大学物理作业(二)答案

合集下载

大学物理习题详解No.2波动方程

大学物理习题详解No.2波动方程

《大学物理》作业 No.2波动方程班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题[ F ] 1. 解:电磁波就可以在真空中传播。

[ F ] 2. 解:波动是振动的传播,沿着波的传播方向,振动相位依次落后。

[ F ] 3. 解:质元的振动速度和波速是两个概念,质元的振动速度是质元振动的真实运动速度,而波速是相位的传播速度,其大小取决于介质的性质。

[ F ] 4. 解:振动曲线描述的是一个质点离开平衡位置的位移随时间的变化关系;波形曲线是某一时刻,波线上各个质点离开平衡位置的情况。

[ F ] 5. 解:对于波动的介质元而言,其动能和势能同相变化,它们时时刻刻都有相同的数值。

二、选择题:1. 一平面简谐波表达式为)2(sin 05.0x t y --=π (SI) ,则该波的频率v (Hz)、波速u (m ⋅s -1)及波线上各点振动的振幅A (m)依次为:(A) 2/1,2/1,05.0- (B) 2/1,1,05.0-(C) 2/1,2/1,05.0 (D) 2 ,2,05.0[ C ]解:平面简谐波表达式可改写为(SI))22cos(05.0)2(sin 05.0ππππ+-=--=x t x t y与标准形式的波动方程 ])(2[cos ϕπ+-=u xt v A y 比较,可得 )s (m 21,(Hz)21,(m)05.01-⋅===u v A 。

故选C2. 一平面简谐波的波动方程为)3cos(1.0πππ+-=x t y (SI),t = 0时的波形曲线如图所示。

则:(A) O 点的振幅为-0.1 m(B) 波长为3 m (C) a 、b 两点位相差 π21(D) 波速为9 m ⋅s -1解:由波动方程可知(Hz),23(m),1.0==νA (m)2=λ,)s (m 32231-⋅=⨯==νλua 、b 两点间相位差为:2422πλλπλπϕ===∆ab故选C3. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

大学物理_在线作业_2

大学物理_在线作业_2

大学物理_在线作业_2交卷时间2018-08-24 12:55:10一、单选题(每题5分,共20道小题,总分值100分)2.有一质量为M,半径为R高为的匀质圆柱体,通过与其侧面上的一条母线相重合的轴的转动惯量为()。

(5分)A2/3B1/2C1/4D2/3正确答案您的答案是A回答错误展开3.物体不能出现下述哪种情况?()(5分)A运动中,瞬时速率和平均速率恒相等B曲线运动中,加速度不变,速率也不变C运动中,加速度不变速度时刻变化D曲线运动中,加速度越来越大曲率半径总不变正确答案您的答案是B回答正确展开4.质量为0.01kg的质点作简谐振动,振幅为0.1m,最大动能为0.02J。

如果开始时质点处于负的最大位移处,则质点的振动方程为()。

(5分)A x=0.1cos(0.2t+)B x=0.1cos(20t)C x=0.1cos(20t+)D x=0.1cos(200t+)正确答案您的答案是C回答正确展开5.两个质量相同飞行速度相同的球A和B,其中A球无转动,B球转动,假设要把它们接住所作的功分别为A1、A2,则()。

(5分)A无法判断B A1<A2C A1>A2D A1=A2正确答案您的答案是B回答正确展开6.根据高斯定理,下列说法中正确的是()。

(5分)A闭合曲面上各点的场强仅由面内的电荷决定B闭合曲面上各点的场强为零时,面内一定没有电荷C通过闭合曲面的电通量为正时面内比无负电荷D通过闭合曲面的电通量仅由面内电荷的代数和决定正确答案您的答案是D回答正确展开7.在单色光垂直入射的劈形膜干涉实验中,若慢慢地减小劈形膜夹角,则从入射光方向可以观察到干涉条纹的变化情况为()。

(5分)A条纹间距减小B给定区域内条纹数目增加C条纹间距增大D观察不到干涉条纹有什么变化正确答案您的答案是C回答正确展开8.冰上芭蕾舞运动员以一只脚为轴旋转时将两臂收拢,则()。

(5分)A转动角速度减小B转动惯性减小C转动动能不变D角速度增大正确答案您的答案是B回答正确展开9.质量相同的物块A、B用轻质弹簧连接后,再用细绳悬吊着,当系统平衡后,突然将细绳剪断,则剪断后瞬间()。

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

2、一平面简谐波,波长为 12m,沿 Ox 负向传播。如图所示为原点处质点的振 动曲线,求: (1)原点处质点的振动方程, (2)此波的波函数。
解:由题意得:振幅 A=0.4m,初始位置 y0 0.2 相为
2 , 其对应旋转矢量如上图所示。 从图还可以看出 5s 后, 矢量转动的角度: 3 5 2 t 5 12 s ; ,则 , T 3 2 6 6 2 ) m) 所以其振动方程为 y 0.4 cos( t ( 6 3 2 12 s ,波速 u 1( m / s ) ,又因传播方向为负, (2)由题意 12m , T T 2 ( ] m) 所以波函数为: y 0.4 cos[ (t x) 6 3
答:振动是波动的基础,振动在空间的传播就形成波动。平面简谐波动方程是关 于时间和空间的函数, 而简谐振动方程只是关于时间函数;当平面简谐波动方程 中的空间变量 x 确定时,波动方程成为表述该点运动的振动方程。振动曲线是以 位移为纵坐标, 时间为横坐标做的曲线,描述质点在不同时刻离开平衡位置的位 移;波形曲线是位移为纵坐标,介质元空间位置为横坐标做的曲线,用来描述某 一时刻,波线上各个质元离开平衡位置的距离。 2、平面简谐行波波函数的表达式与哪些因素有关?总结求波函数的基本步骤。 答:平面简谐行波波函数与波的特征量:振幅、周期、频率、波速及其传播方向 有关, 此外与坐标原点、 计时起点的选择有关。 求波函数的基本步骤可以概况为: (1)选择一个参考点,根据已知条件确定出该参考点的振动方程; (2)选定坐标原点,选定正方向,建立坐标;
《大学物理 AII》作业
No.02 波动方程
班级 ________ 学号 ________ 姓名 _________ 成绩 _______

大学物理B作业2-磁学(含答案)

大学物理B作业2-磁学(含答案)

b
a cc
I
I⊙
____________________________________(对环路c).
11. 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.一带电粒子垂直磁 感线射入匀强磁场,则它作________________运动.一带电粒子与磁感线成任意交角射入匀强磁场, 则它作______________运动。
I
(D) 线圈中感应电流方向不确定。


7. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是: [

(A) 线圈绕自身直径轴转动,轴与磁场方向平行。
(B) 线圈绕自身直径轴转动,轴与磁场方向垂直。
(C) 线圈平面垂直于磁场并沿垂直磁场方向平移。
(D) 线圈平面平行于磁场并沿垂直磁场方向平移。
i
小为B =________________,方向_________________________.
14. 已知磁感应强度 B 2.0Wb/m2 的均匀磁场,方向沿x轴 正方向,如图所示.试求:
(1) 通过图中abcd面的磁通量;(2) 通过图中befc面的磁通 量;(3) 通过图中aefd面的磁通量.
B
n
2. 距一根载有电流为3×104 A的电线1 m处的磁感强度的大小为:
(A) 3×10-5 T.
(B) 6×10-3 T.
(C) 1.9×10-2T.
(D) 0.6 T.
(已知真空的磁导率0 =4×10-7 T·m/A)


uuv v n
3. 关于磁场安培环路定理 ÑL B1 dl 0 Ii ,下列说法正确的是: i 1
9. 5.00×10-5 T ;

吉林大学大学物理作业答案综合练习题(下)(二)

吉林大学大学物理作业答案综合练习题(下)(二)
综合练习题(二)
(一) 选择题
1. 如图所示,沉积在玻璃衬底上的氧化钽薄层从A到B厚度递减,从而形成 一劈尖,为测定氧化钽薄层的厚度e,用波长为632.8nm的He-Ne激光垂直 照在薄层上,观察到楔形部分共出现11条暗条纹,且A处恰好为暗纹位置。 已知氧化钽的折射率为2.21,玻璃的折射率为1.5,则氧化钽薄层的厚度e为

2 a b 10 2 4 0 0 n m s i n 3 0
1
4.一平面透射光栅,当用白光垂直照射时,能在30°衍射方向上观察到600nm的第 二级干涉主极大,并能在该处分辨△λ=0.05nm的两条光谱线,但在此30°方向上却 测不到400nm的第三级主极大,计算此光栅的缝宽a和缝距b以及总缝数N 。
6.氢原子中核外电子所处状态的角量子数是l=2,其绕核运动的角动量的 大小 ;该角动量的空间取向可能有 5 种。 一级明
6
a sin 3 ;
a sin k; 2
k1 .5
9.一电磁波在空气中通过某点时,该点某一时刻的电场强度 为E,则同时刻的磁场强度H= ,能流密度S= 。
光栅对第k级主极大的分辨本领为
对于 =600nm的第二级主极大有
0 . 0 5 n m
所以,光栅总缝数

R kN
6 0 0 N 6 0 0 0 k 2 0 . 0 5
5. 在惯性系K中观测到相距 的两地点相隔 8 发生两事 x 9 1 0m 件,而在相对于K系沿x轴正向以匀速度运动的 系中发现此两事件 恰好发生在同一地点,试求在 系中此两事件的时间间隔。 t 5s
m向下拉x时,
kx a J m 2 R k 2 J m 2 R
T2 k ( x x 0 ) mg T 1 ma T R T R J 2 1 a R

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII 》作业No.02波动方程班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波动产生的条件、传播的特性及波的分类。

2、掌握描述波的特征量:周期、频率、波长、波速的物理意义及其相互关系,并能与振动的特征量相区分。

3、掌握相位传播、波形传播意义,并能根据质点简谐运动方程或振动曲线建立平面简谐波的波函数。

理解波函数与波形曲线、振动曲线和行波的关系。

4、理解波的能量密度、能流、能流密度及波的强度等概念。

行波的传播过程就是能量的传播过程。

5、理解多普勒效应产生的机制及应用。

-------------------------------------------------------------------------------------------------------一、填空题1、波动是振动的传播,其中机械振动在弹性介质中的传播称为机械波,它的传播需要介质(选填:需要,不需要)。

由于带电粒子的运动引起周围空间电磁场交替变化而形成的波称为电磁波,它的传播不需要介质(选填:需要,不需要)。

根据质点振动方向与波的传播方向之间的关系(垂直或平行),波又可以分为横波和纵波。

2、描述波时间周期性的特征量是周期T ,描述波空间周期性的特征量是波长λ振动状态(相位)在介质中传播速度称为波速(相速)u ,三者之间的关系为T u λ=。

3、某时刻t 的波形曲线如图所示,图中B 点的y 坐标By 表示的是t 时刻B x 处质元离开平衡位置的位移,若为纵波,图中A 、C 分别对应纵波的密部中心和疏部中心(填:密部中心或疏部中心)。

华东理工大学大学物理作业答案2

华东理工大学大学物理作业答案2

所以
I4 1 COS 6 30 0 21 .1% I0 2
47
大学物理习题册解答
13、自然光射到叠放在一起的两偏振片上(1)如透射光的最大强度为最大透射光强度 的 , 则两偏振片的偏振方向的夹角为多少? (2) 如果透射光的强度为入射光强度的 , 则两偏振片的偏振化方向的夹角又为多少? 解: 设入射光为 I0,通过偏振片的光强为 I1、I2 (1)透射光最大 即 I 2 I 1 据题意任一角度时可得:
2 2 2 x a sin Байду номын сангаас a 4 f
2f 2 1 600 10 9 3 10 3 m a 0.4 10 3 (2)由 a sin k (k 1) 得 x sin 1.5 10 3 r a d a
8、波长λ =600nm 的单色光垂直入射到光栅上,已知第二级主极大出现在θ =30 处,第 三级缺级。求: (1)光栅常数 a+b; (2)光栅每个缝的宽度 a; (3)光屏上可以看到的明条纹数 N。 解: (1) (a+b)sin =2λ
2 2 600 2400 nm sin sin 30 0 ab 3 (2)由第三级缺级可知 a a 800 nm d ab

i 48 010 / 对 O 光线 sin i n 0 sin 0 1.66 sin 48 010'
600
0 26 0 40 /
e光 光 路 图 o光
18、如图所示,一束自然光入射到方解石晶体上,其光轴垂直于纸面,已知方解石对 O 光的折射率 n0=1.658,对 e 光的折射率 ne=1.486。 (1)在图中标出哪一束是 O 光?哪一束是 e 光?并画出光矢量的振动方向。 (2)若方解石晶体的厚度 t=1.0cm,自然光入射角 i = 450,求 a、b 两束光的折射角。

华东理工大学大学物理作业答案2

华东理工大学大学物理作业答案2
2 2 2 x Biblioteka a sin a 4 f
2f 2 1 600 10 9 3 10 3 m a 0.4 10 3 (2)由 a sin k (k 1) 得 x sin 1.5 10 3 r a d a
44
大学物理习题册解答
7、用 1mm 内有 500 条刻痕的平面透射光栅观察钠光谱(λ =589nm) ,问: (1)光线垂直入射时,最多能看到第几级光谱; (2)光线以入射角 300 入射时,最多能看到第几级光谱。 解: (1) d
1 2 10 3 mm 500 由 d sin k 及最多能看到的谱线时 sinθ ~1 可得 d 2 10 3 k m ax 3.4 589 10 6
0
(3)最多能看到的谱线级数 sinθ ~1
k d 2400 4 600

k=0,±1,±2
共5条谱线
45
大学物理习题册解答
9、一双缝,缝间距 d=0.1mm,缝宽 a=0.02mm,用波长λ =480nm 的平行单色光垂直入 射双缝,双缝后放一焦距为 50cm 的透镜,试求: (1)透镜焦平面上,干涉条纹的间距; (2)单缝衍射中央亮纹的宽度; (3)单缝衍射的中央包线内有多少条干涉的主极大? x 解: (1)由双缝干涉明条纹条件 d sin d k 得 f
12、一束自然光,入射到由 4 片偏振片构成的偏振片组上。每一片偏振片的偏振化方向 0 相对于前面一片的偏振化方向沿顺时针方向转过 30 角。问通过偏振片组后的光强是入 射光强的百分之几? 解: 设入射光强为 I0,通过偏振片的光强为 I1、I2、I3、I4 1 I1 I 0 2

16秋北交《大学物理(力学和热学部分)》在线作业二

16秋北交《大学物理(力学和热学部分)》在线作业二
A. S1与S中的观察者可以不同时地去测量尺子两端的坐标
B. S1中的观察者可以不同时,但S中的观察者必须同时去测量尺子两端的坐标
C. S1中的观察者必须同时,但S中的观察者可以不同时去测量尺子两端的坐标
D. S1与S中的观察者都必须同时去测量尺子两端的坐标
正确答案:
15.一定质量的理想气体贮存在容积固定的容器内,现使气体的压强增大为原来的两倍,则()
A.飞船上的人看到自己的钟比地面上的钟慢
B.地面上的人看到自己的钟比飞船上的钟慢
C.飞船上的人觉得自己的钟比原来走慢了
D.地面上的人看到自己的钟比飞船上的钟快正确答案:
正确答案:
8.一定量的刚性双原子分子理想气体,开始时处于压强为p0 = 1.0×105 Pa,体积为V0 =4×10-3 m3,温度为T0 = 300 K的初态,后经等压膨胀过程温度上升到T1 = 450 K,再经绝热过程温度降回到T2 = 300 K,气体在整个过程中对外作的功()
A.人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒
B.人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒
C.人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒
D.人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒
正确答案:
A.升高
B.降低
C.不会发生变化
D.无法确定
正确答案:
12.一台工作于温度分别为327摄氏度和27摄氏度的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000焦耳,则对外做功()
A. 2000焦耳
B. 1000焦耳
C. 4000焦耳
D. 500焦耳

大连理工大学大学物理作业A2下

大连理工大学大学物理作业A2下
a
I
b
B
0 图 26-4
r
6.通电流强度为 I 的矩形截面的螺线环, 尺寸见图 26-5. (1) 求空间磁感应强度的分布; (2) 证明通过螺线环截面(图中阴影区)的磁通量为 m 0 NIh ln D1 ,其中 N 为螺线环线 2π D2 圈总匝数。
I
D2 h D1
图 26-5
7.用高斯定理和安培环路定理证明,在无电流的空间区域,如果磁感应线是平行直线,则 磁场必均匀。



.
图 26-2
I
4. 两平行长直导线相距 80cm,每条导线载有电流 10A, 如图 26-3 所示,求通过图中矩形面积 abcd 的磁通量 m.
b I1 a
20cm 40cm
c I2
50cm
d
20cm
图 26-3
大学物理 A2(2014 DUT)

5.有一很长的载流导体直圆管,内半径为 a,外半径为 b,电流强度为 I,电流沿轴线方向 流动,并且均匀地分布在管壁的横截面上,如图 26-4 所示。求空间各点的磁感应强度,并 画出 B-r 曲线(r 为场点到轴线的垂直距离) 。
B
O R

A
图 29-1
2.如图 29-2 所示, 长度为 l 的刚性直导线从中间折成 角, 在均匀磁场 B 中以恒定速度 v 沿 对称轴移动,求导线中的动生电动势。


v
a



B
图 29-2
3.如图 29-3 所示,长直导线通有电流 I=5A,在其附近有一长度 l=20cm 的金属棒,近端距 离长直导线 d=12cm,金属棒沿平行于直导线的方向以速度 v=10ms-1 平移,求棒中的感应 电动势,并指出哪端的电势高?(金属棒与长直导线共面且垂直)

大学物理作业答案(下)

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。

1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。

试求圆筒内部的磁感应强度。

解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ可得 ab i ab B 0μ=σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。

今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。

解:)(22r R IJ -=π10121r J B ⨯=μ 20221r J B ⨯-=μJa O O J r r J B B 021********21)(21μμμ=⨯=-⨯=+=r R Ia)(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr rL RI Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。

中国地质大学(武汉)大学物理下册习题答案

中国地质大学(武汉)大学物理下册习题答案

作业2 动量与角动量 功与能2-1一步枪在射击时,子弹在枪膛受到的推力满足 t F 51034400⨯-= 的规律,已知击发前子弹的速率为零,子弹出枪口时的速度为300 m/s ,受到的力变为零. 求: ⑴ 子弹受到的冲量? ⑵ 子弹的质量为多少克? 原题 3-32-2 一个质量m = 50 g ,以速率υ= 20 m/s 作匀速圆周运动的小球,在1/4周期向心力加给它的冲量是多大? 原题 3-42-3 有一运送砂子的皮带以恒定的速率υ水平运动,砂子经一静止的漏斗垂直落到皮带上,忽略机件各部位的摩擦及皮带另一端的其它影响,试问:⑴ 若每秒有质量为t M M d d ='的砂子落到皮带上,要维持皮带以恒定速率υ运动,需要多大的功率?⑵ 若='M 20 kg/s ,5.1=υm/s ,水平牵引力多大?所需功率多大? 解: ⑴ 设t 时刻落到皮带上的砂子质量为M , 速率为υ,t + d t 时刻,皮带上的砂子质量为 M + d M ,速率也是υ,根据动量定理,皮带作用在砂子上的外力 F 的冲量为:)0d ()d (d ⋅+-+=M M M M t F υυυ⋅=M d∴ M t M F '==υυ d d由第三定律,此力等于砂子对皮带的作用力F ',即F F ='. 由于皮带匀速运动,动力源对皮带的牵引力F F '='',因而,F F ='',F F ='',F ρ''与υρ同向,动力源所供给的功率为: t M F P d d υυυρρρρ⋅=⋅=t M d 2υ=M '=2υ⑵ 当t M M d d ='=20 kg/s ,5.1=υm/s ,时, 水平牵引力 M F '=''υ= 30N 所需功率 M P '=2υ=45W2-4 哈雷彗星绕太阳运动的轨道是一个非常扁的椭圆,它离太阳最近的距离是1011075.8⨯=r m ,此时它的速度是 411046.5⨯=υm/s ,它离太阳最远时的速率是221008.9⨯=υm/s ,这时它离太阳的距离r 2是多少? 原题 3-82-5 假设一个运动的质子P 只受某重核N 的有心排斥力的作用.已知质子的质量为m ,当它运动到与N 相距最近的A 点时,距离为a ,速度为A υρ,运动到某点B 时,速度为B υρ,求此时重核N 到速度B υρ的垂直距离b .(图左侧的长虚线为与B υρ方向平行的直线). 解:重核N 的质量 M >> m ,在质子P 从接近到远离重核N 的全过程中,重核 N 可视为静止. 质子P 只受重核N 的有心排斥力作用,P 对N 中心的角动量守恒.υρρρm r L ⨯= = 恒矢量 B B B A A A m r m r θυθυsin sin = a r A A =θsin , b r B B =θsin ∴ b m a m B A υυ= 得 a b BAυυ=2-6 一质量为 3102-⨯kg 的子弹,在枪膛中前进时受到的合力 x F 98000400-= (SI),子弹在枪口的速度为300 m/s .试计算枪筒的长度. 原题 4-1题2-5图2-7 一质量为m 的质点在指向圆心的平方反比力2--=kr F 的作用下,作半径为r 的势能零点,则其机械能为 )2(r k - .原题 4-32-8 有一劲度系数为 k 的轻弹簧,竖直放置,下端悬一质量为 m 的小球,先使弹簧为原长,而小球恰好与地接触,再将弹簧上端缓慢地提起,直到小球刚能脱离 地面为止.在此过程中外力所作的功为 )2(22k g m .原题 4-72-9 有一人造地球卫星,质量为m ,在地球表面上空 2 倍于地球半径 R 的高度沿圆轨道运行,用m ,R ,引力常数 G 和地球的质量 M 表示⑴ 卫星的动能 ;⑵ 卫星的引力势能为 . 原题 4-82-10 一长方体蓄水池,面积为S = 50 m 2,贮水深度为 h 1 = 1.5 m .假定水平面低于地面的高度是h 2 = 5 m ,问要将这池水全部抽到地面上来,抽水机需做功多少?若抽水机的功率为80%,输入功率为P = 35 kw ,则抽光这池水需要多长时间? 原题 4-22-11 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为: F = 52.8 x + 38.4 x 2(SI ),求:⑴ 将弹簧从伸长x 1 = 0.50 m 拉伸到伸长 x 2 = 1.00 m 时所需做的功; ⑵ 将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到伸长 x = 1.00 m ,再将物体由静止释放.求当弹簧回到伸长x 1 = 0.50 m 时,物体的速率. 原题 4-52-12 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t q it p r ˆ sin ˆ cos ωω+=ρ (SI),式中p 、q 、ω是正值常数,且p > q .求:⑴ 求质点在点 P ( p , 0) 和点Q ( 0, q ) 处的动能; ⑵ 质点所受的作用力 F ρ,以及当质点从点 P 运动到点Q 的过程中的分力F x 和F y 分别作的功.解:⑴ 由位矢 j t q it p r ˆ sin ˆ cos ωω+=ρ 可知: cos t p x ω=, sin t q y ω= t x x d d =υ sin t p ωω-=, t y y d =υ cos t q ωω=点P ( p , 0 ) 处 1 cos =t ω, 0 sin =t ω, 22k 2121y xP mv mv E +=2221ωmq = 点Q ( 0, q ) 处 0 cos =t ω, 1 sin =t ω, 22k 2121y xQ mv mv E +=2221ωmp = ⑵ t a x x d υ= cos 2t p ωω-=, t a y y d υ= sin 2t q ωω-=)ˆˆ(ˆˆj a i a m j F i F F y x y x +=+=ρ)ˆ sin ˆ cos ( 2j t q it p m ωωω+-= 由点P →Q x F A p x x d 0⎰=x ma p x d 0⎰=x t mp p d cos 02⋅-=⎰ωωx x m p d 02⎰-=ω2221ωmp =y F A qy y d 0⎰=y ma qy d 0⎰=y t mq qd sin 02⋅-=⎰ωωy y m qd 02⎰-=ω2221ωmq -=作业4 气体动理论4-1 氧气钢瓶体积为5升,充氧气后在27℃时压强为20个大气压,试求瓶贮存有多少氧气?现高空中使用这些氧气,在高空空气的压强为0.67个大气压,温度为-27℃,试问这时钢瓶可提供在高空使用的氧气是多少升?0.13 kg ,117升;原题 8—14-2 在P-V图上的一点代表系统平衡状态;一条光滑的曲线代表气体的准静态过程.4-3 设想每秒有1023个氧分子以500 m/s的速度沿着与器壁法线成30°角的方向撞在面积为3 104m2的器壁上,求这群分子作用在器壁上的压强.原题 8—34-4 两瓶不同类型的理想气体,它们的温度和压强相同,但体积不同,则它们的分子数密度 相同 ;气体的质量密度 不同 ;单位体积气体分子的平均动能为 不同 .原题 8—44-5 若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳解: kT VN nkT p == kT pVN = 4-6 质量相同的氢气和氦气,温度相同,则氢气和氦气的能之比为 10 : 3 ,氢分子与氦分子的平均动能之比为 5 : 3 ;氢分子与氦分子的平均平动动能之比为 1 : 1 .原题 8—64-7 试指出下列各量的物理意义⑴ kT /2; ⑵ 3kT /2; ⑶ ikT /2.答: ⑴ kT /2 ——理想气体分子任一自由度的平均动能; ⑵ 3kT /2 ——理想气体的分子的平均平动动能;⑶ ikT /2 ——理想气体的分子的平均总动能 4-8 将0.2mol 氧气从27℃加热到37℃,其能增加了多少?分子的平均平动动能变化了多少?解:氧气为双原子分子,5=i ,则能增量为55.411031.82.025)(212 =⨯⨯⨯=-=∆T T R i E νJ分子的平均平动动能为kT E K 23=,其增量为22231007.2101038.12323--⨯=⨯⨯⨯=∆=∆T k E K J4-9 一绝热密封容器的体积为102m 3,以100 m/s 的速度匀速直线运动,容器中有100g 的氢气,当容器突然停止时,氢气的温度、压强各增加多少?原题 8—74-10 容器有一摩尔的双原子分子理想气体,气体的摩尔质量为μ,能为E ,则气体的温度T = R E 52 ,分子的最可几速率 p υ= )5(2μE ,分子的平均速率 υ= )π5(4μE .原题 8—84-11 已知)(υf 为麦克斯韦速率分布函数,N 为分子总数, 则速率大于100 m/s 的分子数目的表达式 υυυd )(d 100⎰⎰∞=='f NN N ; 速率大于100 m/s 的分子数目占分子总数的百分比的表达式 υυd )(100⎰∞=f P ; 速率大于100 m/s 的分子的平均速率的表达式 υυυυυυd )(d )(100100⎰⎰∞∞=f f .∵d )(d υυυf NN =—— 速率区间 υυυd ~+的分子数占总分子数的百分比(几率)4-12 麦克斯韦速率分布曲线如图所示,图中A ,B 两部分面积相等,则该图表示[ ](A )0υ为最概然速率 (B )0υ为平均速率(C )0υ为方均根速率(D )速率大于和小于0υ的分子数各占一半 参考解:A 部分面积()N N f S AA Δd 00==⎰υυυ; B 部分面积 ()NN f S BB Δd 0==⎰∞υυυ B A S S = ∴B A N N ΔΔ= 答案为 [ D ]4-13 容积为33100.2m -⨯的容器中,有能为J 21075.6⨯的刚性双原子分子理想气体,求:⑴ 气体的压强;⑵ 设分子总数为22104.5⨯个,求分子的平均平动动能及气体的温度;解:(1) 由 RT i M m E 2•=和 RT Mm PV = 可得气体压强 5321035.1100.251075.622⨯=⨯⨯⨯⨯==-iV E P Pa (2)分子数密度V N n =,则该气体温度k .NkPV nk P T 210623⨯=== 气体分子的平均平动动能为 211049723-⨯==.kT k εJ4-14 真空管的线度为 210-m ,真空度为 310333.1-⨯Pa .设空气分子的有效直径为10103-⨯m ,摩尔质量为28.97310-⨯kg .求在27℃时真空管中空气的分子数密度、平均碰撞频率和平均自由程. 解:P301 12.26空气的分子数密度为 kTpn == …… = 3.2×1017 (m -3 )平均自由程为 nd 2π21=λ= …… = 7.8(m) 0(υf 题4-12图平均碰撞频率为 υn d z 2 π2=MRT nd π8 π22= = …… = 59.9 (s -1)*4-15 麦克斯韦速率分布律kTm kT m f 22322eπ2π4)(υυυ-⎪⎭⎫⎝⎛=,求速率倒数的平均值⎪⎭⎫⎝⎛υ1,并给出它与速率的平均值υ的关系. 解:P296 12.9由平均值的定义有υυυυd )(110f ⎰∞=⎪⎭⎫ ⎝⎛υυυd eπ2π4 22230kTm kT m -∞⎪⎭⎫ ⎝⎛=⎰⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-∞⎰220232d eπ2π42υυkT m m kT kT m kTm ∵速率的平均值υkT m 8 π=∴*4-16 假定 N 个粒子的速率分布曲线如图示.⑴ 由 N 和0υ求a ;⑵ 求速率在1.50υ到2.00υ之间的粒子数 N ∆; ⑶ 求粒子的平均速率 υ 和方均根速率2υ. 解:P295 12.7 ⑴ 由归一化条件有υυd )(0⎰∞f 1d d 00 0200=+=⎰⎰υυυυυυυa a, 解之,得 032υ=a ⑵ υυυυd )(025.1⎰=∆f N N υυυd 025.1Na ⎰=)5.10.2(32000υυυ-=N N 31== 0.333 N ⑶ υυυυd )( 0⎰∞=f υυυυυυυυd d 00 02020a a⎰⎰+=03031υυυa =002221υυυa +0911υ== 1.220υυυυυd )(022⎰∞=f υυυυυυυυd d 220300 0a a⎰⎰+=004041υυυa =002331υυυa +301231υa =201831υ= 021831υυ=0662υ== 1.310υ 0题4-16图作业6 狭义相对论基础6-1 惯性系S 和S '的坐标在 0='=t t 时重合,有一事件发生在S '系中的时空坐标为()8108 ,0 ,10 ,60-⨯.若s '系相对于s 以速度u = 0.6c 沿x x '-轴正方向运动,则该事件在S 系中测量时空坐标为( , , , ). 原题 6-16-2 天津和相距120 km .在某日19时整有一工厂因过载而断电,在天津同日19时0分0.0003秒有人放了一响礼炮. 试求在以 c u 8.0= 速度沿到天津方向飞行的飞船中,观察者测量到这两个事件之间的时间间隔.哪一个事件发生在前.原题 6-36-3 长为4m 的棒静止在s 系中xOy 平面,并与x 轴成ο30角,s '系以速度0.5c 相对于s 系沿x x '-轴正向运动,0='=t t 时两坐标原点重合,求s '系中测得此棒的长度和它与x '轴的夹角.原题 6-46-4 中子静止时的平均寿命为15 min 30 s ,它能自发地衰变为三个粒子(质子、电子和中微子).已知地球到太阳的平均距离为1.4961110⨯m .有一个中子被太阳抛 向地球,它必须具有 1.418×108 = 0.473 c m/s 的速率,才能在衰变前到达地球.解: 0γττ=20)(1c u -=τ ♉ τu l =20)(1c u u -=τ ♉ 220)(c l lu +=τ6-5 一火箭静止在地面上测量时长度20 m ,当它以 0.8 c 在空间竖直向上匀速直线飞行时,地面上观察者测得其长度为 .若宇航员在飞船上举一次手用2.4 s ,则地面上测到其举手所用时间为 . 原题 6-66-6 以地球-月球作为参考系测得地-月之间的距离为 810844.3⨯m ,一火箭以0.8c 的速率沿着地球到月球的方向飞行,先经过地球(事件1),之后又经过月球(事件2).要求分别用:⑴ 洛仑兹变换公式,⑵ 长度收缩公式,⑶ 时间膨胀公式,求在地球-月球参考系和在火箭参考系中观测,火箭由地球飞向月球各需要多少时间? P369 15.4;P371 15.9解: 取地-月系为S 系,地-月距离=∆x 810844.3⨯m ,固定在火箭上的坐标系为S '系,其相对S 系的速率 u = 0.8 c ,则在S 系中火箭由地球飞向月球的时间为u x t ∆=∆= …= 1.6 s由已知 8.0=≡c uβ 35112=-≡βγ⑴ 由洛仑兹变换公式 )(x c t t βγ-=' )(x c t t ∆-∆='∆βγ可求得在火箭S '系中 t '∆= …= 0.96 s⑵ S '系中,测地-月距离为l ',是运动长度,由长度收缩公式 l l '= γ 有 l l =' 则 l t '='∆)(γu l t ='∆ =…= 0.96 s⑶ S '系中,两个事件在同一个地点发生,t '∆为固有时间0τ;S 系中两事件时间间隔t ∆为运动时间τ,由时间膨胀公式 0γττ=γττ=='∆0t γt ∆==…= 0.96 s6-7一匀质薄板静止时测得长、宽分别是a 、b ,质量为m ,假定该板沿长度方向以接近光速的速度υ作匀速直线运动,那么它的长度为 )(122c a υ- ,质量为面积密度(单位面积的质量).(原题6-8) 解:∵ 沿运动方向 0l l =,)(1 22c a a a υγ-=='∴;m m γ=')(122c mυ-=∵ b ⊥ 运动方向,b b ='∴ , b a m '''=∴σ )1(22c ab m υ-=6-8 一静止长度为 l 0 的火箭,相对于地面以速率 u 飞行,现从火箭的尾端发射一个光信号.试根据洛仑兹变换计算,在地面系中观测,光信号从火箭的尾端到前端所经历的位移、时间和速度. P370 15.6 解:取固定在地面上的坐标系为S 系,固定在火箭上的坐标系为S '系,自火箭尾端发射光信号为事件“1”, 光信号到达火箭前端为事件“2”,则有S 系中:事件1),(11t x ,事件2),(22t x , 12x x x -=∆, 12t t t -=∆S '系中:事件1),(11t x '',事件2),(22t x '', 012l x x x ='-'='∆, 12t t t '-'='∆c l c x 0='∆= S '系相对S 系运动速率为u ,由洛仑兹变换)( t c x x '+'=βγ,)(x c t t '+'=βγ可得位移 )( t c x x '∆+'∆=∆βγ200)(1)]([c u c l u l -+=cu c u l -+=110时间 )(x c t t '∆+'∆=∆βγ2200)(1)]([c u c l u c l -+=cu cu cl -+=110 速度 c t x =∆∆=υ6-9 设火箭的静止质量为100 t ,当它以第二宇宙速率 3102.11⨯=υm/s 飞行时,其质量增加了 0.7×10 kg . P374 15.13 解: c <<υ,2)(2020k υm c m m E =-=,)2()(2202k 0c m c E m m m υ==-=∆=… 6-10 电子静止质量 310101.9-⨯=m Kg ,当它具有2.6 ⨯ 105 eV 动能时,增加的质量与静止质量之比是 0.508 原题 6-9 解:2k mc E ∆=Θ,2kc E m =∆∴,20k 0 c m E m m =∆∴= 0.508 = 50.8% 6-11 α 粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能量的 4 倍. (解:2k mc E ∆=Θ,020km m c m E ∆=∴005m m m -= = 4 ) 原题 6-106-12 设某微观粒子的总能量是它的静止能量的k 倍,求其运动速度的大小.(用c 表示真空中光速) 原题 6-11 解: 02020m m c m mc E E k ===γ=2211c υ-=, 1 2-=∴k k c υ,211 k c -=υ6-13 ⑴ 粒子以多大速度运动时,它的相对论动量是非相对论动量的两倍? ⑵ 如果粒子的动能与它的静能相等,粒子的速率是多少? 原题 6-12 解:⑴ Θγ=0p p2211c υ-== 2,c 23 =∴υ= 0.866 c ⑵ 202k c m mc E -=Θ2020 c m c m -=γ20c m =,2 =∴γ,c 23 =∴υ= 0.866 c6-14 要使电子的速率从1.2 ×108m/s 增加到2.4 ×108m/s ,需做多少功?P374 15.15解:做功等于电子动能的增量201202k )()(c m m c m m E ---=∆212)(c m m -=⎪⎪⎭⎫ ⎝⎛---=221222201111c c cm υυ = … = 4.7×10 J = 2.94×10 eV6-15 在氢的核聚变反应中,氢原子核聚变成质量较大的核,每用 1 g 氢约损失0.006 g 静止质量.而1 g 氢燃烧变成水释放出的能量为1.3 × 105J .氢的核聚变反应中 释放出来的能量与同质量的氢燃烧变成水释放出的能量之比为 4.1×106 . 解:每用1g 氢释放核能 21mc E ∆=∆=…= 5.4×1011 J ;1g 氢燃释放能量2E ∆= 1.3×105 J6-16 两个静止质量都是m 0的小球,其中一个静止,另一个以=υ0.8c 的速度运动,在它们作对心碰撞后粘在一起,求碰撞后合成小球的质量、速度及静止质量. 原题 6-13 m=2.67m 0,=υ0.5c ,0031.2m m =' 6-13 (没详解)*6-17 ⑴ 如果要把一个粒子的动能写作 220υm ,而误差不大于1%,试问这个粒子的最大速率等于多少?⑵ 以这个速率运动的电子动能是多少?(电子静止质量 31e 101.9-⨯=m Kg ) ⑶ 以这个速率运动的质子动能是多少?(质子静止质量 e 01840m m =) P377 15.21 解: c υβ=,211βγ-=⑴ 相对论动能 20k )(c m m E -=20)1(c m -=γ202][111 c m --=β 依题意有 %12k 20k ≤-E m E υ ♉ %1111 21222][≤---cβυ♉ 01.0111 21][22≤---ββ∵ 211βγ-=, 则 2211γβ-=,上式可写为01.01 112112≤--⋅-γγ ♉ 01.0)1(2112≤+-γγ♉ 0198.12≤--γγ 解方程 0198.12=--γγ ♉ 98.1298.1411⨯⨯+±=γγ取正值有 211βγ-=0067.1≤ ♉ 2211γβ-=115.0≤即 c 115.0≤υ(= 3.45×107 m) ∴ c 115.0m ax =υ⑵ 以速率c 116.0=υ时, β= 0.115,γ= 1.0067运动的电子动能 2e ke )(c m m E -=2e 2][111 c m --=β=…= 5.49×1016(J) = 3.43×103 eV(电子加速电压 V ≥3.5 kV 时,电子速率≥υ=3.5×107m 时,要用相对论公式!!)⑶∵ 质子的静止质量 e p 1840m m =∴以速率c 116.0=υ运动的质子动能 ke kp 1840E E == 6.31×106eV作业8 波 动8-1 一个余弦横波以速度u 沿x 轴正方向传播,t 时刻波形曲线如图所示.试在图中画出A ,B ,C ,D ,E ,F ,G 各质点在该时刻的运动方向.并画出(t + T /4)时刻的波形曲线.原题 20-18-2 地震波纵波和横波的速度分别为8000 m/s 和4450 m/s ,观测点测得这两种波到达的时间差=∆t 75.6 s ,则震中到观测点的距离 r = 7.58×105m . 解: t u r u r ∆=-)()(12 )(2121u u u u t r -⋅∆==…= 7.58×105m8-3 ⑴ 有一钢丝,长2.00 m ,质量20.0×103 kg ,拉紧后的力是1000 N ,则此钢丝上横波的传播速率为 316 m/s . ⑵钢棒中声速5200m/s ,钢的密度=ρ7.8g/cm 3, 钢的弹性模量为2.11×1011(N/m 2).8-4 已知一波的波函数为 )6.0π10sin(105 2x t y -⨯=-⑴ 求波长,频率,波速及传播方向;⑵ 说明x = 0时波函数的意义. 原题 20-3y8-5 一螺旋形长弹簧的一端系一频率为25 Hz 的波源,在弹簧上激起一连续的正弦纵波,弹簧中相邻的两个稀疏区之间的距离为24 cm .⑴ 试求该纵波的传播速度;⑵ 如果弹簧中质点的最大纵向位移为 0.30 cm ,而这个波沿x 轴的负向传播,设波源在 x = 0 处,而x = 0 处的质点在 t = 0 时恰好在平衡位置处,且向x 轴的正向运动,试写出该正弦波的波函数. 解:⑴ νλ=u = 24 ×25 = 600 cm/s⑵ 波源处⎭⎬⎫>-===0sin 0cos 00ϕωυϕA A y 初相位 2π-=ϕ,波源振动方程为 )π2cos(30.000ϕν+=t y )2ππ50cos(30.0-=t 波沿x 轴的负向传播的波函数为])(cos[ϕω-+=u x t A y ]2π)600π(50cos[30.0-+=x t )]24π(252sin[30.0x t +=即,该正弦波的波函数为 )]24π(252sin[30.0x t y += (cm)8-6 波源作谐振动,周期为0.01s ,经平衡位置向正方向运动时,作为时间起点,若此振动以υ= 400 ms 1的速度沿直线传播,求: ⑴ 距波源为8 m 处的振动方程和初相位;⑵ 距波源为9 m 和10 m 两点的相位差. 原题 20-58-7 一平面简谐波,沿x 轴正向传播,波速为4 m/s ,已知位于坐标原点处的波源的振动曲线如图(a)所示.⑴ 写出此波的波函数; ⑵ 在图(b)中画出t = 3 s 时刻的波形图(标明尺度). P317 13.16 解:⑴ 由图知,A = 4 cm = 4 × 102 m , T = 4 s ∴ T π2=ω2π=,uT =λ= 4 × 4 = 16 m 原点处 A A y ==ϕcos 0 初相位 0=ϕ 原点振动方程为 )cos(ϕω+=t A y t A ωcos = ∴ 波函数为 )(cos u x t A y -=ω即 )]4(2cos[1042x t y -⨯=-π⑵ 将t = 3 s 代入波函数,得波形曲线方程)]43(2cos[1042x y -⨯=-πt = 3 s 时刻的波形图见图(b).8-8 一正弦式空气波沿直径为0.14 m 的圆柱形管道传播,波的平均强度为1.8⨯10 2J/(sm 2),频率为300 Hz ,波速为300 m/s ,问波中的平均能量密度和最大能量密度各是多少?每两个相邻周相差为2π 的同相面之间的波段中包含有多少能量? 原题 20-78-9 频率为100 Hz ,传播速度为300 m/s 的平面简谐波,波线上两点振动的位相差为31π,则此两点距离为 0.5 m . 原题 20-11 解:νλu ==…= 3 m , x ∆=∆)π2(λϕ,))π2(λϕ∆=∆x =…= 0.5 m(b)u)cm (y 48O1216202444-)m (x 题8-7图(a))cm (y )s (t 12O 34564-(b)cm)(y O)m (x8-10 在弹性媒质中有一波动方程为)2ππ4cos(01.0--=x t y (SI )的平面波沿x 轴正向传播,若在x = 5.00处有一媒质分界面,且在分界面处相位突变 π,设反射后波的强度不变,试写出反射波的波函数. 原题 20-108-11 一平面简谐波某时刻的波形图如图所示,此波以速率u 沿x 轴正向传播,振幅为A ,频率为v .⑴ 若以图中B 点为坐标原点,并以此时刻为 t = 0 时刻,写出此波的波函数; ⑵ 图中D 点为反射点,且为波节,若以D 点为坐标原点,并以此时刻为 t = 0 时刻,写出入射波的波函数和反射波的波函数;⑶ 写出合成波的波函数,并定出波节和波腹的位置坐标.P326 13.29解:⑴ B 点为坐标原点,t = 0 时刻,A A y -==ϕcos 0 ♉ 初相位 π=ϕ 振动方程 )cos(ϕω+=t A y ♉ )ππ2cos(+=t A yB ν ∴ 波函数为 ]π)(π2cos[+-=u x t A y ν ⑵ D 点为坐标原点,t = 0 时刻,入射波: ⎭⎬⎫>'-=='=0sin 0cos 00ϕωυϕA A y ♉ 初相位 2π-='ϕ 反射波:∵D 点为波节,∴初相位 2ππ=+'=''ϕϕD 点振动方程 )2ππ2cos(-=t A y D ν入, )2ππ2cos(+=t A y D ν反∴波函数为 ]2π)(π2cos[--=x t A y ν入, ]2π)(π2cos[++=x t A y ν反 ⑶ 合成波的波函数 )π2cos()2ππ2cos(2t u x A y y y νν+=+=反入波节:由 π)21(2ππ2+=+k u x ν 得 νu k x ⋅=2 (k = 0, -1, -2, …)波腹:由 π2ππ2k x =+ν 得 νu k x )412(-= (k = 0, -1, -2, …)题8-11图8-12 入射波的波函数为)( π2cos 1λx T t A y +=,在x = 0处发生反射,反射点为自由端.⑴ 写出反射波的波函数;⑵ 写出驻波的波函数;⑶ 给出波节和波腹的位置. P327 13.30解:反射点为自由端,是波腹,无半波损失, ⑴ 反射波的波函数为 )( π2cos 2λx T t A y -=⑵ 驻波的波函数为 t Tx A y y y π2cos π2cos 221λ=+=⑶ 当1π2cos =x λ,即ππ2 k x =λ时,得波腹的位置为 2 λk x =,k = 0, 1, 2, …当0π2cos =x λ,即2π)12(π2 +=k x λ时,得波节的位置为4)2( λ+=k x ,k = 0, 1, 2, …*8-13 一平面简谐波沿x 轴正向传播,振幅为A = 10 cm ,角频率π7=ω rad/s ,当t = 1.0 s 时,x = 10 cm 处a 质点的振动状态为0=a y ,0)d d (<a t y ;同时x = 20cm 处b 质点的振动状态为0.5=b y cm ,0)d (>b t y .设波长10>λcm ,求该波的波函数.P315 13.13解:当t = 1.0s 时刻,a 质点 0cos ==a a A y ϕ,0sin )d d ( <-==a a a A t y ϕωυ, ♉ 2ππ2+=k a ϕ ①b 质点 2cos A A y a b ==ϕ,0sin )d d ( >-==a b b A t y ϕωυ,♉ 3ππ2-'=k b ϕ a 、b 两点相位差 b a ϕϕϕ-=∆65π)(π2+'-=k ka 、b 两点间距λ<=-=∆10b a x x x ,∴π2<∆ϕ,则ϕ∆的取值可分两种情况⑴ 当0='-k k 时,b a ϕϕϕ-=∆65π=,♉λϕ2π=∆∆x ,则 )(2πϕλ∆∆=x = 24 (cm)∵波沿x 轴正向传播,可设波函数为)π2cos(0ϕλω+-=x t A y )24π2π7cos(100ϕ+-=x t当t = 1.0 s ,x = 10 cm 时波函数的相位 a ϕϕ=+⨯-⨯01024π21.0π7 ②由式①、②求得: 317ππ20-=k ϕ, 不妨取 k = 0,则 17π0-=ϕ 波函数为 )π31712ππ7cos(10--=x t y (cm)⑵ 当1-='-k k 时,b a ϕϕϕ-=∆67π-= < 0,波将沿x 轴负向传播,故舍去.作业10 光的衍射10-1 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为︒=30θ的方位上,所用单色光波长为500=λnm ,则单缝宽度为: 1.0 μm . 解: 暗纹公式 λθk a =sin10-2 在单缝夫琅和费衍射装置中,设中央明纹衍射角围很小.若使单缝宽度a 变为原来的3/2,同时使入射单色光波长变为原来的3/4,则屏上单缝衍射条纹中央明纹的宽度2ρ将变为原来的 1/2 倍.解:由单缝衍射暗纹公式 λθk a =sin ,暗纹位置 θθsin tan f f x k ≈⋅=,∴中央明半纹宽a f x λρ==1;若43λλ=',23a a =' 代入上式得 2ρρ=' 10-3 在单缝夫琅和费衍射中,设第一级暗纹的衍射角很小.若纳黄光(≈1λ589.3 nm )中央明纹宽度为4.00 mm ,则=2λ442 nm 的兰紫色光的中央明纹宽度为 3 mm. 解:单缝衍射中央明纹半宽度a f x λρ==1,∴2121λλρρ=,1122)(22ρλρ== 3 mm 10-4 单缝夫琅和费衍射对应三级暗纹,单缝宽度所对应的波面可分为 6 个半波带.若缝宽缩小一半,原来第三级暗纹变为第 一级明 纹.(原题22-2)解:由单缝暗纹公式 263sin λλλθ⨯===k a ∴ 单缝面分为6个半波带.若缝宽缩小一半,单缝面分为3个半波带,所以原第三级暗纹为变第一级明纹. 10-5 波长分别为1λ和2λ的两束平面光波,通过单缝后形成衍射,1λ的第一极小和2λ的第二极小重合.问:⑴1λ与2λ之间关系如何?⑵ 图样中还有其他极小重合吗? 解:⑴ 由单缝极小条件 11sin λθ=a 222sin λθ=a而 21θθ= ∴ 212λλ=⑵ 由 111sin λθk a =与 222sin λθk a = ,如有其它级极小重合时,必有21θθ= ,于是 2211λλk k = ,而212λλ=∴ 212k k = 即只要符合级数间的这个关系时,还有其它级次的极小还会重合.10-6 如图所示,用波长为546 nm 的单色平行光垂直照射单缝,缝后透镜的焦距为40.0 cm ,测得透镜后焦平面上衍射中央明纹宽度为 1.50 mm ,求:⑴ 单缝的宽度;⑵ 若把此套实验装置浸入水中,保持透镜焦距不变,则衍射中央明条纹宽度将为多少?(水的折射率为1.33) 原题22-1⑴ a = 2.912×10-4m⑵ 中央明纹宽a f x λρ2221=== 1.13×10-3 m10-7 衍射光栅主极大公式λθk d =sin ,Λ,3 ,2 ,1 ,0±±±=k .在k = 2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ λ10 . 解:光栅相邻缝对应点发出的衍射光在2=k 的方向上光程差为λ2,则1=N 与6=N 对应点发出的衍射光的光程差λλδ1052=⨯=.10-8 用波长为546.1 nm 的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角︒=30θ,则该光栅每一毫米上有 916 条刻痕.解:由光栅方程 λθk d =sin , 得 mm 91630sin 1条=︒==λd N10-9 用一毫米刻有500条刻痕的平面透射光栅观察钠光谱(3.589=λnm ),当光线垂直入射时,最多能看到第 3 级光谱.解:63102500101--⨯=⨯=d m ,光线垂直入射时,光栅衍射明纹条件λθk d =sin∵1sin <θ, 得 39.3=<λdk ,取整数 3max =k10-10 一束平行光垂直入射在平面透射光栅上,当光栅常数d /a = 3 时,k = 3, 6, 9级不出现. 解:由光栅缺级条件()k a d k '=,Λ,3,2,1±±±='k 时,Λ,9,6,3±±±=k 级缺级当k '取1时,3=k ,∴a d 3= 10-11 入射光波长一定时,当光线从垂直于光栅平面入射变为斜入射时,能观察到的光谱线最高级数max k 变大 (填“变小”或“变大”或“不变”). 解:正入射光栅方程λθk d =sin ;斜入射光栅方程λθk i d '=+)sin (sin ,…,∵︒<90θ,︒<≤︒900i ,∴1sin <θ,1sin 0<<i , ∴ m ax max k k >' 10-12 用波长围为400~760 nm 的白光照射到衍射光栅上,其衍射光谱的第二级和第三级重叠,则第三级光谱被重叠部分的波长围是 400 ~ 506.7 nm . 原题22-6 解:λλ''=k k ,2323λλ=,令 2λ= 760 nm ,得 3λ = 506.7 nm 10-13 从光源射出的光束垂直照射到衍射光栅上.若波长为3.6531=λnm 和2.4102=λnm 的两光线的最大值在︒=41θ处首次重合.问衍射光栅常数为何值?解:由光栅方程公式有 dk d k 2211sin λλθ==∴60.12.4103.6561212===λλk k 而1k 与 2k 必须是整数,又取尽量小的级数 ∴8,521==k k=︒⨯⨯==-41sin 103.6565sin 91θλk d 61000.5-⨯ m10-14 波长为500nm 的单色平行光垂直入射于光栅常数为3103-⨯=d mm 的光栅上,若光栅中的透光缝宽度3102-⨯=a mm ,问⑴ 哪些谱线缺级?⑵ 在光栅后面的整个衍射场中,能出现哪几条光谱线? 解:⑴ 根据缺级条件 k a dk '=(Λ,3,2,1±±±='k )则光栅的第k 级谱线缺级(k 为整数) 本题 k k k a d k '='⨯⨯='=--2310210333 当 ='k 2、4、6….时k = 3、6、…则第±3、±6,…谱线缺级根据光栅方程 λθk d =sin , λθsin d k = , 令 2/πθ<得 61050010103933=⨯⨯⨯=<---λdk ,再考虑到缺级.只能出现 0、±1、±2、±4、±5共9条光谱线.10-15 一双缝,缝距 d = 0.40 mm ,两缝的宽度都是a = 0.080 mm ,用波长为480=λnm 的平行光垂直照射双缝,在双缝后放一焦距为f = 2.0 m 的透镜,求:⑴ 在透镜焦平面处的屏上,双缝干涉条纹的间距∆x ;⑵ 在单缝衍射中央亮纹围的双缝干涉亮纹数目. 原题22-3⑴ ∆x = 2.4×10-3 m⑵ 在单缝衍射中央亮纹围有 9条 亮谱线:4 ,3 ,2 ,1 ,0±±±±级10-16 光学仪器的最小分辨角的大小[ C ](A) 与物镜直径成正比; (B) 与工作波长成反比(C) 取决于工作波长与物镜直径的比值;(D) 取决于物镜直径与工作波长的比值. 解:Dλϕ22.1δ=10-17 人眼瞳孔随光强大小而变,平均孔径约为3.0 mm ,设感光波长为550 nm ,眼睛可分辨的角距离约为 1 分. 解:取人眼孔径为3 mm ,入射光波长为550nm ,眼最小分辨角 122.1δ'≅=ΛDλϕ10-18 在夜间人眼的瞳孔直径约为5.0 mm ,在可见光中人眼最敏感的波长为550 nm ,此时人眼的最小分辨角为 27.6 秒,有迎面驶来的汽车,两盏前灯相距1.30 m ,当汽车离人的距离为 9.69×103m 时,人眼恰好可分辨这两盏灯.原题22-7 解:Λ==Dλϕ22.1δ; Λ=∆∆=θx l10-19 根据光学仪器分辨率的瑞利判据,要利用望远镜分辨遥远星系中的星体,可采用 增大透镜直径 或 用较短的波长 的方法.10-20 用一部照相机在距离地面20 km 的高空中拍摄地面上的物体,若要求它能分辨地面上相距为0.1m 的两点,问照相机镜头的直径至少要 13.4 cm .(设感光波长为550 nm )解:由 l s D ==λϕ22.1δ,得134.01.010*********.1 22.139=⨯⨯⨯⨯==-s l D λm = 13.4cm 10-21 以未知波长的X 射线掠入射于晶面间隔为10103-⨯=d m 的晶面上,测得第一级布喇格衍射角︒=51θ,则该X . 解:λϕk d =sin 2,k = 1,……10-22 一束波长围为0.095 ~ 0.140 nm 的X 射线照射到某晶体上,入射方向与某一晶面夹角为︒30,此晶面间的间距为0.275 nm ,求这束X 射线中能在此晶面上产生强反射的波长的大小. 原题22-8=λ0.1375 nm10-23 测量未知晶体晶格常数最有效的方法是X 射线衍射法.现用波长07126.0=λ nm (钼谱线)的X 射线照射到某未知晶体上,转动晶体,在三个相互正交的方位上各测得第2级布喇格衍射角分别为59561'''︒=ϕ、79132'''︒=ϕ、14943'''︒=ϕ,请分别求出这三个相互正交方位上的晶面间距. 解:晶体的衍射满足布喇格方程 λϕk d =sin 2 ϕλsin 2k d =已知 k = 2,︒=985.61ϕ、︒=319.32ϕ、︒=161.43ϕ解得:=1d 0.586 nm ,=2d 1.231 nm ,=3d 0.982 nm (该晶体为斜方晶系的无水芒硝)习题参考答案作业2 动量与角动量 功与能2-1 0.6 N·s; 2 g 2-2 1.41 Ns2-3 M P '=2υ;=''F 30N ,=P 45W 2-4 5.30 × 1012m 2-5 B A a b υυ= 2-6 0.45 m2-7 )(mr k ,)2(r k - 2-8 )2(22k g m2-9 )6(R GMm ,)3(R GMm - 2-10 4.23×106 J , 151 s 2-11 31 J ,5.345 m/s2-12 222k ωq m E P =,222k ωp m E Q =222ωp m A x =,222ωq m A y -=作业4 气体动理论4-1 0.13 kg ,117升4-2 平衡状态,气体的准静态过程 4-3 1.53 × 104 Pa 4-4 相同,不同,不同 4-5 kTpVN =4-6 10 : 3, 5 : 3, 1 : 1 4-7 略4-8 =∆E 41.55 J ,221007.2-⨯=∆K E 4-9 =∆T 0.481 K ,41000.2⨯=∆p Pa 4-10 R E 52,)5(2μE ,)π5(4μE4-11 υυυd )(d 100⎰⎰∞=='f NN N ,υυd )(100⎰∞=f P ,υυυυυυd )(d )(100100⎰⎰∞∞=f f4-12 D4-13 51035.1⨯=P Pa 4-14 n = 3.2×1017 m 3 ,=λ7.8 m ,=z 59.9 s 14-15 =⎪⎭⎫ ⎝⎛υ1kT m π2=, υυ1π41⋅=⎪⎭⎫ ⎝⎛4-16 )3(20υ=a ,=∆N 0.333 N ,=υ 1.220υ,=2υ 1.310υ作业6 狭义相对论基础6-1 93,10,0,2.5×107s 6-2 51033.3-⨯-s ,天津 6-3 3.61 m ,143369.33'︒=︒ 6-4 1.418×108 m/s = 0.473 c 6-5 12 m ,4 s6-6 =∆t 1.6 s ,='∆t 0.96 s 6-7 )(122c a υ-,)(122c mυ-,)1(22c ab mυ-6-8cu c u l x -+=∆110,c u c u cl t -+=∆110,c =υ 6-9 0.7×106-10 50.8% 6-11 46-12 211k c -=υ 6-13 0.866 c ,0.866 c 6-14 2.94×10 eV6-15 4.1×1066-16 m = 2.67m 0,=υ0.5c ,0031.2m m =' 6-17 c 115.0m ax =υ,=ke E 3.43×103eV ,==ke kp 1840E E 6.31×106eV作业8 波 动8-1 略8-2 7.58×105 m8-3 316, 2.11×10118-4 10.5m ,5Hz ,52.4m/s ,x 轴正方向x = 0处质元的振动方程 8-5 600 cm/s ,)]24π(252sin[30.0x t y +=(cm)8-6 2π9-=ϕ,2π=∆ϕ 8-7 )]4(2cos[1042x t y -⨯=-π,图略8-8 4106.0-⨯J/m 3,4102.1-⨯J/m 3;71024.9-⨯J 8-9 0.58-10 []2ππ4cos 01.0++=x t y 反 8-11 ]π)(π2cos[+-=u x t A y ν]2π)(π2cos[--=x t A y ν入]2π)(π2cos[++=u x t A y ν反波节:νu k x ⋅=2(k = 0, -1, -2, …),波腹:νu k x )412(-=(k = 0, -1,-2, …)8-12 )( π2cos 2λx T t A y -=,t Tx A y y y π2cos π2cos 221λ=+=波腹 2 λk x =,k = 0, 1, 2, …波节 4)2( λ+=k x ,k = 0, 1, 2, …8-13 )π31712ππ7cos(10--=x t y (cm)作业10 光的衍射10-1 1.0 10-2 1/2 10-3 310-4 6, 一级明10-5 212λλ=,1λ的第k 1极小和2λ的第k 2 = 2k 1极小重合. 10-6 a = 2.912×10-4m,=ρ2 1.13×10-3m 10-7 λ10 10-8 916 10-9 3 10-10 3 10-11 变大10-12 400 ~ 506.7 10-13 61000.5-⨯=d m10-14 第±3、±6,…谱线缺级,只出现0,±1,±2,±4,±5共9条光谱线. 10-15 2.4 mm , 9条亮纹10-16 C 10-17 110-18 27.6, 9.69×10310-19 增大透镜直径, 用较短的波长 10-20 13.4 10-21 111023.5-⨯ 10-22 =λ0.1375 nm10-23 =1d 0.586 nm ,=2d 1.231 nm ,=3d 0.982 nm。

大学物理下作业 第二次作业: 静电场(二)

大学物理下作业 第二次作业: 静电场(二)

第二次作业:静电场(二)一.选择题(答案填入下表)题号12345答案1.某电场的电力线分布情况,如图所示。

一负电荷从M 点移到N 点。

有人根据这个图作出下列几点结论,其中哪点是正确的?[答案填入上表](A)电场强度N M E E >;(B)电势N M U U >;(C)电势能N M W W <;(D)电场力的功0>A 。

2.半径为r 的均匀带电球面1,带电量为q ;其外有同心的半径为R 的均匀带电球面2,带电量为Q ,则此两球面之间的电势差U 1-U 2为:[答案填入上表](A)[q/(4πε0)][(1/r)-(1/R)];(B)[Q/(4πε0)][(1/R)-(1/r)];(C)[1/(4πε0)][(q/r)-(Q/R)];(D)q/(4πε0r).3.真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示,则电场力对q 做功为[答案填入上表](A)24220r rQq ππε⋅;(B)r r Qq 2420⋅πε;(C)204r Qq πε;(D)0.4.在静电场中,下列说法中哪一个是正确的?[答案填入上表](A)带正电荷的导体,其电势一定是正值。

(B)等势面上各点的场强一定相等。

(C)场强为零处,电势也一定为零。

(D)场强相等处,电势梯度矢量一定相等。

5.有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零,则原点O处电场强度和电势为零的组态是:[答案填入上表]二、填空题(答案填入下表)题号12-(1)2-(2)3答案题号4-(1)4-(2)4-(3)4-(4)答案题号567答案1.如图所示,一等边三角形边长为a,三个顶点上分别放置着电量为q、2q、3q的三个正点电荷。

设无穷远处为电势零点,则三角形中心处O的电势U0=[答案填入上表].2.一“无限长”均匀带电直导线沿Z轴放置,线外某区域的电势表达式为U=Aln(x2+y2),式中A为常数,该区域的场强的两个分量为: E[(1)答案填入上表]=z E[(2)答案填入上表] =x3.设在均匀电场中,场强E 与半径为R 的半球面的轴相平行,通过此半球面的电场强度通量为[答案填入上表].4.把一个均匀带电量为+Q 的球形肥皂泡由半径r 1吹到半径r 2,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由[(1)答案填入上表]变为[(2)答案填入上表];电势U 由[(3)答案填入上表]变为[(4)答案填入上表]。

大学物理作业2.高斯定理

大学物理作业2.高斯定理

《大学物理》作业 No .2 静电场中的高斯定理班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量内容提要1.电通量⎰⋅=Φs d S E 电场强度穿过任意曲面的电通量在数值上等于穿过该面的电场线条数;对于封闭曲面,电场线穿出规定电通量为正。

2.真空中高斯定理∑⎰=⋅内q d s 01εS E(1).高斯定理表明穿过封闭曲面的电通量仅与面内电荷有关,面外电荷分布对该通量无贡献;(2).空间任意一点(包括高斯面上各点)的电场由高斯面内外所有场源电荷共同决定;(3).高斯定理是静电学的一条重要基本定理,反映了静电场的有源性,同时该定理又是从库仑定律导出的,反映了库仑平方反比律的正确性;(4).运用高斯定理可以方便地求解具有某些对称性分布的电场,根据电场的对称性分布特点,选取恰当的高斯面,从而简化积分,求出电场。

基本要求1.理解电通量概念,掌握电通量计算2.理解并掌握真空中高斯定理3.会用高斯定理计算几种典型对称电荷分布的电场一、 选择题1. 将一个点电荷(忽略重力)无初速地放入静电场中,关于电荷的运动情况,正确的是:[ ] (A )电荷一定顺着电场线加速运动;(B )电荷一定逆着电场线加速运动;(C )到底是顺着还是逆着电场线运动,由电荷的正负决定;(D )以上说法均不正确。

2.关于电场线,以下说法正确的是[ ] (A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(C) 电场线是电场空间实际存在的系列曲线;(D) 在无电荷的电场空间,电场线可以相交.3.如图2.1,一半球面的底面圆所在的平面与均强电场E 的夹角为30° ,球面的半径为R ,球面的法线向外,则通过此半球面的电通量为 [ ] (A) π R 2E/2 . (B) -π R 2E/2.(C) π R 2E .(D) -π R 2E .4.关于高斯定理的理解有下面几种说法,其中正确的是[ ] (A) 如高斯面上E 处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E 处处为零;(C) 如高斯面上E 处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <) , 所带电量分别为a Q 和b Q ,设某点与球心相距r , 当b a R r R <<时, 该点的电场强度的大小为:[ ] (A) 2b a 041r Q Q +⋅πε (B) 2b a 041r Q Q -⋅πε (C))(412bb 2a 0R Q r Q +⋅πε (D) 2a 041r Q ⋅πε 6. 如图2.2所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为1λ 和2λ, 则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小 [ ] (A) r0212πελλ+ (B) 20210122R R πελπελ+ (C) 1014R πελ (D) 0 二、 填空题1.将一电量为q 的点电荷置于一正方体盒子的中心,则穿过盒子六个面的电通量是多少 ,如果将点电荷置于盒子的一个顶点处,穿过盒子各个面的电通量又是多少 .2.如图2.3所示,真空中两个正点电荷,带电量都为Q ,相距2R ,若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量Φ= ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度的矢量式分别为 , .三、计算题 1. 一半径为R 的带电球体,其电荷体密度分布为⎩⎨⎧><=)(0)(R r R r Ar ρ , 其中A 为一常数,试求球体内、外的场强分布。

大学物理课后习题及答案(2)

大学物理课后习题及答案(2)

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

大学物理习题与答案解析

大学物理习题与答案解析
v d dr tt22i1 j3 (m)/s
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy

a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s

地大20秋《大学物理(上)》在线作业二【标准答案】

地大20秋《大学物理(上)》在线作业二【标准答案】

(单选题)1: 关于高斯定理的理解有下面几种说法,其中正确的是()A: 如果高斯面上电场强度处处为零,则该面内必无电荷B: 如果高斯面无电荷,则高斯面上电场强度处处为零C: 如果高斯面上电场强度处处不为零,则高斯面内必有电荷D: 如果高斯面内有净电荷,则通过高斯面的电通量必不为零正确答案: D(单选题)2: 一带电体可作为点电荷处理的条件是()A: 电荷必须呈球形分布B: 带电体的线度很小C: 带电体的线度与其它有关长度相比可忽略不计D: 电量很小正确答案: C(单选题)3: 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中()A: 物体的加速度是不断变化的B: 物体在最高点处的速率为零C: 物体在任一点处的切向加速度均不为零D: 物体在最高点处的法向加速度最大正确答案: D(单选题)4: 关于电场强度与电势之间的关系,下列说法中,哪一种是正确的()A: 在电场中,场强为零的点,电势必为零B: 在电场中,电势为零的点,电场强度必为零C: 在电势不变的空间,场强处处为零D: 在场强不变的空间,电势处处相等正确答案: C(单选题)5: 质点作变速直线运动时,速度、加速度的关系为()A: 速度为零,加速度一定也为零B: 速度不为零,加速度一定也不为零C: 加速度很大,速度一定也很大D: 加速度减小,速度的变化率一定也减小正确答案: D(单选题)6: 物体作曲线运动时()有加速度。

A: 一定B: 不一定正确答案: A(单选题)7: 将一重物匀速推上一个斜坡,因其动能不变,所以()A: 推力不作功B: 推力功与摩擦力的功等值反号C: 推力功与重力的功等值反号。

15春地大《大学物理(上)》在线作业二答案

15春地大《大学物理(上)》在线作业二答案

15春地大《大学物理(上)》在线作业二答案一、单选题(共25 道试题,共100 分。

)1. 将一个物体提高10m,下列哪一种情况下提升力所作的功最小?A. 以5m/s的速度匀速提升;B. 以10 m/s的速度匀速提升;C. 将物体由静止开始匀加速提升10m,速度增加到5m/s;D. 物体以10m/s的初速度匀减速上升10m,速度减小到5m/s。

正确答案:D2. 摩擦力是()A. 保守力B. 非保守力正确答案:B3. 关于静电场中的电位移线,下列说法中正确的是()A. 起自正电荷,止于负电荷,不形成闭合线,不中断B. 任何两条电位移线互相平行C. 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交D. 电位移线只出现在有电介质的空间正确答案:C4. 物体作曲线运动时()有加速度。

A. 一定B. 不一定正确答案:A5. 在某地发生两件事,相对该地静止的甲测得时间间隔为4s,若相对甲作匀速直线运动的乙测得时间间隔为5s, 则乙相对于甲的运动速度是(c表示真空中的光速)()A. 4c/5B. 3c/5C. c/5D. 2c/5正确答案:B6. 将一重物匀速推上一个斜坡,因其动能不变,所以()A. 推力不作功B. 推力功与摩擦力的功等值反号C. 推力功与重力的功等值反号D. 此重物所受的外力的功之和为零正确答案:D7. 两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷()A. 电量相等,符号相同B. 电量相等,符号不同C. 电量不等,符号相同D. 电量不等,符号不同正确答案:B8. 如图所示,一轻绳跨过两个质量均为m、半径均为R的匀质圆盘状定滑轮。

绳的两端分别系着质量分别为m和2m的重物,不计滑轮转轴的摩擦。

将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力为()A. mg;B. 3mg/2;C. 2mg;D. 11mg/8。

正确答案:D9. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加(2)质点运动经一闭合路径,保守力对质点作的功为零(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题
1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ
2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B )
(A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R
mv 252
3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零
(B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同
(D) 大小不等于零,方向与物体在B 点所受合力相同
二、填空题
1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2)
2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________.
3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为
2
2
121
Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2
3
aL bL - .
5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光
滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为
F
m A m B
m
M
F
θ
A O
B R v A
v B
x
m 1m 2
F
m
R
4ω ,在此过程中,手对绳所作的功为
223
2
m R ω . 三、计算题:
1.一质量为m的物体,从质量为M的圆弧形槽顶端由静止滑下,设圆弧形槽的半径为R,张角为π/2,如图所示,如所有摩擦都可忽略,求:(1)物体刚离开槽底时,物体和槽的速度各是多少?(2)在物体从A滑到B的过程中,物体对槽做的功为多少?(3)物体到达B点时,对槽的压力(B点为槽的最底端).
解:(1)m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有
222
1
21MV mv mgR +=
又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有 0=-MV mv
联立,以上两式,得 ()M m MgR v +=
2;2()
gR
V m M M m =+
(2)22
12m gR W MV M m
==+
(3)'v V v += 2'v F mg m R =+ 2(3)
m
N m g M
=+ 2.设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r
++-=时,求F 所作的
功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.
解: (1)由题知,合F
为恒力,(76)(3416)W F r i j i j k =⋅=-⋅-++合
J 452421-=--= (2) 4575w 0.6
W P t =
==∆ (3) 由动能定理,45J
k E W ∆==-
3. 质量m =0.10kg 的小球,拴在长度L =0.5m 的轻绳的一端,构成摆,摆动时与竖直的最大夹角为60°. (1)小球通过竖直位置时的速度为多少?此时绳的张力?(2)在θ<60°的任一位置,求小球速度v 与θ 的关系式,这时小球的加速度为何?绳的张力为多大.
解: (1)0
2
1(cos60)02
mg l l mv -=
- 得 v g l =
; 2
2v T mg m mg l
=+=
m
M R
O
A B
O B
m
A
θ 60o
(2)0
2
1(cos cos60)02
mg l l mv θ-=- 得(2cos 1)v gl θ=
-
20
53
cos(60)(cos sin 1)22
v T mg m mg l θθθ=-+=+-。

相关文档
最新文档