石油专业外文翻译(SPE 121762),英文原文可根据spe号在百度文库收索即可。

合集下载

石油化工专业英语

石油化工专业英语

石油化工专业英语1. IntroductionThe petroleum industry plays a crucial role in the global economy, providing energy and raw materials for various industries. As a result, it is essential for professionals in the petroleum industry to have a solid understanding of English terminology and concepts specific to this field. In this document, we will explore key terms and phrases related to petroleum and chemical engineering in English.2. Crude Oil2.1 DefinitionCrude oil, also known as petroleum, is a naturally occurring liquid found beneath the Earth’s surface. It is composed of various hydrocarbon compounds and is the primary raw material for the production of fuels and other petroleum-based products.2.2 Extraction and RefiningCrude oil is extracted from underground reservoirs through drilling wells. The refining process involves separating the crude oil into various components, such as gasoline, diesel, and jet fuel, through a series of distillation and chemical processes.3. Petrochemicals3.1 DefinitionPetrochemicals are chemical compounds derived from crude oil or natural gas. They are the building blocks for a wide range of products, including plastics, synthetic fibers, rubber, detergents, and fertilizers.3.2 Types of PetrochemicalsThere are several types of petrochemicals, including ethylene, propylene, benzene, toluene, and xylene. Each of these compounds has specific applications in different industries.4. Chemical Engineering4.1 DefinitionChemical engineering is a branch of engineering that applies scientific principles to design, develop, and optimize processes for the production of chemicals and other products. It involves various aspects, such as process design, plant operation, and research and development.4.2 Unit OperationsChemical engineering encompasses various unit operations, including distillation, filtration, reaction, and crystallization. These operations are crucial in separating and transforming raw materials into desired products.5. Environmental Considerations5.1 Pollution ControlThe petroleum and chemical industries have a significant impact on the environment. Therefore, it is essential to implement pollution control measures to mitigate the negative effects. These measures include wastewater treatment, air pollution control, and waste management.5.2 Sustainable PracticesWith increasing environmental concerns, the petroleum and chemical industries are adopting sustainable practices. This includes reducing greenhouse gas emissions, exploring renewable energy sources, and implementing recycling programs.6. ConclusionProfessionals in the petroleum and chemical industries need to have a solid grasp of English terminology and concepts to effectively communicate and understand the technical aspects of their work. This document provides an overview of key terms and phrases related to petroleum and chemical engineering, helping professionals in these fields enhance their English language skills and contribute to the industry’s success.Note: The content provided in this document is for informational purposes only and should not be considered as professional advice.。

(完整版)石油工程专业英语【课文翻译】

(完整版)石油工程专业英语【课文翻译】

Unit 1 Introduction to petroleum industry1) Introduction石油工业在我们的日常生活以及其他工业领域扮演着相当重要的角色。

石油工业可以主要分成上游部分、中游部分以及下游部分。

今天,许多大的石油公司,例如中国石油、中石化、中海油,都在中国开采着地下油藏的大量原油。

大多数原油和天然气都是由几百万年前在沼泽和海洋中的植物和动物形成的。

这些有机物与小溪和河流中的淤泥沉积在一起。

这些沉积最终压实形成了沉积岩石。

热量和压力把这些植物和动物中柔软的部分转化成为固态的、液态的和气态的碳氢化合物,也就是我们知道的煤、原油和天然气。

随着陆地和海洋的石油工业的快速繁荣,公众的注意力也集中到了石油工业的环境保护问题上来。

幸运的是,技术的创新、精心的培训、严格的法规都将让石油工业对人类、动物、土壤、空气和水的污染降低到最小。

✓Swamp: 沼泽,湿地✓Stringent : 严格的,必须遵守的2) Three main components of the industry今天,上游部分包括了超过100家勘探和生产公司以及数百家相关的部门,例如地震和钻井承包商,修井承包商,工程公司和各种科学技术服务公司和供给部门。

中游部分包括连接生产和消费领域的油气集输系统。

其他的设备将提炼硫和液态天然气,储存石油和天然气产品,并且用卡车、铁路以及油罐车运输产品。

下游部分由炼油厂、气体分离设备、原油零售商、服务站以及石油化工公司。

✓Service rig: 修井设备;修井机✓Utility:n. 功用,实用;a. 实用的;多用途的3) Finding oil and natural gasa)Exploration- the search for petroleum一个圈闭应该包含三个要素:●多孔油藏岩石来聚集石油和天然气—典型的岩石有:砂岩、石灰岩和白云岩。

●上覆不可渗透岩石来阻止油气的逃逸。

关于石油行业的英语

关于石油行业的英语

关于石油行业的英语The oil industry, encompassing exploration, extraction, processing, transportation, and marketing of crude oil and its derivatives, is a crucial component of the global economy. The industry's significance lies in its role as a primary source of energy for various sectors, including transportation, manufacturing, and residential use.The history of the oil industry dates back to the mid-19th century, when the first commercial oil wells were drilled in the United States. Since then, the industry has experienced significant growth and transformation, driven by technological advancements, market demands, and geopolitical considerations.Today, the oil industry is highly concentrated, with a few major players dominating the market. These companies, often referred to as "oil majors," control vast reserves of crude oil and possess the necessary resources and expertise to extract, process, and distribute oil and its derivatives efficiently.Exploration and extraction of crude oil involve a range of complex processes, including seismic surveying, drilling, and production. Once extracted, crude oil is transportedvia pipelines, tankers, and railcars to refineries, whereit is processed into various products such as gasoline, diesel fuel, jet fuel, and asphalt.The refining process is highly specialized and requires a significant amount of energy and capital investment. Modern refineries are equipped with state-of-the-art technology and are designed to maximize the yield of desirable products while minimizing waste and emissions.The distribution of oil and its derivatives is just as crucial as their production. Oil companies maintain extensive networks of pipelines, terminals, and storage facilities to ensure that products reach customersefficiently and reliably. Additionally, they engage in marketing and sales activities to promote their productsand expand their market share.The economic impact of the oil industry is immense. Oil exports generate significant revenue for many countries,and the industry supports millions of jobs worldwide.However, the industry's environmental impact has also been significant, with concerns about climate change and air pollution driving the need for more sustainable practices. Geopolitical considerations play a significant role in the oil industry. Oil-rich regions of the world, such as the Middle East and Russia, are often the focus of geopolitical rivalries and conflicts. These conflicts can have a significant impact on oil supply and prices, affecting both consumers and producers.In recent years, the oil industry has faced significant challenges, including the rise of renewable energy sources, tightening environmental regulations, and technological disruptions such as electric vehicles. These factors are driving the need for the industry to become more efficient, sustainable, and innovative.In conclusion, the oil industry remains a critical component of the global economy, despite the challenges it faces. The industry's future will depend on its ability to adapt to changing market conditions, embrace technological advancements, and prioritize sustainable practices.**石油行业:全球视角**石油行业涵盖了原油及其衍生物的勘探、开采、加工、运输和销售,是全球经济的重要组成部分。

石油词汇英语翻译(C10篇)2

石油词汇英语翻译(C10篇)2

cellular plastic 泡沫塑料cellular plastics 泡沫塑料cellular porosity 蜂窝状孔隙cellular quartz 多孔⽯英cellular quaywall 圆墩岸壁cellular structure 蜂窝状结构cellular texture 细胞状结构cellular type quay 分区式码头cellular 多孔的cellulase 纤维素酶cellule ⼩细胞celluloid 赛璐珞cellulose acetate ⼄酸纤维素cellulose derivative 纤维素衍⽣物cellulose ether 纤维素醚cellulose hydrate 纤维素⽔合物;⽔化纤维素cellulose nitrate 硝酸纤维素cellulose type eletrode 纤维素型焊条cellulose viscosifier 纤维素增粘剂cellulose water gel 纤维素⽔基冻凝cellulose 纤维素cellulosic material 纤维素质cellulosic plastics 纤维素塑料cellulosics 纤维素塑料celotex 纤维板Celsit 赛尔西特硬质合⾦Celsius degree 摄⽒Celsius scale 摄⽒温标Celsius thermometric scale 摄⽒温标Celsius 摄⽒Celsius' thermometer 摄⽒温度计Celtispollenites 朴粉属CEM 柯劳恩电磁法cement accelerator ⽔泥速凝剂cement additive ⽔泥浆外加剂cement asbestos pipe ⽯棉⽔泥管cement baffle collar ⽔泥塞挡圈cement basket ⽔泥伞cement blender truck ⽔泥混合车cement blender ⽔泥混合器cement bond log ⽔泥胶结测井cement bond ⽔泥胶结cement brand ⽔泥牌号cement cap 悬空⽔泥塞cement carbon 渗碳cement casing head ⽔泥头cement casing shoe 注⽔泥⽤套管鞋cement channeling ⽔泥窜槽cement clinker ⽔泥熟料cement column ⽔泥浆液柱cement concrete 混凝⼟cement consistency ⽔泥浆稠度cement contamination ⽔泥侵cement curing time ⽔泥候凝时间cement cut ⽔泥侵cement dehydration ⽔泥浆脱⽔cement displacement ⽔泥替置cement dump 在井底倾倒⽔泥浆的筒cement equipment 注⽔泥设备cement evaluation log ⽔泥评价测井cement evaluation tool ⽔泥评价测井仪cement facing ⽔泥敷⾯cement factor ⽔泥系数cement failure 固井不合格cement filtrate ⽔泥滤液cement flag pavement ⽔泥板路⾯cement float collar 注⽔泥浮箍cement float shoe 注⽔泥浮鞋cement flow ⽔泥浆液流cement gravel 胶结砂砾岩cement grouting 灌浆cement guide nose ⽔泥制引鞋圆头cement hardener ⽔泥速凝剂cement head ⽔泥头cement injection 注⽔泥浆cement job 固井作业cement mantle ⽔泥环cement mark ⽔泥标号cement milk ⽔泥浆cement mill ⽔泥⼚cement mixer ⽔泥搅拌器cement needle ⽔泥凝固检验针cement packer ⽔泥封隔器cement particle 胶结颗粒。

中石油系统职称英语通用英语选读文章中英文对照版最新版

中石油系统职称英语通用英语选读文章中英文对照版最新版

目录中石油职称英语教材_2013年版1. The Value of Time时间的价值 (3)2.English is a Crazy Language 英语是一门疯狂的语言 (4)3.All I Learned in Kindergarten 幼儿园所学的 (6)4. How to Negotiate with Americans如何与美国人谈判 (7)5. Network Security网络安全 (9)6.Carbon-based Alternative 碳基替代燃料 (11)7. Automatic Auto: a Car That Drives Itself无人驾驶汽车 (13)8.Our Family Creed 家族的信条 (15)9.The art of public Speaking 公共演讲的艺术 (16)10. Sweep a Fuel Craft Invest Fever清洁能源行业投资热潮 (18)11.Smoking and Cancer 吸烟和癌 (19)12. The Positive Meanings of Love爱的真谛 (21)13. Does Exercise Have Unexpected Benefits? 运动有奇效吗? (24)14.Taking chances, Making chances 抓住机遇,制造机遇 (26)15.The Province of Alberta 阿尔伯达省 (27)16. The American Way: Family美国人的家庭观 (29)17. Computers Give Big Boosts to Productivity计算机技术极大提高生产效率 (30)18. The Principles of International Trade国际贸易原理 (32)19. A World without Oil 假如世界没有石油 (34)20.The Germanic Languages日耳曼语系 (36)21.How Americans Eat and Drink 美国人的饮食 (38)22.The Delights of South Island 南岛之乐 (40)23.A Sandpiper to Bring You Joy 矶鹞带来快乐 (42)24.An Introduction to Distillation 蒸馏概述 (46)25. Hints to Improve Spoken English 提高英语口语须知 (48)26.The Moon-Riddle from the Past月球-来自远古之谜 (50)27.The Delight of Books 书之乐趣 (52)28.The Magic of Energy 能的魔力 (54)29. How to Reduce Employee Turnover如何减少员工流失 (57)30. That "Other Woman" in My Life 我生命中的“另一个女人” (59)31.Geography of USA 美国地理概况 (61)32. The Old Man and the Sea (Excerpt) 参考译文:老人与海(节选) (64)33.Petroleum Geology and Other Sciences 石油地质学与其它科学 (66)34.What Do Parents Owe Their Children 父母欠子女什么? (68)35. Trends for 21st Century 21世纪的趋势 (70)36.You Bet Your Life 以命相赌 (73)37. Radiation and Human Health辐射与人体健康 (75)38. To Be Content with One's Lot 乐天知命 (77)39.I Didn't Know How to Teach Until I Met You 直到遇到你我才知道怎么教学 (80)40. An Introduction to Petrochemicals 石油化工产品概述 (82)41. The Subject of Smiling 微笑问题 (85)42. A $210,000 WALLET1价值21万美元的钱包 (88)43. What's Your Best Time of Day? 何时是你一天中最佳的时间? (90)44. Fundamental Techniques in Handling People 处理人际关系的基本技巧 (94)45. Happiness Index幸福指数 (96)46. Becoming Wealthy: It's Up to You 致富取决于你自己 (99)47. Oil(油) (101)48. Ocean Plant Life in Decline海洋植物数量锐减 (104)49. Cultural Taboos文化禁忌 (106)50.Managing In a Global Environment 在全球环境中进行管理 (108)51.Not Quite Ready to Retire1 退休为时尚早 (111)52.Sales Promotion 产品促销 (114)53.Another Happiness 另一种快乐 (117)54.Why To Mark a Book 怎样在书上做标记 (119)55.Earth's Last Frontier: The Sea 海洋,地球最后的待开发疆域 (122)56.Why Antarctica Is Being Explored 为什么要勘探南极洲 (125)57.Listening Faults 聆听的误区 (128)58.Your Are What You Think 你认为自己是什么样的人,就是什么样的人 (132)59.The Audacity of Hope1有希望则无所畏惧 (135)60. Future of Energy能源的未来 (139)1. The Value of Time时间的价值【2013年新增加文章】1. "Time" says the proverb "is money". This means that every moment well-spent may put some money into our pockets. If our time is usefully employed,it will either produce some useful and important piece of work which will fetch its price in the market, or it will add to our experience and increase our capacities so as to enable us to earn money when the proper opportunity comes. There can thus be no doubt that time is convertible into money. Let those who think nothing of wasting time remember this; let them remember that an hour misspent is equivalent to the loss of a banknote; and that an hour utilized is tantamount to so much silver or gold; and then they will probably think twice before they give their consent to the loss of any part of their time.1.谚语说:“时间就是金钱。

石油工程专业英语【课文翻译】(1)

石油工程专业英语【课文翻译】(1)

Unit 2 Geology and reservoir trapsP24在石油工程中,工程师必须知道油藏是怎样的,石油是如何形成的,流涕在油藏中是如何流动的。

地质在石油勘探中扮演者主要的角色。

石油工程专业的学生应该学会辨认不同的圈闭类型,这些圈闭是油气储集的地方。

P26世界上被发现的大多数石油都是在相对低渗的多孔岩石中被圈闭起来的。

这些油藏通常离生成地都有很远的距离。

当碳氢化合物运移到地面的时候,就形成了油苗。

长此以往,就有大量的碳氢化合物逃逸到大气中。

流动水也可能冲刷掉碳氢化合物。

有时候只有较轻、易挥发的组分运移了,剩下的就是较重的原油。

P37Unit 4 Properties of reservoir rockP60Unit 6 Well completionP99 当一口完成了钻井,做完产层的经济评价之后就开始下套管,准备油气井的生产了。

完井的设备和方法是很多的,这个取决于具体井的油气储集类型、井具体阶段的开发要求,还有施工时候的经济状况。

低压套管,有时候还是二手的,可以用于产量是边际产量的井,并且其他的投资也要相应减少。

如果油井可能是高压,井的寿命预期较长,就会使用最好质量的油管。

Unit 7 Production of oil and gasP120气举是一种很灵活的方法,在海洋上可以用于斜井,并且可以迅速的适应于产量变化的需要以及产液种类变化的需要。

在多数井中,随着时间推移,井筒中产水量的增加会对压力系统有很显著的影响。

影响气举效率的一个重要因素就是气体与原油之间的滑脱效应。

Unit 11 Enhanced oil recoveryP193表面活性剂驱和碱驱的驱油机理是建立在形成极低的界面张力的基础上的,其中聚合物驱或者表面活性剂/聚合物驱是利用控制流度来提高采收率。

注入的碱与油藏中的石油衍生物脂肪酸发生化学反应,就地生成脂肪酸钠盐。

生成的这种表面活性剂就可以形成极低的界面张力。

石油工程专业英语【课文翻译】

石油工程专业英语【课文翻译】

石油工程专业英语【课文翻译】Unit 1 Introduction to petroleum industry1) Introduction石油工业在我们的日常生活以及其他工业领域扮演着相当重要的角色。

石油工业可以主要分成上游部分、中游部分以及下游部分。

今天,许多大的石油公司,例如中国石油、中石化、中海油,都在中国开采着地下油藏的大量原油。

大多数原油和天然气都是由几百万年前在沼泽和海洋中的植物和动物形成的。

这些有机物与小溪和河流中的淤泥沉积在一起。

这些沉积最终压实形成了沉积岩石。

热量和压力把这些植物和动物中柔软的部分转化成为固态的、液态的和气态的碳氢化合物,也就是我们知道的煤、原油和天然气。

随着陆地和海洋的石油工业的快速繁荣,公众的注意力也集中到了石油工业的环境保护问题上来。

幸运的是,技术的创新、精心的培训、严格的法规都将让石油工业对人类、动物、土壤、空气和水的污染降低到最小。

✓Swamp: 沼泽,湿地✓Stringent : 严格的,必须遵守的2) Three main components of the industry今天,上游部分包括了超过100家勘探和生产公司以及数百家相关的部门,例如地震和钻井承包商,修井承包商,工程公司和各种科学技术服务公司和供给部门。

中游部分包括连接生产和消费领域的油气集输系统。

其他的设备将提炼硫和液态天然气,储存石油和天然气产品,并且用卡车、铁路以及油罐车运输产品。

下游部分由炼油厂、气体分离设备、原油零售商、服务站以及石油化工公司。

✓Service rig: 修井设备;修井机✓Utility:n. 功用,实用;a. 实用的;多用途的3) Finding oil and natural gasa)Exploration- the search for petroleum一个圈闭应该包含三个要素:●多孔油藏岩石来聚集石油和天然气—典型的岩石有:砂岩、石灰岩和白云岩。

石油中英文

石油中英文

1.石油的生成研究表明,石油的生成至少需要200万年的时间,在现今已发现的油藏中,时间最老的可达到5亿年之久。

在地球不断演化的漫长历史过程中,有一些“特殊”时期,如古生代和中生代,大量的植物和动物死亡后,构成其身体的有机物质不断分解,与泥沙或碳酸质沉淀物等物质混合组成沉积层。

由于沉积物不断地堆积加厚,导致温度和压力上升,随着这种过程的不断进行,沉积层变为沉积岩,进而形成沉积盆地,这就为石油的生成提供了基本的地质环境。

伴随各种地质作用,沉积盆地中的沉积物持续不断地堆积。

当温度和压力达到一定程度后,沉积物中动植物的有机物质转化为碳氧化合物分子,最终生成石油和天然气。

2.石油的聚集石油不像水聚集在水库中那样聚集在沉积盆地最初形成的岩石——生油源岩,也就是沉积岩中,而是透过岩石的孔隙,被挤压到压力分布更低的岩石裂缝和孔隙中,直至停留在被完全封闭的储集岩中。

储集岩是聚集石油的岩石。

储集岩形成了储藏石油的地质环境——圈闭构造,它是阻止石油被继续运移的地质构造。

石油的这种聚集方式就如同水被一块海绵吸收一样。

正因为有了储集岩和圈闭构造,石油才能安静地在地下定居,等待发掘者的到来。

石油的起源最早提出“石油”一词的是公元977年中国北宋编著的《太平广记》。

正式命名为“石油”是根据中国北宋杰出的科学家沈括(1031~1095年)在所著《梦溪笔谈》中,根据这种油“生于水际砂石,与泉水相杂,惘惘而出”而命名的。

在“石油”一词出现之前,国外称石油为“魔鬼的汗珠”、“发光的水”等,中国称“石脂水”、“猛火油”、“石漆”等。

我们平时的日常生活中到处都可以见到石油或其附属品的身影,不知你注意了吗?比如汽油、柴油、煤油、润滑油、沥青、塑料、纤维等还有很多!这些都是从石油中提炼出来的;而我们日常所用的天然气(液化气)是从专门的气田中产出的!通过输气管道和气站再输送到各家各户。

目前就石油的成因有两种说法:①无机论即石油是在基性岩浆中形成的;②有机论既各种有机物如动物、植物、特别是低等的动植物,像藻类、细菌、蚌壳、鱼类等死后埋藏在不断下沉缺氧的海湾、潟湖、三角洲、湖泊等地,经过许多物理化学作用,最后逐渐形成为石油。

石油工程专业英语【课文翻译】

石油工程专业英语【课文翻译】

石油工程专业英语【课文翻译】Unit 1 Introduction to petroleum industry1) Introduction石油工业在我们的日常生活以及其他工业领域扮演着相当重要的角色。

石油工业可以主要分成上游部分、中游部分以及下游部分。

今天,许多大的石油公司,例如中国石油、中石化、中海油,都在中国开采着地下油藏的大量原油。

大多数原油和天然气都是由几百万年前在沼泽和海洋中的植物和动物形成的。

这些有机物与小溪和河流中的淤泥沉积在一起。

这些沉积最终压实形成了沉积岩石。

热量和压力把这些植物和动物中柔软的部分转化成为固态的、液态的和气态的碳氢化合物,也就是我们知道的煤、原油和天然气。

随着陆地和海洋的石油工业的快速繁荣,公众的注意力也集中到了石油工业的环境保护问题上来。

幸运的是,技术的创新、精心的培训、严格的法规都将让石油工业对人类、动物、土壤、空气和水的污染降低到最小。

✓Swamp: 沼泽,湿地✓Stringent : 严格的,必须遵守的2) Three main components of the industry今天,上游部分包括了超过100家勘探和生产公司以及数百家相关的部门,例如地震和钻井承包商,修井承包商,工程公司和各种科学技术服务公司和供给部门。

中游部分包括连接生产和消费领域的油气集输系统。

其他的设备将提炼硫和液态天然气,储存石油和天然气产品,并且用卡车、铁路以及油罐车运输产品。

下游部分由炼油厂、气体分离设备、原油零售商、服务站以及石油化工公司。

✓Service rig: 修井设备;修井机✓Utility:n. 功用,实用;a. 实用的;多用途的3) Finding oil and natural gasa)Exploration- the search for petroleum一个圈闭应该包含三个要素:●多孔油藏岩石来聚集石油和天然气—典型的岩石有:砂岩、石灰岩和白云岩。

石油工程英文作文

石油工程英文作文

石油工程英文作文英文:As a petroleum engineer, I have been involved invarious aspects of the oil and gas industry, fromexploration and production to refining and distribution. One of the most important tasks is to design and optimize drilling operations, which involves selecting the right equipment, materials, and techniques to extract oil and gas from the ground efficiently and safely.For example, when drilling a well, we need to consider the geological formation, the fluid properties, thewellbore stability, and the environmental impact. We mayuse different types of drilling fluids, such as water-based, oil-based, or synthetic-based, depending on the formation and the well conditions. We may also use different drilling techniques, such as directional drilling, horizontal drilling, or hydraulic fracturing, to reach the reservoir and enhance the production.Another aspect of petroleum engineering is reservoir engineering, which involves estimating the reserves, predicting the performance, and optimizing the recovery of oil and gas reservoirs. We use various tools and methods, such as reservoir simulation, well testing, and production analysis, to evaluate the reservoir properties, such as porosity, permeability, and saturation, and to design the optimal production strategy, such as primary, secondary, or tertiary recovery.In addition, we need to consider the economic and environmental factors in our decision-making process, such as the oil price, the production cost, the regulatory requirements, and the social impact. We may use different software and models, such as economic analysis, risk assessment, and life cycle assessment, to evaluate the feasibility and sustainability of our projects.Overall, petroleum engineering is a challenging and rewarding field that requires a multidisciplinary approach and a continuous learning mindset. We need to keep up withthe latest technologies and trends, collaborate with other professionals and stakeholders, and balance the technical, economic, and social aspects of our work.中文:作为一名石油工程师,我参与了油气工业的各个方面,从勘探和生产到精炼和分销。

English for the Oil Industry(石油英语教程)

English for the Oil Industry(石油英语教程)

The English for the Oil Industry PETROLEUM PROGRAMME 石油英语教程BBC (ENGLISH)ContentsUnit 1 The Rig(钻机) (1)Unit 2 Fishing Jobs(打捞工作) (9)Unit 3 Traps &Geology(圈闭和地质) (18)Unit 4 Reservoir Fluids(油藏流体) (26)Unit 5 Natural Flow(自喷) (36)Unit 6 Blowout Control(井控) (45)Unit 7 Drives and Stimulation(驱油和增产措施) (53)Unit 8 Directional Wells(定向井) (62)Unit 9 Jobs on the Rig(钻井作业) (70)Unit 10 Gathering Centres(集输中心) (79)Unit 11 Downstream of Production(生产下游) (87)Unit 12 Primary &Secondary Refining(粗炼和精炼) (95)Unit 13 Finishing Processes(精炼工艺) (103)Unit 14 Refinery Products(炼制产品) (111)Unit 15 Safety(安全) (120)Unit 16 Ways of Improving Recovery(提高原油采收率的方法) (129)Unit 17 Unconventional Sources of Oil(特殊石油资源) (137)Unit 18 Oil &The Environment(石油与环境) (144)Unit 19 Oil Conservation(石油资源保护) (152)Unit 20 Into the Future(能源前景) (160)THE PETROLEUM PROGRAMMEBBC (English)Unit 1 The Rig(钻机)Section A READING COMPREHENSIONRead the following passageIf there are any words or expressions that you don't understand,look under Special words and Expressions。

石油类英文翻译文献Physical properties of wax deposits on the

石油类英文翻译文献Physical properties of wax deposits on the

Water bath 2
Oil
Reference section
tank
dp2
dp1 Test section
Water bath 1
Mass flowmeter
Buffer tank
Screw pump
Peristaltic pump
Fig. 1 Schematic diagram of the flow loop system used to measure wax deposition
*Corresponding author. email: huang_qi_yu@ Received May 6, 2008
fixed oil temperature) and oil temperature (at a fixed wall temperature).
In this study, laboratory flow loop experiments are performed to acquire data on the wax content, wax appearance temperature (WAT) under different thermal conditions (oil temperature, wall temperature, difference in temperature between oil and pipe wall), and hydraulic conditions (shear rate or shear stress on pipe wall). Furthermore, a model is established to predict the wax content of the deposit, WAT, shear stress, and concentration gradient of wax molecules on the wall.

石油英语课文译文Unit 1-4

石油英语课文译文Unit 1-4

石油的起源石油有机成因1. 石油是由多种碳氢化合物和特定矿物质如硫磺在极大压力下混合而成。

现如今,科学家证明,尽管不是全部,但大多数油田是几百万年前海床上的动植物残骸经过数十亿吨的泥沙沉积而成。

2. 当小型海洋动植物死亡后,尸体会下沉。

然后它们会沉淀在海床上,被分解并与泥沙混合在一起。

在分解过程中,细菌会就将其中的一些化学物质如磷、氮、氧去掉。

这一过程使得大多数的碳和氢保留下来。

海洋底部没有足够的氧气使这些尸体完全被分解。

而剩下没有被分解的就成为了石油形成的原材料。

3. 被部分分解的残骸会形成巨大的胶状物,而后会慢慢地被层层泥沙所覆盖。

层层覆盖的掩埋过程要经过数百万年的时间。

随着沉积物的逐渐堆积,泥沙作用在胶状物上的重量会将其挤压成更薄的层状物。

最后,当这些被掩埋的分解层深入到一万尺深的地方时,地球自身的热量以及巨大的压力会综合作用到胶状物上。

久而久之,石油便形成了。

石油无机成因4. 尽管现在被接受的石油形成理论包括动植物有机残留物质到碳氢化合物的缓慢转变过程(有机成因说或生物成因说),但这并不是被唯一提出的理论。

早在16世纪,有一种石油生成理论认为石油是由地球深处的积碳形成的,而这些积碳远比地球上的生物久远。

这一理论被称为石油无机成因理论,几乎被人忘却,直到最近一些人(部分是科学家)重拾这一理论。

5. 最新的石油无机成因理论认为,石油是在地壳和下地幔中经过无机过程形成的。

科学家解释说,石油形成后通过裂缝和多孔岩石渗透到油藏中,人类通过开发这些油藏来获得石油。

如果这些说法是真的的话,石油可能就不会像有机成因理论的支持者认为的那样有限。

这就意味着石油会比我们之前认为的更加―可再生‖。

6. 石油无机成因理论之所以得到拥护有很多原因,但很多当代支持者指出在彗星、流星和其它无生命特征的星球上存在着甲烷,他们并以此作为证据证明有机物在石油的产生过程中并不是必不可少的。

其他支持者在石油起源方面提出了其它线索例如,石油中金属元素的分布,碳氢化合物和氦的合成,油藏呈大规模完整沉积而不是斑块沉积。

(完整版)石油工程专业英语【课文翻译】

(完整版)石油工程专业英语【课文翻译】

Unit 1 Introduction to petroleum industry1) Introduction石油工业在我们的日常生活以及其他工业领域扮演着相当重要的角色。

石油工业可以主要分成上游部分、中游部分以及下游部分。

今天,许多大的石油公司,例如中国石油、中石化、中海油,都在中国开采着地下油藏的大量原油。

大多数原油和天然气都是由几百万年前在沼泽和海洋中的植物和动物形成的。

这些有机物与小溪和河流中的淤泥沉积在一起。

这些沉积最终压实形成了沉积岩石。

热量和压力把这些植物和动物中柔软的部分转化成为固态的、液态的和气态的碳氢化合物,也就是我们知道的煤、原油和天然气。

随着陆地和海洋的石油工业的快速繁荣,公众的注意力也集中到了石油工业的环境保护问题上来。

幸运的是,技术的创新、精心的培训、严格的法规都将让石油工业对人类、动物、土壤、空气和水的污染降低到最小。

✓Swamp: 沼泽,湿地✓Stringent : 严格的,必须遵守的2) Three main components of the industry今天,上游部分包括了超过100家勘探和生产公司以及数百家相关的部门,例如地震和钻井承包商,修井承包商,工程公司和各种科学技术服务公司和供给部门。

中游部分包括连接生产和消费领域的油气集输系统。

其他的设备将提炼硫和液态天然气,储存石油和天然气产品,并且用卡车、铁路以及油罐车运输产品。

下游部分由炼油厂、气体分离设备、原油零售商、服务站以及石油化工公司。

✓Service rig: 修井设备;修井机✓Utility:n. 功用,实用;a. 实用的;多用途的3) Finding oil and natural gasa)Exploration- the search for petroleum一个圈闭应该包含三个要素:●多孔油藏岩石来聚集石油和天然气—典型的岩石有:砂岩、石灰岩和白云岩。

●上覆不可渗透岩石来阻止油气的逃逸。

石油类英文翻译文献JPT2003_04_naturalgas_focus

石油类英文翻译文献JPT2003_04_naturalgas_focus
Overview
Expectations remain high that gas is fast becoming the fuel of the future. Simultaneously, opinions about the industry’s ability to find the resource and build the deliverability needed to meet these expectations oscillate between optimism and doubt. The expectations, however, certainly cannot be realized unless all new and existing gas resources are exploited in continually improving ways. This improvement requires advances in technology as well as advances in how new and existing technologies are woven into a company’s culture of application. Well completions and interventions are examples showing the effects from both basic technology advancement and application of culture changes. Specific examples of technology strides are numerous and include new fracturing fluids, better understanding of and treatments for wax or hydrate plugging problems, and advances in the chemistry of water-shutoff treatments. However, focus on greater rigor appears to be the most appropriate descriptor for the biggest change in how technology is applied. This change is evident in the interventions arena, in which the development and consistent application of systematic approaches to identify and quantify all points of production loss in the well/reservoir combination have been reemphasized. Achieving the complete quantitative description envisioned here requires development and use of more sophisticated downhole instrumentation. In turn, interpretation of motivates more tailored stimulation and remediation technology. The point is that the demand for detailed, rigorous analysis both drives the need for and enables the appropriate application of technological advancements. Another process, borrowed from the project-management school, is beginning to dominate some philosophies of reservoir evaluation and development planning. Front-end loading, the first three steps in the standard stage-gate projectmanagement process, has been actively adapted and adopted by many for adding greater rigor and consistency to evaluation and development work. The belief is that a framework is formed, fostering better understanding and a context for more meaningful comparison of options. The outcome is that greater assurance on resource and deliverability should be forthcoming, justifying our expectations of a bright future for natural gas. The papers showcased in this issue illustrate some of the work being done to make this happen. JPT

石油英语译文spe

石油英语译文spe

摘要我们已经开发出一种方法,提供渗透率估计所有岩石类型或岩性,一个广泛的渗透性。

这是一个混合遗传编程和模糊/神经网络推理系统利用岩性和渗透性相指标。

这项工作的动机是由需要有一个渗透性水库的体积估计建模的目的。

为此,我们的目的,这个过程的投入是有限的特性,可以从地震数据进行估计。

渗透率变换是先估计使用的好地点核心透气性好,弹性参数日志和孔隙度。

从过程的输出可以用来,结合这些属性的估计从3D地震数据,提供一个估计渗透性量的基础。

然后输入,页岩量(VSH)或任何其他类型的日志用于确定岩性,声波和密度测井,孔隙度的日志和核心渗透性measurments。

变换系统三个不同的模块组成。

第一个模块为岩性分类和分离水库到用户定义的岩性类型的间隔。

第二基于遗传编程的模块,目的是预测岩性类型内的渗透性相。

一被定义为低,中或渗透性相高渗透性设置与每个岩性类型相关联。

模糊/神经网络推理算法弥补了第三个模块的系统,在其中一个TSK模糊逻辑关系是形成每个渗透性相,岩性。

该系统已应用在两个油田,两个在西非海岸。

与目前的比较估算方法,该系统产生更多一致估计的通透性。

从结果进行交叉验证表明这种方法是强劲,估计在复杂的渗透性非均质油藏。

该系统的设计从地震数据反演使用弹性日志属性,声速和密度作为输入,因此可渗透性体积。

简介渗透性空间变异的知识是在储层建模的重视。

然而,核心通透性measurments是非常有限的,往往失之偏颇。

虽然人们普遍注意到,通透性一些线速数据的相关性,没有理论的方程来描述这样一个关系。

在一般情况下,开发一个通用的系统产生良好的透气性??估计,所有类型的岩性是一项艰巨的任务。

渗透率估算继续构成一个重大的挑战,以水库表征和模拟。

在过去的几年中,巨大的努力已花费在种类繁多的代利用线线估计通透性的方法日志:多线性回归,主成分分析和聚类,非线性的神经网络,其中模糊逻辑。

所有这些方法涉及使用一些指标的形式,如岩性类型,电相(Mathisen等人,2001年,李等,2002),粮食大小,岩性岩相(Suryanarayana等人,2003年),或液压流量单位(Badarinadh,等,2002年,法赫德等,2000),以提高透气性估计。

石油工程专业英语翻译

石油工程专业英语翻译

Petroleum engineering is a field of engineering concerned with the activities related to the production of hydrocarbons ([ˌhaɪdrəˈkɑ:bən]), which can be either crude oil or natural gas. Subsurface activities are deemed to fall within the upstream sector of the oil and gas industry, which are the activities of finding and producing hydrocarbons.Refining and distribution to a market are referred to as the downstream sector.Exploration, by earth scientists, and petroleum engineering are the oil and gas industry's two main subsurface disciplines, which focus on maximizing ([ˈmæksəˌmaɪz]) economic recovery of hydrocarbons from subsurface reservoirs ([ˈrezəvwɑ:]). Petroleum geology and geophysics ([ˌdʒi(:)əuˈfiziks]) focus on provision of a static description of the hydrocarbon reservoir rock, while petroleum engineering focuses on estimation of the recoverable volume of this resource using a detailed understanding of the physical behavior of oil, water and gas within porous ([ˈpɔ:rəs]) rock at very high pressure.The combined efforts of geologists and petroleum engineers throughout the life of a hydrocarbon accumulation determine the way in which a reservoir is developed and depleted, andusually they have the highest impact on field economics. Petroleum engineering requires a good knowledge of many other related disciplines, such as geophysics ([ˌdʒi(:)əuˈfiziks]), petroleum geology, formation evaluation (well logging), drilling, economics, reservoir simulation, well engineering, artificial lift systems, and oil and gas facilities engineering.石油工程与碳氢化合物,可以是原油或天然气生产活动有关的工程领域。

石油类英文翻译文献

石油类英文翻译文献

Retro fit design of a boil-off gas handling process in lique fied natural gas receiving terminalsChansaem Park,Kiwook Song,Sangho Lee,Youngsub Lim,Chonghun Han *School of Chemical and Biological Engineering,Seoul National University,San 56-1,Shillim-dong,Kwanak-gu,Seoul 151-742,Republic of Koreaa r t i c l e i n f oArticle history:Received 4October 2011Received in revised form 22February 2012Accepted 23February 2012Available online 27March 2012Keywords:Boil-off gasLNG receiving terminal Retro fit design Cryogenic energy BOG handlinga b s t r a c tGeneration of Boil-off gas (BOG)in lique fied natural gas (LNG)receiving terminals considerably affects operating costs and the safety of the facility.For the above reasons,a proper BOG handling process is a major determinant in the design of a LNG receiving terminal.This study proposes the concept of a retro fit design for a BOG the handling process using a fundamental analysis.A base design was determined for a minimum send-out case in which the BOG handling becomes the most dif ficult.In the proposed design,the cryogenic energy of the LNG stream is used to cool other streams inside the process.It leads to a reduction in the operating costs of the compressors in the BOG handling process.Design variables of the retro fit design were optimized with non-linear programming to maximize pro fitability.Optimization results were compared with the base design to show the effect of the proposed design.The proposed design provides a 22.7%energy saving ratio and a 0.176year payback period.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionRecently,lique fied natural gas (LNG)receiving terminals have been constructed worldwide due to an continuous increase in LNG demand [1].A LNG receiving terminal has the role of transporting the LNG from the carrier and supplying it to industrial or residential customers.Imported LNG is stored in its liquid state in storage tanks at the LNG receiving terminal.In order to deliver LNG to the customer,LNG is vaporized through a regasi fication process [2].Vapor continuously evaporates from LNG since LNG absorbs the heat in the storage tank and in the cryogenic pipelines during unloading and storage.This vapor is called boil-off gas (BOG).It causes safety problems in the LNG facilities since the pressure inside that facility increases with the generated BOG.Over-treatment of the BOG consumes excess energy.Hence,proper handling of BOG is required for an optimal design of an LNG receiving terminal [3].Usual BOG handling methods for LNG receiving terminals are recondensation and direct compression.The recondensation method is shown in Fig.1.BOG is compressed to around 10bar through a BOG compressor and mixed with enough send-out LNG,which is pumped at same pressure in the recondenser so to obtain a liquid mixture.The LNG mixed with the BOG is compressed topipeline pressure in high-pressure (HP)pump and vaporized by seawater.The direct compression method is shown in Fig.1.The BOG in a storage tank is compressed to the pipeline pressure through more than 2compression stages and then,transported to the pipeline with the send-out natural gas [4].Generally,the direct compression method has higher operating costs than the recon-densation method because the gas is directly compressed to a high pressure.Most LNG receiving terminals,which include the Incheon LNG receiving terminal in Korea,use a combined method of recondensation and direct compression [5].As shown in Fig.1,the compressed BOG from the BOG compressor is condensed by mixing with the LNG in the recondenser.If the send-out flow rate of the LNG from the storage tank is insuf ficient to condense all of the BOG,BOG that cannot be condensed accumulates in the recondenser.Thereupon,the remaining BOG in the recondenser is compressed to the pipeline pressure through the HP compressor and is directly transported to the pipeline mixed with the natural gas [2].Since the operation of the HP compressor requires considerable energy and hence,has considerable operating costs,it is desirable to minimize the operation of the HP compressor.In the BOG handling process,high-pressure LNG compressed by HP pump has a useful cryogenic energy.The high-pressure LNG stream,which is maintained around À120 C,should be heated so it can be vaporized at 0 C with the seawater vaporizer.Hence,the cryogenic energy of this high-pressure LNG stream can be used to improve the BOG handling process.*Corresponding author.Tel.:þ8228801887.E-mail addresses:chhan@snu.ac.kr ,xver@snu.ac.kr (C.Han).Contents lists available at SciVerse ScienceDirectEnergyjournal h omepage:w/locate/energy0360-5442/$e see front matter Ó2012Elsevier Ltd.All rights reserved.doi:10.1016/j.energy.2012.02.053Energy 44(2012)69e 78Recently,research on the LNG receiving terminals is usually focused on analyzing the operation of a speci fic facility in the LNG receiving terminal and the utilization of the cryogenic energy of the LNG stream.Lee et al.suggested a reliable unloading operation procedure for a mixed operation of above-ground and in-ground storage tank [6].Kim et al.analyzed mixing drums and heat exchangers as a BOG recondenser [7].Lim et al.developed the methodology for a stable simulation of the LNG pipe [8].Studies on the operation of the BOG compressor at the Pyeoungtaek LNG receiving terminal was performed with industrial data [3,9].Liu et al.optimized a process for the multi-stage recondensation of the BOG based on a thermodynamic analysis [10].Studies on optimal operating conditions for a regasi fication facility have been per-formed [11,12].Various studies have been proposed a power generation plant using cryogenic energy applied to power cycle.Liu and You developed the mathematical model to predict the total heat exergy of LNG [13].Qiang et al.analyzed the power cycle based on the cold energy of LNG [14].Also Qiang et al.carried out the exergy analysis for several power cycles used for recovering the LNG cold energy [15].Sun et al.proposed and analyzed the cryo-genic thermo-electric generator [16].Kim and Hong analyzed the exergy of current LNG receiving terminal and cold power genera-tion plant [17].Szargut and Szczygiel proposed and optimized power plant using LNG cryogenic exergy [18].A cogeneration plant using the BOG and cryogenic energy has been suggested [4,19].Based on a literature survey,few studies on the retro fit design of the BOG handling process has been reported in term of reducing the operating energy.The improvement and optimization of the BOG handling process have the potential to reduce the operating costs of the natural gas facility.The contribution of this paper is development of the retro fit design of a BOG handling process in which the design variables are optimized for total cost minimization.Cryogenic energy of the LNG is used to directly reduce the capital cost and operating cost without additional power generator.In this paper,we used the retro fit method which includes the thermodynamic analysis,process simulation and optimization.This paper describes a general operating line of a BOG handling process based on thermodynamic analysis.In the operating line,the opportunity of design improve-ment and the reasons of energy saving are described by comparing with base case design and retro fit design.Based on the thermo-dynamic analysis,a superstructure of the retro fit design is devel-oped and the design variables,which are in direct relationship withcapital cost and operating cost,are de fined.Since the objective function of optimization problem is calculated using process simulation results,the optimization algorithm of the design vari-ables is based on process simulation.The optimal values of design variables are achieved using Sequential Quadratic Programming (SQP)solver in MATLAB.Finally optimal design of the retro fit BOG handing process is veri fied through the sensitivity analysis of external operating conditions.2.MethodologyThe algorithm of the retro fit method is shown in Fig.2in which it aims to minimize the capital cost and operating cost of BOG handling process.Retro fit procedure starts with thermodynamic analysis of BOG handling process.The P e H (pressure-enthalpy)diagram is generated from LNG properties based on Peng-Robinson equation of state.As the operating line of the BOG handling process is presented in P e H diagram,the possibility for improvement of the BOG handling process is investigated.The retro fit opportunity for ef ficient design is obtained from a result of the thermodynamic analysis for the operating line.In the next step,the superstructure of the retro fit design is developed by applying the retro fit oppor-tunity based on thermodynamic analysis.To obtain the optimal design,the optimization problem of retro fit design is formulated,in which the main objective is the minimization of capital cost and operating cost.The design variables,which affect the capital cost and operating cost,are de fined to formulate the objective function based on the superstructure of the retro fit design.In addition,design constraints of the optimization problem are determined using the process simulation of the superstructure.Since the optimization problem of retro fit design is non-linearly constrained problem,it is solved using SQP method.At each iter-ation step,the optimization problem is approximated by quadratic form.Then the quadratic programming subproblem is solved using a combination of active-set strategy and process simulation of retro fit design to calculate the Lagrange multiplier and search direction for next iteration.If the termination criteria of QP solution are met,design variables at current iteration step (x k )are optimal values of the SQP problem and the solver stops.Otherwise,the step length for next iteration is evaluated using line search method.Then,x k is updated by search direction and step length to generate new value x k þ1.In the next iteration,the updated values are used for the next step.In this paper,the process simulation of the retro fitFig.1.A process flow diagram of the LNG handling process.C.Park et al./Energy 44(2012)69e 7870design was conducted by Aspen Plus and the SQP was solved by MATLAB.After the optimal design values of retro fit process are obtained by solving the SQP,sensitivity analysis for the design parameters which have variability,such as LNG demand rate,is performed to verify the pro fitability of the retro fit design.Finally the retro fit design is proposed after veri fication of the pro fitability.3.Case study3.1.Base case design de finitionVarious studies on the practical operation which include the BOG compressor were conducted about the Pyeongtaek LNG receiving terminal.The practical operations of the compressor [3,9]and the recondenser [7,20],operator ’s feedback [21,22],basic design information [23]of the Pyeongtaek LNG receiving terminal were indicated.In this study,base case design of the BOG handling process was determined based on the practical design conditions of the Pyeongtaek LNG receiving terminal.Details of the base case design are presented in Table 1.However,the base case design is not identical to Pyeongtaek LNG receiving terminal due to only one difference,the HP compressor.Most BOG handling processes use HP compressors for BOG handling while Pyeongtaek LNG terminal utilizes BOG as fuel since it is adjacent to other plants.HP compressor in Pyeongtaek LNG terminal is replaced with flare stack and power plant [20].Base case design was determined assuming that the HP compressor is used for the BOG handling.Therefore the process flow diagram of the base case design is identical to Fig.1and design conditions are based on Pyeongtaek LNG receiving terminal in Table 1.The BOG compressor and HP compressor consisted of a 2-stage compression in which the pressure ratio is identical [21].The generation rate of the BOG in the storage tanks was determined by a normal operation case [3]and the send-out rate of the LNG was determined by a minimum send-out case [21].Since this paper proposes an advanced process design,we choose the minimum send-out case,which has dif ficulties in handling the BOG.For the above reason,a retro fit design based on the minimum send-out case can easily handle BOG using recondensation whenever the send-out rate of the LNG changes.Modeling and simulation of the base case was conducted in Aspen Plus in order to calculate the total operating cost of the BOG handling process.The stream data of the process simulation is presented in Table 2.Stream numbers in Table 2correspond with the stream number in Fig.1.Temperature values of the compressor inter-streams,stream 2and 7,are at À49.6 C and À58.1 C,respectively and there is no need to intercool these streams.Therefore,stream 3and 8are identical to stream 2and 7.Operating costs of each unit in the base case are presented in Table 3.The operating costs of the whole process considered 5units,which included the BOG compressor,LP pump,HP compressor,HP pump,and seawater pump.The BOG flow rate,which is a dif ficult variable to measure,is sharply fluctuated in the LNG receiving terminal.To analyze effects of a shift in the BOG flow rate on the result of simulation,the total operating costs of the process model are computed changing Æ10%of the BOG flow rate as shown in Fig.3.If the BOG flow rate is changed in the range of Æ10%,the result of process modelisFig.2.A algorithm for retro fit method.Table 1The design conditions of the base case design.ParametersValue Storage tank pressure,mbarg170Suction temperature of BOG compressor, C À120Temperature of LNG before recondensation, C À155BOG flow rate,ton/h30Minimum LNG send-out rate,ton/h 200Recondensation pressure,kg/cm 210Send-out pressure,kg/cm 276Send-out temperature, CTable 2The stream data of the base case design.1245679101112Temperature, C À120À49.646.8À155.0À122.6À58.129.8À122.6À117.70.00Pressure,bar 1.12 3.439.8113.739.8127.0274.539.8174.5374.53Vapor fraction 1110111001Mass flow,t/h30.030.030.0200.04.74.74.7225.3225.3225.3C.Park et al./Energy 44(2012)69e 7871changed in the range between À13.4%and 14.8%.Thus,the result of process model is greatly affected by BOG flow rate.It is necessary to use the accurate value of BOG flow rate for process simulation in this method.3.2.Thermodynamic analysis of the base case designA P e H diagram of the base design is shown in Fig.4to analyze operations in the BOG handling process.The pressure axis in Fig.4is the logarithmic coordinate.The blue line is the isothermal line,which presents the operation state at a speci fic temperature.The red line is the bubble point and dew point,which yield information on the phase change.The green line is the isentropic line of oper-ation;LNG or BOG is compressed following the isentropic line through the pump and compressor.When the LNG or BOG moves following the isentropic line,the magnitude of the x -axis denotes the operation cost of the related unit.Point 1and 2represent the state of the LNG and BOG in the storage tank.LNG is pressurized to the recondensation pressure with the LP pump at point 3.The BOG is compressed to the recondensation pressure with the BOG compressor (point 4).Although operation of the BOG and HP compressor is shown as 1path in the P e H diagram,the BOG and HP compressor consist of 2stages.In the recondenser,the LNG and BOG are mixed at the recondensation pressure to form a liquid mixture,which becomes saturated LNG (point 5).The liquid mixture from the recondenser is pressurized to the send-out pressure with the HP pump (point 6).The LNG stream at high pressure is heated by seawater so to transport it in the vapor state.However,the BOG,which cannot be condensed in the recondenser,goes through the HP compressor to be directly compressed to the send-out pressure and supplied to the customer mixed with the send-out natural gas (point 7).(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)3.3.Proposal of the retro fitting design for energy savingIf the BOG from the BOG compressor is cooled with a heat exchanger using the high-pressure LNG stream (point 6in Fig.4),the operating lines of the BOG handling process in the P e H diagram changes as following path 1,2in Fig.4.Since the temperature of the liquid mixture is lower through the path 1,2,the recondensation pressure can be lower;a decrease in the recondensation pressure reduces the operating cost of the BOG compressor.In addition,a larger BOG flow rate can be condensed to reduce the operating cost of the HP compressor.The scheme of this design is shown in Fig.5.A high-pressure LNG stream goes through the BOG cooler to cool down the BOG stream.This method provides a lower operating pressure in the recondenser and a larger BOG rate to be condensed.It can reduce the operating energy of the BOG and HP compressors.The BOG and HP compressors usually consist of 2stages due to a compression ratio of 7e 10.Hence,the cryogenic energy of the high-pressure LNG stream is utilized for intercooling in theTable 3The operating costs of the base design.UnitEnergy costs 1st-stage BOG compressor,kW 1189.912nd-stage BOG compressor,kW 1699.191st-stage HP compressor,kW 144.812nd-stage HP compressor,kW 209.94HP pump,kW 1279.92LP pump,kW 188.39SW Pump,kW 49.07Sum,kW4761.24Fig.3.The result of total operating cost with changing BOG flowrate.Fig.4.A P e H diagram of the BOG handling process.C.Park et al./Energy 44(2012)69e 7872compressors.This method improves the efficiency of the compressors decreasing the temperature of the BOG inter-stream. As shown in Fig.6,the operation paths of the compressors shift to paths that are more efficient.In the proposed paths,the oper-ating costs of the BOG and HP compressors are reduced.The high-pressure LNG stream is utilized for intercooling in the compressors by the compressor intercoolers in Fig.1.The superstructure of the retrofit design was based on the above thermodynamic analysis of the BOG handling operation.As shown in Fig.7,the high-pressure LNG stream from the HP pump splits into3streams.Each streamflows through the BOG compressor intercooler,the BOG cooler,and the HP compressor intercooler to cool down the BOG stream;thereby,the operating costs of the BOG and HP compressors are reduced.After the3branch streams pass through the heat exchangers,these streams combine to become one stream.This single LNG stream then moves to the seawater vaporizer.The retrofit design provides a lower recondensation pressure and a larger condensing rate for the BOG and improves the compressor efficiency for energy savings.3.4.Optimization of design variablesThe design variables of the proposed superstructure need to be optimized to minimize the total operating cost.For this purpose, modeling of the proposed superstructure was done with Aspen Plus.Optimal design and operating variables were obtained with specified constraints to minimize the operating costs.The objective function of this optimization problem was to maximize the venture profit(VP),which measures the profitability of the design for the BOG handling process shown by Eq.(1).The return on investment is 0.2.The saving costs(C S)are obtained to calculate the multiplica-tion of the price of electricity(P e)and the difference between the operating cost of the base design and the proposed design shown by Eq.(2).The capital cost of the retrofit design considers the equipment cost of the additional heat exchanger;the equipment cost of the heat exchanger was calculated by referring to Warren Seider[24].The purchase cost(C P)of the heat exchanger is calcu-lated by multiplication of the pressure factor(F P),the material factor(F M),the tube-length factor(F L)and base purchase cost(C B) shown in Eq.(3).The base purchase costs are correlated in terms of heat-exchanger surface areas(A i),which are calculated by process simulation,in ft2shown in Eq.(4).The material factor is a function of surface area shown in Eq.(5).The parameters a and b are2.70 and0.07,respectively,since stainless steel is used as the material of the shell and tube side.The tube-length factor is1.25for tube length below8feet.The pressure factor is based on the shell-side pressure(P)in psig shown in Eq.(6).VP¼C SÀi min C P(1) C S¼XW BasicÀXW ProposedÂP e(2) C P¼F P F M F L C B(3) C B¼expn11:147À0:9186½lnðA iÞ þ0:09790½lnðA iÞ 2o(4)F M¼aþA i100b(5)F P¼0:9803þ0:018Pþ0:0017P2(6) Fig.5.A scheme of the BOG handling process with the BOGcooler.Fig.6.A P e H diagram of the BOG handling process with the intercooler of the BOG and HP compressors.C.Park et al./Energy44(2012)69e78733.5.Design variablesIn this optimization problem,design variables were divided into 4types.As shown in Fig.8,the first design variable was the recondensation pressure (P R )at which the BOG stream from the BOG compressor and LNG stream from the LP pump is mixed to condense the BOG.If the recondensation pressure is raised,the operating cost of the HP compressor is reduced due to the addi-tional condensation of the BOG.However,the operating cost of the BOG compressor and the LP pump increases as the discharge pressure of the BOG compressor and LP pump increases.Hence,it is necessary to find the optimal recondensation pressure to minimize the operating cost.The second design variable was the heat transfer area of the heat exchangers that are added to the proposed design.The heat transfer areas of the BOG cooler (A 1)in Fig.5,the inter-cooler of the BOG compressor (A 2)and the intercooler of the HP compressor (A 3)in Fig.1need to be determined for an optimal retro fit design.If the heat transfer areas increase,the effects of cooling the BOG consistently increase along with the capital cost of the heat exchangers.For this reason,the optimal heat transfer area of each heat exchanger needs to be determined to maximize the VP.The third design variable was the compression ratio (r Bi ,r Hi )for each stage of the BOG and HP compressors.The total compression ratio of the compressors is determined by the recondensation pressure,but the compression ratio for each stage should be determined to achieve minimum operating costs.In the proposed design,the high-pressure LNG stream is used for the 3heat exchangers.The high-pressure LNG stream splits into 3paths.The fourth design variable was the split ratio of the high-pressure LNG stream to the BOG cooler (s 1),the BOG compressor intercooler (s 2),and the HP compressor intercooler (s 3)shown in Fig.9.For a minimum total operating cost,the split ratio needs to be optimized.The constraints were considered for the feasible design vari-ables,which were obtained by solving the optimization.Constraints on heat and mass balance,on a theoretical model for unit operation,and on phase equilibrium were taken into account using process modeling.The compression ratio of each stage should change in the range from 1.5to 3.5shown by Eqs.(7)and (8).In addition,the discharge pressure of the BOG compressor shouldtheFig.7.The superstructure of the retro fitdesign.Fig.8.The recondensationpressure.Fig.9.The split ratio of the high-pressure LNG stream to the BOG cooler (S 1),the BOG compressor intercooler (S 2),and the HP compressor intercooler (S 3).C.Park et al./Energy 44(2012)69e 7874same the recondensation pressure,which was already determined,and the discharge pressure of the HP compressor should be 76kg/cm 2of the send-out pressure shown by Eqs.(9)and (10).The split of the high-pressure stream should remain in the range from 0to 1shown by Eq.(11).The summation of the split ratio should become one shown by Eq.(12).When the BOG stream moves to the second stage of the compressors,the phase of this stream should remain in the vapor state.The vapor fraction (vf B ,vf H )of the BOG stream,which heads for the second stage of the compressors,should be maintained at one shown by Eqs.(13)and (14).In addition,the temperature difference,which are correlated in terms of heat exchanger area,split ratio,heat capacity of BOG (C BOG )and LNG (C LNG ),between the BOG stream and the high-pressure LNG stream in the BOG cooler (D T 1),in the BOG compressor intercooler (D T 2),and the HP compressor intercooler in (D T 3)should be higher than the minimum approach temperature (D T min )shown by Eq.(15).1:5 r Bi 3:5;i ¼1;2(7)1:5 r Hi 3:5;i ¼1;2(8)1:1Âr B1Âr B2¼P R (9)P R Âr H1Âr H2¼74:53(10)0 s i 1;i ¼1;2;3(11)Xs i ¼1;i ¼1;2;3(12)vf B ðP R ;r B1;A 2;s 2Þ¼1(13)vf H ðP R ;r H1;A 3;s 3Þ¼1(14)D T i ðA i ;s i ;C BOG ;C LNG Þ!D T min ;i ¼1;2;3(15)4.ResultsThe optimization problem formulated in chapter 3was solved with user de fined non-linear programming in order to find the optimal design variables that can maximize the VP of the proposed design.parison to the base designAs presented in Table 4,a decrease in the recondensation pressure (from 9.81bar to 5.56bar)reduced the operating cost of the BOG compressor.Additionally in the proposed design,the BOG stream was totally condensed in the recondenser.Since there was no BOG rate for the HP compressor,the HP compressor was not put into operation,and the operating cost of the HP compressor became zero.Due to the above reason,the split ratio of the HP compressor inter-cooler and heat transfer area became zero in the optimization results.In this study,the proposed design was based on the minimum send-out case.If the BOG stream was totally condensed through the recondenser in the minimum send-out case in which the least amount of the LNG stream is used for the condensation,any case of the proposed design needs not to include the HP compressor.Thus,in the proposed design,the capital costs were reduced by eliminating the HP compressor unit,shown in Fig.10.The operating costs of the base design and proposed design are shown in Fig.11.Due to the decrease in the recondensation pressure and increase in the compressor ef ficiency by intercooling,the operating cost of the BOG compressor was reduced.Since the BOG stream was totally condensed,the HP compressor was not put into operation and the operating cost of the HP compressor became zero.The proposed design totally reduced the energy cost of 36.84%in the minimum send-out case.Table 4A comparison of the design variables.VariableBasic design Proposed design Recondensation pressure (P R ),bar 9.81 5.56Area of BOG cooler (A 1),m 2095.46Area of BOG comp.intercooler (A 2),m 2096.70Area of HP comp.intercooler (A 3),m 20e Pressure ratio of BOG comp.(r B1) 2.86 2.00Pressure ratio of BOG comp.(r B2) 2.86 2.35Pressure ratio of HP comp.(r H1) 2.76e Pressure ratio of HP comp.(r H2) 2.76eSplit ratio to BOG cooler (s 1)00.589Split ratio to BOG comp.intercooler (s 2)00Split ratio to HP Comp.intercooler (s 3)0.411Fig.10.The superstructure of the proposed design.C.Park et al./Energy 44(2012)69e 78754.2.Sensitivity analysisIn order to find the effect of the LNG send-out rate,which changes due to changes in the seasons and time,the optimal LNG split ratio for the BOG cooler was determined by increasing LNG send-out rate from the minimum rate to the maximum rate [23].Table 5shows the operating costs as the split ratio for the BOG cooler and the LNG send-out rate change.At a send-out rate of 400,000kg/h,the operating costs due to the changing split ratio are shown in Fig.12.When the split ratio ranges from 0.2to 0.8,the split ratio had little effect on the operating costs.The optimal split ratio was determined for each send-out rate based on the results of the sensitivity analysis shown in Table 6.The energy saving cost was calculated by subtracting operating cost of the proposed design,in which the send-out rate and split ratio changed,from the operating cost of the base design,in which the send-out rate changed.Fig.13presents the energy saving ratio and cost according to the send-out rate at the optimal split ratio.The energysavingFig.11.A comparison of operating costs.Table 5Total operating cost according to the split ratio and send-out rate.Send-out flow rate (kg/h)Split ratio (for BOG compressor intercooler)0.10.20.30.40.50.60.70.80.9Total operating cost (kW)2,20,0003136.843116.533112.613111.083111.103111.253111.533112.233115.722,40,0003240.403222.243218.653217.333217.333217.453217.693218.283221.192,60,0003346.043329.713326.443325.293325.283325.343325.543326.053328.502,80,0003453.393438.643435.623434.643434.613434.613434.763435.183437.273,00,0003561.803548.383545.623544.863544.903544.973545.103545.433547.223,20,0003671.053658.773656.243655.663655.763655.903656.133656.573658.143,40,0003781.043769.763767.433767.013767.163767.373767.693768.283769.853,60,0003891.753881.353879.203878.933879.113879.383879.793880.513882.243,80,0004003.133993.513991.513991.373991.593991.913992.393993.223995.134,00,0004115.114106.174104.304104.294104.544104.904105.444106.374108.446,00,0005256.245251.265250.645250.905251.245251.735252.495253.825256.718,00,0006416.526413.196413.276413.506413.816414.276414.996416.276419.2310,00,0007584.437582.297582.447582.647582.927583.327583.967585.127587.9212,00,0008756.088754.758754.888755.058755.298755.648756.208757.248759.8314,00,0009929.839929.049929.169929.319929.529929.839930.339931.269933.64Fig.12.The operating costs due to the changing split ratio at send-out rate of 400,000kg/h.Table 6The optimal split ratio according to the send-out rate.Send-out flow rate(kg/h)Optimal split ratio Energy saving ratio (%)2,20,0000.4831.92,40,0000.4631.42,60,0000.4830.92,80,0000.5230.43,00,0000.4329.93,20,0000.4429.43,40,0000.4629.03,60,0000.3928.53,80,0000.4028.14,00,0000.3627.76,00,0000.3824.08,00,0000.2721.310,00,0000.2819.212,00,0000.2517.614,00,0000.2616.3C.Park et al./Energy 44(2012)69e 7876。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPE 121762完井中新微乳型原油破乳剂的实验室和现场研究摘要在石油工业中,水和油的乳化形成了一个持续的生产问题,受到了大量的技术的关注。

在有利于环保的基础上,我们利用一种新的微乳型破乳剂(ME-DeM)对水包油(o/w)乳液的破乳效果进行测试。

本产品测试了一系列的原油,已被证明相比于其他破乳剂更具有商业效用(DeM)。

结果表明在现场试验中,本产品能对破乳效果产生明显的改善,更多的实地研究正在筹备之中。

绪论乳液的形成与稳定油水乳液已经成为石油工业研究课题之一,因为它关系到先关的操作问题,而且需要考虑生产,回收,输送,运输和提炼程序中的费用。

一个非常好的名叫“一个国家的艺术审查” 并有关于原油乳液的总结是由Sunil Kokai提出的(Kokai 2002年)。

乳状液,可定义为结合两个或两个以上的混容液体彼此不会轻易的分离开来单独存在,它以胶体大小或更大的小液滴形式存在,可导致高抽水成本。

如果水分散在连续的油相中,被称为油包水型(w/o)乳状液;如果油分散在连续的水相中,则被称为水包油型(o/w)乳状液。

如果没有稳定的油水界面,就没有乳状液的热力学稳定。

液滴的聚集会导致不稳定的乳液(Holmberg, et al. 2007)。

然而油水界面处的部分聚集会使界面更加稳定从而阻碍油水各自之间的聚并(破乳)进程。

材料如自然形成或注射的表面活性剂,聚合物,无机固体以及蜡,可使界面更稳定。

乳化形成过程也受到流体混合,剪切,湍流,扩散,表面活性剂聚集(Miller 1988),空间位阻稳定(非离子表面活性剂),温度和压力的影响。

在被驱散的液滴周围,表面活性剂可以形成多层次的层状液晶的增长。

当流体滤液或注射液与储层液体混合,或当产出液的PH变化是,则会产生乳状液。

沥青质,树脂和蜡的组成和浓度(Lissant 1988, Auflem 2002, Sifferman 1976, Sifferman 1980)是影响乳状液形成和稳定的因素。

在含有大量的沥青质的油中,沥青则会作为表面活性剂来促进乳状液的形成而且很难被破坏。

表面活性剂的使用可提高乳状液的热力学稳定性,并减少界面张力。

但研究得出的结论是,乳状液的稳定性不是完全依赖于页面张力值,还有个因素是界面膜性能(Berger, et al.1988, Posano, et al. 1982),并表明虽然降低界面张力有利于乳状液的稳定,但如果界面张力过低则可能导致不稳定的形成。

表面活性剂,聚合物和吸附粒子可以建立强大的界面膜。

增加界面膜的稳定性也产生更大的表面和体积粘度。

这些因素可能会限制膜变薄和破裂,这是由于他们影响了界面的粘度和弹性性能。

破乳机理及影响因素当分散相之间的界面膜阻碍液滴的聚集并接着分散成油相和水相,乳状液变的稳定。

由于油水在密度,絮凝,聚结和能引起分散相通过连续相扩散的Ostwald ripening上的差异,乳状液不稳定的机理包括乳化和沉降(Holmberg, et al. 2007, Auflem 2002)。

界面张力和界面流变学研究表明,破乳剂吸附在油水界面,其引起的相分离的分离速度与破乳剂的浓度影响着油水界面的弹性(Goldszal and Bourrel 2000, Key and Gutierrez 1999)。

界面膜变薄导致膜破裂。

界面膜上的流体粘度的越低,界面膜就越容易破裂。

破乳剂吸附在油水界面的能力与破乳剂在油水相中的溶解度及分枝数有关。

最近的工作表明,许多原油的烃链都有与其相适应的碳数(PACN)(Berger, et al. 1988)。

处理的效果先是取决于破乳剂进入油水界面的速度,然后取决于破乳剂在界面上采取的行动。

随着界面粘度的降低,流体界面的流动(Freeman 1999)被认为在破乳过程中发挥了重要的作用。

研究表明,温度和压力影响着乳状液的稳定性(Osasha and Al-Shiwaish 2006)。

高温时降低界面张力和粘度的重要因素。

在某些情况下,仅温度就可以破坏乳液。

最令人关注的是,井底那个部位的温度不会破坏乳状液的稳定性。

在这些情况下,化学干预成为解决这一问题的关键。

在实施破乳机理时,化学破乳剂的关键特性是必须能解决各种使乳状液稳定的因素。

破乳是通过降低乳状液的界面张力来完成的。

为了破除分散水周围界面膜的稳定性,破乳剂必须要有很强的吸附界面膜的能力,必须要有平衡区分油相和水相的能力,必须能够在乳液中有效扩散,最后促进界面膜变薄。

破乳剂不许能够使小液滴凝聚起来。

凡有稳定固体的界面膜,破乳剂应该有改变固体润湿性的能力,使得破乳剂能够进入到连续相中(Auflem 2002)。

化学:表面活性剂的类型和所需的破乳剂性能乳状液的破乳可以通过机械,电气和化学方法来完成。

如加热,静电沉淀和过滤都是可用的。

和这些方法相比,化学破乳剂具有很多优点。

化学破乳剂投资低,能够灵活的改变乳状液的特性。

许多化学破乳剂已经被开发并突入商业使用。

破乳添加剂领域已经发展并应用了广泛的化学品和不稳定机制:有机化合物,如表面活性剂和溶剂;聚合物,共聚物和树脂;无机材料如盐和氨基酸;还有酶。

其中的一个旧的标准和最便宜的化学品包括壬基酚醚和更先进的壬基酚和叔丁基苯酚甲醛缩合材料与乙烯和环氧丙烷(树脂)。

他们都是非离子型并可同时溶于油相和水相中。

其他常见的非离子型添加剂包括分子量为2~4000的乙氧基丙二醇与,乙烯和环氧丙烷共聚物和氧化胺.一些非离子表面活性剂的一般结构如下所示。

其他化学方法包括使用阴离子和阳离子材料。

举个例子,一个常用的阴离子材料是一种烷基萘磺酸钠盐,如dihexyl amine会将表面活性剂拖拽到了油相中.如果是沥青质的原油,那么通常的处理是增加油溶性磷酯或使用反磺酸盐和胺.通常情况下稳定乳液需要使用酸结合破乳剂来达到破乳效果.最常用的为了润湿油湿润湿固体的酸是十二烷基苯磺酸(DDBSA )。

常见的酸如柠檬酸在水湿的环境中也是有效的。

溶剂已普遍使用在带甲苯,二甲苯的芳香烃和最常见的类似乙二醇醚( EGMBE )的共溶剂中。

随着使用环保材料的趋势,苯酚和芳香溶剂使用较少(Dalmazzone and Noik 2001) 。

无毒有机硅表面活性剂是最近的研究的新课题(Dalmazzone et al. 2005)。

一些较常见的用于破乳的非离子材料如下所示。

在开展这项工作中,对几种类型的产品进行了研究,其中包括一系列的表面活性剂,嵌段共聚物,溶剂,盐和氨基酸。

本文的重点是基于微乳型表面活性剂体系同各种非离子型破乳剂相结合,与同一系统不含微乳液的常用线性壬基酚基醚做对比。

微乳微乳解决了目前石油,水和表面活性剂在至少三个不同的微观结构上的热力学稳定和光学各向同性。

油和水的小分散相由薄薄的一层两亲层分开(化合物具有亲水性和亲油性两种性质)。

水和油的微乳液有液滴尺寸约为10-100纳米的稳定,而液滴尺寸稍大些(1-10微米)的乳液,是不稳定的。

与乳液需要相当的混合能源相比,微乳可形成自发的。

贝尼塔给出了比较了macroemulsions ,纳米或miniemulsions ,和微乳的差异(Benita 2005) ,指出自由能量增益(由于表面活性剂在某种程度上降低了油水两相之间的界面张力,并转化为变化熵系统)足以使液滴完整和稳定。

鉴于微乳液的微滴较小,所以其内部表面所要求表面活性剂比乳液的高。

形成和控制微乳液组织和行为的一些重要变量包括表面活性剂的类型和浓度,碳氢溶剂的特性和浓度,共同表面活性剂的种类和浓度。

一些微乳液的配方已经被研制出来,并取得了专利,应用于油田,他们包括在钻井和固井作业,水力压裂,酸化,修井,破乳,和清洁等方面(Purslely, et al. 2008)。

一些特殊的配方可在油或水的外部微乳。

本文件中详细讲解的微乳型破乳剂就是一个外部水基微乳。

外部油基微乳破乳剂也已研制并成功地测试,其结果在本文中不讨论(Dantas et al. 2001, Bourrel, et al. 1979)。

实验表征和测试方法一些非常优秀的破乳技术概述,表征技术和实验室评价已在上文提到.其中一个例子是R.J. Mikula和V.A. Munoz的《表征破乳剂》在第2章表面活性剂-原理与在石油工业应用,Ed. Laurier Schramm, 2000 (Mikula and Munoz 2000)。

在这项研究中,微乳型破乳剂的特点在于表面张力,液滴粒度分布,界面张力与各种油和破乳性能。

用于乳化分离的破乳剂配方筛选为比例为1:1原油和混合处理液(详见下文)。

来自各个实地地点的原油被用来进行了分析油和水及固体的含量,乳液,API重力,石蜡含量,沥青质含量,倾点和界面张力。

静态和动态表面张力的测量分别使用Kruss 100 Wilhelmy板和SITA泡沫检测。

用分散技术DT公司1200声谱仪来确定超声衰减谱和雾滴粒度分布(Zelenev 2009)。

实验测定了五份在井底位置的原油的下界面张力(IFT)和密度.IFT模拟试验利“DuNouy环”保持技术,保持原油水浴温度略高于测试温度,在试验期间使用绝缘杯。

这项研究采用了若干种类型的产品,其中包括了一系列的表面活性剂,嵌段共聚物,溶剂,盐和氨基酸。

表面活性剂中包括酒精和聚醚醚,改性聚醚醚,环氧乙烷/环氧丙烷(EO/PO)嵌段共聚物,聚胺和多胺,苯酚醚等。

本文侧重于各种带有微乳系统的非离子型破乳剂。

比较破乳筛选试验,以确定加入各种破乳剂的各个原油在超过温度范围(典型的数据为70F和160F )的分离效率。

处理液为加入了50毫升的2w%混合浓度KCl的破乳剂。

在华林搅拌器中,50毫升的原油和50毫升的处理液在指定的时间(通常为15秒)混合为一个统一的混合速度。

这种混合物被立刻移送量筒和水/油分离器,测定水的破乳所用的破乳剂的百分量随时间的函数。

破乳剂在模拟破裂流动条件下进行了测试(Paktinat et al. 2005)。

测试流体流经长6英尺充满混合沙石的混合固体。

样品流过管子的每个单位长度均被记录下来。

样品流经三个表面活性剂系统,样品在每个阶段被加入表面活性剂进行破乳试验。

表面活性剂体系包括:微乳液,壬基酚表面活性剂体系,酒精乙氧基化物表面活性剂系统。

三个原油乳液流体样品进行了破乳速率的测试。

破乳率与采样位置图绘制如下。

在科罗拉多州的石油和天然气井进行了两个利用微乳液破乳的现场破乳测试实验。

石油和天然气的测试数据摘要如下。

结果实验室微乳型破乳剂(ME-DeM)的特征列于表1。

分析的声谱(图1)表明,双峰粒度分布中有很大的一部分材料在微乳范围(100nm以下的液滴)内,有较小一部分在乳液范围(1μm以上的液滴)。

对以轻原油为主的来自不同油田现场的七种原油进行了微乳型破乳剂的破乳测试。

相关文档
最新文档