华中科技大学计算机学院2015 离散数学二考试点评

合集下载

国家开放大学电大考试计算机专业历年《离散数学》试题解析

国家开放大学电大考试计算机专业历年《离散数学》试题解析

计算机科学与技术专业级第二学期离散数学试题一、单项选择题(每小题3分,本题共15分)1.C 2.C 3.B 4.A 5.D1.若集合A的元素个数为10,则其幂集的元素个数为().A.10 B.100 C.1024 D.12.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <a,1>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()是从A到B的函数.A.R1和R2B.R2C.R3D.R1和R33.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A.8、2、8、2 B.无、2、无、2C.6、2、6、2 D.8、1、6、14.若完全图G中有n个结点(n≥2),m条边,则当()时,图G中存在欧拉回路.A.n为奇数B.n为偶数C.m为奇数D.m为偶数5.已知图G的邻接矩阵为则G有().A.6点,8边B.6点,6边C.5点,8边D.5点,6边二、填空题(每小题3分,本题共15分)6.设集合A={a},那么集合A的幂集是{,{a}} .7.若R1和R2是A上的对称关系,则R1∪R2,R1∩R2,R1-R2,R2-R1中对称关系有 4 个.8.设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去 1 条边后使之变成树.9.设连通平面图G的结点数为5,边数为6,则面数为 3 .10.设个体域D={a, b},则谓词公式( x)(A(x)∧B(x))消去量词后的等值式为(A (a)∧B (b))∧(A(a)∧B(b)).三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天有联欢活动,明天有文艺晚会.”翻译成命题公式.设P:今天有联欢活动,Q:明天有文艺晚会,(2分)P∧Q.(6分)12.将语句“如果小王来,则小李去.”翻译成命题公式.设P:小王来,Q:小李去(2分)P → Q . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,极小元不存在. 错误. (3分)对于集合A 的任意元素x ,均有<x , a >R (或xRa ),所以a 是集合A 中的最大元.(5分)但按照极小元的定义,在集合A 中b ,c ,d 均是极小元. (7分)14.┐P ∧(P →┐Q )∨P 为永假式.错误. (3分)┐P ∧(P →┐Q )∨P 是由┐P ∧(P →┐Q )与P 组成的析取式,如果P 的值为真,则┐P ∧(P →┐Q )∨P 为真, (5分)如果P 的值为假,则┐P 与P →┐Q 为真,即┐P ∧(P →┐Q )为真,也即┐P ∧(P →┐Q )∨P 为真,所以┐P ∧(P →┐Q )∨P 是永真式. (7分)另种说明:┐P ∧(P →┐Q )∨P 是由┐P ∧(P →┐Q )与P 组成的析取式,只要其中一项为真,则整个公式为真. (5分)可以看到,不论P 的值为真或为假,┐P ∧(P →┐Q )与P 总有一个为真,所以┐P ∧(P →┐Q )∨P 是永真式. (7分)或用等价演算┐P ∧(P →┐Q )∨P ⇔T 五.计算题(每小题12分,本题共36分)15.设集合A ={1,2,3,4},R ={<x , y >|x , y ∈A ;|x y |=1或x y =0},试(1)写出R 的有序对表示;(2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.15.(1)R ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>} (3分)(2)关系图如图二:图二 (6分)(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,即A 的每个元素构成的有序对均在R 中,故R 在A 上是自反的. (9分)因有<2,3>与<3,4>属于R ,但<2,4>不属于R ,所以R 在A 上不是传递的.(12分) abcd 图一16.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 4),(v 3, v 5),(v 4, v 5) },试(1) 画出G 的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出图G 的补图的图形. 16.(1)关系图如图三:(3分)(2)邻接矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110010010100010100100110 (6分) (3)deg(v 1)=2deg(v 2)=2deg(v 3)=2deg(v 4)=2deg(v 5)=2 (9分)(4)补图如图四(12分)17.求P →Q ∧R 的合取范式与主析取范式.P →(R ∧Q )⇔┐P ∨(R ∧Q ) (4分)⇔ (┐P ∨Q )∧(┐P ∨R ) (合取范式) (6分)P →(R ∧Q )⇔┐P ∨(R ∧Q )⇔(┐P ∧(┐Q ∨Q) )∨(R ∧Q ) (7分)⇔(┐P ∧┐Q )∨(┐P ∧Q)∨(R ∧Q ) (8分)⇔((┐P ∧┐Q )∧ (┐R ∨R ))∨(┐P ∧Q )∨(R ∧Q ) (9分)⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q )∨(R ∧Q ) (10分)⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨((┐P ∧Q )∧(┐R ∨R ))∨(R ∧Q )⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧┐R )∨(┐P ∧Q ∧R )∨(R ∧Q )⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧┐R )∨(┐P ∧Q ∧R )∨((┐P ∨P )∧(R ∧Q ))⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧┐R )∨ v 1 v 2 v 3 v 4 图三 v 5 v 1 v 2 v 3 v 4 图四 v 5(┐P ∧Q ∧R )∨ (P ∧R ∧Q ) (主析取范式) (12分)说明:此题解法步骤多样,若能按正确步骤求得结果,均可给分.六、证明题(本题共8分)18.设连通无向图G 有14条边,3个4度顶点,4个3度顶点,其它顶点的度数均小于3,试说明G 中可能有的顶点数.证明: 可利用数列可图化及握手定理解答顶点度数和为214=28, (2分)28-(34+43)=4,则知其他顶点度数和为4, (4分)对于有限图,若无零度顶点,则除4度及3度顶点外,可能的顶点情况有:2个2度点;1个2度点和2个1度点;4个1度点, (6分)即对应图的顶点数分别至少为9、10、11. (8分)2011年 7月一、单项选择题(每小题3分,本题共15分)1.A 2.C 3.C 4.D 5.B1.若集合A ={1,{1},{2},{1,2}},则下列表述正确的是( ).A .{2}AB .{1,2}AC .1AD . 2 A2.设G 为无向图,则下列结论成立的是 ( ) .A .无向图G 的结点的度数等于边数的两倍.B .无向图G 的结点的度数等于边数.C .无向图G 的结点的度数之和等于边数的两倍.D .无向图G 的结点的度数之和等于边数.3.图G 如图一所示,以下说法正确的是( ) . A .{(a ,b )}是边割集B .{ a ,c }是点割集C .{d }是点割集D .{ (c ,d )}是边割集 图一4.设集合A ={1},则A 的幂集为( ).A .{{1}}B .{1,{1}}C .{,1}D .{,{1}}5.设A (x ):x 是人,B (x ):x 犯错误,则命题“没有不犯错误的人”可符号化为( ).A .┐(∃x )( A (x ) → ┐B(x))B .┐(∃x )( A (x )∧┐B (x ))C .┐(∃x )( A (x )∧B (x ))D .(∀x )( A (x )∧B (x ))二、填空题(每小题3分,本题共15分)6.命题公式P P ⌝∨的真值是 真(或T ,或1) .7.若无向图T 是连通的,则T 的结点数v 与边数e 满足关系v= e +1 时,T 是树.8.无向图G 是欧拉图的充分必要条件是 G 是连通的且结点度数都是偶数 .9.设集合A ={1,2}上的关系R ={<2,2>,<1,2>},则在R 中仅需加入一个元素 <1, 1> , a b c de f就可使新得到的关系为自反的.10.( x )(P (x )→R (y )∨S (z )) 中的约束变元有 x .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“雪是黑色的.”翻译成命题公式.设P :雪是黑色的, (2分)则命题公式为:P . (6分)12.将语句“如果明天下雨,则我们就在室内上体育课.”翻译成命题公式.设 P :如果明天下雨, Q :我们在室内上体育课, (2分)则命题公式为:P Q . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.设集合A ={1,2},B ={3,4},从A 到B 的关系为f ={<1, 3>,<1, 4>},则f 是A 到B 的函数. 错误. (3分)因为A 中元素1有B 中两个不同的元素与之对应,故f 不是A 到B 的函数. (7分)14.设G 是一个连通平面图,有5个结点9条边,则G 有6个面.正确. (3分)因G 是一个连通平面图,满足欧拉定理,有v -e +r =2,所以r =2-(v -e )=2-(5-9)=6 (7分)五.计算题(每小题12分,本题共36分)15.试求出P →(R ∧Q )的合取范式.P →(R ∧Q )┐P ∨(R ∧Q ) (6分)(┐P ∨R ) ∧(┐P ∨Q )(合取范式) (12分)16.设A ={{1}, {1, 2},1},B ={ 1, 2, {2}},试计算(1)(A ∩B ) (2)(A ∪B ) (3)(A ∩B )A .(1)(A ∩B )={1} (4分)(2)(A ∪B )={1, 2, {1}, {2}, {1, 2}} (8分)(3)(A ∩B )A = (12分)17.试画一棵带权为2, 3, 3, 4, 5,的最优二叉树,并计算该最优二叉树的权.最优二叉树如图二所示.(10分) 图二权为23+33+32+42+52=39 (12分)六、证明题(本题共8分)18.试证明:若R 与S 是集合A 上的对称关系,则R ∩S 也是集合A 上的对称关系.证明:设x ,y A ,因为R 对称,所以若<x , y >R ,则<y , x >R . (2分)因为S 对称,所以若<x , y >S ,则<y , x >S . (4分)于是若<x , y >R ∩S 则<x , y >R 且<x , y >S2 3 3 4 5 5 10 7 17即 <y , x >R 且<y , x >S (6分)也即<y , x > R ∩S ,故R ∩S 是对称的. (8分)中央广播电视大学2010—2011学年度第一学期“开放本科”期末考试离散数学(本)试题2011年1月一、单项选择题(每小题3分,本题共15分)1.A 2.D 3.B 4.D 5.C1.若集合A ={ a ,{1}},则下列表述正确的是( ).A .{1}∈AB .{1}⊆AC .{a }∈AD .∅∈A2.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( ).A .deg(v )=2EB .deg(v )=EC .E v V v =∑∈)deg( D .E v Vv 2)deg(=∑∈ 3.如图一所示,以下说法正确的是 ( ). A .(e , c )是割边 B .(d, e )是割边 C .(b , a )是割边 D .(b, c )是割边4.命题公式(P ∨Q )的合取范式是 ( ) .A .PB .(P ∧Q )C .(P ∨P )D .(P ∨Q )5.下列等价公式成立的为( ).A .P ∧Q P ∨QB .Q →P P →QC .⌝P ∧P ⌝Q ∧QD .⌝P ∨P Q二、填空题(每小题3分,本题共15分)6.设集合A ={0, 1, 2},B ={1,2, 3, 4,},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 {<1, 1>,<1, 2>,<2, 1>,<2, 2>} .7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 v -e +r =2 .8.设G =<V , E >是有20个结点,25条边的连通图,则从G 中删去 6 条边,可以确定图G 的一棵生成树.9.无向图G 存在欧拉回路,当且仅当G 所有结点的度数全为偶数且 连通 .10.设个体域D ={1,2},则谓词公式)(x xA ∀消去量词后的等值式为 A (1) ∧A (2) .a b c d 图一 e三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“如果小李学习努力,那么他就会取得好成绩.”翻译成命题公式.12.将语句“小张学习努力,小王取得好成绩.”翻译成命题公式.11.设P :小李学习努力,Q :小李会取得好成绩, (2分) P Q . (6分)12.设P :小张学习努力,Q :小王取得好成绩, (2分) P Q . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果R 1和R 2是A 上的自反关系,则R 1R 2是自反的. 14.如图二所示的图中存在一条欧拉回路.13.正确. (3分)R 1和R 2是自反的,x ∈A ,<x , x > ∈ R 1,<x , x > ∈R 2,则<x , x > ∈ R 1R 2,所以R 1R 2是自反的. (7分)14.正确. (3分)因为图G 为连通的,且其中每个顶点的度数为偶数. (7分) 五.计算题(每小题12分,本题共36分)15.设A ={{2},1,2},B ={1,{1,2}},试计算(1)(A B ); (2)(A ∩B ); (3)A ×B .16.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5)},试(1)给出G 的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形.17.设谓词公式),()),,(),((z y yC z y x zB y x A x ∀∧∀∧∃,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元.15.(1)A B ={2,{2}} (4分)(2)A ∩B ={1} (8分)(3)A ×B={<{2},1>,<{2},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分)16.(1)G 的图形表示如图三:图二v 1 v 2 v 3 v 4 图三 v 5(3分)(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0010000110110110110000100 (6分) (3)v 1,v 2,v 3,v 4,v 5结点的度数依次为1,2,4,2,1 (9分) (4)补图如图四:(12分)17.(1)x 量词的辖域为)),,(),((z y x zB y x A ∀∧, (2分) z 量词的辖域为),,(z y x B , (4分)y 量词的辖域为),(z y C . (6分)(2)自由变元为)),,(),((z y x zB y x A ∀∧中的y ,以及),(z y C 中的z (9分)约束变元为)),,(),((z y x zB y x A ∀∧中的x 与(,,)B x y z 中的z ,以及(,)C y z 中的y . (12分)六、证明题(本题共8分)18.试证明集合等式A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ) .18.证明:设S = A ⋃ (B ⋂C ),T =(A ⋃B ) ⋂ (A ⋃C ),若x ∈S ,则x ∈A 或x ∈B ⋂C ,(1分)即 x ∈A 或x ∈B 且 x ∈A 或x ∈C . (2分)也即x ∈A ⋃B 且 x ∈A ⋃C , (3分)即 x ∈T ,所以S ⊆T . (4分)反之,若x ∈T ,则x ∈A ⋃B 且 x ∈A ⋃C , (5分)即x ∈A 或x ∈B 且 x ∈A 或x ∈C , (6分)也即x ∈A 或x ∈B ⋂C ,即x ∈S ,所以T ⊆S . (7分)因此T =S . (8分)2011年1月v 1 v 2 v 3 v 4图四 v 5一、单项选择题(每小题3分,本题共15分)1.D 2.B 3.C 4.A 5.B1.若集合A ={a ,b },B ={ a ,{ a ,b }},则( ).A .A ∉B B .A BC .A BD .A B2.集合A ={x |x 为小于10的自然数},集合A 上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( ).A .自反的B .对称的C .传递且对称的D .反自反且传递的3.设有向图(a )、(b )、(c )与(d )如图一所示,则下列结论成立的是 ( ).图一A .(a )仅为弱连通的B .(b )仅为弱连通的C .(c )仅为弱连通的D .(d )仅为弱连通的4.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110 则G 的边数为( ).A .5B .6C .7D .8 5.下列公式 ( )为永真式.A .⌝P ∧⌝QP ∨Q B .(P →(Q →P ))(⌝P →(P →Q )) C .(Q →(P ∨Q )) (⌝Q ∧(P ∨Q )) D .(⌝P ∨(P ∧Q )) Q 二、填空题(每小题3分,本题共15分)6.设集合A ={1,2,3},那么集合A 的幂集是 {,{1},{2 },{3 },{1,2},{1,3},{2,3},{1,2,3}} . 7.设A ={a ,b },B ={1,2},作f :A →B ,则不同的函数个数为 4 .8.若A ={1,2},R ={<x , y >|x A , y A , x +y <4},则R 的自反闭包为 {<1,1>,<2,2>,<1,2>,<2,1>} .9.无向连通图在结点数v 与边数e 满足 e=v -1 关系时是树.10.(∀x )(A (x )→B (x ))∨C (x ,y )中的自由变元为 C (x ,y )中的x 与y .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“他们去旅游,仅当明天天晴.”翻译成命题公式.12.将语句“今天没有下雪.”翻译成命题公式.11.设P :他们去旅游,Q :明天天晴, (2分)P →Q . (6分)12.设P :今天下雪, (2分)P . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.汉密尔顿图一定是欧拉图.错误. (3分)存在汉密尔顿图不是欧拉图.(5分)反例见图二. (7分)14.下面的推理是否正确,试予以说明.(1) (x )(F (x )→G (y )) 前提引入(2) F (y )→G (y ) ES (1).1、错误. (3分)(2)应为F (a )→G (y ),换名时,约束变元与自由变元不能混淆. (7分)五.计算题(每小题12分,本题共36分)15.设A ={0,1,2,3,4,5,6},R ={<x ,y >|x ∈A ,y ∈A 且x +y <1},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R •S ,R -1,S -1,r (R ).R ={<0,0>} (2分)S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分)R S ={<0,0>,<0,1>,<0,2>,<0,3>} (6分)R -1={<0,0>} (8分)S -1= S (10分)r (R )=I A . (12分)16.画一棵带权为1, 2, 2, 3, 6的最优二叉树,计算它们的权.最优二叉树如图四:图四 (10分)权为:13+23+23+33+61=30 (12分)注: 其他正确的最优二叉树参照给分.17.求(P ∨Q )→(R ∨Q )的析取范式,合取范式.(P ∨Q )→(R ∨Q ) 1 2 2 3 3 6 8 5 14图二(P ∨Q )∨(R ∨Q ) (4分) (P ∧Q )∨(R ∨Q ) (P ∨R ∨Q )∧(Q ∨R ∨Q ) (P ∨R ∨Q ) 析取、合取范式 (12分)注: 其他正确答案参照给分.六、证明题(本题共8分)18.试证明集合等式A ⋂ (B ⋃C )=(A ⋂B ) ⋃ (A ⋂C ).证明:设S =A ∩(B ∪C ),T =(A ∩B )∪(A ∩C ), 若x ∈S ,则x ∈A 且x ∈B ∪C ,即 x ∈A 且x ∈B 或 x ∈A 且x ∈C ,也即x ∈A ∩B 或 x ∈A ∩C ,即 x ∈T ,所以S ⊆T . (4分)反之,若x ∈T ,则x ∈A ∩B 或 x ∈A ∩C ,即x ∈A 且x ∈B 或 x ∈A 且x ∈C也即x ∈A 且x ∈B ∪C ,即x ∈S ,所以T ⊆S .因此T =S . (8分)2010年 7月一、单项选择题(每小题3分,本题共15分)1.B 2.D 3.B 4.C 5.B1.若集合A ={1,{2},{1,2}},则下列表述正确的是( ).A .2AB .{1}AC .1AD . 2 A2.已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( ).A .6B .4C .3D .5 3.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101110011000011100111110, 则G 的边数为( ). A .1 B .7 C .6 D .144.设集合A ={a },则A 的幂集为( ).A .{{a }}B .{a ,{a }}C .{,{a }}D .{,a }5.下列公式中 ( )为永真式.A .⌝A ∧⌝ B⌝A ∨⌝B B .⌝A ∧⌝ B ⌝(A ∨B ) C .⌝A ∧⌝ BA ∨B D .⌝A ∧⌝ B ⌝(A ∧B ) 二、填空题(每小题3分,本题共15分)6.命题公式P P ⌝∧的真值是 假(或F ,或0) .7.若无向树T 有5个结点,则T 的边数为 4 .8.设正则m 叉树的树叶数为t ,分支数为i ,则(m -1)i = t -1 .9.设集合A ={1,2}上的关系R ={<1, 1>,<1, 2>},则在R 中仅需加一个元素 <2, 1> ,就可使新得到的关系为对称的.10.( x )(A (x )→B (x ,z )∨C (y ))中的自由变元有 z ,y .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天上课.”翻译成命题公式.设P :今天上课, (2分)则命题公式为:P . (6分)12.将语句“他去操场锻炼,仅当他有时间.”翻译成命题公式.设 P :他去操场锻炼,Q :他有时间, (2分)则命题公式为:P Q . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.设集合A ={1,2},B ={3,4},从A 到B 的关系为f ={<1, 3>},则f 是A 到B 的函数.14.设G 是一个有4个结点10条边的连通图,则G 为平面图.13.错误. (3分)因为A 中元素2没有B 中元素与之对应,故f 不是A 到B 的函数. (7分)14.错误. (3分)不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”(7分)五.计算题(每小题12分,本题共36分)15.试求出(P ∨Q )→(R ∨Q )的析取范式.(P ∨Q )→(R ∨Q ) ┐(P ∨Q )∨(R ∨Q ) (4分)(┐P ∧┐Q )∨(R ∨Q ) (8分)(┐P ∧┐Q )∨R ∨Q (析取范式) (12分)16.设A ={{1}, 1, 2},B ={ 1, {2}},试计算(1)A ∩B (2)A ∪B (3)A (A ∩B ).(1)A ∩B ={1} (4分)(2)A ∪B ={1, 2, {1}, {2}} (8分)(3) A (A ∩B )={{1}, 2} (12分)17.图G =<V , E >,其中V ={ a , b , c , d },E ={ (a , b ), (a , c ) , (a , d ), (b , c ), (b , d ), (c , d )},对应边的权值依次为1、2、3、1、4及5,试(1)画出G 的图形;(2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.(1)G 的图形表示如图一所示:图一a b c d 112 4 5 3(3分)(2)邻接矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110 (6分) (3)最小的生成树如图二中的粗线所示:(10分)权为:1+1+3=5 (12分)六、证明题(本题共8分)18.试证明:若R 与S 是集合A 上的自反关系,则R ∩S 也是集合A 上的自反关系.证明:设x A ,因为R 自反,所以x R x ,即< x , x >R ;又因为S 自反,所以x R x ,即< x , x >S . (4分)即< x , x >R ∩S (6分)故R ∩S 自反. (8分)2010年1月一、单项选择题(每小题3分,本题共15分)1.A 2.C 3.B 4.B5.D 1.若集合A ={ a ,{a }},则下列表述正确的是( ).A .{a }⊆AB .{{{a }}}⊆AC .{a ,{a }}∈AD .∅∈A2.命题公式(P ∨Q )的合取范式是 ( )A .(P ∧Q )B .(P ∧Q )∨(P ∨Q )C .(P ∨Q )D .(P ∧Q )3.无向树T 有8个结点,则T 的边数为( ).A .6B .7C .8D .94.图G 如图一所示,以下说法正确的是 ( ).A .a 是割点B .{b, c }是点割集C .{b , d }是点割集D .{c }是点割集图一5.下列公式成立的为( ).A .⌝P ∧⌝Q P ∨QB .P →Q ⌝P →Q 图二ab c d 1 1 2 453C .Q →P PD .⌝P ∧(P ∨Q )Q二、填空题(每小题3分,本题共15分)6.设集合A ={2, 3, 4},B ={1, 2, 3, 4},R 是A 到B 的二元关系,},{y x B y A x y x R ≤∈∈><=且且则R 的有序对集合为 {<2, 2>,<2, 3>,<2, 4>,<3, 3>},<3, 4>,<4, 4>} .7.如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含<a , a >,< b , b > 等元素.8.设G =<V , E >是有4个结点,8条边的无向连通图,则从G 中删去 5 条边,可以确定图G 的一棵生成树.9.设G 是具有n 个结点m 条边k 个面的连通平面图,则m 等于 n +k 2 .10.设个体域D ={1, 2},A (x )为“x 大于1”,则谓词公式()()x A x ∃的真值为 真(或T ,或1) .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天考试,明天放假.”翻译成命题公式.设P :今天考试,Q :明天放假. (2分)则命题公式为:P ∧Q . (6分)12.将语句“我去旅游,仅当我有时间.”翻译成命题公式.设P :我去旅游,Q :我有时间, (2分)则命题公式为:P Q . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.错误. (3分)当图G 不连通时图G 不为欧拉图. (7分)14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二错误. (3分)集合A 的最大元与最小元不存在,a 是极大元,f 是极小元,. (7分)五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元.(1)x 量词的辖域为)),,()(),((z x y B z y x A ∀→, (3分)z 量词的辖域为),,(z x y B , (6分)(2)自由变元为)),,()(),((z x y B z y x A ∀→中的y , (9分)约束变元为x 与z . (12分)16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A B ); (2)(A ∩B ); (3)A ×B .(1)A B ={{1},2} (4分)(2)A ∩B ={1} (8分)(3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分)17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试(1)给出G 的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形.(1)G 的图形表示为(如图三):(3分)图三(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100 (6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分)(4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A A=B B ,则A=B .证明:设x A ,则<x ,x >A A , (1分)因为A A=B B ,故<x ,x >B B ,则有x B , (3分)所以A B.(5分)设x B,则<x,x>B B,(6分)因为A A=B B,故<x,x>A A,则有x A,所以B A.(7分)故得A=B.(8分)2009年10月一、单项选择题(每小题3分,本题共15分)1.D 2.C 3.B 4.C 5.A1.若G是一个汉密尔顿图,则G一定是( ).A.平面图B.对偶图C.欧拉图D.连通图2.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().A.不是自反的B.不是对称的C.传递的D.反自反3.设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().A.最大元B.极大元C.最小元D.极小元4.图G如图一所示,以下说法正确的是( ) .A.{(a, d)}是割边B.{(a, d)}是边割集C.{(a, d) ,(b, d)}是边割集D.{(b, d)}是边割集图一5.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为().A.(∃x)(A(x)∧B(x)) B.(∀x)(A(x)∧B(x))C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))二、填空题(每小题3分,本题共15分)6.若集合A={1,3,5,7},B={2,4,6,8},则A∩B=空集(或).7.设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>,},g={<1,3>,<2,2>,<3,2>,},则复合函数g f = {<1, 2>, <2, 3>, <3, 2>,} .8.设G是一个图,结点集合为V,边集合为E,则G的结点度数之和为2|E|(或“边数的两倍”).9.无向连通图G的结点数为v,边数为e,则G当v与e满足e=v-1 关系时是树.10.设个体域D={1, 2, 3},P(x)为“x小于2”,则谓词公式(∀x)P(x) 的真值为假(或F,或0).三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“他是学生.”翻译成命题公式.设P:他是学生,(2分)则命题公式为:P.(6分)12.将语句“如果明天不下雨,我们就去郊游.”翻译成命题公式.设P :明天下雨,Q :我们就去郊游, (2分)则命题公式为: P Q .四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (x )F (x )→G (x ) 前提引入(2) F (y )→G (y ) US (1).错误. (3分)(2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分)14.如图二所示的图G 存在一条欧拉回路.图二错误. (3分)因为图G 为中包含度数为奇数的结点. (7分)五.计算题(每小题12分,本题共36分)15.求(P ∨Q )→R 的析取范式与合取范式.(P ∨Q )→R (P ∨Q )∨R (4分)(P ∧Q )∨R (析取范式) (8分)(P ∨R )∧(Q ∨R) (合取范式) (12分)16.设A ={0,1,2,3},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤2},试求R ,S ,R •S ,S -1,r (R ).R =, S ={<0,0>,<0,1>,<0,2>,<1,0>,<1,1>,<2,0>} (3分)R S =, (6分)S -1= S , (9分)r (R )=I A ={<0,0>,<1,1>,<2,2>,<3,3>}. (12分)17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.最优二叉树如图三所示(10分) 图三权为13+23+22+32+42=27 (12分)1 22 3 3 4 7 5 12六、证明题(本题共8分)18.试证明集合等式A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C) .证明:设S= A⋃ (B⋂C),T=(A⋃B) ⋂ (A⋃C),若x∈S,则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A 或x∈C.也即x∈A⋃B且x∈A⋃C,即x∈T,所以S⊆T.(4分)反之,若x∈T,则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,也即x∈A或x∈B⋂C,即x∈S,所以T⊆S.因此T=S.2009年7月一、单项选择题(每小题3分,本题共15分)1.A 2.B 3.B 4.D 5.C1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A B,且A B B.A B,但A BC.A B,但A∉B D.A B,且A∉B2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.34.如图一所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图一5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.┐(∃x)(A(x)∧B(x))C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))二、填空题(每小题3分,本题共15分)6.若集合A的元素个数为10,则其幂集的元素个数为1024 .7.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为8 .8.若A={1,2},R={<x, y>|x A, y A, x+y=10},则R的自反闭包为{<1,1>,<2,2>} .9.结点数v与边数e满足e=v-1 关系的无向连通图就是树.10.设个体域D={a, b, c},则谓词公式(∀x)A(x)消去量词后的等值式为A (a) ∧A (b)∧A(c).三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.设P:他接受了这个任务,Q:他完成好了这个任务,(2分)P Q . (6分)12.将语句“今天没有下雨.”翻译成命题公式.设P :今天下雨, (2分)P . (6分)四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (x )F (x )→G (x ) 前提引入(2) F (y )→G (y ) US (1).错误. (3分)(2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分)14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元不存在.图二错误. (3分)集合A 的最大元不存在,a 是极大元. (7分)五.计算题(每小题12分,本题共36分)15.求(P ∨Q )→(R ∨Q )的合取范式.(P ∨Q )→(R ∨Q )(P ∨Q )∨(R ∨Q ) (4分)(P ∧Q )∨(R ∨Q )(P ∨R ∨Q )∧(Q ∨R ∨Q ) (P ∨R ∨Q ) ∧R 合取范式 (12分)16.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R •S ,R -1,S -1,r (R ).R =, (2分)S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分)R S =, (6分)R -1=, (8分)S -1= S , (10分)r (R )=I A . (12分)17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.1 2 2 3 3 4 7 5 12权为13+23+22+32+42=27 (12分)六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G 是G的补图).证明:因为n是奇数,所以n阶完全图每个顶点度数为偶数,(3分)因此,若G中顶点v的度数为奇数,则在G中v的度数一定也是奇数,(6分)所以G与G中的奇数度顶点个数相等.(8分)2008年7月一、单项选择题(每小题3分,本题共15分)1.B 2.B 3.A 4.C 5.D1.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A.R1和R2B.R2C.R3D.R1和R32.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A.8、2、8、2 B.无、2、无、2C.6、2、6、2 D.8、1、6、13.若集合A的元素个数为10,则其幂集的元素个数为().A.1024 B.10 C.100 D.14.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数5.已知图G的邻接矩阵为,则G有().A.5点,8边B.6点,7边C.6点,8边D.5点,7边二、填空题(每小题3分,本题共15分)6.设集合A={a,b},那么集合A的幂集是{,{a,b},{a},{b }} .7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树.9.设连通平面图G的结点数为5,边数为6,则面数为 3 .10.设个体域D={a, b},则谓词公式(∀x)A(x)∧(∃x)B(x)消去量词后的等值式为(A (a)∧A (b))∧(B(a)∨B(b)) .三、逻辑公式翻译(每小题4分,本题共12分)11.将语句“如果所有人今天都去参加活动,则明天的会议取消.”翻译成命题公式.设P:所有人今天都去参加活动,Q:明天的会议取消,(1分)P Q.(4分)12.将语句“今天没有人来.”翻译成命题公式.设P:今天有人来,(1分)P.(4分)13.将语句“有人去上课.”翻译成谓词公式.设P(x):x是人,Q(x):x去上课,(1分)(x)(P(x)Q(x)).四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.14.┐P∧(P→┐Q)∨P为永真式.15.若偏序集<A,R>的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.图一14.正确.(3分)┐P∧(P→┐Q)∨P是由┐P∧(P→┐Q)与P组成的析取式,如果P的值为真,则┐P∧(P→┐Q)∨P为真,(5分)如果P的值为假,则┐P与P→┐Q为真,即┐P∧(P→┐Q)为真,也即┐P∧(P→┐Q)∨P为真,所以┐P∧(P→┐Q)∨P是永真式.(7分)另种说明:┐P∧(P→┐Q)∨P是由┐P∧(P→┐Q)与P组成的析取式,只要其中一项为真,则整个公式为真.(5分)可以看到,不论P的值为真或为假,┐P∧(P→┐Q)与P总有一个为真,所以┐P∧(P→┐Q)∨P是永真式.(7分)或用等价演算┐P∧(P→┐Q)∨P⇔T15.正确.(3分)对于集合A的任意元素x,均有<x, a>R(或xRa),所以a是集合A中的最大元.(5分)按照最小元的定义,在集合A中不存在最小元.(7分)五.计算题(每小题12分,本题共36分)16.设集合A={1,2,3,4},R={<x, y>|x, y∈A;|x y|=1或x y=0},试(1)写出R 的有序对表示;(2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.(1)R ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>} (3分)(2)关系图为(6分)(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,即A 的每个元素构成的有序对均在R 中,故R 在A 上是自反的。

华中科技大学计算机学院离散数学(二) 2017 A 卷 with 答案

华中科技大学计算机学院离散数学(二) 2017 A 卷 with 答案

一. 单项选择(每小题3分,共15分)( ) 1. 5种不同的球中取出8个,共有多少种取法(A) C(8, 5) (B) C(12, 5) (C) C(12, 8) (D) C(13, 5)( ) 2. 递推式x n = 4x n-1 - 4x n-2的通解是(A)C 1+C 22n (B)C 1n +C 22n (C) C 1n +C 2n 2n (D) (C 1+C 2n )2n( ) 3. 5个结点的完全图去掉一条边后,一定不是(A) 连通图 (B) 欧拉图 (C) 哈密顿图 (D) 平面图( ) 4. 5个结点的简单平面图的边数最多是(A) 7 (B) 8 (C) 9 (D) 10( ) 5. 完全正则二元树(满二叉树)的叶结点数是t , 则该树的结点数一定是(A) t +t /2+1(B) 2t -1 (C) 2t (D) 2t +1二. 填空(每小题3分,共15分)1. 6个人平均分到3个不同部门的分法有___90___种;2. 5个不同的球分成3堆的分法有___25___种;3. 图G 分支数是3,节点数是10,则其边数至少是___7___;4. n 个结点的多重图(无单边弧)的邻接矩阵的主对角线以上部分所有项的和等于图的_____边数______;5. 利用欧拉定理,可得11890 ≡___1___ (mod 15)三. 解答题(共40分)1. 排列26个字母,使得a与b之间恰有7个字母,求方法数。

(6分)2×C(24,7)A(7,7)A(18,18) = 36×24!这道题的解答并不难,可以有以下的几种解法。

解法1:从24个字母(a,b除外)中任选7个字母,放置于ab之间,然后将这选出来7个字母与ab构成一个整体当成一个对象,再于剩下的17个字母(已经选了7个,再除掉ab),共18个对象全排列。

结论是C(24,7)A(7,7)A(18,18) = 36×24! 但还需要考虑到a在前b在后和b在前a在后两种不同的情况,所以答案是:2×C(24,7)A(7,7)A(18,18) = 36×24!这种做法中,不少同学没有考虑到上面ab两个字母顺序的问题,没有乘以2; 也有不少同学只考虑了剩下17个字母的全排列,没有考虑的a*******b这个整体在整个排列中的位置不同的问题。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。

b) 我今天进城,除非下雨。

c) 仅当你走,我将留下。

2. 用谓词逻辑把下列命题符号化a) 有些实数不是有理数b) 对于所有非零实数x,总存在y使得xy=1。

c) f是从A到B的函数当且仅当对于每个a€ A存在唯一的b € B ,使得f(a)=b.二、简答题(共6道题,共32分)1. 求命题公式(P T(Q T R)).r(R T(Q T P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2. 设个体域为{1,2,3},求下列命题的真值(4分)a) -x y(x+y=4)b) y -x (x+y=4)3. 求-x(F(x) T G(x)) T ( xF(x) T-I X G(X))的前束范式。

(4 分)4. 判断下面命题的真假,并说明原因。

(每小题2分,共4分)a) (A _.B)—C=(A-B) (A-C)b) 若f是从集合A到集合B的入射函数,则|A| < |B|5. 设A是有穷集,|A|=5,问(每小题2分,共4分)a) A上有多少种不同的等价关系?b) 从A到A的不同双射函数有多少个?6. 设有偏序集<A, < >,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)7. 已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数K IS;P(S);N,N ;P(N);R,R X R,{o,1}(写出即可)(6 分)三、证明题(共3小题,共计40分)1. 使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a) A T (B A C),(E T—F) T—C, B T (A A ~S)二B T Eb) -x(P(x) T—Q(x)), -x(Q(x) V R(x)) , x—R(x)二x~P(x)2. 设R1是A上的等价关系,R2是B上的等价关系,A工._且B =_,关系R满足:<<X1,y1>,<X2,y2>>€ R,当且仅当< x 1, X2> € R1 且<y 1,y2> € R2。

2015高考理科数学全国卷(二)试卷分析

2015高考理科数学全国卷(二)试卷分析

2015高考理科数学全国卷(二)试卷分析(吉林用卷)各题目涉及知识点及难易程度:题号知识点难度分值01 集合(集合的运算)基础 502 复数(复数的乘法运算)基础 503 概率与统计基础 504 数列(等比数列)基础 505 函数(对数函数)基础 506 立体几何(三视图)基础 507 解析几何(直线与圆的位置关系)基础 508 算法基础 509 立体几何(球)基础 510 函数(函数图像)中等 511 解析几何(圆锥曲线方程)中等 512 导数与函数综合较难 513 向量基础 514 不等式(线性规划)基础 515 排列组合(二项式定理)基础 516 数列(数列求和问题)中等 517 三角函数公式及应用(正余弦定理)中等1218 概率与统计中等1219 立体几何(向量做法)中等1220 解析几何(圆锥曲线方程)中等1221 导数与函数综合较难12选作部分22 选修4-1 基础1023 选修4-4 基础1024 选修4-5 基础10 各模块分值比例简要分析:知识模块题号分值汇总综合难度集合01 5 基础数系的扩充及复数02 5 基础概率与统计03、18 5+12=17 中等数列04、16 5+5=10 中等函数05、10、17 5+5+12=22 中等立体几何06、09、19 5+5+12=22 中等解析几何07、11、20 5+5+12=22 中等算法与程序框图08 5 基础导数与函数综合问题12、21 5+12=17 较难向量13 5 基础不等式14 5 基础排列组合15 5 基础选修4系列22、23、24 10 基础题型及分值:全国卷一、二:选择12*5=60填空4*5=20解答5*12=60选作1*10=10北京卷选择8*5=40填空6*5=30解答6*()=80从试卷题型上看,全国卷一、二完全一致,而北京卷区别很大。

首先:选修4内容的考察全国卷采用选作的形式,解答题的题型出现在卷子的最后部分,并且分值均为10分;北京卷选修4部分采用填空题题型,分值5分。

华中科技大学计算机学院离散数学(二) 2016 A 卷 with 答案

华中科技大学计算机学院离散数学(二) 2016 A 卷 with 答案

一. 单项选择(每小题3分,总共15分)( A ) 1、在如下的有向图中,从V 1到V 4长度为3 的道路有( A )条。

A . 1;B .2;C .3;D .4 。

( B ) 2、假设S 、T 是两个有限集合。

那么下面正确的是:A. |S ∪T| = |S| + |T|B. |S ∪T| = |S| + |T| - |S ∩T|C. |S ×T|= |S| × |T| - |S ∩T|D. |S-T|= |S| - |T|( B )3、假定递归算法把一个规模为n 的问题分解为a 个子问题,每个子问题规模为n /b . 再假定把子问题的解组合成原来问题的解的算法处理中,需要总量为g (n )的运算数. 用f (n )表示求解规模为n 的问题所需的运算数,则得出运算数f (n )的递推关系为:A .f (n ) = b f (n /a) + g (n );B .f (n ) = af (n /b ) + g (n );C .f (n ) = f (n /b ) +a g (n );D .f (n ) = ag (n /b ) + f(n );( D ) 4、如果两个图H 与G 同构,且结点数大于1,则下面不正确的是:A .如果H 有一个子图是非平面图,则G 是非平面图B .如果H 是连通图,则G 没有孤立点。

C .H 是偶图则G 也是偶图,反之也成立D .f 是H 的结点集到G 的结点集的双射,则H 的任一结点h 的度数等于G 中结点f(h)的度数。

( D ) 5、下面说法不正确的是:A :不同算法求出的两个不同结点的最短通路的长度是一样的。

B: 不同算法求得的两个不同结点的最短通路可能不一样。

C: 连通有权图的任两个不同结点的最短通路一定是存在的。

D :最短通路未必就是简单路。

二. 填空(每小题3分,总共15分)1、连通无向图有欧拉开路(非回路)的充要条件是2、 83个不同的盒子中,5、三. 解答题(总共40分,每小题5分)1、一个(n,m)简单无向图是2-色图(m>0),那么它上面的所有回路是否都是偶数长?为什么?解答:简单无向图是2-色图(m>0) 就必然是偶图。

离散数学第三版华中科技大学答案

离散数学第三版华中科技大学答案

离散数学第三版华中科技大学答案1、若a < b ,则下列各式正确的是(A) [单选题] *A、2a<2(正确答案)B、-3a<-3bC、a-2>b-2D、a+3<b+12、若a-b>0,则( B ) [单选题] *A、a<bB、a>b(正确答案)C、a=bD、a<b或a=b3、若a=x4+2x2+1,b=x4+x2+1,则下列各式正确的是() [单选题] *A、a>bB、a<bC、a ≥ b(正确答案)D、a ≤ b4、下列命题正确的是() [单选题] *A、若a<b, 则ac<bcB、若a<b, 则ac2<bc2C、若a<b, 则-2a>-2b(正确答案)D、若a<b, 则a-1>b-15、若2-3x>8, 则x的取值范围是() [单选题] *A、(2,+∞)B、(-∞,2)C、(-2,+∞)D、(-∞,-2)(正确答案)6、若a<0,则下列不等式不正确的是() [单选题] *A、4-a>3-aB、4+a>3+aC、4a>3a(正确答案)D、3a>4a7、若a>b, b<0,则下列不等式正确的是( B ) [单选题] *A、ab>0(正确答案)B、a-b>0C、a ÷b>0D、a ÷b<08、a2+c2 与 2ac 的大小关系是() [单选题] *A、a2+c2≥2ac(正确答案)B、a2+c2≤2acC、a2+c2>2acD、a2+c2<2ac9、若a<b ,c<0, 则下列各式正确的是() [单选题] *A、a+c>c>c>b+c B、ac<bc C、ac<0D、ac2<bc2(正确答案)10、下列各式正确的是() [单选题] *A、a2>0B、|a|>0C、4-a<4D、a2-2a+3>0(正确答案)11、若|x|<1,则 x 的取值范围是() [单选题] *A、(-∞ ,1)B、(-∞ ,-1)C、(-∞ ,-1)∪(1,+∞ )D、(-1,1)(正确答案)12、不等式|2x-1|< 3 的解集是() [单选题] *A、(-2,2)B、(-1,2)(正确答案)C、(-∞,-1)∪(2,+∞)D、(-∞,2)13、不等式|2x-3|>5 的解集是() [单选题] *A、{ x|x<-1或x>4}(正确答案)B、{ x|x<-1}C、{ x|x>4}D、{ x|-1<x<4}14、若|x|>3 ,则x的取值范围是() [单选题] *A、{x|-3<x<3}B、{x|x<-3或x>3}(正确答案)C、{x|x>3}D、{x|x<-3}15、不等式|x+2|<5在正整数集中的解集是() [单选题] *A、{1,2}(正确答案)B、{1,2,3}C、{0,1,2,3}D、{-7,5}16、不等式|x+1|>2 的解集是() [单选题] *A、{x|x>1}B、{x|x<-3}C、{x|x<-3或x>1}(正确答案)D、{x|-3<x<1}17、不等式 |x-2|<3 的解集是() [单选题] *A、{x|x<-1或x>5}B、{x|x<-1}C、{x|x>5}D、{x|-1<x<5}(正确答案)18、若不等式|x-m| < 2的解集为{x|2 < x < 6},则m= () [单选题] *A、2B、4(正确答案)C、6D、819、若不等式|x-3| > a的解集是{x|x < 2或x > 4},则a= () [单选题] *A、3B、2C、1(正确答案)D、020、若不等式|x|<m的解集是(-5,5),则m= () [单选题] *A、5(正确答案)B、3C、-3D、-521、集合{x|-1<x≤5}用区间可表示为() [单选题] *A、(﹣1,5)C、(﹣1,4 )D、[﹣1,5 ]22、集合{x|x<2}可用区间表示为() [单选题] *A、(﹣∞,2)(正确答案)B、(﹣∞,2 ]C、[ 2,+∞)D、(2,+∞)23、集合A=(﹣1,4),集合B = [ 0,5 ],则A∪B =() [单选题] *A、RB、(﹣1,5 ](正确答案)C、[ ﹣1,5 ]D、(﹣1,5)25、设集合A=(﹣∞,﹣1),全集为R,则集合A的补集是() [单选题] *A、(﹣∞,﹣1)B、(﹣∞,﹣1 ]C、[﹣1,+∞)(正确答案)D、(﹣1,+∞)26、集合R用区间表示为() [单选题] *A、(﹣∞,0)B、(0,+∞)D、R27、3属于以下哪个区间() [单选题] *A、(2,4)(正确答案)B、(1,2)C、(0,2)D、(0,1)28、表示正确的区间是() [单选题] *A、(+∞,﹣∞)B、(3,﹣3)C、(1,0)D、(3,4)(正确答案)29、长张高速的某路段最低限速60km/h,最高限速120km/h,则汽车在该路段的正常行驶速度(单位:km/h)的取值范围可用区间表示为() [单选题] *A、[ 60,120](正确答案)B、[ 120,+∞)C、(﹣∞,60 ]D、(60,120]30、区间(﹣7,2 ]可用集合表示为() [单选题] *A、{x | -7<x<2}B、{x | -7≤x≤2}C、{x | -7<x≤2}(正确答案)D、{x|-7≤x<2}32、已知二次方程x^2-5x+6=0的两根分别为2和3,则不等式x^2-5x+6<0的解集为() [单选题] *A、(﹣3,﹣2)B、(﹣3,2)C、(2,3)(正确答案)D、(﹣2,3)31、下列不等式为一元二次不等式的是() [单选题] *A、3x+4<0B、1/x+1>0C、√x+1<0D、x^2-x+1<0(正确答案)33、已知二次方程x^2-x-2=0的两根分别为2和-1,则不等式x^2-x-c=0的解集为(-1,2),则c的值为() [单选题] *A、1B、﹣1C、2(正确答案)D、﹣235、若不等式的解集为[-3,a],则a的值为() [单选题] *A、9B、﹣9C、-3D、3(正确答案)36、要使√(x^2-2x+1)有意义,则x的取值范围() [单选题] *A、空集B、R(正确答案)C、{ 0 }D、137、方程的判别式,要使,此时x的取值范围为() [单选题] *A、空集(正确答案)B、RC、{ 0 }D、238、若不等式的解集为(-2,5),则c的值为() [单选题] *A、3B、4C、5(正确答案)D、639、以下说法正确的是() [单选题] *A、x^2<4的解集为{x|x<±2}B、当a=时,不等式ax^2+bx+c>0不是一元二次不等式(正确答案)C、x+3>0的解集为空集D、不等式(x+1)(x+2)<0的解集为(1,2)40、长方形长为x厘米,宽为x-4厘米(x>4),要使此长方形面积大于50平方厘米,可用不等式表示为() [单选题] *A、x(x-4)>50(正确答案)B、x(x-4)<50C、x(x-4)≥50D、x(x-4)≤5041、不等式的解集是() [单选题] *A、R(正确答案)B、∅C、(-2,+∞)D、(-∞,-2)∪(2,+∞)42、不等式的解集是() [单选题] *A、∅B、[5,+∞)C、{5}D、R(正确答案)43、如果a>b,那么下列各式正确的是() [单选题] *A、3a>3(正确答案)B、-3a>-3bC、a-3≤b-3D、a-2>b-144、若a>b,则下列不等式一定成立的是( B ) [单选题] *A、 3a<3(正确答案)B、-3a<-3bC、 a^2>b^2D、a-b<045、不等式的解集是() [单选题] *A、{ x|x≥2}B、{x|x≤-2}C、{x|x≥2或x≤-2}(正确答案)D、{x|-2≤x≤2}46、由不等式|x|<3的正整数解组成的集合是() [单选题] *A、(-3,3)B、{-2,-1,0,1,2}C、{1,2}(正确答案)D、{1,2,3}47、下列各式正确的是() [单选题] *A、4/7> 5/9(正确答案)B、4/7< 5/9C、4/7 = 5/9D、2/3>5/648、不等式|3x-1|<1的解集为() [单选题] *A、RB、{x|x<0或x>2/3}C、 {x|x>2/3}D、{x|0<x<2/3}(正确答案)49、不等式x^2-9>0的解集是() [单选题] *A、{x|x>3}B、{x|x<-3}C、{x|-3<x<3}D、{x|x<-3或x>3}(正确答案)50、不等式|2x-1|>1的解集是() [单选题] *A、{x|x<0}B、{x|x>1}C、{x|0<x<1}D、{x|x<0或x>1}(正确答案)51、集合{x|-1<x≤5}用区间可表示为() [单选题] *A、(-1,5)B、[-1,5]C、(-1,5](正确答案)D、(-1,4)52、如果a>b,b>c,则() [单选题] *A、a>c(正确答案)B、a<cC、b<cD、b>a53、不等式|2x-3|>5的解集为() [单选题] *A、 (-1,4)B、(-∞,1)∪(4,+∞)(正确答案)C、(-∞,-1)D、(4,+∞)54、不等式(x+1)(x-3)>0的解集为() [单选题] *A、{x|x>3}B、{x|x<-1}C、{x|-1<x<3}D、{x|x>3或x<-1}(正确答案)55、不等式2/(x-1)≥0的解集为() [单选题] *A、{x|x>1}(正确答案)B、{x|x≥1}C、{x|-1<x<1}D、{x|x>1或x<-1}56、如下图所示,数轴上阴影部分表示的区间是() [单选题] *A、(-4,2)B、 [2,-4)C、 [-4,2](正确答案)D、(-4,2]57、不等式|3x+1|>10的解集为() [单选题] *A、(-3,11/3)B、(-∞,-3)∪(11/3,+∞)C、(-11/3,3)D、(-∞,-11/3)∪(3,+∞)(正确答案)58、不等式| x-3|≤ 6的解集是() [单选题] *A、{ x| -1≤x≤ 2 }B、{ x| 4≤x≤ 9 }C、{ x| -3≤x≤ 9 }(正确答案)D、{ x| -3≤x≤ 2 }59、不等式x^2-4x+4≥0的解集是() [单选题] *A、[2,+∞)B、(-∞,2]C、∅D、R(正确答案)60、不等式|x+2|>3的解集为() [单选题] *A、[-5,1]C、(-5,1)D、(-∞,-5)∪(1,+∞)(正确答案)61、若√(x^2-x-6)有意义,则x的取值范围是() [单选题] *A、(-∞,-1]∪[3,+∞)B、(-∞,-2]∪[3,+∞)(正确答案)C、[-2,3]D、(-1,3)62、不等式x(x+1)<0的解集是() [单选题] *A、{x|x<-1}B、{x|x>0}C、{x|-1<x<0}(正确答案)D、{x|x<-1或x>0}63、不等式x^2+x-6≥0的解集是() [单选题] *A、[-3,2]B、(-∞,-3)∪(2,+∞)C、[-2,3]D、(-∞,3]∪[2,+∞)(正确答案)64、若方程x^2-4x-5=0的两个根分别为-1和5,则不等式x^2-4x-5<0的解集为() [单选题] *A、(-1,5)(正确答案)C、[-1,5]D、(-∞,-1]∪[5,+∞)65、不等式x^2-9<0的解集为() [单选题] *A、(3,+∞)B、(-∞,3)C、(-3,3)(正确答案)D、(-∞,-3)∪(3,+∞)66、若5x+3<18 ,则() [单选题] *A、x<-5B、x>-5C、x<3(正确答案)D、x>567、不等式(3-x)(x+5)<0的解集为() [单选题] *A、(-5,3)B、(3,5)C、(-∞,-5)D、(-∞,-3) U(5,+∞)(正确答案)68、不等式x^2≤0的解集为() [单选题] *A、∅B、RC、{x|x=1}D、[-1,1](正确答案)69、不等式(x+1)(x-2)≥0的解集是() [单选题] *A、{x|x≤-1或x≥2}(正确答案)B、{x|x≤-1或x>2}C、{x|-1≤x≤2}D、{x|-1≤x<2}70、不等式|x+1|<5在正整数集中的解集是() [单选题] *A、{1,2}B、{-6,5}C、{0,1,2}D、{1,2,3}(正确答案)。

14-15-1离散数学期中考试参考答案与评分标准

14-15-1离散数学期中考试参考答案与评分标准

━ ━ ━ ━ ━ ━ ━ ━ ━ 装 ━ ━ ━ ━ ━ ━ ━ 订 ━ ━ ━ ━ ━ ━ ━ 线 ━ ━ ━ ━ ━ ━ ━ ━ ━2014 ~ 2015 学年 第一学期期中考试参考答案与评分标准离散数学试卷 使用班级1350411/412/413/414/421/422/423 答题时间100分钟一、命题逻辑部分(本大题共4小题,共35分。

)1、(8分)在命题逻辑中,将下列命题符号化。

(1)我和他既是兄弟又是同学。

(2)除非明天天气晴朗,否则小王不骑车上班。

(3)小王只能选择羽毛球或篮球中的一门课。

解:(1)设:p 我和他是兄弟,:q 我和他是同学,则符号化为:p q ∧。

…………(2分)(2)设:p 明天天气晴朗,:q 小王骑车上班,则符号化为:q p →。

…………(3分)(3)设:p 小王选择羽毛球课,:q 小王选择乒乓球课,则符号化为:()()p q p q ∧⌝∨⌝∧。

…………(3分)2、(7分)证明等值式:()()p q p q p q ↔⇔⌝∨∨∧。

证明:p q ↔()()p q q p ⇔→∧→()()p q q p ⇔⌝∨∧⌝∨ …………(2分)(())(())p q p q q p ⇔⌝∧⌝∨∨∧⌝∨()()()()p q p p q q q p ⇔⌝∧⌝∨⌝∧∨∧⌝∨∧ …………(2分)()00()p q q p ⇔⌝∧⌝∨∨∨∧()()p q q p ⇔⌝∧⌝∨∧()()p q p q ⇔⌝∨∨∧ …………(3分)3、(10分)求命题公式(())()q p r r p ∧∨∨⌝→的主析取范式,主合取范式,成真赋值和成假赋值。

解:(())()q p r r p ∧∨∨⌝→()()()q p q r r p ⇔∧∨∧∨⌝⌝∨()()()p q q r p r ⇔∧∨∧∨⌝∧ …………(3分)(1)(1)(1)p q q r p r ⇔∧∧∨∧∧∨⌝∧∧(())(())(())p q r r p p q r p q q r ⇔∧∧∨⌝∨∨⌝∧∧∨⌝∧∨⌝∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧∨∧∧⌝∨∧∧∨⌝∧∧∨⌝∧∧∨⌝∧⌝∧…………(3分)()()()()p q r p q r p q r p q r ⇔∧∧∨∧∧⌝∨⌝∧∧∨⌝∧⌝∧111110011001m m m m ⇔∨∨∨1367m m m m ⇔∨∨∨0245M M M M ⇔∨∨∨ …………(2分)成真赋值:001,011,110,111;成假赋值:000,010,100,101。

华中科技大学计算机学院2016年离散数学一考试点评

华中科技大学计算机学院2016年离散数学一考试点评

2016年上期离散数学(一)考试点评选择题以及填空题:这30分题目都是基础题,不用再说什么。

解答题点评:(40分),比例较大1.求主范式。

这内容说过要考的,而且我群里面也回答过同学说要考的。

这道题,只要把真值表画出来,主范式立即处理了。

这也是以后大家学逻辑设计时需要的知识。

当然,也可以是通过现有表达式逐步做等值变换求得。

不少人不知道怎么做。

2.P(x,y)为二元谓词,∀x∃ yP(x,y)与∃ y∀x P(x,y)等价吗?为什么,举例说明。

这道题是教材里面的一道练习题。

没做任何变化。

我在课堂上明确讲过,这不同的量词是不可以交换的,而且举例说明过。

课件上也有现成的。

还是有同学不知道怎么做,也不知道是否等价。

3.用谓词逻辑将下列命题符号化:(注意:不要出现代数表达式)有些实数小于其平方,但并不是每个实数小于其平方。

逻辑问题符号化是必考的内容,多次说过。

这道题的表述是基本的,没有多少绕弯子的地方,也没有什么难以理解的内容。

一般在没有指定个体域的情况下,我们都用全总个体域,再用特性谓词来说明。

如:R(x)表示x是实数,L(x)表示x<x的平方。

则那么命题表示为∃x(R(x)∧L(x)) ∧∃x(R(x)∧⌝ L(x))或者是:∃x(R(x)∧L(x)) ∧⌝∀ x(R(x)→L(x))如果指定个体域为实数R,那么上面这个表达就不需要特性谓词了。

就简单地表达成:∃xL(x)∧∃x⌝ L(x)用2元谓词的表示方法也可:R(x)表示x是实数,L(x,y)表示x<y, S(x,y)表示y=x2则那么命题表示为:∃x∃y(R(x)∧R(y) ∧S(x,y)∧L(x,y)) ∧∃x∃y(R(x)∧R(y) ∧S(x,y)∧⌝L(x,y))出现比较多的问题:(1)没有指定个体域,也没有特性谓词来说明个体。

(2)在使用全总个体域时,特性谓词跟主谓词之间到底是用合取∧还是蕴含→,不少同学没搞清楚。

这一点在课堂上是讲清楚了的。

吉林大学2015离散2习题解答资料

吉林大学2015离散2习题解答资料
离散数学 II
—习题
判断题
• 对于有理数集合Q以及有理数乘法 ·,(Q,·)可 以做成一个群。(×)
• 置换的乘积满足交换律。(×) • 3次交代群是3次对称群的一个真子群。( √) • 循环群的生成元未必唯一。( √) • 若N是群G的正规子群,则N在G中的所有陪集关
于陪集乘法做成一个群。(√ )
(a + b)×(a + b)=a+b 所以,a+(a×b)+(b×a)+b=a+b,即,
(a×b)+(b×a) = 0 ……(*)。 在(*)式中取a=b,则(a×a)+(a×a) = 0,故 a+a=0。
证明题
证明:若环(R,×,+)对×运算满足等幂律,即 对R中任意元素a,都有a×a=a,证明: (1)对R中任意元素a,有a + a = 0。 (2)R是交换环。
f(a+b)=1=(-1)×(-1)=f(a)×f(b); ③若a、b一奇一偶,不妨设a为奇数、b为偶数, 则a+b为奇数,
f(a+b)=-1=(-1)×1=f(a)×f(b)。 可见,f为G1到G2内的同态映射。
简答题
• G1=(Z,+),G2=(R*,×),其中R*为非零实数
集合,+和×分别表示数的加法和乘法。f为G1到G2
<Z,*>为群。 (2)它是一个无限循环群,生成元是3和1,其中 3n=n+2,1n=2-n。
证明题
证明:设G是一个群,a,b,c∈G,证明 (1)a, a-1 和b-1ab的周期相同 (2)ab和ba的周期相同 (3)abc, bca和cab的周期相同.。
证明:(1)设 a的周期为 k1,a-1的周期为 k2,b-1ab 的周期为k3。

离散数学第二版罗熊课后答案

离散数学第二版罗熊课后答案

离散数学第二版罗熊课后答案第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。

答:( l )数据( Data ) :叙述事物的符号记录称作数据。

数据的种类存有数字、文字、图形、图像、声音、正文等。

数据与其语义就是不可分的。

解析在现代计算机系统中数据的概念就是广义的。

早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。

现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。

数据与其语义就是不可分的。

500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。

( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。

数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。

( 3 )数据库系统( DataBas 。

Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。

解析数据库系统和数据库就是两个概念。

数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。

但是在日常工作中人们常常把数据库系统缩写为数据库。

期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。

( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。

DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。

解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。

《离散数学》期末考试题目及评分标准

《离散数学》期末考试题目及评分标准

学院:计算机学院专业班级:学号:□□□□□□□□命题共8页第1页基础知识(40分)1.判断下列句子是否是命题,若是命题将其符号化。

(4分)①.李平不是不聪明,而是不用功。

②.如果只有懂得希腊文才能了解柏拉图,那么我不了解柏拉图。

2.在一阶逻辑中将下列命题符号化。

(4分)①.整数都是有理数,并不是每个有理数一定是整数,有些有理数不是整数。

②.某些汽车比所有的火车慢。

3.求下列集合的幂集。

(4分)①.A={∅,{∅},{{∅}}}②.B={{a,b},{c}4.设A={1,2,3},求A上所有的等价关系。

(6分)5.设集合A={1,2,3,4},关系R={<1,2>,<2,1>,<2,3>,<3,4>},分别求r(R),s(R),t(R)。

(6分)6.一棵树有两个顶点度数为2,一个顶点度数为3,三个顶点度数为4,问它有几个度数为1的顶点。

(4分)7.设有无向图G如下所示,判断图G是是否是欧拉图和哈密顿图,若是,分别求出求一条欧拉回路和哈密顿回路.(4分)学院:计算机学院专业班级:学号:□□□□□□□□命题共8页第2页8.设有代数系统(Z,*),运算*的定义为:任意x,y∈Z,x*y=x+y-2,试证(Z,*)是群。

(8分)理解运用(30分)9.判断命题公式的类型。

(6分)10.求下列命题公式的主析取范式和所有成假赋值。

(6分)11.求谓词公式的前束范式。

(6分)12.画出集合A={1,2,3,4,6,8,12,24}关于整除关系的哈斯图。

并求(1)集合A的最大元、最小元、极大元和极小元;(2)集合B={4,6}的上界、下界、最小上界、最大下界。

(6分)13.求下面带权图的最小生成树及权(6分)学院:计算机学院专业班级:学号:□□□□□□□□命题共8页第3页综合能力(30分)14.请用一阶逻辑推理理论证明以下推理:每个学术会的成员都是工人并且是专家,有些成员是青年人,所以有的成员是青年专家。

2014-2015年考研数学二真题及答案解析

2014-2015年考研数学二真题及答案解析

精选文档2014 年全国硕士研究生入学一致考试数学二试题一、选择题 :1 8 小题,每题 4分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x 0时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则的取值范围是 ( ) (A) (2,)(B) (1,2)(C)(1,1)(D)(0, 1)22(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C) yxsin1(D)y x 2sin1xx(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x) f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x) (B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x) g ( x) (D) 当 f ( x)0 时, f (x)g ( x)(4) x t 2 7 上对应于 t1 的点处的曲率半径是()曲线t 2 4ty 1(A)10(B)10(C) 10 10(D) 5 1050100设函数 f ( x)arctan x ,若 f ( x)xf ( ) ,则 mil2(5) 0x 2()x(A)1(B) 2(C) 1(D)1323(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 22u阶连续偏导数, 且知足x y及2u 2u0 ,则()x2y2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得精选文档(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在 D 的内部获得,最大值在D 的界限上获得0 a b 0(7)a 0 0b 队列式c d 0 ()c 0 0 d(A) (adbc) 2(B)(adbc)2(C) a 2d2b 2c 2(D) b 2 c 2a 2d 2(8) 设 1, 2,3均为 3 维向量, 则对随意常数k, l ,向量组 1 k 3 , 2 l 3 线性没关是向量组1, 2,3 线性没关的( )(A) 必需非充足条件(B) 充足非必需条件(C) 充足必需条件(D) 既非充足也非必需条件二、填空题: 914小题,每题 4 分,共 24 分 . 请将答案写在答题纸 指定地点上 .1...((9)1dx__________.x 2 2x5(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x)2( x 1),x [0, 2] ,则 f 7)(__________.(11) 设 zz(x, y) 是由方程 e2 yzx y2z7确立的函数,则dz( 1 , 1 )__________.42 2(12) 曲线 rr ( ) 的极坐标方程是 r,则 L 在点 (r , )( , ) 处的切线的直角坐标方程是 __________.2 2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度 xx 22x 1, 则该细棒的质心坐标 x__________.(14) 设二次型 fx 1 , x 2 , x 3 x 12 x 2 2 2ax 1x 3 4x 2x 3 的负惯性指数为1,则 a 的取值范围为_______.三、解答题: 15~ 23 小题 , 共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证...明过程或演算步骤 . (15)( 此题满分 10 分)精选文档x 12e t 1 t dtt1求极限 lim x2 ln 1 .x 1x(16)( 此题满分10 分)已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .(17)( 此题满分10 分)设平面地区 D x, y 1 x2 y2 4, x 0, y 0 , 计算x sin x2 y2dxdy.x yD(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,z f (e x cosy) 知足 2 z 2z (4 z e x cos y) e2x,若x2 y2f (0) 0, f ' (0) 0,求 f (u) 的表达式.(19)( 此题满分 10 分)设函数 f ( x), g (x) 的区间 [a,b] 上连续,且 f (x) 单一增添, 0 g( x) 1.证明:(I) 0 xx a, x [ a, b] , g(t )dtaa bbg(t ) dtf (x)d x f ( x)g( x)dx .(II) aa a(20)( 此题满分 11 分)设函数 f (x) x , x 0,1 ,定义函数列 f ( x) f ( x), f ( x) f ( f (x)),,1 x 12 1f n (x) f ( f n 1 (x)), ,记 S n是由曲线 y f n ( x) ,直线x 1 及 x 轴所围成平面图形的面积,求极限 lim nS n.n(21)( 此题满分 11 分)已知函数 f ( x, y) 知足 f 2( y 1) ,且 f ( y, y) ( y 1) 2 (2 y)ln y, 求曲线 f ( x, y) 0y所围成的图形绕直线y 1旋转所成的旋转体的体积.精选文档(22)( 此题满分 11 分)1 2 34 设矩阵A 0 11 1 , E 为三阶单位矩阵 . 1 23(I) 求方程组 (II) 求知足Ax 0的一个基础解系;AB E 的全部矩阵 .(23)( 此题满分 11 分)1 1 1 0 0 1 1 110 2证明 n 阶矩阵与相像 .1 1 1 0 0 n2014 年全国硕士研究生入学一致考试数学二试题答案一、选择题 :1 8 小题,每题 4 分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则 的取值范围是 ( )(A)(2, )(B) (1,2)(C)(1,1) (D) (0, 1)【答案】 B22【分析】由定义lim ln (1 2x) lim (2 x)lim 2 x 1x 0x xxx 01 0 1 .所以,故精选文档12x2当 x0 时, (1 cos x) ~ 1 是比 x 的高阶无量小,所以10,即2.2应选 B(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C)y x sin1(D) yx2sin1xx【答案】 C11x sinsin【分析】对于 C 选项: limxlim1 lim x 1 0 1 .xxx xxlim[ x sin1x] limsin 1 0 ,所以 y x sin 1存在斜渐近线 yx .xxxx x应选 C(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x)f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x)(B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x)g ( x)(D) 当 f ( x) 0 时, f (x)g ( x)【答案】 D【分析】令 F ( x) g (x) f ( x)f (0)(1 x) f (1)x f ( x) ,则F (0) F (1) 0 ,F ( x) f (0) f (1) f ( x) , F ( x)f ( x) .若 f ( x) 0 ,则 F (x) 0 , F (x) 在 [0,1] 上为凸的 .又 F(0) F (1) 0 ,所以当 x [0,1] 时, F (x) 0 ,进而 g(x)f ( x) .应选 D.(4) 曲线x t 2 7上对应于 t1 的点处的曲率半径是()y t 2 4t 1(A)10(B)10(C) 10 10(D) 5 1050100【答案】 C精选文档【分析】dy t 12t 4 3dx 2t t 1d 2 ydy ' 2t 2 12 t 1dxt 12tt 1dxky ''1,R 1 10 10y '233k121 q 2应选 C2(5) 设函数 f ( x) arctan x ,若 f (x) xf ( ) ,则 milx2x(A) 1(B) 2(C) 1(D)13 23【答案】 D【分析】因为f ( x)f ' ( )1 2 ,所以 2x f (x) x1f (x)2x f (x)x arctanx1111 x 2lim lim lim lim x22 f ( x)2 arctanx 3x 23x 0 x 0 x x 0 x x 0应选 D.(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 2 阶连续偏导数, 且知足2u2u0 ,则及y 2x 2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得 (B) u(x, y) 的最大值和最小值都在 D 的内部上获得( )2ux y()(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在D 的内部获得,最大值在D 的界限上获得精选文档【答案】 A【分析】记 A2u 2 , B2u ,C2u2 , B 0, A, C 相反数xx yy则 =AC-B2 0 , 所以 u(x, y) 在 D 内无极值,则极值在界限处获得 .应选 A0 a b 0(7) a 0 0 b ( )队列式c d 0 0c 0 0 d(A) ( ad bc )2 (B) ( ad bc)2(C) a 2d 2 b 2 c 2(D) b 2c 2a 2 d 2【答案】 B【分析】由队列式的睁开定理睁开第一列0 a b 0 a b 0 a b 0 a 0 0 b a cd 0c 0 0 b 0 cd 0 0 0 dc dc0 0 dad (ad bc) bc(ad bc)(ad bc) 2 .(8) 设 a 1 , a 2 , a 3 均为三维向量,则对随意常数 k, l , 向量组 a 1 ka 3 , a 2 la 3 线性没关是向量组a 1, a 2 ,a 3 线性没关的( )(A) 必需非充足条件 (B) 充足非必需条件(C) 充足必需条件 (D) 既非充足也非必需条件【答案】 A1 0【分析】1k32l31231 .k l1 0) 记 A1k32l3 ,B123 ,C0 1.若1,2, 3 线性无k l精选文档关,则 r ( A) r ( BC ) r (C ) 2 ,故1k3,2l 3 线性没关 .) 举反例.令30 ,则1,2 线性没关,但此时1,2, 3 却线性有关 .综上所述, 对随意常数 k ,l ,向量1k3,2l 3 线性没关是向量1, 2,3 线性没关的必要非充足条件 . 应选 A二、填空题: 914 小题 , 每题 4 分, 共 24 分 . 请将答案写在答题纸 指定地点上 ....(9)11 dx __________.x 22x5【答案】38【分析】111x 1 111x 2dxx 1 2dx arctan 2 2 x 542132 428(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x) 2( x 1), x [0, 2] ,则 f 7)(__________.【答案】 1【分析】 f ' x 2 x 1 , x0,2 且为偶函数则 f ' x 2 x 1 ,x 2,0又 fxx 2 2x c 且为奇函数,故 c=0f xx 2 2x ,x2,0又f x 的周期为 4,f7 f1 1(11) 设 zz(x, y) 是由方程 e 2 yz x y 2z7 确立的函数,则 dz1 1)__________.4( ,2 2 【答案】1(dx dy)27【分析】对 e 2 yz x y 2z方程两边同时对 x, y 求偏导4精选文档e 2 yz2y z 1 zx xe 2 yz (2z 2 y z ) 2 yz 0y y当 x11z, y时 ,22故z1 11 , z 1 11 x ( 2,2)2 y ( 2 , 2 )2故dz1 11dx (1)dy1(dx dy)2 2222( , )(12) 曲线 lim nS n 的极坐标方程是 r,则 L 在点 (r , ) ( ,) 处的切线的直角坐标方程是n2 2__________.【答案】 y2 x2【分析】由直角坐标和极坐标的关系x r cos cosy r sin,sin于是 r ,, 2 , 对应于 x, y 0,,22切线斜率 dydycos sin dy ddx dxcossindxd20,2所以切线方程为 y2x 022x即y=2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度x x 2 2x 1, 则该细棒的质心坐标 x __________.【答案】1120精选文档1x dxx【分析】质心横坐标 x1 x dx1 1 x 2x 3 x 2 10 5x dx=2x 1 dxx3 311 2x 4 2 3 x 2 1 11 xx dx= x x2x 1 dx x 0 04 3 21211x 12=115203(13) 设二次型 f x 1 , x 2 , x 3x 1 2x 22 2ax 1 x 3 4x 2 x 3 的负惯性指数是 1 ,则 a 的取值范围_________.【答案】2,2f x 1, x 2 , x 3x 12a 2 x 32 x 224x 32【分析】配方法:ax 32x 3因为二次型负惯性指数为 1,所以 4 a 20 ,故 2 a 2.三、解答题: 15~ 23 小题,共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证 ... 明过程或演算步骤 .(15)( 此题满分 10 分)x 2 1et1 t dtt1求极限 lim1 .xx 2ln 1xx1dtx1dt【分析】1t 2 (e t 1) tlim1 t 2(e t 1) tlim1 )1xx 2ln(1xx2xx1lim[ x 2 (e x 1) x]x1 tttxlime1 t lim e1 lim t1 .tt 2t 02t t 0 2t 2(16)( 此题满分 10 分)精选文档已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .【分析】由 x2 y2 y 1 y ,得( y2 1) y 1 x2①此时上边方程为变量可分别方程,解的通解为1y3y x 1 x3 c3 3由 y(2) 0 得 c 2321 x当 y (x) 0 时,x 1 ,且有:x1, y ( x)01 x 1,y ( x)0x 1, y ( x)0所以 y(x) 在x 1 处获得极小值,在x 1 处获得极大值y( 1) 0, y(1) 1即: y(x) 的极大值为1,极小值为0.(17)( 此题满分10 分)设平面地区【分析】 D对于x, y 1 x2 y2x sin x2 y2D 4, x 0, y 0 , 计算x ydxdy .Dy x 对称,知足轮换对称性,则:xsin( x2 y2 ) ysin( x2 y2 )x y dxdyx ydxdyD DIxsin( x2 y2 ) 1 x sin( x2 y2 ) ysin( x2 y2 ) x ydxdy2 x y x ydxdy D D1 sin( x2 y2 )dxdy2 D精选文档1d2rdr2sin r 21 )1r(rd cos24 11 cos r r |122 cos rdr4 11 2 1 1sin r |124 34(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,zxcosy) 知足2z 2z(4 z e xcos y) e 2x,若f (e 2y 2xf (0)0, f ' (0) 0,求 f (u) 的表达式 .【分析】由 zfe x cos y , zf (e x cos y) e xcos y, zf (e x cos y)e x sin yxy2zf (e x cos y) e x cos y e x cos y f (e x cos y) e x cos y ,x 22 zf xxxsin yf (e xcos y)xcos yy 2( e cos y)e sin ye e2z2zxcos y e 2x由2+y 24z e,代入得,xfe x cos y e 2x[4 f e x cos y e x cos y]e 2 x即f e x cos y 4 f e x cos y e x cos y ,令 e x cos y=t , 得 f t 4 f tt特点方程24 0,2得齐次方程通解y c 1e 2tc 2e 2t精选文档设特解 y * at b ,代入方程得 a1 , b 0 ,特解 y * 1 t4 1 t4则原方程通解为 y=f tc 1e 2t c 2 e 2t4由 f0, f '0 0 ,得 c 11 ,c 21, 则16 16y=f u1 e2 u 1 e 2 u 1u . (19)(10 分)16 164此题满分设函数 f ( x), g( x) 在区间 [a,b] 上连续,且 f ( x) 单一增添, 0g ( x) 1 ,证明: ( I )xxa, x [ a,b] ,g(t) dt aab bg (t )dtf ( x)d xf ( x)g( x)dx.(II )aaa【分析】( I )由积分中值定理x dt gxa ,[ a, x]g ta0 g x 1 ,0 gx ax ax t dtxaga( II )直接由 0 g x1,获得x dtx1dt = x ag t aauau( II )令 F u f x g x dxaaaF ' u f u g uf aug t dtaug t dtf x dxg ug uf uf ag t dta由( I )知 0uu aaau g t dtg t d t uaa又因为 fx 单增,所以 fuf au0 g t dtaF ' u0, F u 单一不减, F uF a取 ub ,得 F b 0 ,即( II )建立 .(20)( 此题满分 11 分)设函数 f (x)x, x 0,1 ,定义函数列1 xf 1 ( x) f ( x), f 2 ( x) f ( f 1 ( x)), , f n ( x) f ( f n 1( x)),及 x 轴所围成平面图形的面积,求极限lim nS n .n【分析】 f 1 (x)x, f 2 ( x)x, f 3 ( x)x,1 x1 2x 1 3x精选文档,记 S n 是由曲线 y f n ( x) ,直线 x 1, f n ( x)x, 1 nxxx1 1S n 1 f n ( x) dx1 dx1n ndx11nxnx111 1 111 ln(11n1dxn1dx n n 2 nx) 0nx112 ln(1 n) n nlim nS n 1lim ln(1n) 1lim ln(1x) 1 lim1 1 0 1nnnxxx1 x(21)( 此题满分 11 分)已 知 函 数 f ( x, y) 满 足f 2 (y 1 ,) 且 f ( y, y)( y 2 1 )( 2y )求yl n 曲 线,yf ( x, y) 0 所围成的图形绕直线 y1 旋转所成的旋转体的体积 .【分析】因为f 2( y 1) ,所以 f ( x, y) y 2 2 y ( x), 此中 ( x) 为待定函数 .y又因为 f ( y, y)( y 1)22 y ln y, 则 ( y) 12 y ln y ,进而f ( x, y) y 2 2y 12 x ln x ( y 1)22 x ln x .令 f ( x, y)0, 可得 ( y 1)22 x ln x ,当 y1时, x 1 或 x 2 ,进而所求的体积为V2 y 1 22 2 x ln xdx1 dx12x 2ln xd2x12x 2 22ln x(2x )12 12ln 2 (2x x2 ) 124 (22)( 此题满分11 分)精选文档2xdx22ln 2 5 2ln 25.4 41 2 3 4设矩阵A 0 1 1 1 ,E为三阶单位矩阵.1 2 0 3(I)求方程组(II)求知足【分析】Ax 0的一个基础解系;AB E 的全部矩阵 B .1 2 3 4 1 0 0 1 2 3 4 1 0 0A E 01 110 1 0 01 110 1 01 2 0 3 0 0 1 0 4 3 1 1 0 11 2 3 4 1 0 0 1 0 0 1 2 6 10 1 1 1 0 1 0 0 1 0 2 1 3 1 ,0 0 1 3 1 4 1 0 0 1 3 1 4 1(I) Ax 0 的基础解系为1,2,3,1T(II) e1T T0,0,1T 1,0,0 , e2 0,1,0 , e3Ax e1的通解为x k1 2, 1, 1,0 T 2 k1, 1 2k1 , 1 3k1, k1 TAx e2的通解为x k2 6, 3, 4,0 T6 k2 , 3 2k2 , 4T3k2 , k2Ax e3的通解为x k3T1 k3,1 2k3,1T 1,1,1,0 3k3 , k32 k1 6 k2 1 k3B 1 2k1 3 2k2 1 2k3(k1 , k2 , k3为随意常数)1 3k1 4 3k2 1 3k3k1 k2 k3(23)( 此题满分11 分)1 1 1 0 0 11 1 1 0 0 2相像 .证明 n 阶矩阵与1 1 1 0 0 n11 【分析】已知 A1 1 21 ,,B =01n则 A 的特点值为 n , 0 ( n 1重 ).A 属于n 的特点向量为 (1,1, ,1)T ; r ( A) 1 ,故 Ax 0 基础解系有 n1个线性没关的解向量,即 An=属 于0 有 n 1 个 线 性 无 关 的 特 征 向 量 ; 故 A 相 似 于 对 角 阵.B 的特点值为 n , 0 ( n 1重 ) ,同理 B 属于0 有 n 1 个线性没关的特点向量,故 B 相似于对角阵.由相像关系的传达性,A 相像于B .2015 年全国硕士研究生入学一致考试数学二试题及答案分析一、选择题:( 1~ 8 小题 , 每题 4 分,共 32 分。

2015考研管理类联考真题难度点评及解析

2015考研管理类联考真题难度点评及解析

2015考研管理类联考真题难度点评及解析考研专业频道讯:2015考研管理类联考真题难度点评及解析2015考研管理类联考真题难度点评及解析同学们,大家好,今天很高兴给大家讲一下2015年管理类联考数学的基本情况。

总的来说,今年的试题部分试题的计算量比较大,数学的难度我个人认为总体略有上升。

新东方考前的点题实在给力,接下来我结合点题的题进行分析,数学蒙猜的技巧快速又准确。

我们看一下,这是第一题。

考的是一个比例问题,联比设K,我们课堂中强调过,点题当中也是甲乙丙这样的点题,甲乙丙三个东西的比,考试也是三个东西的比。

这也是一个基本的东西。

第二题是一个应用题,联立二元一次方程组解题,这是一个常规的应用题,每年是必须考的。

详解我也放在上面,同学们应该可以看到。

请注意,我今天给出的答案是最标准的答案。

第三题是关于整数质数的问题。

小整数直接穷举,而且我特别强调两个元素都在变的穷举问题。

点题的例1.1也是两个东西都在变,都是20以内的穷举。

这个题就是一个完全的命中。

这是解题思路角度,完全命中。

第四题是平面几何的常规问题,不规则图形面积的一个计算。

请大家看,我给大家的题,点题中的题也是一个圆减掉一个三角形,真实考题也是一个扇形减掉一个三角形,这种构思。

这个题也是很精准预测到的,类型从计算角度完全相仿。

第五题是行程问题。

我在点题的时候说了应用题的一些重要类型。

我说浓度不会考,2014年考了浓度,我说2015年不会考。

2015年的试卷当中考了一个行程问题。

也是联立解方程组,没有什么特别的难度。

第六题是平均分问题。

近几年平均数这个考点在真题中一直出现,而且是比较难的题,变化比较多端。

今年的平均数题又是新颖的问题,甲乙丙三个班级告诉你平均成绩,然后给班级的总分。

这个问题,同学们,一种思路,对平均分做一个估算,因为它是整数,正好落在那个范围里。

这是一种最简洁的方法。

我在技巧课当中也强调,管理类联考的数学,正面不会做,可以反面验证选项的合理性。

离散数学第2版课后答案

离散数学第2版课后答案

5)?x?1(mod 5)????x?1(mod 3)
?x?3(mod8)??x?1(mod 3) : 求解同余方程组 ?x?1(mod 5)?
m1=8 , m2=3 ,m3=5 ,m=120 ,m1=15 , m2=40 , m3=24
15x≡1(mod 8),40x ≡1(mod 3),24x ≡1(mod 5的) 特解:
所以, p=3
11 计算 2400 mod 319 。
解:
14(2) 解同余方程: 56x≡88(mod 96) 。
解:
(1) (a,m)=(56,96)=8 , 8|96 ,方程有解
(2) a?=56/8=7 , b?=88/8=11 ,m?=96/8=12
(3)由辗转相除法可求得 p 和 q 满足 pa?+qm?=1 , p=-5 , q=3
?5x?7(mod 12)16(2) 解同余方程组 ? 7x?1(mod 10)?
解:
5x≡7(mod 12) ? 12?(5x -7) ? 4?(5x-7) 且 3?(5x- 7) ? 5x ≡7(mod 4)
且 5x≡7(mod 3) ∴同余方程 5x≡7(mod 12) 与同余方程
组??5x?7(mod 4) 同解
c1=7,c2=1,c3=4
19 . *设 m1 和 m2 是正整数, b1 和 b2 是整数。证明一次同余方程
5 .设 a、b、 c、 d 是正整数,满足 ab=cd 。证明: a4+b4+c4+d4 不是素数。 证明:设 11)(n-1)! ∴ n 整除 (1++?+2n-1adp?? ,其中 p 和 q 是互素的正整数 cbq aq=cp ? p?aq ? p?a (∵ p 和 q 互素) 于是, ?u?n ,使 a=pu ? c=qu

华科计算机保研复试机试题目2

华科计算机保研复试机试题目2

华中科技大学复试机试题目2008年一.1、狼过河问题(运用到回溯)2、统计文件中单词数目3、N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。

(递归)4、链表操作二.第一个是一个上楼梯的种数的统计,本来是一个用递归可以解决的问题,但是题目偏偏要求编写快速算法,言下之意就是要求你把递归转化成非递归。

第二个题是链表的,要求依照给出的结构体依次实现输入链表,保存链表,删除链表,从磁盘读取链表,显示链表这几个操作。

做这个题,如果不记得保存文件的函数,很可能做不全或者做不出来。

第三个是要求根据- | \ / 四个字符来实现题目所规定的一个长方体。

并能使这个长方体适当的放大。

这个是一个递归问题,但是我想了半天也没有做出来。

20061.输入一个数列以0位结束标志,建立链式线性表,查找其中最大的数并输出删除释放节点,然后对剩余的进行排序,并输出释放节点2.输入一个数列以0位结束标志,建立二叉遍历数,并对其进行逆中序遍历,释放空间第一题是对输入的5个数排序,输出的结果到文件里。

第二题是用链表去对上面的5个数字排序。

第三题是输入一个ip地址串,判断是否合法。

2005第一题:对给定的一个字符串,找出有重复的字符,并给出其位置,如:输入:abcaaAB12ab12输出:a,1;a,4;a,5;a,10b,2;b,111,8;1,122,9;2,13第二题:输入一个四行五列的矩阵,找出每列最大的两个数,如:输入:1 2 3 4 9-1 4 9 8 812 9 8 7 07 8 9 7 0输出:12 9 9 8 97 8 9 7 8第三题:输入一个字符串,建立一个二叉排序树,并中序遍历输出;其它年份题目1.给出年分m和一年中的第n天,算出第n天是几月几号(提示中给出了判断闰年的方法),按yyyy-mm-dd的格式打印出来2.职工有职工号,姓名,年龄.输入n个职工的信息,找出3个年龄最小的职工打印出来,n可以取63.n个人排一圈123报数,报到3的人退到圈外,直到剩最后一个人为止4.冒泡排序。

离散数学期末考试试题及答案详解

离散数学期末考试试题及答案详解

离散数学期末复习例题讲解一、考核说明考核对象:本课程考核说明适用于国家开放大学开放教育本科电气信息类计算机科学与技术专业的学生.考核依据:本考核说明是以本课程的教学大纲(2015年3月修改)和指定的参考教材为依据制定的.本课程指定的参考教材是由胡俊、顾静相编写,国家开放大学出版社出版的《离散数学(本科)》第2版.考核方式:本课程的考核实行形成性考核和终结性考核相结合的方式.其中终结性考核采用半开卷、笔试方式,试卷满分100分.半开卷考试允许考生携带指定的一张专用A4纸(统一印制),考生可以将自己对全课程学习内容的总结归纳写在这张A4纸上带入考场,作为答卷时参考.考试时间:90分钟.试题类型及结构:单项选择题的分数占15%,填空题的分数占15%,公式翻译题的分数占12%,判断说明题的分数占14%,计算题的分数占36%;证明题的分数占8%.二、例题讲解(一)集合论1.单项选择题(1)若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A答:B(2)若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B⊄ A,且B∉AC.B ⊂ A,但B∉A D.B∈ A,但B⊄A答:D(3)设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}答:C(4)设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.对称的B.自反的C.对称和传递的D.反自反和传递的答:A(5)设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( )闭包.A .自反B .传递C .对称D .以上都不对 答:C(6)设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如图1所示,若A 的子集B = {3 , 4 , 5}, 则元素3为B 的( ).A .最小上界B .最大下界C .下界D .以上答案都不对 图1 答:A2.填空题(1)设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 . 答:2n(2)设集合A ={0,1,2},B ={0,2,4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的集合表示式为 . 答:{<0,0>, <0,2>, <2,0>, <2,2>}(3)设集合A ={a ,b ,c ,d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 的自反闭包是 .答:r (R )= {<a , b >, <b , a >, <b , c >, <c , d >}∪I A(4)设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 . 答:无、2、无、2(5)设集合A ={1, 2},B ={a , b },那么集合A 到B 的不同函数的个数有 . 答:4因为:f :{<1, a >, <2, a >}, {<1, b >, <2, b >}{<1, a >, <2, b >}, {<1, b >, <2, a >}3.如果R 1和R 2是A 上的自反关系,判断结论:“R 1-1、R 1∪R 2、R 1⋂R 2是自反的”是否成立?并说明理由. 答:结论成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2. 由逆关系定义和I A ⊆R 1,得I A ⊆ R 1-1;由I A ⊆R 1,I A ⊆R 2,得I A ⊆ R 1∪R 2,I A ⊆ R 1⋂R 2.所以,R 1-1、R 1∪R 2、R 1⋂R 2是自反的.注: R 1-R 2是自反的吗?4.若偏序集<A ,R >的哈斯图如图2所示,则集合 A 的最大元为a ;最小元不存在.答:错a 是集合A 的极大元,最大元不存在. 图2 5.设集合A ={a ,b , { a , b }},B ={{a }, {b }, b },求a f5(1)B ⋂A ; (2)A -B ; (3)A ⨯B . 解:(1)B ⋂A ={a , b , { a , b }}⋂{{a }, {b }, b }={b } (2)A -B = {a , b , { a , b }}-{{a }, {b }, b }={a , { a , b }} (3)A ⨯B ={a , b , { a , b }}⨯{{a }, {b }, b }={<a , {a }>, <a , {b }>, <a , b >,<b , {a }>, <b , {b }>, <b , b >, <{ a , b }, {a }>, <{ a , b }, {b }>, <{ a , b }, b >}6.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ︒S ,R -1,S -1,r (R ),s (R ),t (R ),r (S ),s(S ),t (S ).解:R =∅,S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} R ︒S =∅,R -1=∅,S -1= S ;r (R )= I A ,s (R )= ∅,t (R )= ∅;r (S )=S ∪{<2,2>,<3,3>,<4,4>},s (S )= S ;t (S )= S ∪{<1,3>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>} 7.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).证:若x ∈A ⋃ (B ⋂C ),则x ∈A 或x ∈B ⋂C , 即 x ∈A 或x ∈B 且 x ∈A 或x ∈C . 即x ∈A ⋃B 且 x ∈A ⋃C , 即 x ∈T =(A ⋃B ) ⋂ (A ⋃C ),所以A ⋃ (B ⋂C )⊆ (A ⋃B ) ⋂ (A ⋃C ).反之,若x ∈(A ⋃B ) ⋂ (A ⋃C ),则x ∈A ⋃B 且 x ∈A ⋃C , 即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ⋂C , 即x ∈A ⋃ (B ⋂C ),所以(A ⋃B ) ⋂ (A ⋃C )⊆ A ⋃ (B ⋂C ). 因此.A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ). 8.设R 是集合A 上的对称关系和传递关系,试证明:若对∀a ∈A ,∃b ∈A ,使得<a , b >∈R ,则R 是等价关系.证明:已知R 是对称关系和传递关系,只需证明R 是自反关系. ∀a ∈A ,∃b ∈A ,使得<a , b >∈R ,因为R 是对称的,故<b , a >∈R ; 又R 是传递的,即当<a , b >∈R ,<b , a >∈R ⇒<a , a >∈R ;由元素a 的任意性,知R 是自反的. 所以,R 是等价关系.(二)图论1.单项选择题(1)设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .4 答:D(2)设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(答:C(3)设有向图(a )、(b )、(c )与(d )如图3所示,则下列结论成立的是 ( ).图3A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的答:A(4)给定无向图G 如图4所示,下面给出的结点集子集中,不是点割集的为( ). A .{b , d } B .{d }C .{a , c }D .{g , e } 答:A 图4(5)图G 如图5所示,以下说法正确的是( ). A .{(a , d )}是割边B .{(a , d )}是边割集C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集答:C 图5 (6)设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 答:A2.填空题(1)已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .答:15 (1⨯1+2⨯2+3⨯3+4⨯4)/2(2)设无向图G =<V ,E >是汉密尔顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣. 答:W (G - V 1)(3)设无向图G 为欧拉图,则图G 连通且 . 答:每个结点的度数为偶数(4)设图G =<V ,E >,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = . 答:n -1(5)连通无向图G 有6个顶点9条边,从G 中删去 条边才有可能得到G 的一棵生成树T . 答:4οο οο (a )οο οο (b ) οοοο (c )οοοο(d )a gb d fc e οο ο οο οο ο a ο οο ο ο b c f d e(6)给定一个序列集合{1,01,10,11,001,000},若去掉其中的元素 ,则该序列集合构成前缀码.答:1 3.给定图G (如图6所示): (1)试判断它们是否为欧拉图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.答:(1)图G 是欧拉图,因为图G 是连通图且每个结点的度数是偶数.(2)欧拉回路为: v 1 e 1 v 2 e 2 v 3 e 3 v 4 e 5v 5 e 7 v 2 e 8v 6 e 6 v 4 e 4v 1 注意:回路是不惟一4.试判断“设G 是一个有5个结点、10条边的连通图,则G 为平面图”是否正确,为什么?答:错误.因为它不满足定理4.3.3,即“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”5.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={(a 1, a 2),(a 2, a 4),(a 3, a 1),(a 4, a 5),(a 5, a 2)}(1)试给出G 的图形表示; (2)求G 的邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 解:(1)图G 是无向图,图形如图7所示:图7 (2)图G 的邻接矩阵如下:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0101010010000011100100110)(G A(3)结点a 1, a 2, a 3, a 4, a 5的度数分别为:2,3,1,2,2. (4)图G 的补图的如图8所示:图86.图G =<V , E >,其中V ={a , b , c , d , e , f },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ),ο οο ο οa 1a 2 a 3a 4a 5v 1 v 2 v 3v 4 v 5v 6 e 1 e 2e 3 e 4 e 5 e 6e 7 e 8 οο ο ο ο ο图6 ο ο ο ο οa 1a 2 a 3a 4 a 5οο ο ο οa 1 a 2 a 3a 4a 5(d , f ), (e , f ) },对应边的权值依次为5,2,1,2,6,1,9,3及8.(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值. 解:(1)G 的图形如图9所示:(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡011000101111110010010001011001010110 图9(3)粗线表示最小的生成树(见图10):最小的生成树的权为:1+1+5+2+3=12. 图107.设有一组权为2,3,6,9,13,15,试 (1)画出相应的最优二叉树; (2)计算它们的权值.解:最优二叉树如图11所示:图11 权值: 2⨯4+3⨯4+6⨯3+9⨯2+13⨯2+15⨯2 =8+12+18+18+26+30 =1128.设G 是一个n 阶无向简单图,n 是大于等于2的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于2的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.οο ο ο οc a b e dοf1 5 22 61 9 38 ο ο ο ο οc a b ed οf 15 22 61 938 οοο οο ο ο ο ο32 9 135 6 1115 20 ο ο 48289.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.(三)数理逻辑1.单项选择题(1) 下列命题公式是等价公式的为( ).A .⌝P ∧⌝Q ⇔P ∨QB .A →(⌝B →A ) ⇔⌝A →(A →B )C .Q →(P ∨Q ⇔⌝Q ∧(P ∨Q )D .⌝A ∨(A ∧B ) ⇔B 答:B 因为A →(⌝B →A ) ⇔ A →(B ∨A ) ⇔⌝A ∨(B ∨A ) ⇔ A ∨ (⌝A ∨B ) ⇔ A ∨ (A →B )⇔⌝A →(A →B )(2)下列公式 ( )为重言式.A .⌝(⌝P ∨(P ∧Q )) ↔QB .(B →(A ∨B )) ↔(⌝A ∧(A ∨B ))C .A ∧⌝B ↔A ∨BD .(P →(⌝Q →P ))↔(⌝P →(P →Q )) 答:D 因为(P →(⌝Q →P ))⇔⌝P ∨(Q ∨P )) ⇔1 (⌝P →(P →Q )) ⇔P ∨(⌝P ∨Q )) ⇔1 (3)命题公式⌝ (P →Q )的主析取范式是( ). A .Q P ⌝∧ B Q P ∧⌝ C .Q P ∨⌝ D .Q P ⌝∨答:A 因为⌝ (P →Q ) ⇔⌝ (⌝P ∨Q ) ⇔P ∧⌝Q(4)设C (x ): x 是国家级运动员,G (x ): x 是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为 ( )A .))()((x G x C x ⌝∧⌝∀B .))()((x G xC x ⌝→⌝∀C .))()((x G x C x ⌝→⌝∃D .))()((x G x C x ⌝∧⌝∃答:D(5)表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( ). A .P (x , y ) B .P (x , y )∨Q (z ) C .R (x , y ) D .P (x , y )∧R (x , y ) 答:B2.填空题(1)命题公式()P Q P →∨的真值是 . 答:1 因为()P Q P →∨⇔⌝P ∨(Q ∨ P ) ⇔1(2)含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 . 答:(P ∧Q ∧⌝R )∨( P ∧Q ∧R )因为P ∧Q ⇔ P ∧Q ∧(⌝R ∨R ) ⇔(P ∧Q ∧⌝R )∨( P ∧Q ∧R )(3)设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 . 答:(A (1) ∨A (2))∨(B (1) ∧B (2))(5)谓词命题公式(∀x )(P (x )→Q (x )∨R (x ,y ))中的约束变元为 . 答:x3.请将语句翻译成命题公式: (1)今天不是天晴.(2)你去听课,他也去听课.(3)如果天下雪,则我明天就不去市里. (4)尽管他参加了考试,但他没有通过考试.解:(1)设P :今天是天晴; 命题公式为: ⌝ P .(2)设P :你去听课,Q :他去听课:命题公式为:P ∧Q .(3)设P :天下雪,Q :我明天去市里; 命题公式为:P →⌝Q .(4)设P :他参加了考试,Q :他没有通过考试; 命题公式为:P ∧⌝ Q .4.请将语句翻译成谓词公式: (1)所有人都不去上课. (2)有人不去工作. 解:(1)设P (x ):x 是人,Q (x ):x 去上课.谓词公式为: (∀x )(P (x )→ ┐Q (x )).(2)设P (x ):x 是人,Q (x ):x 去工作,谓词公式为: (∃x )(P (x) ∧┐Q (x )). 5.判断下列各题正误,并说明理由.(1)公式((Q ∧⌝R )→P )∧(⌝P →Q ∨R )↔P ∨R 为永真式.(2)求命题公式(P ∧Q )∧(⌝P ∨⌝R )的真值表,并判断它的类型. 解:(1)该公式是永真式.因为 R P R Q P P R Q ∨↔∨→⌝∧→⌝∧)())((R P R Q P P R Q ∨↔∨∨∧∨∨⌝⇔)()( R P Q Q R P ∨↔∧⌝∨∨⇔)( 1⇔(2)6.判断下列各题正误,并说明理由.(1)公式))(),(()(x xP y x yG x xP ∀→∃→∀是逻辑有效式(永真式).(2)下面的推理是否正确,请给予说明. ① P (a ) P ② (∀x )P (x ) US ① 解:(1)该公式是永真式.因为 ))(),(()(x xP y x yG x xP ∀→∃→∀⇔))(),(()(x xP y x yG x xP ∀∨⌝∃∨⌝∀1)(),()(⇔∀∨⌝∃∨⌝∀⇔x xP y x yG x xP(2)错误.② 应为(∀x )P (x ) UG ① 全称指定规则与全称推广规则不能混淆.7.求公式R Q P →∧)(的析取、合取、主合取\主合取范式. 解:R Q P R Q P ∨∧⌝⇔→∧)()(R Q P ∨⌝∨⌝⇔)(R Q P ∨⌝∨⌝⇔ (析取、合取、主合取范式)⇔(┐P ∧(┐Q ∨Q )∧(┐R ∨R ))∨((┐P ∨P )∧┐Q ∧(┐R ∨R )) ∨((┐P ∨P )∧(┐Q ∨Q )∧R )⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧┐R )∨(┐P ∧Q ∧R )∨(P ∧┐Q ∧┐R )∨(P ∧┐Q ∧R )∨(P ∧Q ∧R )(主析取范式)8.用列真值表的方法求命题公式R Q P →→)(的主析取范式.解:列真值表取真值为1的项,所求主析取范式为:(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧R )∨(P ∧┐Q ∧┐R )∨(P ∧┐Q ∧R ) ∨(P ∧Q ∧R )9.试求谓词公式),()),(),()((y x B y x yG y x xH x S x ∨∃→∃∧∀中,∀x ,∃x ,∃y 的辖域,试问G (x , y )和B (x , y )中x ,y 是自由变元,还是约束变元?解:∀x 的辖域:)),(),()((y x yG y x xH x S ∃→∃∧ ∃x 的辖域:H (x ,y )∃y 的辖域:G (x ,y ) G (x , y )中的x ,y 是约束变量,B (x , y )中的x , y 是自由变量. 10.证明命题公式(P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝(P ∨⌝Q )等价. 证:(P →(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨Q ∨⌝R )∧⌝P ∧Q⇔(⌝P ∧⌝P ∧Q )∨(Q ∧⌝P ∧Q )∨(⌝R ∧⌝P ∧Q ) ⇔(⌝P ∧Q )∨(⌝P ∧Q )∨(⌝P ∧Q ∧⌝R ) ⇔⌝P ∧Q (吸收律) ⇔⌝(P ∨⌝Q ) (摩根律)9.构造推理证明))()(()()(x Q x P x x xQ x xP →∀⇒∀→∃. 分析:前提:)()(x xQ x xP ∀→∃.结论:))()((x Q x P x →∀证:(1) )()(x xQ x xP ∀→∃ P(2) )()(x xQ x xP ∀∨⌝∃ T (1)E(3) )()(x xQ x P x ∀∨⌝∀ T (2) E (量词与否定的关系) (4) ))()((x Q x P x ∨⌝∀(5) ))()((x Q x P x →∀ T (4) E上面这些例题供大家复习参考.。

华科离散数学试题与答案试卷

华科离散数学试题与答案试卷

华科离散数学试题与答案试卷离散数学试题与答案试卷一一、填空 20% (每小题2分),+A,{x|(x,N)且(x,5)},B,{x|x,E且x,7}1(设 (N:自然数集,E 正偶A,B,数) 则。

2(A,B,C表示三个集合,文图中阴影部分的集合表达式为。

A B C 3(设P,Q 的真值为0,R,S的真值为1,则,(P,(Q,(R,,P))),(R,,S)的真值= 。

(P,R),(S,R),,P4(公式的主合取范式为。

,xP(x),,xP(x)5(若解释I的论域D仅包含一个元素,则在I下真值为。

6(设A={1,2,3,4},A上关系图为2则 R = 。

7(设A={a,b,c,d},其上偏序关系R的哈斯图为则 R= 。

8(图的补图为。

9(设A={a,b,c,d} ,A上二元运算如下:* a b c da abc db bcd ac cd a bd d a b c 那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10(下图所示的偏序集中,是格的为。

二、选择 20%(每小题 2分)1、下列是真命题的有( ){a},{{a}}{{,}},{,,{,}}A( ; B(;,,{{,},,}{,},{{,}}C( ; D( 。

2、下列集合中相等的有( ),,,, A({4,3};B({,3,4};C({4,,3,3};D( {3,4}。

3、设A={1,2,3},则A上的二元关系有( )个。

2,23,33 2 32 A( 2;B( 3;C( ; D( 。

4、设R,S是集合A上的关系,则下列说法正确的是( )R,S A(若R,S 是自反的,则是自反的;R,S B(若R,S 是反自反的,则是反自反的;R,S C(若R,S 是对称的,则是对称的;R,S D(若R,S 是传递的,则是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下R,{,s,t,|s,t,p(A),(|s|,|t|}则P(A)/ R=( )A(A ;B(P(A) ;C({{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};,D({{},{2},{2,3},{{2,3,4}},{A}},,6、设A={,{1},{1,3},{1,2,3}}则A上包含关系“”的哈斯图为( )7、下列函数是双射的为( ),,,A(f : IE , f (x) = 2x ; B(f : NNN, f (n) = <n , n+1> ;,,C(f : RI , f (x) = [x] ; D(f :IN, f (x) = | x | 。

2015年考研数学(二)真题及答案详解

2015年考研数学(二)真题及答案详解

2015年全国硕士研究生入学统一考试数学(二)试题解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 下列反常积分收敛的是 ( )(A)2+∞⎰(B) 2ln x dx x+∞⎰(C)21ln dxx x +∞⎰(D) 2x x dx e+∞⎰【答案】(D) 【解析】(1)xx x dx x e e-=-+⎰,则2222(1)3lim (1)3xx x x x dx x e e x e e e +∞+∞----→+∞=-+=-+=⎰.(2) 函数()2sin lim(1)x tt t f x x→=+在(,)-∞+∞内( )(A) 连续 (B) 有可去间断点 (C) 有跳跃间断点 (D) 有无穷间断点 【答案】(B)【解析】220sin lim 0sin ()lim(1)t x t x x t x tt t f x e e x→→=+==,0x ≠,故()f x 有可去间断点0x =. (3) 设函数()1cos ,00,0x x x f x x α⎧>⎪=⎨⎪≤⎩(0,0)αβ>>,若()'f x 在0x =处连续则:( ) (A)0αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤ 【答案】(A)【解析】0x <时,()0f x '=()00f -'=()1001cos10lim lim cosx x x x f x x x ααβ++-+→→-'== 0x >时,()()()11111cos1sin f x x x x x x ααβββαβ-+'=+-- 1111cossin x x x xααβββαβ---=+()f x '在0x =处连续则:()()10100lim cos 0x f f x xαβ+--+→''===得10α-> ()()++1100110lim =lim cos sin =0x x f f x x x x x ααβββαβ---→→⎛⎫''=+ ⎪⎝⎭得:10αβ-->,答案选择A(4)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据图像观察存在两点,二阶导数变号.则拐点个数为2个.(5) 设函数(),f u v 满足22,y f x y x y ⎛⎫+=- ⎪⎝⎭ ,则11u v fu==∂∂与11u v f v==∂∂ 依次是 ( )(A)1,02 (B) 10,2 (C) 1,02- (D) 10,2-【答案】(D)【解析】此题考查二元复合函数偏导的求解. 令,y u x y v x =+=,则,11u uv x y v v ==++,从而22(,)y f x y x y x+=-变为222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-= ⎪ ⎪+++⎝⎭⎝⎭.故222(1)2,1(1)f u v f u u v v v ∂-∂==-∂+∂+, 因而111110,2u u v v ff uv ====∂∂==-∂∂.故选(D ). (6)设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B)【解析】根据图可得,在极坐标系下计算该二重积分的积分区域为(,)43D r r ππθθ⎧⎫=≤≤≤≤⎨⎩所以34(,)(cos ,sin )Df x y dxdy d f r r rdr ππθθθ=⎰⎰⎰故选B.(7) 设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(8) 设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +-(C) 2221232y y y -- (D) 2221232y y y ++【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) 二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 3arctan 3x t y t t=⎧⎨=+⎩ 则 212t d y dx ==【答案】48【解析】 2222333(1)11dy dy t dt t dx dxdt t +===++ 2222[3(1)]d y d t dx dx=+=222222[3(1)]12(1)12(1)11d t t t dt t t dx dt t ++==++ 22148t d ydx ==. (10)函数2()2x f x x =⋅在0x =处的n 阶导数(0)nf =_________ 【答案】()()21ln 2n n n --【解析】根据莱布尼茨公式得:()()()()()(2)222(1)0222ln 2(1)ln 22n n n n x n x n n f C n n ---=-===- (11) 设()f x 连续,()()20x x x f t dt ϕ=⎰,若()()11,15ϕϕ'==,则()1f =【答案】2【解析】 已知2()()x x x f t dt ϕ=⎰,求导得2220()()2()x x f t dt x f x ϕ'=+⎰,故有1(1)()1,f t dt ϕ==⎰(1)12(1)5,f ϕ'=+=则(1)2f =.(12)设函数()y y x =是微分方程'''20y y y +-=的解,且在0x =处()y x 取得极值3,则()y x = .【答案】22x x e e -+【解析】由题意知:()03y =,()00y '=,由特征方程:220λλ+-=解得121,2λλ==- 所以微分方程的通解为:212x x y C e C e -=+代入()03y =,()00y '=解得:12C =21C = 解得:22xxy e e-=+(13)若函数(),Z z x y =由方程231x y ze xyz +++=确定,则()0,0dz = .【答案】()1d 2d 3x y -+ 【解析】当0,0x y ==时0z =,则对该式两边求偏导可得2323(3)x y z x y z ze xy yz e x++++∂+=--∂ 2323(3)2x y z x y z ze xy xz e y++++∂+=--∂.将(0,0,0)点值代入即有 12,.(0,0)(0,0)33z z x y ∂∂=-=-∂∂则可得()(0,0)121|d 2d .333dz dx dy x y =--=-+ (14) 若3阶矩阵A 的特征值为2,2,1-,2B A A E =-+,其中E 为3阶单位阵,则行列式B = .【答案】21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)设函数()ln(1)sin f x x a x bx x =+++,3()g x kx =.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】111,,32a kb =-=-=- 【解析】 方法一:因为233ln(1)()23x x x x o x +=-++,33sin ()3!x x x o x =-+, 那么,23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===, 可得:100213a ab ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩,所以,11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩.方法二: 由题意得300sin )1ln(lim )()(lim1kx xbx x a x x g x f x x +++==→→203cos sin 11limkx x bx x b x ax ++++=→由分母03lim 2=→kx x ,得分子)cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a x ,求得c ;于是)()(lim10x g x f x →=23cos sin 111lim kx x bx x b x x +++-=→)(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim20 203c o s )1(s i n )1(lim kx xx bx x x b x x ++++=→kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim0+-++++++=→由分母06lim 0=→kx x ,得分子]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x ,求得21-=b ; 进一步,b 值代入原式)()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim0++-+--=→ kxx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=,求得.31-=k(16) (本题满分10分)设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π【解析】由旋转体的体积公式,得dx x f ⎰=2021)(V ππdx x A ⎰=202)sin (ππdx x A⎰-=20222cos 1ππ422A π=dx x xf ⎰=22)(2V ππA x d x A -πππ2c o s 220==⎰由题,V V 21=求得.8A π=(17) (本题满分11分)已知函数(,)f x y 满足"(,)2(1)x xy f x y y e =+,'(,0)(1)xx f x x e =+,2(0,)2f y y y =+,求 (,)f x y 的极值. 【答案】极小值(0,1)1f -=-【解析】xxye y y xf )1(2),(+=''两边对y 积分,得 )()21(2),(2x e y y y x f x x ϕ++=')()2(2x e y y x ϕ++=, 故x x e x x x f )1()()0,(+=='ϕ, 求得)1()(+=x e x x ϕ,故)1()2(),(2x e e y y y x f x x x +++=',两边关于x 积分,得⎰+++=dx x e e y y y x f x x )1()2(),(2⎰+++=xxde x e y y )1()2(2 ⎰-+++=dx e e x e y y xxx )1()2(2 C )1()2(2+-+++=x x x e e x e y y C )2(2+++=x x xe e y y由y y y y y f 2C 2),0(22+=++=,求得.0=C 所以x x xe e y y y x f ++=)2(),(2.令⎪⎩⎪⎨⎧=+='=+++='0)22(0)2(2xy xx x x e y f xe e e y y f ,求得⎩⎨⎧-==10y x . 又x x x xxxe e e y y f +++=''2)2(2, x xye yf )1(2+='',xyy e f 2='', 当1,0-==y x 时,(0,1)1,xxA f ''=-=,0)1,0(B =-''=xy f 2)1,0(=-''=yy fC , 20,AC B ->(0,1)1f -=-为极小值.(18) (本题满分10分) 计算二重积分()Dx x y dxdy +⎰⎰,其中{}222(,)2,D x y x y y x =+≤≥【答案】245π-【解析】2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx dy =⎰12202)x x dx =⎰12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰(19)(本题满分 11 分) 已知函数()21Xf x =+⎰⎰,求()f x 零点的个数?【答案】2个【解析】()21)f x x '=- 令()0f x '=,得驻点为12x =, 在1(,)2-∞,()f x 单调递减,在1(,)2+∞,()f x 单调递增 故1()2f 为唯一的极小值,也是最小值.而112241()2f =+=-⎰⎰⎰1224=--⎰⎰⎰在1(,1)2故0-<从而有1()02f <1lim ()lim[]x x x f x →-∞→-∞=+=+∞⎰⎰22111lim ()lim[]lim[]x x xx x x f x →+∞→+∞→+∞=+=-⎰⎰⎰⎰考虑2lim lim x x x ==+∞,所以lim ()x f x →+∞=+∞.所以函数()f x 在1(,)2-∞及1(,)2+∞上各有一个零点,所以零点个数为2. (20) (本题满分10分)已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为120C ︒的物体在20C ︒的恒温介质中冷却,30min后该物体降至30C ︒,若要将该物体的温度继续降至21C ︒,还需冷却多长时间? 【答案】30min【解析】设t 时刻物体温度为()x t ,比例常数为(0)k >,介质温度为m ,则()dxk x m dt=--,从而()kt x t Ce m -=+, (0)120,20x m ==,所以100C =,即()10020kt x t e -=+又1()30,2x =所以2ln10k =,所以11()20100t x t -=+ 当21x =时,t =1,所以还需要冷却30min.(21) (本题满分10分)已知函数()f x 在区间[]+a ∞,上具有2阶导数,()0f a =,()0f x '>,()''0f x >,设b a >,曲线()y f x =在点()(),b f b 处的切线与x 轴的交点是()00x ,,证明0a x b <<.【证明】根据题意得点(,())b f b 处的切线方程为()()()y f b f b x b '-=-令0y =,得0()()f b x b f b =-' 因为(x)0f '>所以(x)f 单调递增,又因为(a)0f = 所以(b)0f >,又因为()0f b '>所以0()()f b x b b f b =-<' 又因为0()()f b x a b a f b -=--',而在区间(a,b )上应用拉格朗日中值定理有 (b)f(a)(),(a,b)f f b aξξ-'=∈-所以0()()()()()()()()()()()f b f b f b f b f x a b a f b f b f f b f b f ξξξ''--=--=-=''''' 因为(x)0f ''>所以(x)f '单调递增 所以()()f b f ξ''>所以00x a ->,即0x a >,所以0a x b <<,结论得证.(22) (本题满分 11 分)设矩阵101101a A a a ⎛⎫ ⎪=- ⎪ ⎪⎝⎭且3A O =.(1) 求a 的值;(2) 若矩阵X 满足22X XA AX AXA E --+=,E 为3阶单位阵,求X .【答案】2010,111211a X -⎛⎫ ⎪==-- ⎪ ⎪-⎝⎭【解析】 (I)323100100111100011a A O A a a a a a a a a=⇒=⇒-=--==⇒=- (II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E AE X E A E A E A E A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=-- 2011111112E A A -⎛⎫ ⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭M M M M M M111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(23) (本题满分11 分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫ ⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角阵.【答案】(1)4,5a b ==;(2)231101011P --⎛⎫ ⎪=- ⎪ ⎪⎝⎭【解析】(I)~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B ba 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--T A 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪⎪⎝⎭P AP文档内容由金程考研网整理发布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015 下期离散数学(二)考试点评简答题点评:1.一棵树有4个度为2的结点,3个度为3的结点,2个度为4的结点,其它结点度均为1,试求这棵树共有多少结点。

(6分)这道题所需要的理论非常简单,就是握手定理已经树的边数等于结点数-1. 单还是不少人每做出来。

2. 9件相同玩具分给3个孩子,保证每个人都有玩具,但任何一人都不能超过4件,问有多少种分法?(要求用生成函数解答)(6分)这道题无论是教材上的例题,还是课堂讲过的例题,都不止一次地讲过,只要依葫芦画瓢就可以。

如果画不了,就是没有看书也没有认真听讲。

3. 求解递推关系a n=4a n−1−4a n−2, a0=2,a1=6.(8分)这道题没有难度。

我在最后一次课说过必考的内容。

解答过程:(1)首先给出相应的特征方程,(2)解出特征方程的根,是一个重根(3)利用相关的定理,对应重根的情况,有相应的解的公式,代入公式(4)再将两个给定的初始值带入公式里,把系数求出来,就能得到答案这是系统化、公式化的解法。

只要按照这种公式化的解法解就可以了。

4. 求下图的最小生成树:(6分)这道题是送分题目,只要利用相关算法,直接解出即可。

5. 判断下面两个图是否同构。

如果不同构,说明理由;如果同构,请给出两个图之间的同构映射。

(6分)这道题的答案是不同构。

可以有很多理由说明不同构的。

例如:其中一个图是k3,3,非平面图,偶图。

而另一个显然是平面图。

也可以说,其中一个有长度为3的简单回路,另一个显然没有;等等。

6. 构造一个图模型,用来表示华中科技大学所有学生跟所有的选修课之间的关系。

这个图是否为偶图,为什么?从图中,如何统计一个人选修的课的数目?该图可能为多重图吗?存在单边弧(两端点相同的边)吗?这道题要求把建模过程写清楚(我课堂内一再强调这一点),点表示什么,边表示什么,然后实际问题如果转变成图的问题等内容,必须说清楚的。

至于结论就很简单了。

问题出现较多的还是没有把建模说清楚,或者根本就不说,直接说答案。

我也在课堂内讲过一道类似的以往的考题,几乎是一样的。

证明题点评:证明题30分。

第1题:证明平面上5个坐标为整数的点,至少有两个的中点坐标也为整数。

这一道题比教材上的一道练习题(三维坐标系中9个点,…)还简单些,道理完全一样。

这道题布置过作业,而且我在课堂上讲过教材上的这道练习题。

还是有些同学没做出来,说明没有好好听课,或者没听懂课后也不去理会。

当然也不知道做作业时这道题是怎么做的。

出现的问题有:有些同学根本不知道怎么做;也有些同学做了,但没有说明为什么要两个点的坐标的奇偶性相同才能保证中点坐标为整数,这是需要说明理由的。

尽管理由简单,还是需要说明的。

越是简单的证明题,其理由越是要说清楚。

不能跳得太多。

解答:两个坐标点(a,b),(c,d)的中点坐标是:( (a+c)/2, (b+d)/2). 于是在a,b,c,d都是整数的情况下要使得中点坐标为整数,只有a与c且b与d的奇偶性是一致的。

一个整数坐标的点(x,y)的两个坐标的奇偶组合只可能出现4种可能(奇数,奇数)、(偶数,偶数)、(奇数,偶数)、(偶数、奇数)。

于是根据鸽巢原理,5个点中必然至少有两个点的这种坐标奇偶性相同,从而其中点坐标为整数。

第2题:n个结点的简单图有n+1条边,那么至少有一个结点的度大于或者等于3.这道题有不是同学反正,反正假设是:假设没有结点度大于或者等于3,于是就得出结论说所以结点的度为2;也有同学直接说可以假设所以结点的度都为2,于是该都就是一个圈图。

然后再得出结论只有n条边,与已知矛盾。

首先,没有度大于或者等于3的结点,那么度还有可能是0,1或者是2三种可能。

怎么能说每个结点度是2?“大于或者等于3”的否命题是“等于2”吗?无论是退出所以度为2还是假设所以度为2,都犯了同一个错误,低级错误。

其次,即便是所以点的度都为2,也不一定就是圈图。

想象一下,由两个或者更多多不相连的多边形组合的图(多个分支),其每个点的度不都是2吗?还有个别同学,推来推去,退出2n>n,然后也说矛盾,不知道矛盾在哪里。

另外一个小问题是,不少同学说有”多少个度,几个度“,这种词不知道从哪里学来的。

正确解答:(其实只要应用握手定理,非常简单。

这10分可以说是送分题,而且我一再说个握手定理是一定会考的)。

证明:由握手原理知,n+1条边的图的所有结点的总度数是2(n+1). 这来自于n个结点。

每个结点的度都是非负整数。

如果说没有度大于或者等于3的结点,那么所有结点的度都小于或者等于2,于是总度数就必然会小于或者等于2n,与已知矛盾。

所以至少有一个结点的度大于或者等于3.也有同学说n个结点总度数是2(n+1). 这来自于n个结点,有鸽巢原理知至少有一个结点度数大于2,结论也是一样正确的。

还有少部分同学的各种其它理由的叙述都不靠谱。

虽然说这是送分题,可惜不少同学只得到一半不到的分,还有少数是0分。

第3题:设偶图(二部图)G是一颗树,(V1,V2)是G的顶点集的一个二部划分,若|V1|≥|V2|,试证明:V1中至少有一个度为1的结点。

这道题的得分率很低,完全出乎我们的意料。

得满分就更少了。

其实它的证明不需要什么技巧,没有任何技巧方面的变化和考量。

只是用到了几个最基本的道理:树的边数是结点数-1; 树是连通的,没有孤立点;握手原理;偶图的二部划分(V1,V2), V1的点之间没有边,V2的点之间也没有边,所以的边的两个端点都分别在V1,V2之中。

这4个最基本的道理,任何一个没用上,没说到都是有问题的。

错误:有很多同学都是说V1,V2 分别是根树的奇数层和偶数层。

然后长篇叙述说明,一层的结点数,尤其是叶结点所在的层的结点数一定要大于等于其它层的结点数,所以得到结论。

这样做的基本上没什么分数,只是象征性地给了一点点分,只有说到了树或者偶图的一些特征的。

还有同学说因为是树,没有回路,怎么怎么滴。

树是没有简单回路,不能说没有回路。

而且在没有简单回路的情况下,这些同学说的理由很不靠谱。

首先,这里的树并没有说是根树,也就不存在层的问题。

基本要变成根树,也必须先选取一个结点,再把它变成根树再来讲道理。

其次,也结点的数目不一定比内结点数目多;叶结点所在的层也未必比其上一层结点多。

也有些同学用反正,假设V1没有度为1的结点,那么其所有的度都大于或者等于2(有人说那么其所有结点刚好有2个度,晕)。

这里的说法是对的,但必须要说明一个前提,这是树,没有孤立点(也即度为0的结点),没有这个理由是要扣分的。

因为没有这个理由的话,就不能说其度大于或者等于2.也有同学说由于其每个结点的度大于或者等于2,同时由于是偶图,所以导致V2的结点数就会大于V1的结点数,甚至是V1的结点数的2倍。

这理由不知道怎么扯的。

不同结点的边可以关联同一结点,又没有规定说不同结点的边一定关联不同结点。

正确的证明是:假设V1没有度为1的结点,由于图是一棵树,所以没有孤立点,也即没有度为0的结点。

于是V1所有结点的度都大于或者等于 2. 那么V1的结点的总度数就大于或者等于2|V1|. 而|V1|≥|V2|,所以如果假设图的结点数是n的话,那么V1所有结点数大于或者等于n/2,V1总的度都大于等于2*n/2=n再由于是一个偶图,而且二部划分分别是V1和V2所以,V1的点之间没有边,同理V2的点之间也没有边。

所有边的一段在V1中,另一端在V2中.于是V1的结点的总度数等于V1的结点的总度数,其和是图的总度数。

于是得到图的总度数大于或者等于2n.由树的基本特征,边数是n-1, 握手原理告诉我们图的总度数是2(n-1), 矛盾!所以反正假设不成立。

就可以得到结论了。

还有一个要说的毛病,就是不少同学在解题的过程中,随时可以出现任何字母或者字符,不做任何说明,想要什么就出现什么,捡起来就用。

这是错误的,我以前强调过。

除了一些全世界公认的通用的约定基本符合外,所以出现的符号必须要有说明,它代表什么意思。

否则我可以为你的字符指定任何意义,然后你的解答就错得一塌糊涂!更有少数几个同学,以点带面的证明。

他们采用举一两个例子的方法,来证明结论。

这就好比,要证明一个班的所有同学都是靓女帅哥,他们就举例说其中某个同学是靓女,再还有某个是帅哥,于是全部都是。

部分同学成绩不太好的原因总结:上课精力不集中,玩手机的人不少,课堂上讲的似懂非懂,课后不去花时间搞清楚,听之任之;平时肯怕有些同学做作业根本不认真,抄作业,自己没有去思考。

一份耕耘一份收获!种瓜得瓜,种豆得豆,千古不变的道理。

上课手机玩的多了,成绩也下降了;作业抄多了,考试就要熄火。

虽然不再给大家上课了,但是为了你们今后的学习和发展,还是希望同学们听我点忠告:上课少玩手机,多听讲,多思考。

没搞清楚的话,课后花时间搞清楚。

不要赌老师应该不会考这个,不会考那个。

更不要赌将来不会用这个也不会用那个。

哪些考10几20几分的同学,更是需要洗心革面、重新审视自己,好好想想这个书该怎么读下去、路该怎么走下去的问题。

相关文档
最新文档