两因素方差分析

合集下载

双因素试验的方差分析

双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ


50 63 52

47 54 42

47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。

(完整word版)两因素方差分析.

(完整word版)两因素方差分析.

两因素方差分析一、两因素方差分析中的基本概念1. 例1-1(pp1):四种疗法治疗缺铁性贫血后红细胞增加数服用A药,则A=2,否则A=1;服用B药,则B=2,否则B=1两因素Stata数据输入格式命令anova x a b a*b其中a 表示A药疗效的主效应,b表示B药疗效的主效应,a*b表示A药与B药对疗效的交互作用结果如下结果表明:对于 =0.05而言H10:没有交互作用并且A药和B药疗效的主效应都没有差异H11:有交互作用或A药主效应有差异或B药主效应有差异F Model=98.75,P值<0.05,因此认为模型是有效的(或有交互作用或有主效应)。

H20:没有交互作用H21:有交互作用F A×B=36.75,P值=0.0003<0.05,因此A药与B药的疗效有交互作用,并且有统计意义。

H30:A药没有差异H31:A药主效应有差异F A=168.75,P值<0.05,A药的主效应有统计意义H40:B药没有差异H41:B药主效应有差异F B =90.75,P 值<0.05,B 药的主效应也有统计意义。

问题:模型是什么? 模型:..()ab a b ab μμαβαβ=+++其中μab 是x 的总体均数,αa 称为A 因素的主效应,βb 称为B 因素的主效应,(αβ)ab 称为A 因素和B 因素对因变量x(观察指标变量)的交互作用。

2. 主效应的意义A 药B 药平均A 主效应表示未服用服用 未服用 μ11μ1211121.2μμμ+=1...1μμα=+服用 μ21 μ22 21222.2μμμ+= 2...2μμα=+ 平均1121.12μμμ+= 1222.22μμμ+= 11122122..4μμμμμ+++= B 主效应 .1..1μμβ=+ .2..2μμβ=+称α1和α2为A 因素的主效应,β1和β2为B 因素的主效应。

并且可以验证:α1+α2=0(即:α1=-α2)以及β1+β2=0(β1=-β2) 若α1=α2(即α1=α2=0),则对应A 因素的主效应没有作用。

双因素方差的定义和使用条件

双因素方差的定义和使用条件

双因素方差的定义和使用条件
双因素方差分析(Two-way ANOVA)是一种统计方法,用于分析两个因
素对实验结果的影响。

该方法主要用来检验两个因子对因变量的交互作用。

双因素方差分析特别适用于那些同时受到两个或更多因素影响的因变量研究。

使用双因素方差分析时,需要满足以下条件:
1. 独立性:各个观测值之间必须相互独立,这意味着每个观测值都不受其他观测值的干扰。

2. 正态性:样本必须来自正态分布总体。

3. 方差齐性:各个总体的方差必须相等,即抽样的总体必须是等方差的。

4. 样本容量:每个组中的观测值数量应该足够多,这样才能保证估计的参数接近真实值。

5. 满足其他假设:例如,误差项应该是随机的,并且服从均值为0的正态分布。

双因素方差分析的步骤如下:
1. 提出假设:包括主效应和交互效应的假设。

2. 方差分析表:列出观测值的数量、各组的均值和方差以及总均值和总方差。

3. F检验:通过F检验来检验主效应和交互效应的显著性。

4. 结果解释:如果F检验的结果显著,则说明主效应或交互效应对因变量有影响;否则,说明没有影响。

以上信息仅供参考,如需获取更多详细信息,建议咨询统计学专家或查阅统计学相关书籍。

6-2双因素方差分析

6-2双因素方差分析
– 对地区因素提出的假设为
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
5. 误差项平方和: SSE SST SSR SSC SSRC
SST=SSR+SSC+SSRC+SSE
可重复双因素方差分析表
(基本结构)
误差来源 平方和 自由度
(SS)
(df)
均方 (MS)
F值
P值
F 临界值
行因素 列因素 交互作用
误差
SSR SSC SSRC SSE
k-1 MSR FR r-1 MSC FC (k-1)(r-1) MSRC FRC kr(m-1) MSE
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 ▪ 对于因素的每一个水平,其观察值是来自正态分布
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363

双因素方差分析

双因素方差分析
由于存在两个因素的影响,就产生一个新问题,两 因素对指标的影响是否正好是它们每个因素对指标的影 响的迭加?
这种各个因素的不同水平的搭配所产生的新的影响 在统计上称为交互作用. 各因素间是否存在交互作用是 多因素方差分析新产生的问题.
一、无交互作用的方差分析
考虑的因素记为A的第i种效应和因素B的第j 种效应分 别记作αi , βj,试验误差记作εij,其数据结构如下:
第7.3节 双因素方差分析
一、无交互作用的方差分析 二、有交互作用的方差分析 三、利用Excel进行双因素方差分析的步骤
在许多实际问题中, 往往需要同时考察几个因素对指 标的影响,这种同时研究两个因素对试验指标影响的方 差分析,就是 双因素方差分析 (double factor analysis of variance)问题.
B1
B2
B3
A1
390 380 440 420 370 350
A2
390 410 450 430 370 380
解 由Excel软件依次单击:工具-数据分析-方差分析:可重 复双因素方差分析, 如下图
单击“确定”后,得分析结果如下:
由此可见,因素B显著,而因素A和A与B交互作用都 不显著.下面着重考察因素B.
方差来源 平方和 自由度
A B 误差 总和
Q1
r-1
Q2
s-1
Q3 (r-1)(s-1)
Q
rs-1
均方 S12 S22 S32
F值 S12/S32 S22/S32
显著性
二、有交互作用的方差分析
如果因素A 和因素B 没有交互作用, 则只需要在各 个组合水平下各做一次试验就可以进行方差分析.
但是如果因素A 和因素B 有交互作用,这时必须在 各个组合水平下做重复试验方可进行方差分析.

双因素方差分析spss步骤

双因素方差分析spss步骤

双因素方差分析spss步骤双因素方差分析SPSS步骤导言:双因素方差分析是一种常用的统计分析方法,用于分析两个或两个以上因素对于研究对象的影响是否存在差异。

在实际研究中,我们通常使用SPSS软件来进行双因素方差分析的计算和结果呈现。

本文将介绍使用SPSS软件进行双因素方差分析的步骤和注意事项。

一、准备数据在进行双因素方差分析之前,我们首先需要准备好所需的数据。

数据应该是一个二维矩阵,其中行代表不同的观测对象,列代表不同的变量。

变量可以分为两个因素,分别是因素A和因素B。

确保数据的格式正确,并且每一列都应该有对应的变量名称。

二、导入数据到SPSS打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择包含你准备好的数据的文件。

在打开数据之后,你将看到数据被加载到SPSS软件的数据编辑器中。

三、设置变量属性在SPSS软件的数据编辑器中,右键点击每个变量的列,然后选择“变量视图”。

在变量视图中,你可以设置每个变量的属性,包括变量的名称、标签、测量尺度等。

对于因素A和因素B,你可以将它们设为分类变量。

四、进行双因素方差分析在SPSS软件中,选择“分析”-“一般线性模型”-“单因素”。

在对话框中,将因变量添加到“因变量”框中,将因素A和因素B 添加到“因子”框中。

确保选择双因素方差分析选项,并点击“确定”按钮。

五、检查假设条件在进行双因素方差分析之前,我们需要确保满足一些假设条件。

首先,各个观测值是彼此独立的,且满足正态分布假设。

其次,各个因子水平的方差相等。

可以使用一些统计方法,如Shapiro-Wilk 检验和Levene检验,来验证这些假设条件。

六、解读结果SPSS软件将为我们提供双因素方差分析的结果。

主要包括因素A 和因素B的主效应、交互效应以及误差项。

对于主效应,我们可以通过检查P值来决定该因素是否对因变量有显著影响。

对于交互效应,我们可以通过检查因素A和因素B的交互作用项的P值来判断是否存在显著交互效应。

生物统计学之二因素方差分析

生物统计学之二因素方差分析

(1)平方和的分解为:
C T2 ab
STS
2
(x ij x )
x2 C
SA Sb
2
(xi.x)
Ti.2C b
SB Sa
2
(x.jx)
T.j2C a
2
S e S ( x i jx i. x .j x ) S T S S A S S BS
(2)与平方和相应的自由度的分解为
② 主效应 由于因素水平的改变而引起的平均数的改变量 称为主效应。
如表,当A因素由A1水平变到A2水平时,A因素的主效应为A2 水平的平均数减去A1水平的平均数。即
A因素的主效应=492-475=17 同理 B因素的主效应=496-471=25 主效应也就是简单效应的平均,如(32+2)÷2=17 , (40+10)÷2=25
在实际工作中经常会遇到两种因素共同影响试验结果的情况 每一观测值都是某一特定温度与光照条件共同作用的结果。
第三节 二因素方差分析
二因素方差分析
定义:是指对试验指标同时受到两个试验 因素作用的试验资料的方差分析。
固定模型 随机模型 混合模型
二因素都是固定因素
二因素均为随机因素
一个因素是固定因素, 一个因素是随机因素
③ 交互作用(互作,interaction) 在多因素试验中, 一个因素的作用要受到另一个因素的影
响,表现为某一因素在另一因素的不同水平上所产生的效应 不同,或者说,某一因素的简单效应随着另一因素水平的变 化而变化时,则称该两因素存在交互作用。
显而易见,A的效应随着B因素水平的不同而不同,反之
亦然。我们说A、B两因素间存在交互作用,记为A×B。
主效和互作
主效应(main effect):

双因素方差分析课件

双因素方差分析课件
特点
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。

双因素方差分析

双因素方差分析

双因素方差分析一、无交互作用下的方差分析设A 与B 是可能对试验结果有影响的两个因素,相互独立,无交互作用。

设在双因素各种水平的组合下进行试验或抽样,得数据结构如下表:表中每行的均值.i X (i=1,2,…r )是在因素A 的各个水平上试验结果的平均数;每列的均值jX .(j=1,2,…,n)是在因素B 的各种水平上试验的平均数。

以上数据的离差平方和分解形式为:SST=SSA+SSB+SSE (6.13) 上式中:∑∑-=2)(X X SST ij(6.14)∑-=∑∑-=2.2.)()(X X n X XSSA i i (6.15)∑-=∑∑-=2.2)()(X Xr X XSSB j j(6.16)∑+-∑-=2..)(X X X X SSE ji ij(6.17)SSA 表示的是因素A 的组间方差总和,SSB 是因素B 的组间方差总和,都是各因素在不同水平下各自均值差异引起的;SSE 仍是组内方差部分,由随机误差产生。

各个方差的自由度是:SST 的自由度为nr-1,SSA 的自由度为r-1,SSB 的自由度为n-1,SSE 的自由度为nr-r-n-1=(r-1)(n-1)。

各个方差对应的均方差是:对因素A 而言: 1-=r SSA MSA (6.18) 对因素B 而言: 1-=n SSB MSB (6.19)对随机误差项而言:1---=n r nr SSEMSE (6.20)我们得到检验因素A 与B 影响是否显著的统计量分别是:)]1)(1(,1[~---=n r r F MSE MSA F A (6.21))]1)(1(,1[~---=n r n F MSE MSBF B (6.22)【例6-2】某企业有三台不同型号的设备,生产同一产品,现有五名工人轮流在此三台设备上操作,记录下他们的日产量如下表。

试根据方差分析说明这三台设备之间和五名工人之间对日产量的影响是否显著?(α=0.05)。

双因素方差分析

双因素方差分析

1)(m
1))
在H0B 成立时, 检验统计量
FB
SSMB (m 1) SSE (l 1)(m 1)
H0B真
~ F(m
1,(l
1)(m
1))
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 要说明因素A有无显著影响, 就是要检验如下假设:
H0A:1 = 2 = … = l = 0, H1A:1, 2, …,l 不全为零
lm
➢ 误差平方和: SSE
( xij xi. x. j x )2
i1 j1
lm
➢ 总离差平方和: SST
( xij x )2
i1 j1
➢ 可以证明: SST = SSMA + SSMB + SSE
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 可以证明: 构造检验统计量
ij~N(0, 2), 且相互独立, 1 ≤ i ≤ l, 1 ≤ j ≤ m,
l
ai 0,
i 1
m
j 0
j1
其中表示平均的效应, i和j分别表示因素A的第i个水 平和因素B的第j个水平的附加效应, ij为随机误差,假定ij
相互独立并且服从等方差的正态分布.
概率论与数理统计
❖1. 无交互作用的双因素方差分析
SSMA SSMB SSE
SSMA / (l – 1) MSA / MSE PA SSMB / (m – 1) MSB / MSE PB SSE / (l – 1)(m – 1)
全部
lm – 1
SSMA + SSMB +SSE
其中MSA = SSMA/(l – 1), MSB = SSMB/(m – 1),

3两因素试验资料的方差分析--重点

3两因素试验资料的方差分析--重点

第三节两因素试验资料的方差分析两因素试验资料的方差分析是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。

两因素试验按水平组合的方式不同,分为交叉分组和系统分组两类,因而对试验资料的方差分析方法也分为交叉分组方差分析和系统分组方差分析两种,现分别介绍如下。

一、交叉分组资料的方差分析设试验考察A、B两个因素,A因素分个水平,B因素分b个水平.所谓交叉分组是指A因素每个水平与B因素的每个水平都要碰到,两者交叉搭配形成b个水平组合即处理,试验因素A、B在试验中处于平等地位,试验单位分成b个组,每组随机接受一种处理,因而试验数据也按两因素两方向分组。

这种试验以各处理是单独观测值还是有重复观测值又分为两种类型。

(一)两因素单独观测值试验资料的方差分析对于A、B两个试验因素的全部b个水平组合,每个水平组合只有一个观测值,全试验共有b个观测值,其数据模式如表6-20所示。

表6-20两因素单独观测值试验数据模式A因素B因素合计xi。

平均B1 B2 ……B j ……B bA1 x11 x12 ……x1j ……x1b x1。

A2 x21 x22 ……x2j ……x2b x2.…………A i x i1 x i2 ……x ij ……x ib x i.…………A a x a1 x a2 ……x aj ……x ab x a.合计x.j x.1 x。

2 ……x.j ……x.b x。

平均…………表6—20中,两因素单独观测值试验的数学模型为:(6—29)式中,μ为总平均数;αi,βj分别为A i、B j的效应,αi=μi-μ,βj=μj-μ,μi、μj 分别为A i、B j观测值总体平均数,且Σαi=0,Σβj=0;εij为随机误差,相互独立,且服从N(0,σ2)。

交叉分组两因素单独观测值的试验,A因素的每个水平有b次重复,B因素的每个水平有次重复,每个观测值同时受到A、B两因素及随机误差的作用。

因此全部b个观测值的总变异可以剖分为A因素水平间变异、B因素水平间变异及试验误差三部分;自由度也相应剖分。

两因素方差分析

两因素方差分析
XX,a click to unlimited possibilities
汇报人:XX
CONTENTS
两因素方差分 析的简介
两因素方差分 析的步骤
两因素方差分 析的注意事项
两因素方差分 析的应用实例
两因素方差分 析的优缺点
两因素方差分 析的发展趋势 和未来展望
PART ONE
两因素方差分析是一种统计方法,用于研究两个分类变量对连续因变量的影响。
确定研究因素和水平
设计实验或调查方案
实施实验或调查,记录数据
对数据进行整理和清洗
对数据进行分类整理,将不同因素的数据分别整理到不同的表格中。 对数据进行描述性统计分析,包括求平均值、标准差、方差等统计量。 绘制箱线图或散点图等图形,直观展示数据的分布情况。 对异常值进行处理,避免对分析结果产生影响。
PART FIVE
能够同时考虑两个因素的影响,更全面地分析问题 可以检验交互作用,了解两个因素之间的相互作用是否显著 相对于单因素方差分析,具有更高的统计效能,即能够更准确地检验假设 可以进行更深入的研究,例如探讨两个因素之间的交互作用类型和程度等
计算复杂度高
容易受到异常 值的影响
对数据要求较 高
随着统计学理论 的不断完善,两 因素方差分析的 方法和理论也将 得到进一步优化
和发展。
未来,两因素方 差分析将与机器 学习、深度学习 等算法相结合, 实现更高效、更
精确的分析。
汇报人:XX
适用于两个分类变量对数值型因变 量的影响分析
适用于探索不同类别之间的差异和 相似性
添加标题
添加标题
添加标题
添加标题
适用于研究主效应和交互效应对因 变量的影响
适用于多因素分析中筛选重要变量

两因素方差分析.

两因素方差分析.

1 b n
yi.. bn
yijk
j 1 k 1
b
SSB na ( y. j. y... )2 j 1
y. j.
1 an
a i 1
n k 1
yijk
ba
SSAB n
( yij. yi.. y. j. y... )2
j 1 i1
1 n
yij. n k 1 yijk
ban
SS残差
E(MS A )
2
bn a 1
a
2 i
i 1
E(MSB )
2
an b 1
a i 1
2 i
E(MS AB )
2
(a
n 1)(b
1)
b j 1
a
( )i2
i 1
E (MS残差 ) 2
21
两因素方差分析的统计量
由此可以发现: 如果H10 : 交互效应均为0为真,则MSAB的期望值在 2,
10
两因素方差分析的基本概念
两因素设计的方差分析模型可以用角模型参数形式或平衡参数
形式表述。以下是两因素两水平无交互作用情况下的平衡参数
形式的表达式.
效应参数满足
A药 用 用 不用 不用
B药 用 不用 用 不用
Y 总体均数表达式
11 .. 1 1 ( )11 12 .. 1 2 ( )12 21 .. 2 1 ( )21 22 .. 2 2 ( )22
两因素方差分析的基本概念
用B药的情况下,A药用与不用的疗效差异为
B药不用1的1 情况21下,2A1药用2(与不)用11 的疗效差异为 用A药的12情况下22 , B2药1用与2(不用)的11 疗效差异为 B药不用1的1 情况12 下,2A1药用2(与不)用11 的疗效差异为

两因素方差分析

两因素方差分析
αi,βj分别为Ai、Bj的效应; βj=μj-μ,
μi、μj分别为Ai、Bj观测值总体平均数,
且Σαi=0,Σβj=0;
εij为随机误差,相互独立,且服从N(0,σ2)
A因素的每个水平有b次重复,B因素的每个水平 有a次重复,每个观测值同时受到A、B 两因素及
随机误差的作用。因此全部 ab 个观测值的总变异

b
2

j 1
b
x.2j C
误差平方和 SSe=SST-SSA-SSB 总自由度 dfT=ab-1 A因素自由度 dfA=a-1 B因素自由度 dfB=b-1 误差自由度 dfe= dfT - dfA – dfB =(a-1)(b-1)
相应均方为
MS A SS A / df A , MS B SS B / df B , MS e SS e / df e
3
4 5
3.61
4.00 4.28
4.7
5.09 5.38
0.34
0.37 0.40
0.44
0.47 0.50
18
6
7
4.49
4.67
5.6
5.79
0.42
0.43
0.52
0.54
8
9 10
4.82
4.96 5.07
5.94
6.08 6.2
0.45
0.46 0.47
0.55
0.57 0.58
B因素各水平均值多重比较结果见表4
3.1 交叉分组资料(cross-over classification)
的方差分析
设试验考察A、B两个因素,A因素分a个水平,B因 素分b个水平 。 所谓交叉分组是指A因素每个水平与B因 素的每个水平都要搭配 ,两者交叉搭配形成ab个水平组

twowayanova,两因素方差分析

twowayanova,两因素方差分析

第三节随机区组设计的两因素方差分析(two-wayANOVA1、用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等。

随机区组设计考虑了个体差异的影响,可分析处理因素和个体差异对实验效应的影响,所以又称两因素实验设计,比完全随机设计的检验效率高。

该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则分别将各配伍组中的受试对象分配到各个处理组。

值得注意的是,同一受试对象不同时间(或部位)重复多次测量所得到的资料称为重复测量数据(repeatedmeasurementdata ),对该类资料不能应用随机区组设计的两因素方差分析进行处理,需用重复测量数据的方差分析。

2、计算公式:随机区组设计的两因素方差分析是把总变异中的离均差平方和SS 与自由度V 分别分解成处理间、区组间和误差三部分,其计算公式见表5.4。

表5.4两因素方差分析的计算公式区组间区域#b 区组数3、分析步骤(以例说明):例5.2某医师研究A B 和C 三种药物治疗肝炎的效果,将32只大白鼠感染肝炎后,按性别相同、体重接近的条件配成8个配伍组,然后将各配伍组中4只大白鼠随机分配到各组:对照组不给药物,其余三组分别给予A 、B 和C 药物治疗。

变异来源总离均差平方和自由度V,N11处理问k-1翊蚣曜b-1一定时间后,测定大白鼠血清谷丙转氨酶浓度(IU/L),如表5.5。

问四组大白鼠的血清谷丙转氨酶是否相同。

表5.5四组大白鼠血清谷丙转氨酶浓度(IU/L)区组对照组A药组试验组B药组C药组合计1 845.1 652.4 624.3 445.1 2566.92 834.7 741.3 772.3 432.5 2780.83 826.5 675.6 632.5 362.7 2497.34 812.8 582.8 473.6 348.7 2217.95 782.8 491.8 462.8 345.9 2083.36 745.6 412.2 431.8 312.8 1902.47 730.4 494.6 484.9 296.3 2006.28 684.3 379.5 380.7 228.4 1672.96262.2 4430.2 4262.9 2772.4 17727.7(,) 羽782.78 553.78 532.86 346.55 553.99(:) *10883788.89 4925110.042571668.142391246.57995764.14(:'■,)本研究的主要目的在于比较不同治疗方法的效果,同时还可以比较不同区组间大鼠血清谷丙转氨酶浓度是e'相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
2 SST xij C (11.712 11.782 12.94 2 ) 4423.8163
27.2509 1 1 2 SS A xi. C (121.332 121.12 2 121.852 ) C b 10 0.0283 1 1 2 SS B x. j C (35.10 2 32.26 2 38.27 2 ) C a 3 26.7591
A3
x.j x.j
11.61
35.10 11.70
10.75
32.26 10.75
12.4
37.29 12.43
12.41
37.32 12.44
10.72
31.68 10.56
13.1
39.29 13.10
13.58
40.73 13.58
12.88
38.03 12.68
11.46
34.33 11.44
2 C x.. / ab
SST

i 1 j 1 a
a
b
( xij x.. )
2
2

i 1 j 1 a
a
b
2 xij C
1 SS A b ( xi. x.. ) xi2. C b i 1 i 1
1 SS B a ( x. j x.. ) a j 1
αi,βj分别为Ai、Bj的效应; βj=μj-μ,
μi、μj分别为Ai、Bj观测值总体平均数,
且Σαi=0,Σβj=0;
εij为随机误差,相互独立,且服从N(0,σ2)
A因素的每个水平有b次重复,B因素的每个水平 有a次重复,每个观测值同时受到A、B 两因素及
随机误差的作用。因此全部 ab 个观测值的总变异
12.94
38.27 12.76
121.85
364.3
12.19
A因素(化验员)有3个水平,即a=3;B因素
(天数) 有10个水平 ,即 b =10 , 共有
a×b=3×10=30个观测值。
1 计算各项离差平方和与自由度
C x.. / ab 364.30 /(3 10) 4423.8163

b
2

j 1
b
x.2j C
误差平方和 SSe=SST-SSA-SSB 总自由度 dfT=ab-1 A因素自由度 dfA=a-1 B因素自由度 dfB=b-1 误差自由度 dfe= dfT - dfA – dfB =(a-1)(b-1)
相应均方为
MS A SS A / df A , MS B SS B / df B , MS e SS e / df e
可以分解为 A 因素水平间变异、B因素水平间变异
及试验误差三部分;自由度也相应分A SS B SS e dfT df A df B df e
各项离差平方和与自由度的计算公式为: 矫正数 总平方和 A因素离差平方和 B因素离差平方和
x i.
x
j 1 b
b
ij
, ,
A的第i水平b个观测值之和 A的第i水平b个观测值的平均数
1 xi . b x. j x. j
x
j 1 ij
ij
x
i 1 a
a
,
ij
B的第j水平a个观测值之和
1 a
a i 1
x
i 1 b j 1
,
B的第j水平a个观测值的平均数 ab个观测值的总和
SS e SST SS A SS B 27.2509 0.0283 26.7591 0.4635 dfT ab 1 3 10 1 29 df A a 1 3 1 2 df B b 1 10 1 9 df e dfT df A df B 29 2 9 18
3.1.1 两因素无重复试验资料的方差分析 对于A、B两个试验因素的全部ab个水平组合,
每个水平组合只有一个观测值(无重复),
全试验共有ab个观测值,其数据模式如下表 所示。
表 两因素无重复观测值的试验数据模式
注:A因素有a个水平,B因素有b个水平,共计有ab个水 平组合,每一组合观测一次,有ab个观测值(表5),xij 为A的第i水平与B的第j水平组合观测值。
2 列出方差分析表,进行F检验
表2 资料的方差分析表
变异来源 化验员间 日期间
误差 合计
SS 0.0283 26.7591
0.4635 27.2509
【例1】某厂现有化验员3人,担任该厂牛奶酸度 (°T)的检验。每天从牛奶中抽样一次进行检验, 连续10天的检验分析结果见表6。试分析3名化验员 的化验技术有无差异,以及每天的原料牛奶酸度有 无差异(新鲜牛奶的酸度不超过20 °T ) 。
表1 牛奶酸度测定结果
化验 员 A1 A2 B1 11.71 11.78 B2 10.81 10.7 B3 12.39 12.5 B4 12.56 12.35 B5 10.64 10.32 B6 13.26 12.93 B7 13.34 13.81 B8 12.67 12.48 B9 11.27 11.6 B10 12.68 12.65 x i. 121.33 121.12 x i. 12.13 12.11
x..
x..
x
b
ij
x ij / ab
i 1 j 1
a
ab个观测值的总平均数
两因素无重复观测值试验资料的数学模型为:
xij i j ij
(5-26)
式中, μ为总平均数; αi=μi-μ,
(i 1,2,, a; j 1,2,, b)
3.1 交叉分组资料(cross-over classification)
的方差分析
设试验考察A、B两个因素,A因素分a个水平,B因 素分b个水平 。 所谓交叉分组是指A因素每个水平与B因 素的每个水平都要搭配 ,两者交叉搭配形成ab个水平组
合即处理,试验因素A 、B在试验中处于平等地位 。如
果将试验单元分成 ab 个组,每组随机接受一种处理 , 因而试验数据也按两因素两方向分组,这种试验数据资 料称为两向分组资料,也叫交叉分组资料。 分无重复观测值和重复观测值两种类型。
相关文档
最新文档