人教A版数学必修一函数的奇偶性

合集下载

高一数学人教A版必修1课件1321函数的奇偶性

高一数学人教A版必修1课件1321函数的奇偶性

总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:

函数的奇偶性第一课时课件-高一数学人教A版(2019)必修第一册

函数的奇偶性第一课时课件-高一数学人教A版(2019)必修第一册

A.-7
B.-5
C.-3
D.3
解析 ∵f(2 020)=a×2 0203+b×2 020-2=3, ∴a×2 0203+b×2 020=5, ∴f(-2 020)=-a×2 0203-b×2 020-2 =-5-2=-7. 答案 A
一个函数的部分可能 具有奇偶性,注意要 善于观察利用。
课堂精讲
已知 f(a)求 f(-a),判断 f(x)的奇偶性或构造已知奇偶性 的函数,利用奇偶性找出 f(a)与 f(-a)的关系即可.
判断函数是非奇非偶函数 ,只需找一适当的不符合 奇偶函数定义的特例即可
解 对任意 x∈(-∞,0)∪(0,+∞), f(-x)=(-x)2=x2=f(x), 则函数 f(x)为偶函数;
则 f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0, 即 f(-1)≠-f(1),f(-1)≠f(1), 则函数 f(x)既不是奇函数也不是偶函数.
②当 a≠0 时,f(x)=x2+ax(x≠0), 取 x=1,得 f(1)=1+a,取 x=-1, 得 f(-1)=1-a,
综上所述,当 a≠0 时, 函数 f(x)既不是奇函数也不是偶函数; 当 a=0 时,函数 f(x)为偶函数.
课堂精讲
角度 4 含参函数奇偶性的判断 【例 1-4】 判断下列函数的奇偶性:
求证:f(x)为偶函数;
(3)若函数 f(x)的定义域为(-l,l)(l>0),证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.
(3)∵x∈(-l,l),∴-x∈(-l,l),
又 F(-x)=f(-x)+f(x)=F(x),
可见 f(-x)的定义域也是(-l,l).
G(-x)=f(-x)-f(x)=-[f(x)-f(-x)]

高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)

高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)

一看
二找
三判断
看定义域 是否关于 原点对称
找 f x与
f x的
下结
关系

函数奇偶性的判断
变式训练1 判断下列函数的奇偶性:——定义法
(1)f x 4 x2 (2)f x x2x 1
x 1
(3)f x 0
按照奇偶性将函数分类为:
①奇函数 ②偶函数 ③非奇非偶函数 ④既奇又偶函数
函数奇偶性的判断 ——图象直观感知
利用奇、偶函数的和、差、积、商的奇偶性,以 及复合函数的奇偶性判断.
f x




gx




f x gx
f x gx
f x gx
f g(x)
研究题 借助几何画板绘制大量函数图象并归纳函数的单调
性与函数的奇偶性的关系。来自f(-x)=f(x)f(-x)=-f(x)
不同点
图象关于y轴对称 图象关于原点对称
补充:奇偶性是函数在其定义域上的整体性质
函数奇偶性的判断
例6 判断下列函数的奇偶性: ——定义法
(1)f x x4
偶函数 (2) f x x5 奇函数
(3)f x x 1
x
奇函数
(4)
f
x
1 x2
偶函数
归纳: 根据定义判断函数的奇偶性的步骤:
f x x2

9
4
1
0
14

9
gx 2 | x | … -1
0
1
2
1
0

-1
f 3 9 f 3 f 2 4 f 2 f 1 1 f 1
几何画板
当自变量取一对相反数时, 相应的两个函数值相等

3.2.2函数的奇偶性【新教材】人教A版高中数学必修第一册课件

3.2.2函数的奇偶性【新教材】人教A版高中数学必修第一册课件

y
f(x)
O
x
y
g(x)
O
x
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
第16页,共22页。
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
例6、判断下列函数的奇偶性:
(1) f ( x) x4
(2) f ( x) x5
1
1
(3) f ( x) x x
(4)
y f(x)=5
x
(5)
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
(6)
(7)
(8)
第15页,共22页。
y f(x)=0 x
(9)
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
P85 1.已知f(x)是偶函数,g(x)是奇函数,试将下图补充完整.
4
3 2
g(x) 1 x
1
12 345
函数
g(x) 1 x
的定义域为{x|x≠0},
o
x
–1
–2
–3
它关于原点对称,
–4
–5
且 g(x) 1 1 g(x)

g
(
x)
1
xx
是奇函数.
x
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
第12页,共22页。
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
y
4
3
f (x) x
2
–3 –2 –1
1 123
o

最新人教A版高中数学必修一第三章函数的概念与性质 第2节函数的基本性质 第3课时函数奇偶性的概念

最新人教A版高中数学必修一第三章函数的概念与性质 第2节函数的基本性质 第3课时函数奇偶性的概念

3.2.2 奇偶性第1课时 函数奇偶性的概念教材要点要点1.偶函数的概念一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.2.奇函数的概念一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇、偶函数的图象特征(1)奇函数的图象关于________成中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)偶函数的图象关于________对称;反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数.状元随笔 奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)已知f (x )是定义在R 上的函数.若f (-1)=f (1),则f (x )一定是偶函数.( ) (2)奇函数的图象一定过原点.( )(3)偶函数的图象与x 轴交点的个数一定是偶数.( ) (4)f (x )是定义在R 上的奇函数,则f (0)=0.( ) 2.下列函数为奇函数的是( ) A .y =|x | B .y =3-xC .y =1x 3 D .y =-x 2+143.若函数y =f (x ),x∈[-2,a ]是偶函数,则a 的值为( ) A .-2 B .2C .0D .不能确定4.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)题型1 函数奇偶性的判断 例1 判断下列函数的奇偶性 (1)f (x )=√1−x 2+√x 2−1; (2)f (x )=2x 2+xx+1;(3)f (x )=x 2−1|x|;(4)f (x )={x (1−x ),x <0x (1+x ),x >0.方法归纳判断函数奇偶性的方法(1)定义法:根据函数奇偶性的定义进行判断.步骤如下:①判断函数f (x )的定义域是否关于原点对称.若不对称,则函数f (x )为非奇偶函数,若对称,则进行下一步.②验证.f (-x )=-f (x )或f (-x )=f (x ). ③下结论.若f (-x )=-f (x ),则f (x )为奇函数; 若f (-x )=f (x ),且f (x )为偶函数;若f (-x )≠-f (x ),且f (-x )≠f (x ),则f (x )为非奇非偶函数.(2)图象法:f (x )是奇(偶)函数的等价条件是f (x )的图象关于原点(y 轴)对称. 跟踪训练1 (1)(多选)下列函数中,是偶函数的是( )A .y =√1+x 2B .y =x +1x C .y =x 2+1x 2 D .y =x +x 2 (2)函数f (x )={12x 2+1,x >0,−12x 2−1,x <0是()A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数 题型2 函数奇偶性的图象特征例2 已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已知画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象.(2)根据图象写出函数y =f (x )的递增区间.(3)根据图象写出使y =f (x )<0的x 的取值范围.方法归纳1.巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象. 2.奇偶函数图象的应用类型及处理策略(1)类型:利用奇偶函数的图象可以解决求值、比较大小及解不等式问题.(2)策略:利用函数的奇偶性作出相应函数的图象,根据图象直接观察.跟踪训练2 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.题型3 利用函数奇偶性求值 角度1 利用函数的奇偶性求参数例3 (1)已知函数f (x )=x 2-(2-m )x +3为偶函数,则m 的值是( ) A .1 B .2 C .3 D .4(2)函数f (x )=x+2a+3x 2+8为奇函数,则实数a =( )A .-1B .1C .-32D .32角度2 利用函数的奇偶性求函数值例4 (1)已知函数f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+2,则f (1)+g (1)=( )A .-2B .-1C .1D .2(2)已知函数f (x )=ax 3+bx +3,且f (-2)=10,则函数f (2)的值是________.方法归纳1.已知函数的奇偶性求参数值的三种思路(1)若表示定义域的区间含有参数,则可利用对称性列出关于参数的方程.(2)一般化策略:对x 取定义域内的任一个值,利用f (-x )与f (x )的关系式恒成立来确定参数的值.(3)特殊化策略:根据定义域内关于原点对称的特殊自变量值对应的函数值的关系列方程求解,不过,这种方法求出的参数值要代入解析式检验,看是否满足条件,不满足的要舍去.2.利用函数的奇偶性求函数值的方法已知函数的某一个值,求对应的函数值时,常利用函数的奇偶性或部分函数的奇偶性求值.跟踪训练3 (1)设函数f (x )=(x+1)(x+a )x为奇函数,则a =________.(2)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -2,2a ],则a =________,b =________.(3)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)=________. 易错辨析 忽视函数的定义域致误例5 关于函数f (x )=√x 2−4+√4−x 2与h (x )=√x −4+√4−x 的奇偶性,下列说法正确的是( )A .两函数均为偶函数B .两函数都既是奇函数又是偶函数C .函数f (x )是偶函数,h (x )是非奇非偶函数D .函数f (x )既是奇函数又是偶函数,h (x )是非奇非偶函数解析:函数f (x )=√x 2−4+√4−x 2的定义域满足{x 2−4≥0,4−x 2≥0,即x 2=4,因此函数f (x )的定义域为{-2,2},关于原点对称,此时f (x )=0,满足f (-x )=-f (x ),f (-x )=f (x ),所以函数f (x )既是奇函数又是偶函数,而函数h (x )=√x −4+√4−x 的定义域为{4},不关于原点对称,因此函数h (x )是非奇非偶函数.故选D.答案:D课堂十分钟1.(多选)下列函数是奇函数的有( )A .y =x 3+√x 3B .y =1x (x >0)C .y =x 3+1D .y =x 2+1x2.函数f (x )=√1−x 2|x+3|−3的奇偶性是( ) A .奇函数 B .偶函数C.既不是奇函数也不是偶函数D.既是奇函数又是偶函数3.函数y=4xx2+1的图象大致为()4.已知函数f(x)={−x2+x,x>0,ax2+x,x<0是奇函数,则a=________.5.已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.3.2.2 奇偶性第1课时 函数奇偶性的概念 新知初探·课前预习要点3.原点 y 轴[基础自测]1.答案:(1)× (2)× (3)× (4)√ 2.答案:C 3.答案:B4.答案:(2)(4) (1)(3)题型探究·课堂解透例1 解析:(1)函数f (x )=√1−x 2+√x 2−1的定义域为{-1,1},关于原点对称,此时f (x )=0,所以函数f (x )=√1−x 2+√x 2−1既是奇函数又是偶函数.(2)函数f (x )的定义域是(-∞,-1)∪(−1,+∞),不关于原点对称,∴f (x )是非奇非偶函数.(3)函数f (x )=x 2−1|x|的定义域为(-∞,0)∪(0,+∞),关于原点对称.又f (-x )=(−x )2−1|−x|=x 2−1x =f (x ),所以函数f (x )=x 2−1|x |是偶函数.(4)方法一:∵函数f (x )的定义域是(-∞,0)∪(0,+∞),关于原点对称. 当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x ). 当x <0时,-x >0, ∴f (-x )=-x (1-x )=-f (x ). ∴函数f (x )为奇函数.方法二:作出函数的图象,如图所示的实线部分:由图可知,该函数为奇函数.跟踪训练1 解析:(1)由偶函数的定义可知AC 是偶函数.故选AC.(2)函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.当x >0时,-x <0,f (-x )=-12(-x )2-1=-(12x 2+1)=-f (x );当x <0时,-x >0,f (-x )=12(-x )2+1=12x 2+1=-(-12x 2-1)=-f (x ). 综上可知,函数f (x )={12x 2+1,x >0,−12x 2−1,x <0是奇函数.故选A. 答案:(1)AC (2)A例2 解析:(1)由题意作出函数图象如图:(2)据图可知,单调递增区间为(-1,0),(1,+∞).(3)据图可知,使f (x )<0的x 的取值范围为(-2,0)∪(0,2).跟踪训练2 解析:由奇函数的性质知,其图象关于原点对称,则f (x )在定义域[-5,5]上的图象如图,由图可知不等式f (x )<0的解集为{x |-2<x <0或2<x ≤5}.答案:{x |-2<x <0或2<x ≤5}例3 解析:(1)f (-x )=(-x )2-(2-m )(-x )+3=x 2+(2-m )x +3,由函数y =f (x )为偶函数,知f (-x )=f (x ),即x 2+(2-m )x +3=x 2-(2-m )x +3,∴2-m =-(2-m ),∴m =2.故选B.(2)由题意f (x )为奇函数,则f (0)=0,即0+2a +3=0,∴a =-32.此时f (x )=xx 2+8为奇函数.故选C.答案:(1)B (2)C例4 解析:(1)∵f (x )-g (x )=x 3+x 2+2, 由-x 代入x 得:f (-x )-g (-x )=-x 3+x 2+2 由题意知f (-x )=f (x ),g (-x )=-g (x ), ∴f (x )+g (x )=-x 3+x 2+2,所以f (1)+g (1)=-1+1+2=2.故选D. (2)令g (x )=ax 3+bx∵g (-x )=a (-x 3)+b (-x )=-ax 3-bx =-(ax 3+bx )=-g (x ), ∴g (x )为奇函数.∴f (-x )=g (-x )+3=-g (x )+3, ∴g (2)=-7,∴f (2)=g (2)+3=-7+3=-4. 答案:(1)D (2)-4跟踪训练3 解析:(1)方法一(定义法) 由已知f (-x )=-f (x ), 即(−x+1)(−x+a )−x=-(x+1)(x+a )x.显然x ≠0得,x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1.(经检验满足题意) 方法二(特值法) 由f (x )为奇函数得 f (-1)=-f (1), 即(−1+1)(−1+a )−1=-(1+1)(1+a )1,整理得a =-1.解析:(2)由f (x )为偶函数知,其定义域关于原点对称, 故有a -2+2a =0,解得a =23.又f (x )为偶函数,所以其图象关于y 轴对称, 即-b2a =0,解得b =0. (3)令g (x )=x 5+ax 3+bx , 则g (x )是定义在R 上的奇函数. 从而g (-2)=-g (2).又f (x )=g (x )-8,∴f (-2)=g (-2)-8=10. ∴g (-2)=18,∴g (2)=-g (-2)=-18. ∴f (2)=g (2)-8=-18-8=-26. 答案:(1)-1 (2)23 0 (3)-26[课堂十分钟]1.答案:AD 2.答案:A 3.答案:A 4.答案:15.解析:(1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D .分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为(-2,0)∪(2,5).。

人教A版必修一1.3.2函数的奇偶性

人教A版必修一1.3.2函数的奇偶性
1.3.2 函数的奇偶性
链接一:轴对称图形:一个图形绕一条直线翻转180°后,能与原图形重合, 则这个图形称为轴对称图形,这条直线称为这个图形的对称轴. 中心对称图形:一个图形绕一个点旋转180°后,能与原图形重合,则这个 图形称为中心对称图形,这个点称为这个图形的对称中心. 链接二:抛物线 双曲线 直线y=2x的图象(如图所示)都具有对称性.
3.既奇又偶函数的表达式是
定义域A是关于原点对称的非空数集.
4.若奇函数在原点处有定义,则有f(0)=0. 探究要点二:利用定义判断函数奇偶性的步骤 1.求函数f(x)的定义域; 2.判断函数f(x)的定义域是否关于原点对称,若不关于原点对称,则该函数既 不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; 3.结合函数f(x)的定义域,化简函数f(x)的解析式; 4.求f(-x); 5.根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性. 判断函数奇偶性时要注意: 1.{0}是关于原点对称的,如函数 定义域是{0},f(x)=0,所以该函数既是奇函数又是偶函数. 2.函数根据奇偶性分为:奇函数,偶函数,既奇又偶函数,非奇非偶函数. 3.有时也根据下面的式子判断函数f(x)的奇偶性:对于定义域内的任意一个x, 若有f(x)-f(-x)=0成立,则f(x)为偶函数;对于定义域内的任意一个x,若 有f(x)+f(-x)=0成立,则f(x)为奇函数.
变式训练2-1:已知f(x)是定义在 上的奇函数,且x>0时, 求x<0时,f(x)的解析式. 解:当x<0时,-x>0,
类型三:利用函数奇偶性作函数图象 已知函数
(1)如图,已知f(x)在区间
上的图象,请据此在该坐标系中
补全函数f(x)在定义域内的图象,请说明你的作图依据; (2)求证:f(x)+g(x)=1(x≠0).

人教A版数学必修一《奇偶性》基础知识讲解

人教A版数学必修一《奇偶性》基础知识讲解

函数的奇偶性【学习目标】1.理解函数的奇偶性定义;2.会利用图象和定义判断函数的奇偶性;3.掌握利用函数性质在解决有关综合问题方面的应用.【要点梳理】要点一、函数的奇偶性概念及判断步骤1.函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释:(1)奇偶性是整体性质;(2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;(3)f(-x)=f(x)的等价形式为:()()()0,1(()0)()f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠,; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;(5)若f(x)既是奇函数又是偶函数,则必有f(x)=0.2.奇偶函数的图象与性质(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.3.用定义判断函数奇偶性的步骤(1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;(2)结合函数()f x 的定义域,化简函数()f x 的解析式;(3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性.若()f x -=-()f x ,则()f x 是奇函数;若()f x -=()f x ,则()f x 是偶函数;若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数;若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法(1)定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.(2)验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可. (3)图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.(4)性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.(5)分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有相同的单调性,即已知()f x 是奇函数,它在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即已知()f x 是偶函数且在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是减函数(增函数).【典型例题】类型一、判断函数的奇偶性例1. 判断下列函数的奇偶性:(1)()(f x x =+ (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|; (4)()|2|-2f x x =+; (5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f x g x g x x R =-∈.【思路点拨】利用函数奇偶性的定义进行判断.【答案】(1)非奇非偶函数;(2)偶函数;(3)奇函数;(4)奇函数;(5)奇函数;(6)奇函数.【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数;(2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),则f(x)=x 2-4|x|+3为偶函数 ;(3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数; (4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且()f x ∴==(-)--()f x f x x∴===,∴f(x)为奇函数; (5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数; (6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数. 【总结升华】判定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先”的原则,即优先研究函数的定义域,否则就会做无用功.如在本例(4)中若不研究定义域,在去掉|2|x +的绝对值符号时就十分麻烦.举一反三:【变式1】判断下列函数的奇偶性: (1)23()3x f x x =+; (2)()|1||1|f x x x =++-;(3)222()1x x f x x +=+; (4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩. 【答案】(1)奇函数;(2)偶函数;(3)非奇非偶函数;(4)奇函数.【解析】(1)()f x 的定义域是R , 又223()3()()()33x x f x f x x x --==-=--++,()f x ∴是奇函数. (2)()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数.(3)函数定义域为1x ≠-,定义域不关于原点对称,∴()f x 为非奇非偶函数.(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x ∈R 时,f(-x)=-f(x) ∴f(x)为奇函数.【高清课堂:函数的奇偶性356732例2(1)】【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.【高清课堂:函数的奇偶性 356732 例2(2)】【变式3】设函数()f x 和g(x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是 ( ).A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数【答案】A类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例2.已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】本题要会对已知式进行变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是本题的关键之处,从而问题(2)g 便能迎刃而解.举一反三:【变式1】已知()f x 为奇函数,()()9,(2)3g x f x g =+-=,则(2)f 为( ).【答案】6【解析】(2)(2)93,(2)6g f f -=-+=-=-则,又()f x 为奇函数,所以(2)(2)6f f =--=.例3.已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=. 2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩【总结升华】若奇函数()f x 在0x =处有意义,则必有(0)0f =,即它的图象必过原点(0,0).举一反三:【高清课堂:函数的奇偶性356732 例3】【变式1】(1)已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.(2)已知奇函数()g x 的定义域是R ,当0x >时,2()21g x x x =+-,求()g x 的解析式. 【答案】(1)2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;(2)2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ () 例4.设定义在[-2,2]上的偶函数f(x)在[0,2]上是单调递增,当(1)()f a f a +<时,求a 的取值范围. 【答案】122a -≤<- 【解析】∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a+1|,|a|∈[0,2]|1|||2101-212 -31 22-22-22a a a a a a a a +<+<⎧⎧⎪⎪∴≤+≤∴≤≤∴-≤<-⎨⎨⎪⎪≤≤≤≤⎩⎩. 【总结升华】若一个函数()f x 是偶函数,则一定有()(||)f x f x =,这样就减少了讨论的麻烦.类型三、函数奇偶性的综合问题例5.设a 为实数,函数f(x)=x 2+|x-a|+1,x ∈R ,试讨论f(x)的奇偶性,并求f(x)的最小值.【思路点拨】对a 进行讨论,把绝对值去掉,然后把f(x)转化成二次函数求最值问题。

人教A版必修1高一上学期数学函数的奇偶性课件

人教A版必修1高一上学期数学函数的奇偶性课件
是偶函数
注意:如果奇函数在原点有意义,一定有f(0)=0
本课小结
两个定义:对于f(x)定义域内的任意一个x,
f(-x)=-f(x) f(x)为奇函数 图象关于原点对称
f(-x)=f(x)
f(x)为偶函数 图象关于y轴对称
这些图 像表示 奇函数 图像的 是:
y3
1 -3 -1
0 1 3x
-1
(1) f(x)=x-
1 x
解:定义域为﹛x|x≠0﹜
(2) f(x)= - x2 +1 解:定义域为R
∵f(-x)=(-x) -
1
-x
= -x+ 1
x
= - f(x)
∴f(x)为奇函数
∵f(-x)= -(-x)2+1 = - x2+1 = f(x)
∴f(x)为偶函数
判断函数的奇偶性的步骤: (1) 先求定义域,看是否关于原点对称 (2) 再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立
实际上,对于R内任意的一个x,都有 f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.
1.偶函数
一般地,对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数.
(或是f(x)-f(-x)=0)
y
(-x,f(-x))
(x,f(x))
-x 0 x x
判断函数f (x)
x2 2x 2, x 0
x2 2x 2, x0
的奇偶性
(3). f(x)=5
解: f(x)的定义域为R ∵ f(-x)=f(x)=5 ∴f(x)为偶函数 y
5
(4). f(x)=0
解: 定义域为R

函数的奇偶性(课件)高一数学(人教A版2019必修第一册)

函数的奇偶性(课件)高一数学(人教A版2019必修第一册)

答案:(1) 偶 ;
(2) 奇 ;
(5) 非奇非偶 ;
(3) 奇 ;
(4) 偶.3 函数的奇偶性
思维篇
知识篇
素养篇
1.已知f(x)=ax3-bx+4(a,b∈R), f(m)=5, 则
f(-m)=
.
解:令g(x)=ax2-bx,易知
g(-x)=-g(x)
又 g(m)= f(m)-4=1,
x
例如,函数 f(x)=x3就是奇函数.
练一练
1.奇函数f(x)的定义域是(2t-3, t),则t=
答案:t = 1
.
练一练
2.判断下列函数的奇偶性:
(1)f(x)=x4;
(2)f(x)=x5;
1
(3)f(x)=x+ ;

1
(4)f(x)= 2;

(5)f(x)=x-1;
(6)f(x)=x2 , x∈[-3, 7].
所以 f(-x)=(-x-5)2-4=(x+5)2-4=f(x)
当x>1时,-x<-1, 由
所以f(-x)=(-x+5)2-4=(x-5)2-4=f(x)
从而对于定义域内任意x,都有f(-x)=f(x) ;
故函数是偶函数.
6.判断下列函数的奇偶性:
( + 5)2 − 4 , ( < −1)
(1) f(x)=
( − 5)2 − 4 , ( > 1)
(2) f(x)= + − − (a∈R)




解:(2)定义域为R,
当a≠0时,f(-x)=-f(x)
函数f(x)= + − − 是奇函数;

函数的奇偶性-高一数学教材配套教学课件(人教A版必修第一册)

函数的奇偶性-高一数学教材配套教学课件(人教A版必修第一册)
(3) f (x)在[2,4]上单调递减, f (x)min f (4), f (x)max f (2). 令x y 1得f (2) 2 f (1) 4;令x y 2得f (4) 2 f (2) 2 f (2) 8.
f (x)在[2,4]上的最大值为4,最小值为 8.
6.抽象函数的求值、奇偶性、单调性
x2 2x 3, x 0 f (x)的解析式为f (x) 0, x 0
x2 2x 3, x 0
6.抽象函数的求值、奇偶性、单调性
[例5]若f (x)是定义在R上的函数,且x, y R, f (xy) f (x) f ( y).
(1)求f (1)和f (1)的值.
∀x, y∈R, f(x)+f(y)=f(x+y)
一看定义域
不关于原点对称
关于原点对称
非奇非偶函数
二看关系式or图象
f(x)=f(﹣x)
﹣f(x)=f(﹣x)
图象关于y轴对称 图象关于原点对称
偶函数 既奇又偶函数 奇函数
f (x) 0, x D(D关于原点对称)
3.由奇偶性求参数
[例2]若f (x) (x a)( x 4)为偶函数,则实数a __4__.
备注
定义
图象特点 等价条件
设f(x)的定义域为I
∀x∈I , 都有-x∈I,都有f (-x)=f (x) 则函数f(x)叫做偶函数
关于y轴对称 f(x)-f(-x)=0
∀x∈I , 都有-x∈I,都有f (-x)= - f (x) 则函数f(x)叫做奇函数
关于原点对称
f(x)+f(-x)=0
①具有奇偶性的函数的定义域关于原点对称
x2
(4) f (x) 0 解 : x R,x R,且f (x) 0 f (x), f (x) 0 f (x) f (x) 0, x [2,2] f (x)是既奇又偶函数.

新人教A版必修1第一章 奇偶性的概念

新人教A版必修1第一章 奇偶性的概念
1.3.2 奇偶性 第 1 课时 奇偶性的概念
【学习要求】 1.理解函数的奇偶性及其几何意义; 2.学会运用函数图象理解和研究函数的性质; 3.掌握判断函数奇偶性的方法与步骤. 【学法指导】 通过自己动手计算,独立地去经历发现、猜想与证明的全过程, 从而建立奇偶函数的概念.通过函数奇偶性概念的形成过程,培 养观察、归纳、抽象的能力,渗透数形结合的数学思想,培养从 特殊到一般的概括归纳问题的能力.
(2)由于函数的定义域不关于原点对称,故函数不是偶函数.
(3)函数的定义域为 R,由于 f(-x)=0=f(x),所以函数为偶函数.
小结 利用定义法判断函数是不是偶函数时, 首先应看函数定义域 是否关于原点对称,即对于定义域内的任意一个 x,则-x 也一定 是定义域内的一个自变量.
跟踪训练 1 判断下列函数是否为偶函数. (1)f(x)=(x+1)(x-1); x3-x2 (2)f(x)= . x-1
1.函数奇偶性的概念 (1)偶函数:如果对于函数 f(x)的定义域内 任意 一个 x,都有
f(-x)=f(x)
,那么函数 f(x)就叫做偶函数.
(2)奇函数:如果对于函数 f(x)的定义域内 任意 一个 x,都有
f(-x)=-f(x)
,那么函数 f(x)就叫做奇函数.
2.奇、偶函数的图象 (1)偶函数的图象关于 y轴 对称, 图象关于 y轴 对称的函数 一定是偶函数. (2)奇函数的图象关于 原点 对称, 图象关于 原点 对称的函数 一定是奇函数. 3.判断函数奇偶性要注意定义域优先原则,即首先要看定义域 是否关于 原点 对称.
选用偶函数定义, 得 f(3)>f(1); 另一种方法是利用偶函数图象 的对称性.
跟踪训练 3 如图,给出了奇函数 y=f(x)的局部图象,则 f(-4)

高中数学必修第一册人教A版《3.2函数的奇偶性---奇偶性的应用》名师课件

高中数学必修第一册人教A版《3.2函数的奇偶性---奇偶性的应用》名师课件

定义域关于原点对称
如果函数是偶函数,则这个函数的图象是以y轴为对称轴的轴对
称图形;若函数图象关于y轴对称,则函数为偶函数.
如果函数是奇函数,则这个函数的图象是以坐标原点为对称中心
的中心对称图形;若函数图象关于原点对称,则函数为奇函数.
人教A版同步教材名师课件
函数的奇偶性
---函数奇偶性的应用
探究新知

; ()()

= − ||; ()() =

.
|+|−
思路
分析
本题考查利用奇偶性的定义判断函数的奇偶性.解题的关键是确定函数的定
义域是否关于原点对称,然后化简函数解析式,验证()与 − 的关系.
解析
(1)∵函数()的定义域是{| ≠ 1},关于原点不对称,
解析
(1)函数的定义域为{| ≠ 0} ,关于原点对称,对于定义域内的每一个都有(−) =
1
1
3
3
− − = − − = −(),从而函数()为奇函数.


(2) 函 数 的 定 义 域 为 R , 关 于 原 点 对 称 , 对 于 定 义 域 内 的 每 一 个 都 有 − =

的图象,有什么共同特征么?

两个函数图象都关于原点成中心对称图形.
探究新知
奇函数
一般地,设函数()的定义域为 ,如果∀ ∈ ,都有
− ∈ ,且 − = −(),那么函数()就叫做奇函数
(odd function).
典例讲解
例1.判断下列函数的奇偶性:
()() =
∴()既不是奇函数也不是偶函数.
(2) ∵函数()的定义域是R,关于坐标原点对称.

人教A高中数学必修一《函数的奇偶性》教案

人教A高中数学必修一《函数的奇偶性》教案

人教A高中数学必修一《函数的奇偶性》教案【教案】函数的奇偶性一、教学目的和要求:1.掌握奇函数、偶函数的定义。

2.理解奇函数、偶函数的性质。

3.学会判断一个函数的奇偶性。

4.运用函数的奇偶性解决实际问题。

二、教学重难点:1.奇函数、偶函数的定义和性质。

2.判断函数的奇偶性。

三、教学过程:【导入】1.提问:在平面直角坐标系中,如何判断一个点关于x轴、y轴和原点的对称性?2.引入奇函数和偶函数的概念:如果函数满足其中一种对称性,我们可以称之为奇函数或偶函数。

【教学展开】1.奇函数的定义:-定义:对于定义在区间(-∞,+∞)上的函数f(x),当对于任意的x,都有f(-x)=-f(x),则称f(x)是奇函数。

-解释:将一个自变量x对应的因变量值f(x)与其对称轴(y轴)上的点关联起来,如果两者关系满足f(-x)=-f(x),则可以称函数f(x)是关于y轴对称的,即为奇函数。

-举例:y=x^3、y=x^5等都是奇函数。

2.偶函数的定义:-定义:对于定义在区间(-∞,+∞)上的函数f(x),当对于任意的x,都有f(-x)=f(x),则称f(x)是偶函数。

-解释:将一个自变量x对应的因变量值f(x)与其对称轴(y轴)上的点关联起来,如果两者关系满足f(-x)=f(x),则可以称函数f(x)是关于y轴对称的,即为偶函数。

-举例:y=x^2、y=x^4等都是偶函数。

3.奇偶函数的性质:-性质1:奇函数的对称轴是原点,即f(0)=0。

-性质2:偶函数的对称轴是y轴,即f(x)=f(-x)。

-性质3:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

-性质4:两个奇函数的和是奇函数,两个奇函数的差是奇函数。

-性质5:两个偶函数的和是偶函数,两个偶函数的差是偶函数。

-性质6:奇函数乘以偶函数是奇函数。

4.判断函数的奇偶性:-按奇函数、偶函数的定义判断。

-利用函数性质进行判断。

【教学拓展】1.判断函数的奇偶性的例题:-例题1:已知函数f(x)=x^3-3x,判断其奇偶性。

新人教版高中数学必修第一册教学课件3.2.2函数的奇偶性课件

新人教版高中数学必修第一册教学课件3.2.2函数的奇偶性课件
【2】几何法,函数的图像关于y轴对称,那么函数就是偶函数
要证明某个函数不是偶函数,只需要列举出一个反例x0,证明f(-x0)≠f(x0)即可
偶函数 偶函数
代数特征 图像关于y轴对称 几何特征
定义中,
的常见变形有:
奇函数 画出函数
同的特征?
和函数
的图像并视察,你能发现什么共
可以发现,这两个函数都关于原点成中心对称.也就是说,当自变量取互为 相反数的两个数时,函数值也互为相反数,即
函数是奇函数.
(2)由奇函数的图像关于原点成中心对称可以画出函数

y轴左侧对的图像,将y轴右侧的图像沿着原点旋转180°即可,画出的
图像如图所示.
奇(偶)函数的性质及应用
【拓展】 (1)奇偶函数的单调性:
①奇函数:奇函数在y轴左右两边的单调性是完全相同的.如果 奇函数在区间[a,b]上的单调增函数,那么在区间[-a,-b]上就 是单调增函数.
对于
,有
对于
,有
奇函数
【定义】一般地,设函数
的定义域为A,如果对于
,都有


,即 的图像关于原点成中心对称,那么就称
为奇函数.
常见的偶函数有

,
等等
【思考】对于定义在R上的函数 函数是奇函数吗?
【答】不一定.因为 所以不一定是奇函数.
,若 并不能保证所有的
,那么这个 ,
奇函数 【总结】一般地,一个函数是奇函数的两个判断方式:
,即 的图像关于y轴对称,那么就称 为偶函数.
常见的偶函数有

等等
【思考】对于定义在R上的函数 是偶函数吗?
,若
,那么这个函数
【答】不一定.因为 以不一定是偶函数.

高中数学人教A版(2019)必修第一册第三章3

高中数学人教A版(2019)必修第一册第三章3
那么我们观察下面的表格:
可以发现,当自变量取一对相反数时,相应的两个函数值相等。
例如对函数 ,有 ,
【问题1.2】我们发现表格中列出的点具有上述性质,那么表格中没有出现的点是否也具有相同的性质呢?比如 吗?
事实上, , ,
具备这样特征的函数,我们称为偶函数。
上述用解析式证明结论的过程,实质上就是用符号语言刻画了函数的性质
(ppt呈现)
根据奇(偶)函数的定义判断一个函数的奇偶性,我们可以按如下步骤进行:
第一步,求出函数的定义域;
第二步,判断定义域是否关于原点对称,若否,则函数不具有奇偶性,结束判断;若是,则进行第三步;
第三步, ( 为定义域),计算 ,
若 ,则 为偶函数;
若 ,则 为奇函数;
若 且 ,则 既不是奇函数也不是偶函数;
上节课我们研究了函数的单调性,今天我们探究了函数的奇偶性,那么函数的奇偶性有什么作用?
如果一个函数具有奇偶性,那么我们可以利用它在图象上的对称性,更加简洁地得到这个函数的图象;并且可以与函数的单调性一起,去研究这个函数更多的性质。
教学重点:函数奇偶性概念的形成
教学难点:函数奇偶性的定义及判断
教学过程
时间
教学环节
主要师生活动
累计
10分钟
累计
15分钟
累计
20分钟
累计
25
分钟
复习引入
探究新知
巩固应用
课堂小结
这节课之前我们通过研究某一区间上自变量的大小关系和所对应函数值的大小关系,得到了函数的单调性,并且用符号语言准确简洁地描述了函数图象在定义域的某个区间上“上升”或“下降”的性质,这一节课我们继续来研究函数的其他性质。
【问题2.2】类比偶函数定义,大家能否用符号语言严谨地表述“函数图象关于原点对称”这一特征呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学·必修1(人教A版)
1.3.3 函数的奇偶性
►基础达标
1.已知f(x)是定义在R上的奇函数,则f(0)的值为( ) A.-1 B.0 C.1 D.无法确定
解析:∵f(x)为R上的奇函数,
∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0.
答案:B
2.(2013·山东卷)已知函数f(x)为奇函数,且当x>0时,f(x)
=x2+1
x
,则f(-1)=( )
A.-2B.0C.1D.2
答案:A
3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上( )
A.有最大值B.有最小值
C.没有最大值D.没有最小值
解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值.
答案:A
4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=( )
A.7B.-7C.12D.17
解析:∵f(-7)=-7,
∴a(-7)3+b(-7)+5=-7,
∴73a+7b=12.
∴f(7)=73a+7b+5=12+5=17.
答案:D
5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________.
解析:∵f(x)是偶函数,∴f(-x)=f(x),
∴k-1=0,∴k=1,
∴f(x)=-x2+3的递减区间为[0,+∞).
答案:[0,+∞)
►巩固提高
6.设f(x)是R上的任意函数,则下列叙述正确的是( )
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
解析:取f(x)=x,则f(x)f(-x)=-x2是偶函数,A错,f(x)|f(-x)|=x2是偶函数,B错;f(x)-f(-x)=2x是奇函数,C
错.故选D.
答案:D
7.已知定义在R上的偶函数f(x)的单调递减区间为[0,+∞),则使f(x)<f(2)成立的自变量取值范围是( )
A.(-∞,2) B.(2,+∞)
C.(-2,2)D.(-∞,-2)∪(2,+∞)
解析:∵f(x)是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f(x)<f(2)成立的自变量的取值范围是(-∞,-
2)∪(2,+∞).
答案:D
8.设函数f (x )满足:①函数在(-∞,-1)上递减;②函数具
有奇偶性;③函数有最小值.则f (x )可以是:____________.
答案:f (x )=x 2(答案不唯一)
9.已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈(-
∞,0)时,f (x )=x -x 2.求当x ∈(-∞,+∞)时,f (x )的表达式.
解析:当x ∈(0,+∞)时,-x ∈(-∞,0),
因为x ∈(-∞,0)时,f (x )=x -x 2,
所以f (-x )=(-x )-(-x )2,
因为f (x )是定义在(-∞,+∞)上的奇函数,
所以f (-x )=-f (x ),所以f (x )=x +x 2.
综上,x ∈(-∞,+∞)时,
f (x )=⎩⎪⎨⎪⎧ x +x 2(x >0),0(x =0),
x -x 2(x <0).
10.已知函数f (x )=-x 3+3x .求证:
(1)函数f (x )是奇函数;
证明:显然f (x )的定义域是R.
设任意x ∈R ,
∵f (-x )=-(-x )3+3(-x )=-(-x 3+3x )=-f (x ),
∴函数f (x )是奇函数.
(2)函数f(x)在区间(-1,1)上是增函数.
证明:在区间(-1,1)上任取x1,x2,且x1<x2.
f(x2)-f(x1)
=-(x2-x1)(x22+x2x1+x21)+3(x2-x1)
=(x2-x1)(3-x22-x2x1-x21).
因为-1<x1<x2<1,所以(x2-x1)>0,
(3-x22-x2x1-x21)>0,
所以f(x2)>f(x1).
所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.
1.利用定义判断函数奇偶性的步骤:
(1)首先确定函数的定义域,并判断其定义域是否关于原点对称.
(2)确定f(-x)与f(x)的关系.
(3)作出相应结论.
2.若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数.
3.若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.4.函数是奇函数或是偶函数称为函数有奇偶性,函数的奇偶性是函数的整体性质.
5.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
6.奇函数在其对称区间上的单调性相同、函数值相反.
7.偶函数在其对称区间上的单调性相反、函数值相同.
8.设f(x),g(x)有公共的定义域,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,
偶×偶=偶,奇×偶=奇.。

相关文档
最新文档