反比例函数与实际问题复习专业教案(带答案)
反比例函数复习教案
反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。
3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。
2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。
三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。
3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。
四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。
五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。
在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。
通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。
在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。
人教版九年级数学下册《反比例函数》章节复习教案
第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
反比例函数复习教案
反比例函数复习【教学目标】1.知道反比例函数的定义、图像、性质及几何意义。
2.熟练使用反比例函数的性质和几何意义。
3.综合使用一次函数和反比例函数的知识解决相关问题。
【教学重点、难点】1.熟练使用反比例函数的性质和几何意义。
2.综合使用一次函数和反比例函数的知识解决相关问题。
【活动方案】活动一 知识回顾1、反比例函数的定义:一般地,形如k y x=(k 为常数,k ≠0)的函数称为反比例函数,另外,反比例函数的关系式也可写成:xy=k 或y =kx -1的形式。
2、画出反比例函数6y x =和6y x=-的图像并根据所画图像说出反比例函数k y x =k ≠0)的的图像的性质。
3、比较正比例函数和反比例函数的图像和性质4、练一练(自主完成后口头展示)(1)函数20y x=的图象在第________象限,在每一象限内,y 随x 的增大而_________. (2)函数10y x=-的图象在第________象限,在每一象限内,y 随x 的增大而_________. (3)函数21a y x+=- 的图象,当x>0时,图象在第____象限,y 随x 的增大而_________. (4)已知反比例函数的图象经过点A(4,5) ,则函数的解析式为 ______ __; 这个函数的图象分别在第________象限,在每一象限内,y 随x 的增大而_________.(5) 判断 点B (3,-10),是否在函数30y x=-的图象上. ;判断 点C (2,-5),是否在函数 20y x=-的图象上. 。
(6)函数 22k y x--=的图象上有三点(-3, 1y ), (-1, 2y ), (2, 3y ),则函数值1y 、2y 、3y 的大小关系是_______________;活动二 反比例函数的几何意义(自主探究并将得到的规律写出来)已知反比例函数9y x =,P 为函数图象上的一点,过P 做x 、y 轴的垂线段。
第26章 反比例函数复习教案
第26章反比例函数复习(2课时)一、教学目标1.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质.2.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义.3.培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值.二、重难点1.重点:掌握反比例函数概念、图象和主要性质.2.难点:应用反比例函数、结合几何、代数知识解决综合性问题.三、教学过程(一)学法解析1.认知起点:在学习了一次函数,反比例函数的基础上进行知识的重温,•回顾.2.知识线索:3.学习方式:采取综合学习,分类归纳的方式,借助投影仪,•结合数形思想进行深入探究.(二)回顾交流,反思提炼①问题提出:1.反比例函数有哪些概念?试举例说明. 2.谈谈函数y=3x与y=-3x的图象的联系和区别.学生活动:归纳反比例函数的概念,一般地,y=k x(k 为常数,k ≠0)•叫做反比例函数.教师引导:(1)反比例函数的等价形式为y= k x⇔y=kx -1(k ≠0) xy=k (k ≠0)⇔变量y 与x 成反比例,比例系数为k .(2)判断两个变量是否是反比例函数关系有两种方法: 方法1,按照反比例函数定义判断; 方法2,看两个变量的乘积是否为定值. 3.课堂演练:(1)矩形面积是60cm 2,这时底ycm 和高xcm 之间的关系是反比例函数吗?[是,y=60x] (2)在匀速直线运动中,路程s 、时间t 、速度v 三者之间当路程s 一定时,•时间t 与速度v 的关系是怎样的关系?[反比例函数关系,t=s v(s 是常数)](3)下列函数中,反比例函数是(B ). A .y=-9.34xB y x=-C .y=-x+7D .y=-x 2-1 (4)设菱形的面积为48cm 2,两条对角线分别为xcm 和ycm , ①求y 与x 之间的函数关系式;(y=96x) ②求当其中一条对角线x=6cm ,另一条对角线y 的长.②问题提出:1.观察上述反比例函数(y=-3x ,y=3x)的图象,回答下面问题:(1)反比例函数图象是怎样的曲线?(双曲线) (2)画反比例函数的图象应注意什么?[①反比例函数的图象不是直线,“两点法”是不能画的;•②点选的越多画图越精确;③画图注意对称性、无限延伸] (3)反比例函数具有哪些性质? 2.课堂演练.(1)在函数y=21m x--(m 为常数)的图象上有三点(-1,y 1),(-14,y 2),(12,y 3),则函数值y 1,y 2,y 3的大小关系是(D ). A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 1<y 3<y 2 D .y 3<y 1<y 2 (2)如图,A ,B 是函数y=1x的图象上交于原点O 对称的任意两点,AC ∥y 轴,BC•∥x 轴,△ABC 的面积S ,则选(C ). A .S=1 B .1<S<2 C .S=2 D .S>2 (三)综合应用,提升能力1.已知y=y 1+y 2,y 1与x+1成正比例,y 2与x 2成反比例,并且x=1时,y=1;x=3时,y 2=23+1,•求x=13时y 的值. (四)随堂练习,巩固深化2.如图,过双曲线y=2x上两点A 、B 分别作x 轴、y 轴的垂线,若矩形ADOC•与矩形BFOE 的面积分别为S 1、S 2,则S 1与S 2的关系是什么? (五)小结:谈谈你的收获(六)布置作业(七)板书设计四、教学反思:。
26.2实际问题与反比例函数(教案)初中数学人教版九年级下册
第二十六章反比例函数26.2实际问题与反比例函数教案教学目标:1.根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题3.在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型教学重点:1.根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题教学难点:通过所列的反比例函数解析式解决实际问题教学过程:一、复习提问,引入新课教师提出问题:我们已经学习了反比例函数的定义、图象和性质,回顾一次函数、二次函数的学习过程,接下来我们应该探究什么?类比一次函数、二次函数的学习过程,引出如何应用反比例函数解决实际问题.二、探究新知探究一:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少?(结果保留小数点后两位)思考:(1)圆柱的体积公式是什么?(2)该探究题中包含哪些量?哪些是常量?哪些是变量?你能写出S与d的关系式吗?你能从函数的角度来解释这个关系式吗?(3)把储存室的底面积S定为500m2,从函数角度来看,你怎么理解?把储存室的深度改为15m又是什么意思呢?解:(1)∵V S d=⋅∴410VSd d ==(2)∵底面积S定为500 m2∴410 500d=∴20d=(3)∵深度改为15 m∴410666.6715S=≈答:(1)函数关系式为410Sd =;(2)当S定为500 m2时,应掘进20m;(3)当深度改为15m时,底面积应改为约666.67 m2.总结:应用反比例函数解决实际问题的一般步骤:①仔细审题,确定变量和常量;②适当方法,得到函数解析式;③根据已知,代入求出未知量;④结合所求,写出实际问题答案.探究二:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:(1)∵308240v t⋅=⨯=∴240 vt =(2)∵要求船上的货物不超过5天卸载完毕∴2405 tv=≤∴48v≥答:(1)函数关系式为240tv =;(2)平均每天至少要卸载48吨.师生活动:学生独立思考,教师适时提问,在这个问题中常量是什么?变量是什么?是否符合反比例函数的模型,如果是反比例函数,那么其比例系数是什么?在此基础上,学生写出平均卸货速度v(单位:吨/天)与卸货天数t之间的函数关系式.教师引导学生从函数角度出发,该如何理解“不超过5天卸载完毕”,并进行讨论,寻求解决问题的方法.学生交流展示,教师对学生中出现的不同解法给予点评,并规范书写过程.三、例题练习例题1小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(助力×阻力臂=动力×动力臂)(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5 m 时,撬动石头至少需要多大的力?(2)若想使动力F 不超过题(1)中所用力的一半,则动力臂l 至少要加长多少?解:(1)∵12000.5600Fl=⨯=∴600 Fl =∵动力臂为1.5m∴6004001.5F==(2)∵动力F 不超过所用力的一半∴6004002002Fl=≤=∴3l≥∴3 1.5 1.5-=答:(1)撬动石头至少需要400 N 的力;(2)动力臂 l 至少要加长 1.5 m.例题2一个用电器的电阻是可调节的,其范围为 110~220 Ω.已知电压为 220 V.2()U P R= (1)功率 P 与电阻 R 有怎样的函数关系?(2)这个用电器功率的范围是多少?解:(1)∵220U = ∴2220P R= (2)∵110220R ≤≤ ∴2220110220P≤≤ ∴220440P ≤≤答:(1)函数关系式为:2220P R=; (2)这个用电器功率的范围是 220~440 W.目的:让学生进一步体会数学建模思想,并用反比例函数解决实际问题.四、课后练习1.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A.50y x =+B.50y x =C.50y x =D.50x y =解析:由城市市区人口x 万人,市区绿地面积50万平方米, 则平均每人拥有绿地50y x=. 故选:C.2.根据物理学知识,在压力不变的情况下,某物体承受的压强(Pa)p 是它的受力面积()2m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为________Pa .答案:4002.根据物理学知识,在压力不变的情况下,某物体承受的压强(Pa)p 是它的受力面积()2m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为________Pa .3.某型号汽车行驶时功率一定,行驶速度v (单位:m/s )与所受阻力F (单位:N )是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度4. 在质量不变的情况下,某物体的密度()3kg /m ρ与体积()3V m 成反比例,其函数图象如图所示,解答下列问题:(1)试确定ρ与V 之间的函数表达式;(2)当310m V =时,求物体的密度.6(0)V V =>. ()30.6kg /m =. 解析:(1)设ρ与V 之间的函数表达式为, 将的坐标代入,与之间的函数表达式为. (2)当时, 物体的密度 . 六、小结今天我们学习了哪些知识?1.能够根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题七、板书设计实际问题与反比例函数应用反比例函数解决实际问题的一般步骤: ①仔细审题,确定变量和常量;(0)k V V ρ=>(3,2)A ρ==6k ∴=ρ∴V 6(0)V Vρ=>310m V =()360.6kg /m 10ρ==②适当方法,得到函数解析式;③根据已知,代入求出未知量;④结合所求,写出实际问题答案.。
反比例函数的实际应用、 实际问题与反比例函数(教案)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
九年级数学下册《实际问题与反比例函数》教案、教学设计
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提高数学素养:
1.通过小组合作、讨论的方式,培养学生发现问题、分析问题、解决问题的能力。
2.利用实际问题引入反比例函数,让学生体会数学与现实生活的联系,提高数学应用意识。
1.学生在数学思维和逻辑推理方面的个体差异,针对不同层次的学生进行分层教学,使全体学生都能在原有基础上得到提高。
2.培养学生将实际问题转化为数学模型的意识,引导学生从生活实例中发现反比例关系,提高学生运用数学知识解决实际问题的能力。
3.注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生主动探究、合作交流的学习习惯。
4.针对学生在解决实际问题时可能出现的困惑,教师应及时给予指导,帮助学生建立信心,克服困难,提高解决问题的能力。
5.注重培养学生的数形结合思想,引导学生通过观察、分析反比例函数图像,深入理解反比例函数的性质,为后续学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:反比例函数的定义、性质及其在实际问题中的应用。
2.引导:很好,这就是我们今天要学习的反比例函数。反比例函数是描述两个变量成反比关系的数学模型。那么,什么是反比例函数呢?它有哪些性质?我们又该如何应用它来解决实际问题呢?
(二)讲授新知
在这一环节,我将引导学生探究反比例函数的定义、性质和应用。
1.定义:反比例函数是一种特殊类型的函数,其一般形式为y = k/x(k≠0)。其中,x和y是两个变量,k是常数。
2.难点:将实际问题抽象为反比例函数模型,运用反比例函数解决实际问题。
(二)教学设想
1.教学方法:
反比例函数复习教案
反比例函数复习教案【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式()0k y k x=≠,能判断一个给定函数是否为反比例函数;2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数()0k y k x=≠的性质以及k 的几何意义,能利用这些性质分析和解决一些简单的实际问题.一、反比例函数的概念 一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.特别说明:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y随x的增大而减小。
在一个支上(每一个象限内),y随x的增大而增大。
对称性图像关于原点对称;关于y=x、y=-x对称四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.双反比例函数中运用k的几何意义S矩形ABCD=|k1|-|k2|, S△ABO=|k1|-|k2|2例1.下列函数中,y可以看作是x的反比例函数的是()A.y=B.y=C.y=﹣+1 D.y=﹣2x﹣1变式训练1、已知函数y=(k﹣2)x|k|﹣3(k为整数),当k为时,y是x的反比例函数.例2、若点A(1,3)在反比例函数y=的图象上,则k的值是()A.1 B.2 C.3 D.4例3、一次函数1=+与反比例函数ay ax=-在同一坐标系中的大致图yx象是()A.B.C.D.变式训练3、若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1例4、如图,P为反比例函数y=k的图象上的点,过P分别向x轴和xy轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为_____.例5、如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=?上的点,分别过点A、B作x轴和例6、如图,点A、B是双曲线y=6xy轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__.变式训练1、如图,一次函数y=x﹣2的图象与反比例函数y=的图象交于A、B两点,求△OAB的面积.变式训练2、如图,在平面直角坐标系xOy 中,平行四边形ABCD 的顶点A 、D 在x 轴上,顶点B 在y 轴上,顶点C 在反比例函数y =12mx-(0)x >的第一象限的图象上.(1) m 的取值范围为 ; (2) 若平行四边形ABCD 的面积为6. ①求反比例函数的表达式; ②若4AD =时,求点B 的坐标.。
实际问题与反比例函数教案doc
26.2实际问与反比例函数(1)教学目标:1、知识与技能:利用反比例函数的解析式、图象解决实际问题。
2、过程与方法:经历探索反比例函数解决实际生活中的问题的过程,体会反比例函数的解析式和图象在解决实际问题中的作用,进一步体会数学建模思想,培养学生的数学应用意识3、情感、态度与价值观:在运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
重点、难点1.重点:利用反比例函数的知识分析、解决实际问2.难点:分析实际问中的数量关系,正确写出函数解析式3.难点的突破方法:用函数观点解实际问,一要搞清目中的基本数量关系,将实际问抽象成数学问,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问。
教学中要让学生领会这一解决实际问的基本思路。
教学过程:一、复习旧知:复习常见的与实际问题相关的反比例关系,并由此引入新课。
二、新课讲解:1、探究活动(1):市煤气公司要在地下修建一个容积为4m的圆柱形煤气储存室.102(1)储存室的底面积S(单位: 2m)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为5002m,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?2、归纳小结:3、练习强化1:如图,某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?4、探究活动2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?5、练习强化2:变式装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)这批货物的质量是多少?(2)写出y与x之间的函数关系式;(3)货车到达目的地后开始卸货,如果以min的速度卸货,需要多长时间才能卸完货物?三、反思小结,观点提炼:四、作业布置:课本P16 2 、7。
中考复习教案 反比例函数 附练习试卷(含答案)
中考复习教案反比例函数附练习试卷(含答案)一、教学目标1. 理解反比例函数的定义,掌握反比例函数的性质和图象特征。
2. 能够运用反比例函数解决实际问题,提高解决问题的能力。
3. 熟练掌握反比例函数的运算公式,提高运算速度和准确性。
二、教学内容1. 反比例函数的定义与性质2. 反比例函数的图象特征3. 反比例函数的应用4. 反比例函数的运算公式5. 练习题及答案解析三、教学重点与难点1. 反比例函数的定义与性质2. 反比例函数的图象特征3. 反比例函数的应用4. 反比例函数的运算公式四、教学方法1. 采用讲解法,引导学生理解反比例函数的定义和性质。
2. 采用直观演示法,让学生通过观察图象理解反比例函数的图象特征。
3. 采用案例分析法,培养学生运用反比例函数解决实际问题的能力。
4. 采用练习法,提高学生反比例函数运算的速度和准确性。
五、教学过程1. 反比例函数的定义与性质(1) 引导学生回顾正比例函数的定义与性质。
(2) 引入反比例函数的概念,引导学生理解反比例函数的定义。
(3) 讲解反比例函数的性质,如:系数k的作用、图象特征等。
2. 反比例函数的图象特征(1) 引导学生观察反比例函数的图象,总结图象特征。
(2) 讲解反比例函数图象的形状、渐近线等特征。
3. 反比例函数的应用(1) 举例讲解反比例函数在实际问题中的应用。
(2) 引导学生运用反比例函数解决实际问题,提高解决问题的能力。
4. 反比例函数的运算公式(1) 讲解反比例函数的运算公式。
(2) 引导学生运用运算公式进行反比例函数的计算。
5. 练习题及答案解析(1) 布置练习题,让学生巩固所学知识。
(2) 讲解练习题答案,分析解题思路和方法。
中考复习教案反比例函数附练习试卷(含答案)教学目标:1. 理解反比例函数的定义,掌握反比例函数的性质和图象特征。
2. 能够运用反比例函数解决实际问题,提高解决问题的能力。
3. 熟练掌握反比例函数的运算公式,提高运算速度和准确性。
中考复习教案 反比例函数 附练习试卷(含答案)
中考复习教案反比例函数附练习试卷(含答案)一、教学目标:1. 理解反比例函数的定义和性质。
2. 掌握反比例函数的图像和特征。
3. 能够运用反比例函数解决实际问题。
二、教学内容:1. 反比例函数的定义:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是常数,k≠0),函数y = k/x就称为反比例函数。
2. 反比例函数的性质:(1)当x增大时,y值减小;当x减小时,y值增大。
(2)反比例函数的图像是一条通过原点的曲线,称为双曲线。
(3)反比例函数的渐近线是两条垂直于x轴的直线。
三、教学重点与难点:1. 反比例函数的定义和性质。
2. 反比例函数图像的特点和渐近线的理解。
四、教学方法:1. 采用问题导入法,引导学生思考反比例函数的实际意义。
2. 通过多媒体展示反比例函数的图像,帮助学生直观理解反比例函数的特点。
3. 运用例题解析,让学生动手练习,巩固反比例函数的应用。
五、教学过程:1. 引入:提问学生对反比例函数的了解,引导学生思考反比例函数在实际生活中的应用。
2. 讲解:讲解反比例函数的定义和性质,引导学生理解反比例函数的概念。
3. 演示:利用多媒体展示反比例函数的图像,让学生观察并描述反比例函数的特点。
4. 练习:给学生发放练习题,让学生独立解答,巩固对反比例函数的理解。
6. 布置作业:给学生发放课后作业,巩固所学知识。
附练习试卷(含答案):1. 判断题:(1)反比例函数的图像是一条直线。
()(2)反比例函数的渐近线是两条平行于x轴的直线。
()2. 选择题:(1)下列函数中,是反比例函数的是:()A. y = 2xB. y = 1/xC. y = x^2D. y = 2/x3. 填空题:(1)反比例函数的一般形式是______ = k/x。
(2)当x增大时,反比例函数的值______。
4. 解答题:(1)已知反比例函数的图像通过点(2,3),求该反比例函数的表达式。
答案:1. (1)×(2)×2. B3. (1)y (2)减小4. 反比例函数的表达式为y = 3/x。
(完整版)九年级数学反比例函数复习专题教案
在解题过程中,需要灵活运用反比例函数和一次函数的性质,如单调性、对称性、周期性 等。
注意细节处理,避免失误
在解题过程中,需要注意细节处理,如符号问题、计算问题等,避免因为细节失误导致整 个题目错误。
06
CATALOGUE
课程总结与拓展延伸
课程重点回顾与总结
01 02
解题能力评估
评估自己的解题能力,包 括审题、分析、计算等方 面,找出自己的不足之处 。
拓展延伸:反比例函数在其他学科中的应用
物理中的应用
在物理中,反比例函数可以用来 描述一些物理量之间的关系,如 电阻、电容、电感等。通过实例 让学生了解反比例函数在物理中
的应用。
化学中的应用
在化学中,反比例函数可以描述 一些化学反应的速率与浓度的关 系。通过实例让学生了解反比例
反比例函数的复合与分解
复合运算
将一个反比例函数作为另一个函 数的自变量进行复合,其结果可 能仍为反比例函数,也可能为其 他类型的函数。
分解运算
将一个复杂的反比例函数分解为 几个简单的反比例函数之和或之 积,以便进行进一步的运算或分 析。
反比例函数的图像变换
平移变换
将反比例函数的图像沿x轴或y 轴平移,不改变函数的形状和
01
联立两个函数的解析式,解方程组得到交点坐标。
判断交点个数及位置
02
通过比较函数值或观察图象,判断交点个数及在坐标系中的位
置。
利用交点解决问题
03
根据交点坐标,可以进一步求解与交点相关的其他问题,如面
积、长度等。
反比例函数与一次函数的综合题型
函数图象的绘制与分析
根据函数解析式,绘制反比例函数和一次函数的图象,并分析其 性质。
九年级数学下册《应用反比例函数解决实际问题》教案、教学设计
三、教学重难点和教学设想
(二)讲授新知
在导入新课之后,我会正式介绍反比例函数的定义,解释其一般形式y=k/x(k≠0)中的各个参数含义。通过数学软件或板书,演示反比例函数图像的绘制过程,让学生观察图像的特点,如双曲线形状以及图像在第一、三象限的分布。接着,我会讲解反比例函数的性质,如对称性、渐近线等,并强调k值对图像的影响。
4.教学评价:
-过程性评价:观察学生在课堂讨论、小组合作中的表现,评价其参与度和合作能力。
-终结性评价:通过课后作业、小测验等形式,评价学生对反比例函数知识点的掌握程度。
-反思性评价:鼓励学生在学习结束后进行自我反思,总结学习中的收获和不足。
四、教学内容与过程
(一)导入新课
课堂开始时,我将向学生展示一副地图,并提出问题:“同学们,你们在地图上查找距离时,是如何确定实际距离的?”通过这个问题,引导学生回忆比例尺的概念,进而导入反比例函数的学习。我会让学生观察比例尺上的比例关系,发现当实际距离变化时,比例尺上的长度也相应变化,而这种变化恰好符合反比例的关系。通过这个实际例子,学生能够初步感受到反比例函数在生活中的应用。
-学生在识别实际情境中的反比例关系时可能会感到困难,需要教师引导和练习。
-在解决综合性的数学问题时,学生需要灵活运用反比例函数知识,结合其他数学知识点,如方程、不等式等。
(二)教学设想
1.教学方法:
-采用问题驱动的教学模式,通过引入实际问题,激发学生的好奇心和探究欲望。
(完整版)反比例函数教案
第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。
中考复习教案_反比例函数_附练习试卷(含答案
中考复习教案_反比例函数_附练习试卷(含答案)教案章节:一、反比例函数的定义及性质【教学目标】1. 理解反比例函数的定义及其表达形式;2. 掌握反比例函数的性质,包括图像特征和基本性质;3. 能够运用反比例函数解决实际问题。
【教学内容】1. 反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),就称y是x的反比例函数;2. 反比例函数的性质:反比例函数的图像是一条通过原点的双曲线,其渐近线是x轴和y轴;3. 反比例函数的单调性:在第一象限和第三象限,反比例函数是单调递减的;在第二象限和第四象限,反比例函数是单调递增的;4. 反比例函数的实际应用。
【教学步骤】1. 引入反比例函数的概念,引导学生理解反比例函数的定义及其表达形式;2. 通过示例和练习,让学生掌握反比例函数的性质,包括图像特征和基本性质;3. 通过实际问题,让学生学会运用反比例函数解决实际问题。
【练习题目】1. 判断下列函数是否是反比例函数,并说明理由:a) y=2/xb) y=3x2. 画出下列反比例函数的图像:a) y=1/xb) y=2/xc) y=-1/x教案章节:二、反比例函数的图像和性质【教学目标】1. 能够绘制反比例函数的图像;2. 理解反比例函数的单调性和渐近线;3. 能够运用反比例函数的性质解决实际问题。
【教学内容】1. 反比例函数的图像:反比例函数的图像是一条通过原点的双曲线,其渐近线是x轴和y轴;2. 反比例函数的单调性:在第一象限和第三象限,反比例函数是单调递减的;在第二象限和第四象限,反比例函数是单调递增的;3. 反比例函数的渐近线:反比例函数的渐近线是x轴和y轴,即y=0和x=0。
【教学步骤】1. 通过示例和练习,让学生学会绘制反比例函数的图像;2. 通过示例和练习,让学生理解反比例函数的单调性和渐近线;3. 通过实际问题,让学生学会运用反比例函数的性质解决实际问题。
【练习题目】1. 绘制下列反比例函数的图像:b) y=-1/xc) y=2/x2. 判断下列函数的单调性,并说明理由:a) y=1/xb) y=-1/xc) y=2/x教案章节:三、反比例函数的性质及应用【教学目标】1. 理解反比例函数的性质,包括单调性、渐近线等;2. 能够运用反比例函数的性质解决实际问题;3. 掌握反比例函数的图像特征。
反比例函数复习课教案
反比例函数复习课教案一.教学目标㈠知识与技能目标1.了解反比例函数的概念。
2.进一步理解和掌握反比例函数的图像和性质并能灵活运用。
3.能灵活运用反比例函数解决实际问题。
㈡过程与方法目标通过对反比例函数知识的回顾、考点自测和例题讲解培养学生对知识的交流归纳能力和综合运用的能力感㈢情感态度目标培养学生数形结合思想,增强学生的自信心和战胜困难的勇气二.教学重点,难点.1反比例函数的图像和性质.2.灵活运用的反比例函数解决问题三.教学过程.【知识回顾】1.形如的函数叫做反比例函数,自变量的取值范围是,的一切实数,自变量的次数是,其中叫做比例系数。
2.反比例函数的表示形式:①②3.反比例函数的图像和性质。
①K>0双曲线的两个分支分布在象限,在每个象限内Y随X的增大而②K<0双曲线的两个分支分布在象限,在每个象限内Y随X的增大而4.反比例函数Y= 中K的意义反比例函数Y=(K≠0)中比例系数K的几何意义:即过双曲线Y= (K≠0)上任意一点引X轴、Y轴的垂线,所得矩形面积为【考点自测】1、填空题①y=2X-3m+2是反比例函数则m=②反比例函数Y= 的图像过点P(-,2 )则K=③已知反比例函数Y= 的图像在第二.四象限,则n的取值范围是④已知反比例函数Y= 的图像每一支曲线上Y都随X的增大而减小,则K的取值范围是2.选择题:①若反比例函数Y= 经过点(-1,2 ),则它的解析式为()A.Y= -B.y=C.y=D.y=②反比例函数Y= -的图像大致是()A. B C. D.③对于反比例函数Y=下列说法正确的是()A.点(-2,1)在它的图像上。
B.它的图像经过原点。
C.它的图像在第一.三象限。
D.当X>0时,Y随X的增大而增大。
3.已知反比例函数Y=的图像与一次函数Y=3X+m的图像交与点(1,5)⑴求这两个函数的解析式;⑵求这两个函数图像的另一个交点坐标。
【典型例题】例1 若A(a1,b1)B(a2 ,b2)是反比例函数Y=- 图像上的两个点且a1<a2,则b1与b2的关系()A.b1<b2 B. b1=b2.C. b1>b2.D大小不确定例2 已知Y与X2成反比例并且X=-1时Y=2.①求Y与X之间的函数关系式;②X=4时Y的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.教学重点用反比例函数解决实际问题.教学难点构建反比例函数的数学模型.教学方法讲练结合教学过程教学环节教学内容课前复习利用反比例函数解决实际问题的一般步骤。
知识梳理常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成;(2)面积一定时,三角形的一边长与这边上的成反比例;(3)体积一定时,柱(锥)体的与高成反比例;(4)工作总量一定时,与工作时间成反比例;(5)总价一定时,与商品的件数成反比例;(6)溶质一定时,溶液的浓度与成反比例.典型例题例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t= 480006=8000(m3)例3、制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.例4.在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.解:(1)设,根据题目条件知,当I=6时,R=6,所以K=36,所以I与R的关系式为:I=36R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,所以所求的解析式为P=96V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.巩固训练1.在一定的范围内,某种物品的需求量与供应量成反比例.现已知当需求量为500吨时,市场供应量为10 000吨,试求当市场供应量为16 •000•吨时的需求量是.2.某电厂有5 000吨电煤.(1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)之间的函数关系是;(2)若平均每天用煤200吨,这批电煤能用是天;(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是天.提升能力3.一种电器的使用寿命n(月)与平均每天使用时间t(小时)成反比例,其关系如图所示.(1)求使用寿命n(月)与平均每天使用时间t(小时)之间的函数关系式是;(2)当t=5小时时,电器的使用寿命是.4.某人用50N的恒定压力用气筒给车胎打气.(1)打气所产生的压强P(帕)与受力面积S(米2)之间的函数关系是:.(2)若受力面积是100c m2,则产生的压强是;(3)你能根据这一知识解释:为什么刀刃越锋利,刀具就越好用吗?为什么坦克的轮子上安装又宽又长的履带呢?5.一封闭电路中,当电压是6V时,回答下列问题:(1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式是;(2)画出该函数的图象.(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由.6.如图所示是某个函数图象的一部分,根据图象回答下列问题:(1)这个函数图象所反映的两个变量之间是怎样的函数关系?(2)请你根据所给出的图象,举出一个合乎情理且符合图象所给出的情形的实际例子.(3)写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围.(4)说出图象中A点在你所举例子中的实际意义.归纳总结常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.课后作业一、选择题1.在双曲线xy2-=上的点是()A. (34-,23-) B. (34-,23) C. (1,2) D. (21,1)2.反比例函数422)1(---=mmxmy,当x<0时,y随x的增大而增大,则m的值是()A.1- B.3 C. 1-或3 D. 23.已知反比例函数xmy21-=的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A. m>0B. m>21C. m<0D. m<214..若(x1,y1),(x2,y2),(x3,y3)都是xy5-=的图象上的点,且x1<0<x2<x3.则下列各式正确的是()A. y1>y2>y3B. y1<y2<y3C. y2>y1>y3D. y2<y3<y15.三角形的面积为8c m 2,这时底边上的高y (c m )与底边x (c m )之间的函数关系用图像来表示是。
6.下列各问题中,两个变量之间的关系不是反比例函数的是A :小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m /s )之间的关系。
B :菱形的面积为48c m 2,它的两条对角线的长为y (c m )与x (c m )的关系。
C :一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的体积V 之间的关系。
D :压力为600N 时,压强p 与受力面积S 之间的关系。
7.如图,A 、B 、C 为反比例函数图像上的三个点,分别从A 、B 、C 向xy 轴作垂线,构成三个矩形,它们的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是A :S 1=S 2>S 3B :S 1<S 2<S 3C :S 1>S 2>S 3D :S 1=S 2=S 38. 已知点(1,a )在反比例函数y =xk (k ≠0)的图象上,其中a =m 2+2m +5 (m 为实数),则这个函数的图象在第_________象限.()A.一B.二C.一、三D.二、四 9. (08襄樊市)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:k g/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是()A .5k g/m 3B .2k g/m 3C .100k g/m 3D ,1k g/m 3 x y BA O C 第7题图10. 反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( ) A.第一、二象限B.第一、三象限C.第二、四角限D.第三、四象限11.甲乙两地相距s ,汽车从甲地以v ()/h km 的速度开往乙地,所需时间是t )(h ,则正确的是()A.当t 为定植时,s 与v 成反比例B. 当v 为定植时,s 与t 成反比例C.当s 为定植时,t 与v 成反比例D.以上三个均不正确12. 下列两个变量之间的关系为反比例关系的是()A.匀速行驶过程中,行驶路程与时间的关系B.体积一定时,物体的质量与密度的关系C.质量一定时,物体的体积与密度的关系D.长方形的长一定时,它的周长与宽的关系二、填空题13.近视眼镜的度数y (度)与镜片焦距x ()m 成反比例,已知400度近视眼镜镜片的焦距为0.25,则y 与x 的函数关系式为.14.如果点()2,n n -在双曲线x k y =上,那么双曲线在象限. 15.双曲线xk y =和一次函数b ax y +=的图象的两个交点分别为A (-1,-4),B (2,m ),则=+b a 2.16. A 、B 两地之间的高速公路长为300km ,一辆小汽车从A 地去B地,假设在途中是匀速直线运动,速度为vkm /h ,到达时所用的时间是th ,那么t 是v 的函数,t 可以写成v 的函数关系式是。
17. 在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上, 第17题图则当力达到10牛时,物体在力的方向上移动的距离是米.三、解答题18.一个面积为42的长方形,其相邻两边长分别为x 和y ,请你写出y 与x 之间的函数解析式,并画出其图象.19.如图,Rt △ABO 的顶点A (a 、b )是一次函数y =x +m 的图像与反比例函数xk y的图像在第一象限的交点,且S △ABO =3。