实际应用场景和用户需求,以及51单片机的性能特点,从而构建了一个既实用又可靠的控制系统。

智能家居太阳能热水器控制系统设计

智能家居太阳能热水器控制系统设计

智能家居太阳能热水器控制系统设计摘要:为满足智能化水平不断提升的家居系统控制需求,设计了太阳能热水器控制系统。

以太阳能热水器的实际应用情况为依据,完成了模糊智能太阳能热水器控制系统的设计。

该系统基于单片机STC89C52RC,通过数字温度传感器的使用完成温度测量过程,采用过零固态继电器对加热棒进行控制,完成对热水器辅助加热功能的模拟过程,从而能够根据设定的时间对输出功率进行智能调整使水温达到设定值。

单片机与触摸屏使用Modbus485协议完成通信过程,根据检测获取的温度、液位值可自适应选择运行模式,为智能家居太阳能热水器控制系统的完善提供参考。

关键词:太阳能热水器;模糊控制算法;智能家居控制系统1.太阳能热水器控制系统设计1.1单片机系统本文所设计的系统的智能控制器选用了单片机STC89C52RC(8051内核),由于在对太阳能热水器进行控制时,系统涉及的运算量较小,需要处理及保存的中间数据较少,因此无需外扩数据存储器,所使用的单片机内部RAM及E2PROM即可满足需求。

(2)温度控制执行器本文系统通过使用零固态继电器(输入控制端为3~32V、输出端为5A/380V/50~60Hz)和加热棒(功率为500~1000W)执行水温控制过程,通过对PWM波的占空比(由单片机产生)进行控制进而完成对交流过零继电器通断频率的控制,最终控制加热棒的功率完成温度控制过程。

1.2温度测量选用具有较强抗干扰能力的DS18B20(数字温度传感器的一种),无需标定不必要温度,数据通信过程通过传感器的单总线接口并结合使用单片机分时复用原理实现。

1.3时钟电路设计以实现热水器热水的全天供应,本系统的控制器采用实时时钟完成准确的基准时间的提供,具体通过采用CMOS技术的DS12C887时钟芯片完成,在芯片内部集成时钟芯片所需的晶振、电池及电路,在降低系统功耗的基础上实现了时间的高精度控制,此外该时钟芯片还具备外围接口,可根据实际需要对时间进行设计,显著提高了系统的稳定性和时效性。

毕业设计太阳能热水器控制电路

毕业设计太阳能热水器控制电路

太阳能热水器控制电路设计一、系统设计1.设计原理太阳能热水器自动控制电路采用AT89S52单片机作为控制关键,外围加蜂鸣器控制电路、数码显示电路、水位检测电路、电机控制电路、按键电路、温度检测电路等。

数码管实时切换显示目前温度与目前液位,当液位过高时,蜂鸣器报警,并且电机反转模拟排水过程;当液位过低时,蜂鸣器报警,并且电机正转模拟进水过程。

本系统设计简朴,成本低,性能优良,具有一定旳稳定性和实用性。

三、硬件电路设计1.基本原理框图图一:原理框图(1)太阳能热水器控制装置重要构成由CPU、显示电路、按键电路、蜂鸣器电路、电机电路、液位检测电路、温度检测电路、电源电路构成,如图一。

(2)太阳能热水器控制装置旳工作原理接通电源后,显示目前水位,水位被分为16个点。

并且显示目前温度。

液位显示与温度旳显示切换进行。

当水位显示低于或等于1时,蜂鸣器报警,并且电机正转,表达进水;当水位显示高于或等于15时,蜂鸣器报警,并且电机反转,表达排水。

液位检测运用CD40512.各部分电路原理(1)最小系统最小系统电路如图二所示。

图二:最小系统(2)显示电路采用LED数码管显示,该方案具有实现轻易、发光亮度大、驱动电路简朴等长处,其可靠性也优于LCD旳显示。

由6个数码管和6个74LS164构成,采用串行静态显示旳措施。

将数码管旳8个输入端与74LS164旳输出端Q0~Q7相连。

P1.0和74LS164旳CLK 连接,作为时钟;P1.4接74LS164旳A 端,作为显示数据旳输入端。

显示电路如图三所示。

C31104VCCC33104VCCC32104VCCC34104VCCC35104VCC图三:显示电路不过使用74LS164串显会出现消隐旳问题。

为了消除消隐,那么就必须在硬件上与软件上结合来消除消隐旳问题。

消隐电路如图四所示。

软件上,在传数据时,先传一种高电平,直到数据传完再传送一种低电平即可。

图四:消隐电路(3)按键电路键按下后,进行温度及液位检测旳切换,也可不使用。

太阳能热水器温度控制系统-毕业设计

太阳能热水器温度控制系统-毕业设计
太阳能热水器温度控制 系统毕业设计
,a click to unlimited possibilities
汇报人:
目录
01 添 加 目 录 项 标 题
02 系 统 概 述
03 硬 件 设ห้องสมุดไป่ตู้计
04 软 件 设 计
05 系 统 测 试 与 优 化
06 结 论 与 展 望
Part One
单击添加章节标题
研究太阳能热水器 的温度控制与物联 网技术的结合
THANKS
汇报人:
测试环境:室内温度、光照 强度、水箱容量等
测试结果:系统稳定性、准 确性、响应速度等
优化方案:根据测试结果, 调整系统参数,提高系统性

优化方案与实施
优化目标:提高太阳能热水器的温度控制精度和稳定性 优化方案:采用PID控制算法,实现温度闭环控制 实施步骤:搭建测试平台,进行参数调整和优化 优化效果:提高温度控制精度,降低温度波动,提高系统稳定性
Part Five
系统测试与优化
测试环境与设备
测试环境:室内、室外、晴天、 阴天、雨天等不同环境
测试设备:温度传感器、控制 器、太阳能热水器、数据采集 器等
测试方法:模拟实际使用环境, 进行长时间连续测试
测试指标:温度控制精度、响 应时间、稳定性、安全性等
测试过程与结果
测试方法:模拟实际使用环 境,记录温度变化、系统响 应时间等
添加标题
添加标题
添加标题
添加标题
自动开关机:根据设定时间自动开 关热水器
远程控制:可以通过手机APP远程 控制热水器的运行状态
系统组成
太阳能集热器:收 集太阳能并将其转 化为热能
储水箱:储存热水, 保持水温稳定

智能家居中的太阳能热水器控制系统设计

智能家居中的太阳能热水器控制系统设计

智能家居中的太阳能热水器控制系统设计智能家居中的太阳能热水器控制系统设计随着科技的不断进步,智能家居正在逐渐普及和应用于人们的生活中。

其中,太阳能热水器作为绿色清洁能源的一种重要形式,也逐渐成为智能家居的一部分。

智能家居中的太阳能热水器控制系统设计的主要目的是提高家庭生活的舒适度,同时也达到节能环保的效果。

1. 引言太阳能热水器作为一种非常有前景的清洁能源形式,其广泛应用势必能够为节能减排做出重要贡献。

而智能家居是目前人们生活的一个热门话题,通过将各类设备与智能控制系统相连,能够实现家庭生活的自动化和智能化。

太阳能热水器控制系统的设计就是将这两种前景相结合,旨在提高人们的生活品质,并为环保事业做出贡献。

2. 系统概述智能家居中的太阳能热水器控制系统主要包括太阳能热水器、传感器、控制器、通信设备和用户界面。

太阳能热水器主要负责收集太阳能并将其转化为热水,传感器用于监测水温、水压、光照等参数,控制器负责根据传感器的反馈进行控制,通信设备用于实现与用户界面的互联。

3. 系统设计3.1 传感器设计太阳能热水器的控制系统需要实时监测一系列参数,如太阳能辐射强度、水温、水压等。

因此,传感器的设计是系统中的重要一环。

传感器可以选用温度传感器、压力传感器和光照传感器等。

这些传感器的安装位置需要合理确定,以保证其能够准确监测到所需参数。

3.2 控制器设计控制器是智能家居中的核心部件,负责根据传感器的反馈信息进行控制。

在太阳能热水器的控制系统中,可以采用PID控制算法进行温度和水压的控制。

即通过控制水泵的工作状态,调节系统中的循环速度,从而达到恰当的水温和水压。

3.3 通信设备设计通信设备可以选择无线通信模块,如WiFi、蓝牙等,以便与用户界面实现远程及时控制和监测。

用户可以通过手机App、智能家居控制面板等方式,远程监测和控制太阳能热水器的运行状态,实现智能化的管理。

3.4 用户界面设计用户界面是用户与智能家居系统进行交互和管理的入口。

太阳能热水器控制器设计

太阳能热水器控制器设计

太阳能热水器控制器设计引言:设计原理:太阳能热水器控制器的设计原理主要涉及三个方面:传感器、控制算法和执行器。

传感器用于检测环境温度、太阳辐射强度和水温等参数;控制算法根据传感器数据进行计算和判断,并控制执行器的运行,以达到合适的工作状态。

传感器:太阳能热水器控制器需要安装多个传感器以便准确检测各种参数。

温度传感器用于测量环境温度和水温,以判断是否需要加热;光照传感器用于测量太阳辐射强度,以判断是否有足够的太阳光来加热水;水位传感器用于检测水箱内的水位,以判断是否需要补充冷水。

通过这些传感器的数据,控制器可以做出合适的决策。

控制算法:太阳能热水器控制器的控制算法非常关键。

根据传感器数据,控制器可以判断出当前的工作状态并进行相应的控制。

例如,当太阳辐射强度较强时,控制器可以启动水泵,将太阳能集热器中加热的水送入水箱;当太阳辐射强度较弱时,控制器可以暂停水泵的工作,以免浪费电能。

此外,控制器还可以设置温度上限和下限,当水温超过上限时停止加热,当水温低于下限时重新启动加热。

通过合理的控制策略,可以有效地提高太阳能热水器的效率和稳定性。

执行器:功能:1.实时监测太阳辐射强度和水温,以确定水的加热需求;2.控制水泵的启停,实现太阳能集热器与水箱之间的水循环;3.控制加热器的启停,实现水箱内水的加热;4.设定温度上限和下限,自动控制加热器的工作;5.监测水箱内的水位,及时补充冷水;6.显示当前的工作状态和水温情况。

总结:太阳能热水器控制器的设计对提高太阳能热水器的效率和稳定性有着至关重要的作用。

通过合理选择传感器、控制算法和执行器,并充分发挥控制器的功能,可以实现对太阳能热水器的精确控制和自动化管理。

这样不仅能够节约能源,减少对传统能源的依赖,还能够为人们提供更加便利和舒适的热水使用体验。

基于单片机的太阳能热水器控制系统设计

基于单片机的太阳能热水器控制系统设计

基于单片机的太阳能热水器控制系统设计在当今能源紧张和环保意识日益增强的背景下,太阳能作为一种清洁、可再生的能源,其应用范围越来越广泛。

太阳能热水器便是其中一种常见且实用的设备。

为了提高太阳能热水器的性能和使用效率,设计一个基于单片机的智能控制系统具有重要的意义。

一、太阳能热水器的工作原理太阳能热水器主要由集热器、水箱和管道等部分组成。

集热器通常安装在屋顶或其他阳光充足的地方,其内部有吸热管,能够吸收太阳能并将其转化为热能。

被加热的水通过管道输送到水箱中储存起来,以供用户使用。

然而,传统的太阳能热水器存在一些不足之处。

例如,在阳光不足或天气变化时,无法保证稳定的热水供应;水温难以精确控制,可能会出现过热或过冷的情况。

为了解决这些问题,我们需要引入单片机控制系统。

二、单片机控制系统的总体设计本控制系统以单片机为核心,结合传感器、执行器和通信模块等组成一个完整的系统。

传感器部分包括温度传感器和水位传感器。

温度传感器用于实时监测水箱内的水温,水位传感器则用于检测水箱内的水位高度。

这些传感器将采集到的信息传输给单片机。

单片机作为控制中心,对传感器传来的数据进行处理和分析,并根据预设的控制策略发出相应的控制指令。

执行器主要包括电加热装置和水泵。

当水温过低时,单片机控制电加热装置启动,对水进行加热;当水位过低时,单片机控制水泵启动,向水箱内注水。

通信模块用于实现系统与用户之间的交互。

用户可以通过手机或其他终端设备远程查看热水器的工作状态,并进行相应的操作。

三、硬件设计1、单片机选型选择一款性能稳定、功能强大且成本适中的单片机,如 STM32 系列。

STM32 具有丰富的外设资源和较高的运算速度,能够满足系统的控制需求。

2、传感器电路设计温度传感器可选用 DS18B20 数字温度传感器,其具有精度高、接口简单等优点。

水位传感器可采用压力式水位传感器,通过测量水压来确定水位高度。

传感器的输出信号需要经过调理电路进行放大、滤波等处理,然后输入到单片机的 ADC 端口。

太阳能热水器控制系统设计方案

太阳能热水器控制系统设计方案

太阳能热水器控制系统设计方案
引言
本文档旨在提供一种太阳能热水器控制系统的设计方案。

该系统旨在有效管理和控制太阳能热水器的运作,提高能源利用率并确保用户的舒适度。

系统设计
太阳能热水器控制系统的设计包括以下几个关键方面:
1. 传感器
系统将配备温度传感器和光照传感器。

温度传感器用于监测水箱温度和太阳能集热器的温度,以便根据温度变化进行控制调节。

光照传感器用于检测太阳光的强度,以确定是否能够进行正常的加热操作。

2. 控制器
控制器是系统的核心部分,它将根据传感器的信号进行智能控制。

当温度传感器检测到水温低于设定值时,控制器将自动开启加
热装置以提供热水。

当光照传感器检测到太阳光强度较低时,控制器将停止加热操作,以避免能源的浪费。

3. 电源系统
系统将使用太阳能电池板作为主要电源。

太阳能电池板将将净化太阳能转换为电能供系统使用。

此外,系统还将配备备用电源以确保系统在夜晚或阴雨天气时仍然能够正常运行。

4. 用户界面
系统将具备一个用户界面,以便用户能够方便地了解系统的状态和进行操作。

用户界面将显示当前水温、光照强度以及系统的工作状态。

用户可以通过界面对系统进行手动控制,如调整水温和加热时间等。

总结
本设计方案提供了一种简单而有效的太阳能热水器控制系统。

通过合理利用传感器和智能控制,该系统能够提高能源利用率,满足用户的热水需求,同时减少能源浪费。

该设计方案的实施将有助于推动太阳能热水器的发展和应用。

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计

基于单片机的太阳能热水器控制系统的设计摘要目前,太阳能热水器控制器还一直处于研究与开发阶段,市面在售的控制器绝大部分只具备温度和水位显示功能,不具备温度水位的自动控制功能。

虽然有的控制器配有电加热辅助装置,但都不是全智能型的,给用户使用带来许多不便。

关键词:单片机、太阳能热水器、温控系统第1章绪论1.1 本设计的目的和意义本设计具有很强的实用性,用成本低廉的电阻式传感器以及电极配以单片机技术对生产实际中的太阳能热水器的水温的控制以及水位的显示。

本装置电路简单、实用性强、性价比高、水温控制灵活,水位显示直观醒目。

可广泛应用于家庭生活对太阳能热水器的水位显示与水温控制。

具有良好的市场前景。

1.2 控制系统设计要求1、能够根据水位和水温两个条件控制是否需要进水,每次只进整个水箱的四分之一水量,也可以在手动状态下自由进水(上满时自由停止)或停止进水。

2、控制系统具有手动和自动切换功能;3、具有水温和水位显示功能;4、具有进水超水位和超水温报警指示;5、用水时若水温达不到设置值时,可手动起动加热装置,这样可在很大程度上节约电能;6、用水时可自由调节水温;7、控制系统具体管道排空功能,这样防止冬天时因水管内有积水而在夜间冻裂水管。

1.3 本设计实现思路及方法水位由潜入储水容器不同深度的水位电极和潜入容器底部的公共电极(导线)检测;并由四个绿色LED发光二极管显示:若无水则绿灯不亮;若有四分之一储水箱的水亮一盏绿灯;通过观察绿灯点亮的数量可识别水位的高低,这里取5段显示,也可根据需要进行增减。

水温由四个LED数码管显示,前三个数码管显示的为温度最后一个数码管我们只用到了四段码显示为温度的符号C,水温有效值最多可显示为99.9℃。

第2章 硬件设计2.1 控制系统组成及工作原理2.1.1 系统的组成如图2-1所示,本系统主要由控制器、自动控制阀、手动控制阀、水位检测电极、水温检测传感器、电阻加热丝、储水箱等组成。

基于单片机的太阳能热水器控制系统设计

基于单片机的太阳能热水器控制系统设计

基于单片机的太阳能热水器控制系统设计
用单片机来控制太阳能热水器是一种非常可行的设计方案。

这种控制系统可以根据不同的温度、压力和水位状况来控制热水器的工作状态,从而达到节约能源和保护环境的目的。

以下是基于单片机的太阳能热水器控制系统设计的一些基本要素:
1. 传感器:需要安装在不同的位置,如太阳能集热器上、热水箱上、进水口、出水口等位置。

这些传感器可以分别测量不同位置的温度、压力和水位等参数,并将这些数据反馈给单片机。

2. 单片机:需要对从传感器中收集到的数据进行分析,根据设定的温度、压力和水位要求来控制太阳能热水器。

单片机需要具备适当的输入和输出接口,如ADC、PWM以及串口通信等。

3. 控制器:需要根据单片机的指示来控制太阳能热水器的工作状态,如启动太阳能集热器、循环水泵、加热器等。

4. 显示器:需要显示当前的温度、水位、压力等参数,以及太阳能热水器的工作状态。

总的来说,基于单片机的太阳能热水器控制系统设计可以更好地实现对太阳能热水器的智能控制。

通过对太阳能热水器的温度、压力和水位等数据的高效处理,可以实现更高的能源利用效率和对环境的贡献。

太阳能热水器温度控制系统设计

太阳能热水器温度控制系统设计

太阳能热水器温度控制系统设计目录1引言 (1)1.1 研究背景 (1)1.2 研究的目的和意义 (2)1.2.1 国内研究现状 (2)1.2.2 国外研究现状 (3)2 太阳能热水器温度控制系统总体介绍 (5)2.1 系统总体方案 (5)2.2 系统功能 (5)2.3 系统结构 (5)2.3.1 设计结构 (5)2.3.2 组成结构 (5)3 太阳能热水器温度控制系统硬件设置 (7)3.1 系统主要芯片介绍 (7)3.1.1 AT89S52单片机 (7)3.1.2 晶振电路 (8)3.1.3 复位电路 (8)3.1.4 LCD1602液晶显示屏 (9)3.1.5 DS1302时钟芯片 (9)3.2 单片机初始化程序 (10)3.3 太阳能热水器温度控制系统流程图 (11)4调试 (13)4.1 硬件调试 (13)4.2 软件调试 (13)4.3 温度控制系统的仿真调试 (13)4.3.1 仿真运行情况 (14)5 结语 (17)参考文献 (18)致谢 (19)附录 (20)附录A电路原理图 (20)附录B系统程序 (21)1引言随着科技的发展,人们在享受现在化生活带来的巨大便利的同时,也越来越受到过量使用化石能源所带来的环境污染加剧和燃油价格上升所带来的困扰。

大规模使用化石燃料带来的环境污染会给生态系统造成直接的破坏和影响,也会给生态系统和人类社会造成间接的危害,有时这种间接的环境效应的危害比当时造成的直接危害更大,也更难消除。

例如,温室效应、酸雨、和臭氧层破坏就是由大气污染衍生出的环境效应。

这种由环境污染衍生的环境效应具有滞后性,往往在污染发生的当时不易被察觉或预料到,然而一旦发生就表示环境污染已经发展到相当严重的地步。

环境污染的人类环境的质量下降,影响人类的生活质量、身体健康和生产活动。

例如城市的空气污染造成空气污浊,人们的发病率上升等等;水污染使水环境质量恶化,饮用水源的质量普遍下降,威胁人的身体健康,引起胎儿早产或畸形等等。

太阳能热水器控制系统设计

太阳能热水器控制系统设计
S in e& Te h oo yVi o ce c c n lg s n i
21 0 2年 8 月第 2 期 3
科 技 视 界
机械与电 子
太阳能热水器控制 系统设计
张 永正 袁 鹏 青岛 26 0 ) 6 3 0 ( 岛工学院 信息 工程 系实验 室 山东 青
【 摘
要 】 文对 当前太阳能热水器控制 系统现状做 了介绍 , 以 8 5 本 并 0 1为核心 , 设计 了具有温度 , 液位 自动检测 , 显示功能 ,
且 配 备 有 辅 助 电加 热 装 置 , 现 了 比较 理想 的 人 机 交 互 界 面 . 实
C U只需一根端 口线就能 与 D 1B 0通信控制读取温度值 。 P S 82 水位的检测采用压力传感器 , 由公式 “= 并 p 密度 引力常数
水深” 可算 出水位 。辅助电加热体 的通断电采用继 电器控制 。
水管将水导 出, 用户看到水满溢出后再手动关 闭进水阀。 这种
方法使得用户必须手动开关水阀 , 且容易造成水资源 的浪费。 在无人值守 的时候还会 因水溢 出太多而泡坏地板 , 家具。 笔者考察了当前太阳能热水器的功能缺 陷 , 设计 了具备 温度 、水位显示功能和 自动控制功能 的热水器控 制系统 , 而
培养学生 的多元文化意识 , 消除学生 的文化偏 见。教师在进
十分标 准 , 至与英语本土 人的发音相差无 几 , 甚 那么他 自然
能够赢得学生的信任 。 相反则不然。 另外 , 教师对于 目标文化
的熟悉程度也决定 了其学生 的态度。语言与文化是密不可分
行文 化教学 的时候 , 不应该仅 仅教授某一种 文化 , 而应 该采 取多种方法培养学生 的多元文化视角 。只有当学生 能够公平 的对 待多种文化 时 , 他们 才能消除偏见 , 对教 师的身份 构建 起到积极 的作用 。最后 . 教师本人也应该 了解 自己的文 化边 缘地 位 , 有意识 的去改变 自己的身份建构 , 缩小 自我认 同身

基于单片机的太阳能热水器的控制系统的设计

基于单片机的太阳能热水器的控制系统的设计

基于单片机的太阳能热水器的控制系统的设计摘要本文对基于单片机的太阳能热水器控制系统设计进行了概述。

太阳能热水器是一种利用太阳能将水加热的设备,具有环保、节能的特点。

为了提高太阳能热水器的效率和控制其运行,设计了基于单片机的控制系统。

该控制系统通过测量太阳能热水器的温度和日照强度,并根据设定的参数控制太阳能热水器的加热和停止加热,以实现太阳能的最大利用。

控制系统的设计包括硬件和软件两个部分。

硬件部分主要包括传感器、单片机和执行器。

传感器用于测量太阳能热水器的温度和日照强度,单片机作为控制核心负责处理传感器数据和控制执行器的操作。

执行器根据控制信号进行加热和停止加热操作。

软件部分主要是单片机的程序设计,包括数据处理算法和控制逻辑的编写。

设计的控制系统能够实现太阳能热水器的智能控制,提高其加热效率,并确保其在不适宜的气候条件下停止加热,节约能源。

通过该系统的应用能够更好地利用太阳能资源,减少对传统能源的依赖,具有很大的推广价值和应用前景。

关键词:太阳能热水器,单片机,控制系统太阳能热水器凭借其环保、节能的特点,逐渐成为人们热水供应的主要选择。

然而,目前市场上大部分的太阳能热水器存在着热水温度控制不稳定、能量利用效率不高等问题,因此有必要设计一个基于单片机的控制系统来解决这些问题。

本文旨在基于单片机设计太阳能热水器的控制系统,通过对太阳能热水器的工作原理和控制策略进行研究,提高热水温度的稳定性和能量利用效率,提供更加舒适和可靠的热水供应。

在接下来的文章中,我们将首先介绍太阳能热水器的背景和研究意义,然后探讨太阳能热水器的工作原理和相关技术,最后给出基于单片机的太阳能热水器控制系统的设计方案。

本文详细描述了基于单片机的太阳能热水器控制系统的设计方案。

在设计该控制系统时,我们将实施以下关键步骤:选取合适的单片机:根据项目需求和资源限制,我们选择了一款适合的单片机作为控制中心。

我们评估了单片机的处理能力、资源消耗和可靠性等因素,以确保其适合于本系统的设计。

太阳能热水器温度控制系统的设计概要

太阳能热水器温度控制系统的设计概要

课程设计任务书学生姓名:黎德刚专业班级:自动化0801指导教师:张锐工作单位:自动化学院题目:太阳能热水器温度控制系统的设计初始条件:设计一个太阳能热水器温度控制系统,实现水温的自动检测及低于某一温度时自动启动辅助加热装置.同时用户可以自定义加热温度。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求1.构建计算机控制系统的硬件、软件框架,并详细说明理由及思路;2.显示水温,电加热水温可任意设定;3.设置温度参数后,自动启动电辅助设备加热;4。

说明书撰写格式应符合《课程设计说明书统一书写格式》.时间安排:1.系统框架、控制方案设计,2天;2.硬件系统设计,3天;3.软件系统设计,3天;4。

编写设计报告,3天。

指导教师签名:年月日系主任(或责任教师签名:年月日摘要在太阳能热利用技术中,太阳能热水器是技术上比较成熟、造价比较低廉的产品,同时给人们提供不耗能源、保护环境、绝对安全的热水而受到人们的欢迎。

目前,太阳能热水器控制器还一直处于研究与开发阶段,市面在售的控制器绝大部分只具备温度和水位显示功能,不具备温度水位的自动控制功能。

虽然有的控制器配有电加热辅助装置,但都不是全智能型的,给用户使用带来许多不便。

单片机控制系统是对其水温与水位的不同进行检测和控制.本文设计了一个基于集成温度传感器AD590的温度测试仪设计(L C D,它的主要功能是利用集成温度传感器A D590作为传感元件,集成放大器作为放大电路,A/D转换器作为数据采集器件,单片机作为数据处理器件,数码管作为显示器件。

设计最终目的为了要实现一个能对重量信息进行实时数据采集、处理及显示,并可用键盘设定阈值。

关键词:单片机太阳能热水器温控系统目录摘要。

..。

.。

...。

......。

.。

..。

...。

.。

....。

..........。

.。

.。

I I 引言。

(11 设计目的与要求(21。

1设计目的(21。

2设计要求 (22 设计思路 (33硬件设计 (43.1传感器的选择 (43.2放大电路(43。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安航空职业技术学院毕业设计(论文)论文题目:太阳能热水器控制器设计所属学院:电子工程学院指导老师:杨思俊职称:讲师学生姓名:王游班级、学号: ******** 专业:太阳能光热技术与应用西安航空职业技术学院制年月日西安航空职业技术学院毕业设计(论文)任务书题目:太阳能热水器控制器设计任务与要求:时间:2017 年11 月20 日至2018 年1 月20 日共8 周所属学院:电子工程学院学生姓名:王游学号:15205109专业:太阳能光热技术与应用指导单位或教研室:指导教师:杨思俊职称:讲师西安航空职业技术学院制年月日毕业设计(论文)进度计划表本表作评定学生平时成绩的依据之一。

太阳能热水器控制系统设计【摘要】现在城市居民绝大部分都使用太阳能热水器,农村也有相当一部分人使用,太阳能热水器在技术上比较成熟,造价比较低廉,同时由于给人民提供绝对安全的热水而受到人们的欢迎,且具有节能、环保、安全、便利、长久等优点,所以它的应用也会越来越广,因此,研究和开发先进的太阳能热水器控制系统越来越重要。

该设计以单片机SST89E516RD为核心,结合单线数字温度传感器DS18B20、LCD1602液晶屏与蜂鸣器,设计一种数字化、智能化的太阳能热水器控制系统。

该系统由主控芯片模块、DS18B20温度检测模块、LCD1602温度和水位显示模块、自动加水模块和水温超标警报模块组成。

给出了各个模块的结构及其工作原理、系统硬件原理图、程序流程图和部分源程序,并结合理论设计进行仿真模拟测试。

我们都知道,目前市面上大多数太阳能热水器都没有加水只能中断装置,并且只能在晴天使用,而阴天则无法加热。

此系统将水温水位检测模块、水温水位显示模块与报警模块结合,LCD1602屏幕上会显示水位和温度,并且在水位低于设置值时可人控开启加水开关开始加水,LCD1602上显示水位变化情况,当水位到达标准水位时自动中断;当通电对水加热时,LCD1602屏幕上动态显示温度;当温度到达设定的标准温度时,触发警报系统,提示人关闭加热装置。

此系统解除了太阳能热水器加水时无人守候造成水资源浪费和只能在晴天使用的问题,解决了人们常遇到的实际问题。

该系统与传统的机械式控制系统相比较,具有结构简单,抗干扰能力强,使用方便等特点。

关键词:单片机SST89E516RD;温度传感器DS18B20; LCD1602液晶;警报Abstract:Now the vast majority of urban residents have used solar water heater, rural also has quite a few people use, solar energy water heater in the relatively mature technology, low cost comparison, at the same time due to the people's provide absolute safety of hot water and get the welcome of people, and energy saving, environmental protection, safety, convenience, and the advantages of long, so it will be more and more widely used, therefore, research and development of advanced solar water heater control system more and more important.This topic research the programmable controller (PLC) in the application of solar energy water heater control system, focuses on the system's hardware and software design process, points out the key of design of PLC is can satisfy the basic control function, consider the convenience of maintenance and system scalability, etc., this paper identified the system of each working procedure, to draw the process flow diagram of the system, and has carried on the solar water heater automatic control system of PLC I/O allocation and selection, to write the PLC program ladder diagram, draw out of the control system of electrical schematic diagram and the wiring diagram, implements the automatic water drainage, automatic cycle, automatic heating, PID closed-loop control constant temperature water, manual and automatic mode switches etc. Function. Through the PLC to control the solar water heater system renovation, greatly reduces the system to other components have to use, make the system wiring is simple, convenient maintenance, improve reliability, increased system was advanced.The paper is divided into four chapters: chapter one introduces the development background and design significance of solar water heater. The second chapter introduces the working principle of solar water heater. The third chapter introduces hardware selection and control system. Chapter iv overall design of solar water heater.Key words: Solar energy; The water heater. Control system; PLC目录1绪论 (8)1.1本课题研究得背景 (8)1.2国内外研究现状 (9)1.2.1国内研究现状 (9)1.2.2国外研究现状 (10)1.3太阳能热水器控制器的应用 (11)1.4 本课题研究内容 (11)2、太阳能热水器构造和工作原理 (12)2.1 太阳能热水器的基本构造 (12)2.2 太阳能热水器的工作原理 (13)3、太阳能热水器硬件选型及控制系统 (14)3.1 可编程控制器(PLC)简介 (14)3.2 可编程控制器(PLC)工作原理 (14)3.3 硬件设备的选型 (15)3.3.1 PLC的选型 (15)3.3.2其他硬件选型 (16)4、能热水器的整体设计 (17)4.1 PID闭环控制 (17)4.2系统电路的设计 (18)4.3 设计PLC控制原理(梯形图程序) (20)结束语 (31)参考文献 (32)1绪论1.1本课题研究得背景太阳能(Solar Energy),,一般是指太阳光得辐射能量,太阳能是一种可再生能源,广义上的太阳能是地球上许多能量的来源,如风能、生物质能、潮汐能、水的势能等,太阳能以其源源不断、安全等显著优势,成为关注的重点。

如今在太阳能产业的发展中,太阳能热水器的热利用转换技术无疑是最为成熟的,其产业化进程也较光伏电池、太阳能发电等产业领先一步。

当今世界能源问题已经成为一个普遍性的问题,能源关乎着国家的安全,谁掌握了世界上的能源谁就掌握了国际事务的话语权,谁就有了国家经济发展的基础,谁就有了同其他国家相抗衡的资本。

但是传统能源已经被消耗殆尽,为了国家未来的发展,世界各国都在开发新能源,太阳能作为一种既清洁又取之不尽的资源已得到了越来越多的应用。

众所周知,太阳能是取之不尽,用之不竭,没有污染的巨大能源。

随着世界上煤、石油、天然气储量的日益减少,能源危机也日益严重,与此同时环境污染的危机也不断的威胁着生态平衡,太阳能开发利用的课题也提到了人类的面前。

有人预测:二十一世纪太阳能将由辅助能源上升为主要源[1]。

但由于太阳能的分散性、季节性和地区性又给太阳能利用带来重重困难,有些技术难点尚未突破,产品造价偏高(如光电池),因而尚未被人们大规模的使用。

图1-1 太阳能热水器太阳能热水器是技术上比较成熟、造价比较低廉,同时由于给人民提供绝对安全的热水而受到人们的欢迎,且具有节能、环保、安全、便利、长久等优点,因此它的应用会越来越广。

尤其在农村地区具有很大的现实意义:中国四分之三的人口居住在农村,目前仍有约2万个村庄,800多万个农户,3000多万人口没有电力供应。

而农村60%左右的村民仍然依靠燃料秸秆、薪柴为主做饭和烧水,它不仅造成空气污染,而且还严重破坏植被,威胁生态环境。

随着化石能源的逐步枯竭,煤炭、石油和电力一直涨价,且能源供应日趋紧张。

太阳能无污染、无运输、无垄断、“取之不尽、用之不竭”,是最有发展前途的可再生能源。

在社会主义新农村建设中大力推广应用太阳能,不仅能够解决农村的基本能源消费问题,促进可再生能源的高效利用,实现农村生产发展、生活宽裕的双重目标,还有利于乡风文明和村容整洁,促进社会主义精神文明发展[2]。

1.2国内外研究现状1.2.1国内研究现状我国太阳能热水器产业发展迅速,目前已经成为世界上最大太阳能热水器生产国,但与太阳能配套的控制器却一直处于研究和开发阶段,尤其是与太阳能热水器系统匹配的控制器,至今尚未检索到相关报道。

相关文档
最新文档