开关电源模块电路图
常见几种开关电源工作原理及电路图
常见几种开关电源工作原理及电路图图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源单端正激式开关电源的典型电路如图四所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
开关电源工作原理及电路图
开关电源工作原理及电路图金籁科技以丰盛的案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。
随着全球对能源问题的重视,产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性虽然结构容易、工作牢靠,但它存在着效率低(惟独40%-50%)、体积大、铜铁消耗量大,工作温度高及调节范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不用法电源等特点,是一种较抱负的稳压电源。
正由于如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式用法得较多,在目前开发和用法的开关电源中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路开关式稳压电源的基本电路框图二所示。
沟通电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、、、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
电脑开关电源原理及电路图
电脑开关电源原理及电路图2.1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。
图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
2.2、高压尖峰吸收电路D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
2.3、辅助电源电路整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。
Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。
电脑开关电源原理及电路图
2.1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。
图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
2.2、高压尖峰吸收电路D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
2.3、辅助电源电路整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。
Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3〔光电耦合器Q817〕的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4〔精密稳压电路TL431〕,由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。
开关电源各模块原理实图讲解
开关电源原理一、 开关电源的电路组成:PWM①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
三、 功率变换电路:1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,5来改变半导体表面感生电2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。
图解十步开关电源模块改可调
本帖最后由kangdage 于2014-6-21 15:26 编辑昨天文字说明了下如何改可调,今天有翻到两个电源模块,准备改了做可调电源用。
拍的不是很仔细,大家将就着看。
第一次发图文,又不懂的大家尽管提。
今天翻出来的两个电源模块,现场拆回来的旧的,很脏但没坏。
懒得画了,从网上找到的电路图。
以上电路基本和手里的模块电路相同,大家可以参考下,对比手上的模块。
可以看出这个电路比atx的简洁,没有需要大面积拆除的部分。
有我们需要的恒流恒压控制环路,不需要刻画pcb。
整体改造顺利的话半天就可搞定。
首先先肢解模块,我拆的比较彻底实际只要能取出电路就可以了。
因为是就模块,需要清洗和涂硅脂,所以就拆散了。
第一个模块是带风扇的,风扇已经废了。
开上盖。
俯视内部,灰尘遍布。
取出电路板后的躯壳。
取出的电路板,大家拆到这里就好了。
模块的特征已经很明显,两个功率管,两个高压电容,一个主变,还有一个驱动变压器,当然还有tl494。
电路板反面。
后面,注意保护绝缘垫。
接线端子,最左侧的电位器是微调输出的。
功率三极管,两个。
主变,肖特基,滤波电感,输出电容。
再拆另一个,先拆掉右边的那颗螺丝。
端子排旁边还有一颗。
向左一推,就能拿下来了。
这个相对干净些,同样的两个高压电容,两个功率管,一个控制变压器,tl494芯片。
拆下外壳外边剩余的螺丝。
即可取出电路板。
看到额外的散热片了没,比带风扇的那个强。
同样端子排旁边有个微调电位器。
右下角的就是tl494,除此之外没有别的芯片。
固定功率管的螺丝,拆。
背面还带绝缘膜,不错!再近点看看,大面积的铺铜是功率输出部分。
功率管近照。
左边是高压电容,图中间是控制变压器,右边是tl494。
高压电容和电压转换开关,不出国的话直接把开关拆掉就好。
输入滤波部分。
tl494特写。
肖特基特写。
暂时用不到的外壳和螺丝,堆一起。
先去给电路板洗澡,回来再收拾战场。
洗完澡的电路板,干净多了。
第一步:去掉自启动电阻。
为什么要去掉自启动电阻呢?因为这个电源上电时,高压部分会产生微弱的自激震荡,次级感应出一定能量。
AC-DC开关电源IGBT应用原理与主电路图
AC-DC开关电源IGBT应用原理与主电路图AC-DC开关电源IGBT应用原理与主电路图作者:微叶科技时间:2015-07-14 16:48随着高速IGBT的推出,工作频率可达50kHz以上,IGBT有用于SMPS(Switch Mode Power Supplies,市电输入的开关电源)的趋势。
AC-DC开关电源的电路拓扑一般是指储能元件(开关变压器或者储能电感)和功率开关元件(IGBT、VMOS 等)的配置方式。
1.单端正激电路单端正激式(Forward) SMPS拓扑的电路简图如图1所示。
其中,单端是指主开关为单管电路,正激指的是主开关变压器初次级绕组的相位关系。
图1 正激式拓扑电路系统简图粗虚线框中的电路是功率开关电路,T是主开关变压器;Q1是功率寸姜,D21是次级整流二极管;D22是续流二被管;L21是储能电感,兼有扼流滤波作用;N1是主绕组(初级);N4是复位绕组;N2是次级绕组;带箭头的虚线表明了瞬时电流的方向和路径。
所谓正激,即主开关变压器初、次级线圈的绕向是一样的,电气相位相同。
这样做的好处是,Q1开通时,N2从初级绕组获得能量,向L21、C2l和负载RL提供能量;Q1关断时,L21内存储的能量向负载RL释放,D22为电感内能量的释放提供通路。
同时,D2作为复位绕组N4的负载,在Q1关断期间消耗变压器磁心中存储的能量,使磁心复位。
复位电路也可以像4. 25那样实现,在初级绕组上并联DRC(二极管、电阻、电容,Dll 、R11、C11)。
由于负载在Q1开通和关断期间都有能量(电流供应),因此正激式拓扑的输出纹波相对较小。
功率开关管Q1承受的最大直流电压约为主电路电压的1倍,电源输入为220V市电规格的条件下,Q1的电压规格至少为800V。
如果采用了APFC 电路,则Q1的电压规格至少为1000V。
·EMI和PFC 电路在SMPS中很常见。
EMI电路主要是为了减小开关电源对电网的污染,PFC(功率因数校正)电路主要是为了提高开关电源的功率因数。
ACDC开关电源IGBT应用原理与主电路图
AC-DC开关电源IGBT应用原理与主电路图AC-DC开关电源IGBT应用原理与主电路图作者:微叶科技时间:2015-07-14 16:48随着高速IGBT得推出,工作频率可达50kHz以上,IGBT有用于SMPS(Switch Mode Power Supplies,市电输入得开关电源)得趋势。
AC-DC开关电源得电路拓扑一般就是指储能元件(开关变压器或者储能电感)与功率开关元件(IGBT、VMOS 等)得配置方式。
1、单端正激电路单端正激式(Forward) SMPS拓扑得电路简图如图1所示。
其中,单端就是指主开关为单管电路,正激指得就是主开关变压器初次级绕组得相位关系。
图1 正激式拓扑电路系统简图粗虚线框中得电路就是功率开关电路,T就是主开关变压器;Q1就是功率寸姜,D21就是次级整流二极管;D22就是续流二被管;L21就是储能电感,兼有扼流滤波作用;N1就是主绕组(初级);N4就是复位绕组;N2就是次级绕组;带箭头得虚线表明了瞬时电流得方向与路径。
所谓正激,即主开关变压器初、次级线圈得绕向就是一样得,电气相位相同。
这样做得好处就是,Q1开通时,N2从初级绕组获得能量,向L21、C2l与负载RL提供能量;Q1关断时,L21内存储得能量向负载RL释放,D22为电感内能量得释放提供通路。
同时,D2作为复位绕组N4得负载,在Q1关断期间消耗变压器磁心中存储得能量,使磁心复位。
复位电路也可以像4、25那样实现,在初级绕组上并联DRC(二极管、电阻、电容,Dll 、R11、C11)。
由于负载在Q1开通与关断期间都有能量(电流供应),因此正激式拓扑得输出纹波相对较小。
功率开关管Q1承受得最大直流电压约为主电路电压得1倍,电源输入为220V市电规格得条件下,Q1得电压规格至少为800V。
如果采用了APFC 电路,则Q1得电压规格至少为1000V。
·EMI与PFC 电路在SMPS中很常见。
EMI电路主要就是为了减小开关电源对电网得污染,PFC(功率因数校正)电路主要就是为了提高开关电源得功率因数。
开关电源电路接线图
开关-电源原理以及接线图
电源模块:24V电源转5V
注意事项:
1.焊接时,二极管M7、SS24、钽电容、电解电容务必注意正负极。
2.调试时先在端子J3接24V测量M7,LM2596-5引脚电压值,测量
钽电容C3电压值,端子J4是否为5V。
3.24V接入端子接任意一个标志为24V的端子都可。
MOS管地端开关模块
注意事项:
1. 焊接时注意稳压二极管D5正负极务必正确,否则电压过大可能击
穿MOS管;三极管T1为9013NPN型管,不要与9012混淆。
2. 24V 灯泡一端接端子的24V,另一端接对应的Relay。
在GPH2_6输入高低电平即可实MOS管的开与关,24V灯泡随之亮与灭。
继电器220V交流电开关模块
注意事项:
三极管T3为9012NPN型管,不要与9013混淆,接通后在GPIO输入高低电平即可听到继电器开关咔咔的声音。
接线端子
课后作业:
1.三极管驱动继电器原理,电阻阻值的确定计算公式。
2.MOS管工作原理,稳压二极管的作用。
图解十步开关电源模块改可调
本帖最后由kangdage 于2014-6-21 15:26 编辑昨天文字说明了下如何改可调,今天有翻到两个电源模块,准备改了做可调电源用。
拍的不是很仔细,大家将就着看。
第一次发图文,又不懂的大家尽管提。
今天翻出来的两个电源模块,现场拆回来的旧的,很脏但没坏。
懒得画了,从网上找到的电路图。
以上电路基本和手里的模块电路相同,大家可以参考下,对比手上的模块。
可以看出这个电路比atx的简洁,没有需要大面积拆除的部分。
有我们需要的恒流恒压控制环路,不需要刻画pcb。
整体改造顺利的话半天就可搞定。
首先先肢解模块,我拆的比较彻底实际只要能取出电路就可以了。
因为是就模块,需要清洗和涂硅脂,所以就拆散了。
第一个模块是带风扇的,风扇已经废了。
开上盖。
俯视内部,灰尘遍布。
取出电路板后的躯壳。
取出的电路板,大家拆到这里就好了。
模块的特征已经很明显,两个功率管,两个高压电容,一个主变,还有一个驱动变压器,当然还有tl494。
电路板反面。
后面,注意保护绝缘垫。
接线端子,最左侧的电位器是微调输出的。
功率三极管,两个。
主变,肖特基,滤波电感,输出电容。
再拆另一个,先拆掉右边的那颗螺丝。
端子排旁边还有一颗。
向左一推,就能拿下来了。
这个相对干净些,同样的两个高压电容,两个功率管,一个控制变压器,tl494芯片。
拆下外壳外边剩余的螺丝。
即可取出电路板。
看到额外的散热片了没,比带风扇的那个强。
同样端子排旁边有个微调电位器。
右下角的就是tl494,除此之外没有别的芯片。
固定功率管的螺丝,拆。
背面还带绝缘膜,不错!再近点看看,大面积的铺铜是功率输出部分。
功率管近照。
左边是高压电容,图中间是控制变压器,右边是tl494。
高压电容和电压转换开关,不出国的话直接把开关拆掉就好。
输入滤波部分。
tl494特写。
肖特基特写。
暂时用不到的外壳和螺丝,堆一起。
先去给电路板洗澡,回来再收拾战场。
洗完澡的电路板,干净多了。
第一步:去掉自启动电阻。
为什么要去掉自启动电阻呢?因为这个电源上电时,高压部分会产生微弱的自激震荡,次级感应出一定能量。
12V3A(40W)开关电源电路图
12V3A(40W)开关电源电路图(含相关元件参数)2009-11-23 12:25该开关电源电路图工作原理是: 交流电源经 BR1 全波整流及C1 滤波后产生直流高压V I ,给高频变压器的初级绕组供电. V R1 和D1 能将漏感产生的尖峰电压钳位到安全值以下,并能衰减振铃电压. V R1 采用反向击穿为200V 的瞬态电压抑制器 P6 KE200 , D1 选用1A/ 600V 超快恢复二极管 UF4005. 次级绕组电压通过D1 、C2 、L 1 、和C3 整流滤波,获得12 V 输出电压V o. V o 值是由V R2 的稳压电压V R2以及线性光耦合器中L ED 的正向压降V F 、R1 上的压降这三者之和, 即V O = V R2 + V F + V R1 . R2 和V R2 还为12V 输出提供一个假负载,用以改善轻载时的稳压性能. 反馈绕组电压经 D3 和C4 整流滤波后, 供给TOP224Y所需偏压, 由R2 和V R2 来调节控制端电流,通过改变输出占空比达到稳压目的. 共模扼流圈L 2 能减少由初级绕组接D 端的高压开关波形所产生的共模泄漏电流. C5 不仅能滤除加在控制端上的尖峰电压, 而且决定了自动重启的频率, 还与R1 、R3 一起对控制回路进行补偿. C6 可减少由初级电流的基波与谐波所产生的串模泄漏电流. 在上电过程中,直流高压 V I 建立之后需经过160ms (典型值) 的延迟时间,输出电压V o 才达到12V 的稳定值. 若需增加软启动功能以限制开启电源时的占空比, 使V o 平滑地升高, 应在稳压管V R2 两端并联一只软启动电容 C7. C7 的容量范围是4. 7~47μf . 在软启动过程中 V o 按照一定的频率升高的,能对TOP224Y起到保护作用;在断电时C7 可通过R2 进行放电. 还可以在初、次级之间加一安全电容C8 ,用来滤除加在初次级耦合电容引起的干扰.。
开关电源电路图
开关电源电路图一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。
四、辅助电源提供所有单一电路的不同要求电源。
开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。