数学函数概念图像的切线问题.doc

合集下载

高中物理的函数图像“切线斜率”应用解题

高中物理的函数图像“切线斜率”应用解题
在高中物理课程教学过程中充分对同学们灌输“切线斜率”的知识概念能够充分促进学生掌握科学的解题技巧,对学生进行一定的实验设计,并充分关注物理解题过程中的处理方式与习题内容之间的共性,能够实现对于多科知识的融会贯通,从而促进物理习题的正确解答。
参考文献
[1]于胜寒函数图像的“切线斜率”的理解及在高中物理解题中的应用[J].中国新通信,2016,18,(23):134。
C. O点中产生的电荷强度在x轴方向中的分量为最大的状态。
D. x中的负电荷在经过B到C之间的转移过程中,电场力会首先先做正功,之后再做负功,具有这样一个先后顺序。
解题分析:φ-x图像中处于某一个位置之上的斜线斜率表示的是静电场中的电场在x方向之上的分量值,所以正确答案是A,同时O点中所对应的切线斜率数值是0,由此得知C项按答案错误。同时根据题目中所述,顺沿电场方向上的势能处于逐渐减小的状态,所以B选项阐述不对。电场做工可以表示为W=qu,由此可以得出,正确答案是D。因此最终的答案是AD。
高中物理的函数图像“切线斜率”应用解题
摘要:在高中物理课程的学习过程中,具有多种解题思路与解题方式,其中的重要知识点是切线斜率方面,在物理习题的定量分析与定性分析中都有着重要的应用空间,本文分析了在高中物理习题的讲解过程中函数图像“切线斜率”方面的应用策略,以促进同学们掌握相关的物理解题技巧,最终有效促进高中物理解题能力的提升。
例题:在具体的空间表现中静电场的电路势能φ在x轴中的具体分布情况具体如下图1所示,由这一图能够看出x轴在B点与C点之上的电场强度作用在x位置之上的分量将其具体表示成Ebx与Ecx,那么在以下的四个阐述中正确的是( )。
图1.函数图像
A. Ebx上的电场强度势能比Ecx要强。
B. Ecx上的分量方向是X轴的正方向。

导数专题复习1切线问题课件高三数学二轮专题复习

导数专题复习1切线问题课件高三数学二轮专题复习

1.已知函数 f x 是偶函数,定义域为,0 0, ,且x 0 时,
11
f
x
x ex
1
,则曲
线 y f x 在点1,f 1 处的切线方程为
y x ee

思考 : 思考1.切点知道了吗,怎么求切点?
思考2.怎么求在切点处切线的斜率?
2.设 P 是函数 y x x 1 图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为
(这个定值k 就是切线PT 的斜率
k
lim
Pn P
k
PPn
lim
x0
f
(x0
x) x
f
(x0 )
f '(x0)
知识点归纳:
1.命题分析:本题型在高考解答题主要是在第(1)问中出现,也有可能在选择题或填空题中 出现,若为解答题,主要考点为: (1)导数的几何意义; (2)直线与函数图象相切的条件。
解:f (x) ln x 1
设切点为T (x0, x0 ln x0 ) 则切线方程为 y x0 ln x0 (ln x0 1)(x x0 )
点(e2, 0) 落在切线上
e2x0 ln x0 1 0
h(x) 是单调递增
令h(x) e2x ln x 1 则h(x) e2 1 (x 0)
6.已知 S x a2 ln x a2 aR ,则S 的最小值为( B )
A. 2 2
B. 1 2
C. 2
D. 2
思考 : 思考1.你能观察出本题的几何意义吗?
思考2.怎样借用导数的方法解决此题?
7.若曲线C1:y
x2 与曲线 C2
:
y
ex a
(a
0 )存在公共切线,则a

函数图像的切线问题(可编辑修改word版)

函数图像的切线问题(可编辑修改word版)

0 0 0 00 0 0 0 0 0 x = x 0 0 0 0x 1函数图像的切线问题要点梳理归纳1. 求曲线 y =f(x)的切线方程的三种类型及其方法(1) 已知切点 P(x 0,f(x 0)),求 y =f(x)在点 P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0).(2) 已知切线的斜率为 k ,求 y =f(x)的切线方程:设切点为 P(x 0,y 0),通过方程 k =f′(x 0)解得 x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求 y =f(x)的切线方程:设切点为 P(x 0,y 0),利用导数将切线方程表示为 y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出 x 0.2. 两个函数图像的公切线函数 y=f(x)与函数 y=g(x) 存在公切线, 若切点为同一点 P(x 0,y 0),则有 Error!若切点分别为(x ,f(x )),(x ,g(x )),则有 f '(x ) = g '(x ) =f (x 1 ) -g (x 2 ) .1 12 2题型分类解析1 2- x题型一已知切线经过的点求切线方程例 1.求过点 P (2, 2) 与已知曲线 S : y = 3x - x 3 相切的切线方程. 解:点 P 不在曲线 S 上.设切点的坐标( x , y ) ,则 y = 3x - x 3,函数的导数为 y ' = 3 - 3x 2 , 切线的斜率为k = y '= 3 - 3x 2 ,∴切线方程为y - y = (3 - 3x 2 )( x - x ) , 0点 P (2, 2) 在切线上,∴2 - y = (3 - 3x 2 )(2 - x ) ,又 y = 3x - x 3 ,二者联立可得 x 0 = 1,或x 0 = 1 ± 3, 相应的斜率为k = 0 或k = -9 ± 6 32⎩ ⎨2 2 0∴切线方程为 y = 2 或 y = (-9 ± 6 3)( x - 2) + 2 .例 2. 设函数 f ( x ) = g ( x ) + x 2 ,曲线 y = g ( x ) 在点(1, g (1))处的切线方程为 y = 2x + 1,则曲线 y = f ( x ) 在点(1, f (1))处的切线方程为解析: 由切线过 (1, g (1))可得: g (1) = 3 , 所以 f (1) = g (1) + 12 = 4 , 另一方面,g ' (1) = 2 , 且f ' ( x ) =g ' ( x ) + 2x , 所以 f ' (1) = g ' (1) + 2 = 4 , 从而切线方程为:y - 4 = 4( x - 1) ⇒ y = 4x例 3. 已知直线 y = kx +1与曲线 y = x 3 + ax + b 切于点(1, 3) ,则b 的值为解析:代入(1, 3) 可得: k = 2 , f ' ( x ) = 3x 2 + a ,⎧⎪ f (1) = a + b + 1 = 3⎧a = -1 所以有⎨⎪ f ' (1) = 3 + a = 2 ,解得 ⎩b = 3题型二已知切线方程(或斜率),求切点坐标(或方程、参数)例 4.已知函数 f ( x ) = ln x + 2x ,则:(1) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线4x - y - 2 = 0 平行 (2) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线 x - y - 3 = 0 垂直解:设切点坐标为( x 0, y 0 ) ∴ f '(x ) = 1+ 2 x 0由切线与4x - y - 2 = 0 平行可得:f ' ( x ) = 1 + 2 = 4 ⇒ x = 1∴ y = f ⎛ 1 ⎫= ln 1 + 1 00 ⎪⎝ ⎭ 2∴切线方程为: y - 1 + ln 2 = 4 ⎛ x - 1 ⎫⇒ y = 4x - ln 2 - 12 ⎪ ⎝ ⎭0 x⎩(2)设切点坐标( x 0, y 0 ) ∴ f '(x ) = 1 x 0+ 2 ,直线 x - y - 3 = 0 的斜率为1∴ f '( x ) =1x 0 + 2 = -1 ⇒ x 0 = - 13 而 x 0 ∈(0, +∞)∴ x 0= - 1不在定义域中,舍去 3∴不存在一点,使得该点处的切线与直线 x - y - 3 = 0 垂直例 5.函数 f ( x ) = a ln x - bx 2 上一点 P (2, f (2))处的切线方程为 y = -3x + 2 ln 2 + 2 ,求a , b 的值思路:本题中求a , b 的值,考虑寻找两个等量条件进行求解, P 在直线y = -3x + 2 l n 2 + 2 上,∴ y = -3⋅ 2 + 2 l n 2 + 2 = 2 l n 2 - 4 ,即 f (2) =2ln2 - 4 ,得到a , b 的一个等量关系,在从切线斜率中得到 x = 2 的导数值,进而得到a , b 的另一个等量关系,从而求出a , b解: P 在 y = -3x + 2 ln 2 + 2 上,∴ f (2) = -3⋅ 2 + 2 ln 2 + 2 = 2 ln 2 - 4∴ f (2) = a ln 2 - 4b = 2 ln 2 - 4又因为 P 处的切线斜率为-3af ' ( x ) = a - 2bx x⎧a ln 2 - 4b = 2 ln 2 - 4 ⎧a = 2 ∴ f ' (2) = - 4b = -3 , 2 ⎪⎨ a ⎪⎩ 2- 4b = -3 ⇒ ⎨b = 1例 6.设函数 f ( x ) = x 3 - ax 2 - 9x - 1(a < 0) ,若曲线 y = 线12x + y = 6 平行,求a 的值f ( x ) 的斜率最小的切线与直思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为-12 ,进而可得导函数的0 0 ∴⎪ -最小值为-12 ,便可求出a 的值解: f ' ( x ) = 3x 2- 2ax - 9 = 3⎛x 2- ⎝2 a + 13 9 a 2 ⎫ - ⎭ 1a 2 - 9 = 3⎛ x - 3 ⎝1 ⎫2 a ⎪3 ⎭- 1 a 2 - 93∴ f ' ( x ) = f ⎛ 1 a ⎫= - 1 a 2 - 9 直线12x + y = 6 的斜率为-12 ,依题意可得:min3 ⎪ 3⎝ ⎭- 1a 2 - 9 = -12 ⇒ a = ±3 3 题型三公切线问题a < 0 ∴a = -3 例 7.若存在过点(1,0)的直线与曲线 y = x 3 和 y = ax 2 +15x - 9 都相切,则a 等于( )4A. -1 或-2521 B. 1 或C. - 7 或-25 D. - 7或76444 644思路:本题两条曲线上的切点均不知道,且曲线 y = ax 2 +15 x - 9 含有参数,所以考虑4先 从 常 系 数 的 曲 线 y = x 3 入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线y = ax 2 + 15 x - 9 求出 a 的值.设过(1,0) 的直线与曲线 y = x 3 切于点(x , x 3 ),切线方4程为 y - x 3= 3x 2( x - x 0 0) ,即 y = 3x 2 x - 2x 3 ,因为(1,0) 在切线上,所以解得: x = 00 0 0或 x = 3, 即 切 点 坐 标 为 (0,0) 或⎛ 3 , 27 ⎫ .当 切 点(0,0) 时 , 由 y = 0 与22 8 ⎪y = ax 2 + 15x - 9 相切可得4⎛ 15 ⎫2⎝ ⎭25 ⎛ 3 27 ⎫∆ = 4 ⎪ - 4a (-9) = 0 ⇒ a = - 64 ,同理,切点为 , ⎪ 解得a = -1⎝ ⎭ ⎝ 2 8 ⎭答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与 y = ax 2 +15 x - 9 求a 的过程中,由于曲线 y = ax 2 +15 x - 9 为抛物44线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的∆ = 0 来求解,减少了运算量.通过例 7,例 8 可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线) 例 8.若曲线C :y = x 2 与曲线C :y = ae x 存在公切线,则a 的最值情况为()18A. 最大值为e 224B. 最大值为e 28C. 最小值为e 24D.最小值为 e2⎧⎪ y '= 2x解析:设公切线与曲线C 切于点(x , x 2),与曲线C 切于点(x , ae x 2) ,由⎨ 可得:1 1 12 2⎧ 2x - x 2⎪⎩ y ' = ae xae x 2- x 2⎪2x = 1 1 ⇒ x = 2x - 2 2x = ae x 2 = 1 ,所以有⎨ 1 x - x 1 2 ,所以 ae x 2 = 4x - 4 , 1x - x 2 1 2 2 1 ⎪2x = ae x 2⎩ 1即 a =4( x 2 - 1) ,设 f ( x ) =4( x -1) ,则 f '( x ) =4(2 - x ) .可知 f ( x ) 在(1, 2) 单调递e x 2e xe x增,在(2, +∞) 单调递减,所以 a max = f (2) = 4e2题型四切线方程的应用例 9.已知直线 y = kx 与曲线 y = ln x 有公共点,则k 的最大值为 . 解:根据题意画出右图,由图可知,当直线和曲线相切时, k 取得最大值.设切点坐标为( x 0, y 0 ) ,则 y 0 = ln x 0, y ' = 1 x y ' x = x 0= 1,∴切线方程为 x 0y - ln x = 1( x - x ) , 原点在切线上,∴ln x = 1, x = e ∴斜率的最大值为0 0 01 .e例 10.曲线 y = e x 在点(2, e 2 )处的切线与坐标轴所围三角形的面积为()A. e 2B. 2e 2C. 4e 2D. e 2思路: f' ( x ) = e x由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ∴ f ' (2) = e 2 所以切线方程为: y - e 2 = e 2 ( x - 2) 即e 2 x - y - e 2 = 0 ,2与两坐标轴的交点坐标为(1, 0) (0, -e 2)∴ S = 1⨯1⨯ e 2= e2 2例 11.一点 P 在曲线 y = x 3 - x + 2上移动,设点 P 处切线的倾斜角为,则角的取值3范围是( ).0 2O526104826x^24a5l2ae^xx^2 a2 ae^x5542x 2⎨0 0 0 0 0 0 00 00 0 00 00 0 0 0 00 0 0A. ⎡0,⎤B. ⎡0,⎫ ⎡ 3,⎫C.⎡ 3,⎫D. ⎛3⎤⎢ 2 ⎥ ⎢ 2 ⎪ ⎢ 4⎪ ⎢ 4 ⎪ ,⎥⎣ ⎦⎣ ⎭ ⎣ ⎭⎣ ⎭⎝ 2 4 ⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来. y ' = 3x 2 - 1 ,对于曲线上任意一点 P ,斜率的范围即为导函数的值域: y ' =3x 2 - 1∈[-1, +∞) ,所以倾斜角的范围 是⎡0,⎫ ⎡ 3,⎫.答案:B ⎣⎢ 2 ⎪ ⎢ 4⎪ ⎭ ⎣ ⎭例 12.已知函数 f ( x ) = 2x 3 - 3x ,若过点 P (1, t ) 存在 3 条直线与曲线 y = 求t 的取值范围f ( x ) 相切, 思路:由于并不知道 3 条切线中是否存在以 P 为切点的切线,所以考虑先设切点( x 0 , y 0 ) ,切线斜率为k ,则满足 ⎧⎪ y = 2x 3 - 3x ,所以切线方程为 y - y = k ( x - x ) ,即⎪k = f ' ( x ) = 6x 2 - 3 0 0 ⎩0 0 y - (2x 3 - 3x ) = (6x 2- 3)( x - x ) ,代入 P (1, t ) 化简可得: t = -4x 3 + 6x 2 - 3 ,所以 若 存 在 3 条 切 线 , 则 等 价 于 方 程 t = -4x 3 + 6x 2 - 3 有 三 个 解 , 即g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点,数形结合即可解决解:设切点坐标( x 0 , y 0 ) ,切线斜率为k ,则有:y = t 与⎧⎪ y ⎨ = 2x 3 - 3x ∴ 切线方程为: y - (2x 3 - 3x ) = (6x 2 - 3)( x - x ) ⎪k = f ' ( x ) = 6x 2 - 30 0 0 0 ⎩0 0 因为切线过 P (1, t ) ,所以将 P (1, t ) 代入直线方程可得:t - (2x 3 - 3x ) = (6x 2- 3)(1 - x )⇒ t = (6x 2 - 3)(1 - x ) + (2x 3 - 3x )= 6x 2 - 3 - 6x 3 + 3x + 2x 3 - 3x = -4x 3 + 6x 2 - 30 0 极大值 极小值 所以问题等价于方程t = -4x 3 + 6x 2 - 3 ,令 g ( x ) = -4x 3 + 6x 2 - 3 即直线 y = t 与 g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点g ' ( x ) = -12x 2 + 12x = -12x ( x - 1)令 g ' ( x ) > 0 解得0 < x < 1所以 g ( x ) 在(-∞, 0) , (1, +∞) 单调递减,在(0,1) 单调递增g ( x ) = g (1) = -1, g ( x ) = g (0) = -3所以若有三个交点,则t ∈ (-3, -1)所以当t ∈ (-3, -1) 时,过点 P (1, t ) 存在 3 条直线与曲线 y =f ( x ) 相切例 13. 已知曲线 C:x 2=y ,P 为曲线 C 上横坐标为1 的点,过 P 作斜率为 k(k ≠0)的直线交 C于另一点 Q ,交 x 轴于 M ,过点 Q 且与 PQ 垂直的直线与 C 交于另一点 N ,问是否存在实数 k , 使得直线 MN 与曲线 C 相切?若存在,求出 K 的值,若不存在,说明理由.思路: 本题描述的过程较多, 可以一步步的拆解分析.点 P (1,1) , 则可求出PQ : y = kx - k + 1,从而与抛物线方程联立可解得Q (k - 1,(k - 1)2),以及 M 点坐标,从而可写出QN 的方程,再与抛物线联立得到 N 点坐标.如果从 M , N 坐标入手得到 MN 方程,再根据相切(∆ = 0) 求 k ,方法可以但计算量较大.此时可以着眼于 N 为切点,考虑抛物线 x 2 = y 本身也可视为函数 y = x 2 ,从而可以 N 为入手点先求出切线,再利用切线过 M 代入 M 点坐标求k ,计算量会相对小些.解:由 P 在抛物线上,且 P 的横坐标为 1 可解得 P (1,1)∴设 PQ : y - 1 = k ( x - 1) 化简可得: y = kx - k + 1∴ M ⎛ k - 1,0⎫k⎪ ⎝⎭⎨ y = kx - k + 1⎪ ∴⎧ y = x 2 ⎩消去 y : x 2 - kx + k - 1 = 0 ∴ x = 1, x = k - 1 ∴Q (k - 1,(k - 1)2)12设直线QN : y - (k - 1)2= - 1 ⎡⎣ x - (k - 1)⎤⎦ 即 y = (k - 1)2- 1⎡⎣ x - (k - 1)⎤⎦kk⎧ y = x 2∴ 联立方程: ⎨ y = (k - 1)2 - 1 ⎡ x - (k - 1)⎤ ⎩⎪ k ⎣ ⎦∴ x 2 + 1 x - (k - 1)⎛ k - 1 + 1 ⎫ = 0 k k ⎪⎝ ⎭∴ x ⋅ x = -(k - 1)⎛ k - 1 + 1 ⎫ ⇒ x= -⎛ k - 1 + 1 ⎫Q N k ⎪ N k ⎪⎝ ⎭ ⎝ ⎭⎛ ⎛ 1 ⎫ ⎛ 1 ⎫2 ⎫ ∴ N - k - 1 + k ⎪, k - 1 + k ⎪ ⎪ ⎝ ⎝ ⎭ ⎝ ⎭ ⎭由 y = x 2 可得: y ' = 2x∴切线 MN 的斜率k= y ' |= -2 ⎛k - 1 + 1 ⎫MNx = x Nk ⎪⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ ⎛ 1 ⎫⎤ ∴ MN : y - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢ x + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦⎛ 1 - k ⎫代入 M k ,0⎪ 得:⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ 1 ⎛1 ⎫⎤ - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢1 - k + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦∴k -1 +1= 2k ⇒k 2+k -1 = 0 ,∴k =-1 ±5 k 2小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算∆= 0 简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数 f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b 为常数,已知曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线 l.(1)求a、b 的值,并写出切线 l 的方程;(2)若方程 f(x)+g(x)=mx 有三个互不相同的实根 0、x1、x2,其中 x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数 m 的取值范围.【解答】(1)f′(x)=3x2+4ax+b,g′(x)=2x-3.由于曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线,故有 f(2)=g(2)=0,f′(2)=g′(2)=1.由此得Error!解得Error!所以 a=-2,b=5,切线 l 的方程为 x-y-2=0.(2)由(1)得f(x)=x3-4x2+5x-2,所以 f(x)+g(x)=x3-3x2+2x.依题意,方程 x(x2-3x+2-m)=0 有三个互不相同的实根 0、x1、x2,故x1、x2是方程 x2-3x+2-m=0 的两相异的实根.1所以Δ=9-4(2-m)>0,即 m>- .4又对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立.特别地,取 x=x1时,f(x1)+g(x1)-mx1<-m 成立,得 m<0.由韦达定理,可得 x1+x2=3>0,x1x2=2-m>0,故 0<x1<x2.对任意的x∈[x1,x2],有 x-x2≤0,x-x1≥0,x>0,则 f(x)+g(x)-mx=x(x-x1)(x-x2)≤0,4 4 又 f(x 1)+g(x 1)-mx 1=0,所以函数 f(x)+g(x)-mx 在 x∈[x 1,x 2]的最大值为 0.1 于是当- <m<0 时,对任意的 x∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 4 1综上,m 的取值范围是(- ,0).4 例 15.如图 3-1,有一正方形钢板 AB CD 缺损一角(图中的阴影部分),边缘线 OC 是以直线 AD 为对称轴,以线段 AD 的中点 O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来, 使剩余的部分成为一个直角梯形.若正方形的边长为 2 米,问如何画切割线 EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以 O 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧 OC 的方程为y =ax 2(0≤x ≤2),∵点 C 的坐标为(2,1),1 ∴22a =1,a = , 4 1 故边缘线 OC 的方程为 y = x 2(0≤x ≤2), 4要使梯形 ABEF 的面积最大,则 EF 所在的直线必与抛物线1 弧 OC 相切,设切点坐标为 P (t , t 2)(0<t <2),4 1 1 t ∵y ′= x ,∴直线 EF 的方程可表示为 y - t 2= (x -t ), 2 4 21 1 1 1 即 y = tx - t 2.由此可求得 E (2,t - t 2),F (0,- t 2).∴ 2 4 4 4 1 1|AF |=|- t 2- -1 |=1- t 2,4 4 1 1 |BE |=|t - t 2- -1 |=- t 2+t +1. 设梯形 ABEF 的面积为 S (t ),则 15 5 5 S (t )=- (t -1)2+ ≤ ,∴当 t =1 时,S (t )= ,2 2 2 2故 S (t )的最大值为 2.5,此时|AF |=0.75,|BE |=1.75.答:当 AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为 2.5 m 2.解法二:以 A 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y=ax2+1(0≤x≤2).1∵点C 的坐标为(2,2),∴22a+1=2,a=,41故边缘线OC 的方程为y=x2+1(0≤x≤2).4要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P 1(t,t2+1)(0<t<2),41 1 1∵y′=x,∴直线EF 的方程可表示为y-t2-1=t(x-t),2 4 21 1即y=tx-t2+1,2 41 1由此可求得E(2,t-t2+1),F(0,-t2+1).4 41 1∴|AF|=1-t2,|BE|=-t2+t+1,4 4设梯形ABEF 的面积为S(t),则1S(t)= |AB|·(|AF|+|BE|)21 1 1=1-t2+(-t2+t+1)=-t2+t+24 4 21 5 5=- (t-1)2+≤ .2 2 25∴当t=1 时,S(t)=,2故S(t)的最大值为 2.5.此时|AF|=0.75,|BE|=1.75.答:当AF=0.75 m,BE=1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m2.【点评】与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。

09:三次函数图像的切线

09:三次函数图像的切线

高考总复习09:三次函数图像的切线1.(1)求平行于直线910x y -+=,且与曲线3231y x x =+-相切的直线方程.(2)求垂直于直线320x y -+=,且与曲线3231y x x =+-相切的直线方程.2.(1)求函数3()2f x x =的图像在点(1,2)P 处的切线l 方程;(2)设函数3()2f x x =的图像为C ,求曲线C 与其在点(1,2)P 处的切线l 的所有交点坐标. 3.(1)求函数3()2f x x =的图像经过点(1,2)P 的切线方程.(2)求函数3()2f x x =的图像经过点(1,10)P 的切线方程.4.已知直线y x =是函数32()31f x x x ax =-+-图像的一条切线,求实数a 的值.5.已知0a >,且过点(,)P a b 可作函数3()f x x x =-图像的三条切线,证明:()a b f a -<<.6.设函数3211()32f x x ax bx c =-++(0)a >的图像C 在点(0,(0))P f 处的切线为1y =. (1)确定,b c 的值;(2)设曲线C 在1122(,()),(,())A x f x B x f x 处的切线都过(0,2)Q ,证明:若12x x ≠,则12'()'()f x f x ≠;(3)若过点(0,2)Q 可作曲线C 的三条不同切线,求a 的取值范围.7.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(2)当248a b -=时,设曲线C :()y f x =在点(1(1))A f ,处的切线l 穿过曲线C (穿过是指:动点在点A 附近沿曲线C 运动,当经过点A 时,从l 的一侧进入另一侧),求()f x 的表达式.8.由坐标原点(0,0)O 向曲线x x x y +-=233引切线,切于不同于点O 的点111(, )P x y ,再由1P 引切线切于不同于1P 的点222(,)P x y ,如此继续下去……,得到点(,)n n n P x y ,求1n x +与n x 的关系,及n x 的表达式.。

函数中切线的概念及性质

函数中切线的概念及性质

函数中切线的概念及性质切线是解析几何中的重要概念,用于描述曲线在某一点处的局部特性。

切线与曲线的切点处相切,并且在该点附近近似代表曲线的变化情况。

在数学中,切线经常应用于函数的求导和微分等问题中。

下面我将详细介绍切线的定义、性质以及一些具体的应用。

1. 切线的定义:对于一条曲线C,取其上一点P(x0, y0)。

如果存在一个直线L,使得曲线C与直线L在点P处相切,并且曲线C与直线L在点P处的切线方向与曲线在该点处的切线方向相同,那么直线L就称为曲线C在点P处的切线。

2. 切线的性质:(1)切线与曲线在切点处相切;(2)切线是通过曲线上的一点的一次线性逼近;(3)切线与曲线在切点上切线方向相同。

3. 切线的求法:对于给定的函数y=f(x),我们要求其在点P(x0, y0)处的切线。

有以下步骤:(1)计算函数在点P处的斜率,即求导数f'(x0);(2)使用点斜式方程(y-y0) = f'(x0)(x-x0)得到切线的方程。

4. 切线的几何意义:切线可以近似地描述曲线在某一点的变化情况,即切线的斜率可以表示曲线在该点处的变化速率。

切线还可以与曲线的图像相切,便于我们研究曲线的局部性质。

5. 切线与导数的关系:函数在某一点的导数恰好是函数在该点处的切线的斜率。

因此,求导数的过程实质上是求曲线在各个点处的切线的斜率。

6. 切线的应用:(1)求曲线的近似值:由于切线可以近似替代曲线,所以我们可以通过求解切线的问题来近似地求解曲线的问题。

(2)求函数的变化率:函数在某一点的切线的斜率可以表示函数在该点处的变化率,从而可以帮助我们研究函数的增减性、极值、趋势等问题。

(3)求最优解:对于一些优化问题,我们可以通过研究曲线的切线来找到函数极值的位置,从而得到函数的最优解。

总之,切线是解析几何中的重要概念,用于描述曲线在某一点处的局部特性。

切线的定义、性质以及与导数的关系有助于我们深入理解曲线变化的情况,并在数学、物理等领域中有广泛的应用。

函数切线的知识点总结

函数切线的知识点总结

函数切线的知识点总结1. 切线的概念在数学中,给定曲线上一点P,通过这一点能够作出唯一的直线L,它与曲线相交于此点,并且在此点处与曲线的切线相切,这样的直线L称为曲线的切线,点P叫做切点。

任何一条曲线,在它的每一点上都存在切线。

2. 切线的定义设曲线L是可导的,点P(a,f(a))在L上,若直线L通过点P,且曲线L和直线L在点P处的切线重合,则直线L称为曲线L在点P处的切线。

3. 曲线的切线方程对于曲线y=f(x),在点P(x0,y0)处的切线方程可以表示为:y - y0 = f'(x0)(x - x0)其中f'(x0)表示函数f(x)在x0处的导数。

4. 切线的斜率切线的斜率就是曲线在某一点的导数值,即切线的斜率等于曲线在该点处的导数值。

5. 切线的求解为了求得曲线在某一点的切线方程,我们需要进行以下步骤:a. 求出点(x0,y0)的横坐标和纵坐标;b. 求出函数f(x)在点x0处的导数f'(x0);c. 将这些信息带入切线方程y - y0 = f'(x0)(x - x0)中,即可得到曲线在点(x0,y0)处的切线方程。

6. 切线的图像曲线的切线可以通过函数图像来形象地描述,当我们观察曲线上不同点处的切线时,可以得到这些切线的整体情况。

通过图像,我们可以看到切线在曲线上的变化情况,以及曲线在不同点处的斜率和变化趋势。

7. 切线的应用函数的切线在数学中有诸多应用,例如在微积分中的微分、函数极值点的判断、曲线的切线综合问题等。

在工程、物理、经济等领域,函数的切线也有广泛的应用,例如在物理中的速度、加速度的研究,经济学中的边际利润等。

8. 切线的性质曲线上任意一点的切线斜率恒等于函数在该点的导数。

通过切线方程可以得到曲线在某点处的局部变化情况,比如曲线在该点处的导数值、函数值等。

9. 切线和割线在数学中,除了切线外,还有一个相关的概念叫做割线。

割线是曲线上的两点A、B之间的直线,而切线则是曲线上的一点。

高中数学同步教学 正切函数的定义 正切函数的图像与性质

高中数学同步教学 正切函数的定义 正切函数的图像与性质

题型二
题型三
题型四
【变式训练1】 (1)若角α的终边上有一点P(2x,x+4),且tan α=1,则
sin α=
.
(2)已知角α的终边落在直线2x+3y=0上,求tan α的值.
(1)答案:
2
2
(2)解:若角α为第二象限角,在角α的终边上任取一点(3t,-2t)(t<0),

则 x=3t,y=-2t,故 tan α= =
积.
sin
(2)与正弦函数、余弦函数的关系:tan α= cos .
π
(3)定义域: ≠ π + 2 ,∈Z .
(4)任意角的正切值的符号可用如下表格表示:
α 的终边 x 轴非 第一 y 轴非 第二 x 轴非 第三 y 轴非 第四
所在位置 负半轴 象限 负半轴 象限 正半轴 象限 正半轴 象限
函数则是无界函数;正弦、余弦函数是连续函数,反映在图像上是
连续无间断点,而正切函数在R上不连续,它有无数条渐近线
π
x=kπ+ (∈Z),图像被这些渐近线分隔开来;
2
正弦、余弦函数既有递增区间又有递减区间,而正切函数在每一个
π
π
2
2
区间 π- ,π +
(∈Z)上都是增加的.它们也存在大量的共性,
§7
正切函数
7.1
7.2
正切函数的定义
正切函数的图像与性质
1.理解正切函数的定义,掌握正切函数的符号规律.
2.了解正切线的作法.
3.会用正切函数的定义求正切值.
4.掌握正切函数的图像与性质,并能运用图像与性质求解一些简
单问题.
1.正切函数

《切线理论》课件

《切线理论》课件

积分在解决实际问题中常常需要用到 切线理论,如求曲线下面积、变速直 线运动的路程等。
导数的几何意义
导数描述了函数图像在某一点的切线 斜率,是微积分中研究函数变化率的 重要工具。
切线理论在其他学科的应用
物理学中的应用
在物理学中,许多概念和公式都 涉及到切线理论,如速度、加速
度、力的方向等。
工程学科中的应用
《切线理论》ppt课 件
• 切线理论简介 • 切线理论的基本原理 • 切线理论的实践应用 • 切线理论的扩展与深化 • 总结与展望
目录
Part
01
切线理论简介
切线理论的基本概念
切线理论是一种基于几何学和 微积分的数学理论,用于描述 曲线在某一点的切线性质。
切线是曲线在某一点上的极限 方向,表示曲线在该点的斜率 或变化率。
Part
02
切线理论的基本原理
切线的几何定义
切线是一条与曲线在某一 点仅有一个公共点的直线 。
切线与曲线在该点的切点 处相切,即切线的方向与 曲线的在该点的法线方向 重合。
切线是曲线在该点的导数 或微分的几何表示。
切线的性质
STEP 01
STEP 02
STEP 03
切线与曲线在该点的切点 处相切,即切线与曲线在 该点的切点处只有一个公 共点。
切线的方向与曲线的在该 点的法线方向垂直。
切线的斜率等于曲线在该 点的导数。
切线的计算方法
利用导数求切线斜率
01
对于给定的函数,求其在某一点的导数,即为该点处切线的斜
率。
利用点斜式求切线方程
02
已知一点和斜率,利用点斜式求直线方程,即为该点处切线的
方程。
利用切线与曲线的交点求切线方程

高中数学高考中三次函数图象的切线问题

高中数学高考中三次函数图象的切线问题

高中数学高考中三次函数图象的切线问题三次函数的切线蕴含着许多美妙的性质,三次函数的切线蕴含着许多美妙的性质,用导数方法探求切线的性质,用导数方法探求切线的性质,用导数方法探求切线的性质,为分为分析问题和解决问题提供了新的视角、析问题和解决问题提供了新的视角、新的方法,新的方法,新的方法,不仅方便实用,不仅方便实用,不仅方便实用,而且三次函数的而且三次函数的切线性质变得十分明朗切线性质变得十分明朗..纵览近几年高考数学试题,三次函数的切线问题频频出现,本文给出三次函数切线的三个基本问题现,本文给出三次函数切线的三个基本问题. .一、已知斜率为k 与三次函数图象相切的切线三次函数)0()(23¹+++=a d cx bx ax x f1、0>a ,斜率ab ac k 332-=时,有且只有一条切线;a b ac k 332->时,有两条不同的切线;ab ac k 332-<时,没有切线;2、0<a ,斜率ab ac k 332-=时,有且只有一条切线;a b ac k 332-<时,有两条不同的切线;ab ac k 332->时,没有切线;证明证明 c bx ax x f ++=23)(2/1、 0>a 当a b x 3-=时,.33)(2min /a b ac x f -=\ 当当ab ac k 332-= 时,方程ab ac c bx ax 332322-=++有两个相同解,所以斜率为k 的切线有且只有一条;其方程为:).3(33)3(2ab x a b ac a bf y +-=--当当a b ac k 332->时,方程k c bx ax =++232,有两个不同的解21,x x ,且21x x +=-a b 32-,即存在两个不同的切点))(,()),(,(2211x f x x f x ,且两个切点关于三次函数图象对称中心对称。

所以斜率为k 的切线有两条。

高考数学二轮复习函数的公切线问题

高考数学二轮复习函数的公切线问题
专题一 函数与导数
微重点4 函数的公切线问题
导数中的公切线问题,是导数的重要应用之一,利用导数的几何意义, 通过双变量的处理,从而转化为零点问题,主要利用消元与转化,考查构 造函数、数形结合能力,培养逻辑推理、数学运算素养.
内容索引
考点一 求两函数的公切线 考点二 与公切线有关的求值问题 考点三 判断公切线条数 考点四 求参数的取值范围
12345678
2.(2022·深圳模拟)已知曲线C1:y=x3,曲线C2:y=cos x-1与直线l:y =0,则
√A.l与C1,C2均相切
B.l与C1,C2均不相切 C.l与C1相切,l与C2不相切 D.l与C1不相切,l与C2相切
12345678
设曲线C1:y=x3在点A(x0,y0)处的切线的斜率为0, 则 3x20=0,y0=x30,所以 x0=0,y0=0,切线方程为 y=0, 设曲线C2:y=cos x-1在点B(x1,y1)处的切线的斜率为0, 则-sin x1=0,y1=cos x1-1, 所以x1=2kπ(k∈Z),y1=0或x1=2kπ+π(k∈Z),y1=-2, 取x1=0,y1=0可得切线方程为y=0, 所以l与C1,C2均相切.
当直线 y=4x-4 与曲线 y=1aex 相切时, 设切点为(s,t),则1aes=4, 且 t=4s-4=1aes,可得 t=4,s=2, 即切点为(2,4),a=e42,故 a 的取值范围是 a≥e42.
规律方法 利用导数的几何意义,构造参数关于切点横坐标或切线斜率 k的函数,转化成函数的零点问题或两函数的交点问题,利 用函数的性质或图象求解.
y=ax2, 联立y=1t x+ln t-1, 可得 ax2-1t x+1-ln t=0,
由题意可得 a≠0 且 Δ=t12-4a(1-ln t)=0, 可得41a=t2-t2ln t, 令g(t)=t2-t2ln t,其中t>0, 则g′(t)=2t-(2tln t+t)=t(1-2ln t). 当 0<t< e时,g′(t)>0,函数 g(t)单调递增; 当 t> e时,g′(t)<0,函数 g(t)单调递减, 所以 g(t)max=g( e)=2e.且当 0<t<e 时,g(t)>0;

高中数学讲义:函数的切线问题

高中数学讲义:函数的切线问题

函数的切线问题一、基础知识:(一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B,并使B 沿曲线不断接近A。

这样直线AB 的极限位置就是曲线在点A 的切线。

(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。

例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。

(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。

对于一个函数,并不能保证在每一个点处均有切线。

例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +D +D ,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +D -+D -==+D -D 当B 无限接近A 时,即x D 接近于零,\直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k xD ®+D -=D ,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x xD ®+D -==D 。

高中数学公开课正切函数的性质与图像

高中数学公开课正切函数的性质与图像

23
3
23 4
6
23 4
6 23 2
3
23 2
3
∴函数
y
tan
x 2
3
的图象与
x
轴的一个交点坐标是
2 3
,
0
在这个交点左,右两侧相邻的两条渐近线方程分别是 x , x 5 Nhomakorabea3
3
从而得到函数
y
f
(
x)
在一个周期
3
,
5 3
内的简图如下图所示:
小结:
1.正切函数的图像: 正切曲线有无数多条渐近线,渐近线方程为 x=kπ+π2,k∈Z.相邻两条渐近线之间都有一支正切曲线, 且单调递增. 2.正切函数的性质:
1.取0,π2内的几个点,列表如下.
X
0
π 6
π 4
π 3
y=tan x 0
3 3
1
3
再由正切函数的对称性,可得其在一个周期内的图像,如图:
2.y=tan x 的函数图像称为正切曲线,是中心对称图形,对称中心为k2π,0k∈Z.
【对点快练】
1.函数 y=tanx+π5,x∈R 且 x≠31π0+kπ,k∈Z 的一个对称中心是( )
∴kπ-π3<4x<kπ+23π(k∈Z),∴4kπ-43π<x<4kπ+83π(k∈Z),
∴y=-tan4x-6π的单调减区间是4kπ-43π,4kπ+83π(k∈Z).
(2)tan-143π=tan-143π+4π=tan-143π+146π=tan 34π,
tan-152π=tan-152π+3π=tan-152π+155π=tan
A.(0,0)

(完整版)函数图像的切线问题

(完整版)函数图像的切线问题

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,Q 点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭Q 直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <Q 3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U .答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0. 于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。

函数图像的切线问题(最新整理)

函数图像的切线问题(最新整理)

设切点为 P(x0,y0),利用导数将切线方程表示为 y-f(x0)=f′(x0)(x-x0),再将
A(s,t)代入求出 x0. 2.两个函数图像的公切线
函数 y=f(x)与函数 y=g(x) 存在公切线,
若切点为同一点 P(x0,y0),则有 Error!
若切点分别为(x1,f(x1)),(x2,g(x2)),则有
y
kx
与曲线
y
l8n
x
有公共点,则
k
6
的最大值为
15 5
30
20 10
.
解:根据题8意画出右图,由图可知,当直线和曲线相切时, k 取8 得最大值.
设切点坐标为 x0,
y0
,则
y0
ln
x0

y
'
1 x
y ' 1 ,切线方程为
x 10x0
x0
y
ln
x0
1 x0
(x
x0 ) ,原点在切线上,ln
x0
4
A. 1 或 25 64
B. 1 或 21 4
C. 7 或 25 4 64
D. 7 或 7 4
思路:本题两条曲线上的切点均不知道,且曲线 y ax2 15 x 9 含有参数,所以考虑 4
先 从 常 系 数 的 曲 线 y x3入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线
1, x0
e12
斜率的最大值为
1
.
e
例 10.曲线 y ex 在点 2, e2 处的切线与坐标轴所围三角形的面积为( )
A. e2
B. 2e2
C. 4e2
e2
D.

函数与图像的关系与变化规律

函数与图像的关系与变化规律

函数表示方法:函数的 表示方法主要有解析法 、表格法和图象法三种 。
解析法:用含有数学表 达式的等式来表示两个 变量之间的函数关系的 方法叫做解析法。
表格法:用列表的方法 来表示两个变量之间函 数关系的方法叫做列表 法。
图象法:把一个函数的 自变量$x$与对应的因变 量$y$的值分别作为点的 横坐标与纵坐标,在直 角坐标系内描出它的对 应点,所有这些点所组 成的图形叫做该函数的 图象。
在平面上画出隐函数中等于某一常 数的点的轨迹,即等值线。通过一 系列等值线可以大致了解隐函数的 图像形状。
梯度法
利用隐函数的梯度方向可以判断函 数值的变化趋势,从而绘制出函数 的图像。这种方法适用于难以转化 为显函数的隐函数。
03
函数变化规律分析
增减性判断方法
导数法
通过求导判断函数的单调性,若 在某区间内导数大于0,则函数在 该区间内单调增加;若导数小于0 ,则函数在该区间内单调减少。
各点。
曲线连接
用平滑的曲线连接各点 ,得到函数的图像。
多元函数图像绘制技巧
确定函数定义域
根据函数表达式确定函数的定义域,即函 数自变量的取值范围。
曲面连接
用平滑的曲面连接各点或区域,得到函数 的图像。
选择合适的视角
对于多元函数,需要选择合适的视角来展 示函数的图像,如三维坐标系或等高线图 等。
描点画图
反函数的图像
反函数的图像与原函数的图像关于直线y=x对称。如果原函数在某区间内单调, 则其反函数在该区间内也存在且单调性相反。
05
参数方程与极坐标下函数关系研 究
参数方程基本概念及性质介绍
参数方程定义
通过引入一个或多个参 数来表示变量间关系的 方程,常用于描述曲线 和曲面。

切线分析及应用

切线分析及应用

切线分析及应用切线是数学中一个重要的概念,它在解析几何、微积分以及物理学等领域都有广泛的应用。

切线分析可以帮助我们更好地理解曲线的性质和行为,并且可以在实际问题中提供有用的信息和解决途径。

本文将围绕切线的定义、性质、应用以及解决实际问题的方法进行探讨。

首先,我们来回顾一下切线的定义。

给定一个函数f(x),如果存在一点(x0, f(x0)),使得函数图像在该点处的切线通过该点且与函数图像在该点处的斜率相同,那么这条通过点(x0, f(x0))的直线就是函数f(x)在该点处的切线。

切线的斜率等于函数在该点处的导数。

切线的性质也是我们学习切线分析的基础。

首先,切线与函数图像相切于该点,意味着切线与函数曲线在该点处有且仅有一个公共点。

其次,切线在该点处与函数曲线的切点以及切线的斜率都能够提供关于函数在该点的信息。

通过切线的斜率,我们可以判断函数在该点的增减性以及函数的导数值。

通过切线与函数曲线的切点的坐标,我们可以得到函数在该点的函数值。

因此,切线不仅提供了函数在某点的局部行为的信息,还能够提供关于函数图像的整体信息。

接下来,我们来看一下切线的应用。

在几何学中,切线可以用于求解曲线与曲线之间的位置关系。

例如,给定两条曲线的方程,我们可以通过求解两条曲线的切线方程,来判断两条曲线在某点是否相切、相交或者相离。

在物理学中,切线被广泛地应用于描述物体运动的速度和加速度。

例如,在直角坐标系中,如果一个物体的位置随时间变化可以由一个函数f(x)描述,那么物体的速度可以通过求导数f'(x)得到。

物体在某时刻的瞬时速度可以通过绘制曲线f(x)在该点的切线,求解切线斜率来获得。

同样地,物体在某时刻的加速度可以通过二阶导数f''(x)求解。

利用切线的性质,我们可以得到物体在不同时刻的速度和加速度的变化规律。

切线的应用还可以延伸到其他领域。

在工程学中,我们可以利用切线来分析物体的结构强度和刚度。

通过绘制载荷-变形曲线,并求解曲线上某点的切线斜率,我们可以得到物体在该点的应力和应变。

函数曲线的切线个数问题

函数曲线的切线个数问题

函数曲线的切线个数问题
函数曲线的切线个数问题是数学中一个重要的概念,它涉及到函数曲线的切线个数的计算。

函数曲线的切线个数是指在函数曲线上,从曲线上一点出发,沿着曲线的方向,可以找到
的切线的个数。

函数曲线的切线个数问题是一个重要的数学问题,它可以帮助我们更好地
理解函数曲线的特性。

函数曲线的切线个数可以通过几何方法来计算。

首先,我们可以将函数曲线分解为几个简单的函数曲线,然后计算每个简单函数曲线的切线个数,最后将这些简单函数曲线的切线个数相加,就可以得到函数曲线的切线个数。

另外,函数曲线的切线个数也可以通过微积分的方法来计算。

首先,我们可以将函数曲线
分解为几个简单的函数曲线,然后计算每个简单函数曲线的切线个数,最后将这些简单函
数曲线的切线个数相加,就可以得到函数曲线的切线个数。

函数曲线的切线个数问题也可以通过数学归纳法来解决。

首先,我们可以将函数曲线分解为几个简单的函数曲线,然后利用数学归纳法,从简单的函数曲线开始,逐步推导出函数曲线的切线个数。

总之,函数曲线的切线个数问题是一个重要的数学问题,它可以通过几何、微积分和数学归纳法等方法来解决。

函数曲线的切线个数的计算可以帮助我们更好地理解函数曲线的特性,从而更好地应用函数曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,Q 点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭Q 直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <Q 3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得 ()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e-=,设()()41xx f x e-=,则()()'42xx fx e-=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e ==例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U .答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0.于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究. 精品文档。

相关文档
最新文档