乘2列联表练习题

合集下载

高中数学 《独立性检验》2×2列联表课件 新人教A版选修2

高中数学 《独立性检验》2×2列联表课件 新人教A版选修2
口服 注射 合计 58 64 122
无效
40 31 71
合计
98 95 193
例3:气管炎是一种常见的呼吸道疾病,医药研 究人员对两种中草药治疗慢性气管炎的疗效进 行对比,所得数据如图所示,问:它们的疗效 有无差异
复方江剪刀草 有效 184 无效 61 合计 245
胆黄片
合计
91
275
9
70
100
H0: 吸烟和患呼吸道疾病之间没有关系
吸烟与呼吸道疾病列联表 患呼吸道疾 不患呼吸道 病 疾病 吸烟 不吸烟 总计 a c a+c b d b+d
总计 a+b c+d a+b+c+d
a 吸烟的人中患肺癌的比例: a b c 不吸烟的人中患肺癌的比例: cd
若H0成立
a c ≈ , a+b c+d
未感冒
使用血清 未使用血清 258 216
感冒
242 284
合计
500 500
合计
474
526
1000
例2:为研究不同的给药方式(口服与注射) 和药的效果(有效与无效)是否有关,进行 了相应的抽样调查,调查的结果列在表中, 根据所选择的193个病人的数据,能否作出 药的效果和给药方式有关的结论?
有效
问题1:判断的标准是什么? 吸烟与不吸烟,患病的可能性的大小是否有差异? 说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大
问题2:差异大到什么程度才能作出“吸烟与患 病有关”的判断? 问题3:能否用数量刻画出“有关”的程度?
独立性检验
通过数据和图表分析,得到 结论是:吸烟与患呼吸道疾 病有关 结论的可靠 程度如何?

新高考数学复习基础知识专题讲义22 回归方程和2×2联表(解析版)

新高考数学复习基础知识专题讲义22 回归方程和2×2联表(解析版)

新高考数学复习基础知识专题讲义 知识点22 回归方程和2×2联表知识理解 一.线性关系 1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系. (2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关. 2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程: 是两个具有线性相关关系的变量的一组数据的回归方程,其中是待定参数. 的计算公式.注意:回归方程必过样本中心(x,y),这也是做小题的依据和检验所求回归方程是否正确。

(3)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 二.独立性检验y bx a =+1122()()()n n x y x y x y ,,,,,,a b 、a b 、1122211()()()()nni i i ii i n ni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑(1)2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:(2)独立性检验利用随机变量K 2(也可表示为χ2)的观测值22n(ad bc)K (a b)(c d)(a c)(b d)-=++++(其中n =a +b +c +d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.考向一 一次线性关系【例1-1】(2021·山东高三专题练习)某工厂的每月各项开支x 与毛利润y (单位:万元)之间有如下关系,y 与x 的线性回归方程 6.5y x a =+,则a =( )A .17.5B .17C .15D .15.5 【答案】A【解析】由题意,根据表中的数据,可得2456855x ++++==,3040605070505y ++++==,即样本中心为(5,50),代入y 与x 的线性回归方程为 6.5y x a =+,解得17.5a =.故选:A . 【例1-2】(2021·全国高三专题练习)西尼罗河病毒(WNV )是一种脑炎病毒,WNV 通常是由鸟类携考向分析带,经蚊子传播给人类.1999年8-10月,美国纽约首次爆发了WNV 脑炎流行.在治疗上目前尚未有什么特效药可用,感染者需要采取输液及呼吸系统支持性疗法,有研究表明,大剂量的利巴韦林含片可抑制WNV 的复制,抑制其对细胞的致病作用.现某药企加大了利巴韦林含片的生产,为了提高生产效率,该药企负责人收集了5组实验数据,得到利巴韦林的投入量x (千克)和利巴韦林含片产量y (百盒)的统计数据如下:由相关系数r 可以反映两个变量相关性的强弱,||[0.75,1]r ∈,认为变量相关性很强;||[0.3,0.75]r ∈,认为变量相关性一般;||[0,0.25]r ∈,认为变量相关性较弱. (1)计算相关系数r ,并判断变量x 、y 相关性强弱;(2)根据上表中的数据,建立y 关于x 的线性回归方程ˆˆˆybx a =+;为了使某组利巴韦林含片产量达到150百盒,估计该组应投入多少利巴韦林? 25.69≈.参考公式:相关系数()()niix x y y r--=∑ˆˆˆybx a =+中,()()()121niii ni i x x y y b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)0.97r =≈,x 与y 具有很强的相关性;(2)54.2千克. 【解析】(1)1(12345)35x =⨯++++=,()11620232526225y =⨯++++=, ()()51(13)(1622)(23)(2022)(33)(2322)ii i xx y y x =--=-⨯-+--+-⨯-∑(43)(2522)(53)(2622)25+-⨯-+-⨯-=,()52222221(13)(23)(33)(43)(53)10i i x x =-=-+-+-+-+-=∑,()522221(1622)(2022)(2322)i i y y =-=-+-+-∑22(2522)(2622)66+-+-=,则()()50.97iix x y y r --==≈∑ 所以x 与y 具有很强的相关性.(2)由(1)得,()()()5152125ˆ 2.510iii i i x x y y bx x ==--===-∑∑, ˆˆ22 2.5314.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. 当150y =(百盒)时,54.2x =(千克)故要使某组利巴韦林含片产量达到150百盒,估计该组应投入54.2千克利巴韦林. 【举一反三】1.(2021·全国高三专题练习)某工厂某产品产量x (千件)与单位成本y (元)满足回归直线方程77.36 1.82y x =-,则以下说法中正确的是( )A .产量每增加1000件,单位成本约下降1.82元B .产量每减少1000件,单位成本约下降1.82元C .当产量为1千件时,单位成本为75.54元D .当产量为2千件时,单位成本为73.72元 【答案】A【解析】令()77.36 1.82f x x =-,因为(1)()77.36 1.82(1)77.36 1.82 1.82f x f x x x +-=-+-+=-, 所以产量每增加1000件,单位成本约下降1.82元.2.(2021·安徽省六安中学高三开学考试)“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程ˆ0.35ymx =+,则预测2019年捐赠的现金大约是( )A .5万元B .5.2万元C .5.25万元D .5.5万元 【答案】C【解析】由已知得,3456 2.534 4.54.5, 3.544x y ++++++====,所以样本点的中心点的坐标为(4.5,3.5),代入ˆ0.35ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以ˆ0.70.35yx =+, 取7x =,得ˆ0.770.35 5.25y=⨯+=, 预测2019年捐赠的现金大约是5.25万元.3.(2021·全国高三专题练习)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验、某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;(2)求y关于x的线性回归方程,并预测该公司2020年2月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A、B两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据、如果你是该公司的负责人,你会选择采购哪款车型?参考数据:621()17.5ii x x =-=∑,61()()35i i i x x y y =--=∑36.5≈参考公式:相关系数C ;回归直线方程为ˆˆˆybx a =+,其中121()()ˆ()niii nii x x y y b x x ==--=-∑∑,ˆˆay bx =- 【答案】(1)散点图见解析,可用线性回归模型拟合两变量之间的关系;(2)ˆ29y x =+,23%;(3)应选择B 款车型.【解析】(1)散点图如图所示,111316152021166y +++++==,∴621()76i i y y =-=∑,∴()()350.9636.5niix x y y r --====≈∑,∴两变量之间具有较强的线性相关关系, 故可用线性回归模型拟合两变量之间的关系;(2)121()()35217.5()ˆniii ni i x x y y bx x ==--===-∑∑,又1234563.56x +++++==, ∴ˆˆ162 3.59ay bx =-=-⨯=,∴回归直线方程为ˆ29y x =+; ∴2020年2月的月份代码7x =,∴27923y =⨯+=, ∴估计2020年2月的市场占有率为23%;(3)用频率估计概率,A 款单车的利润X 的分布列为:∴()5000.100.35000.410000.2350E X =-⨯+⨯+⨯+⨯=(元),B 款单车的利润Y 的分布列为:∴()3000.152000.47000.3512000.1400E Y =-⨯+⨯+⨯+⨯=(元), 以每辆单车产生利润的期望值为决策依据,故应选择B 款车型.4.(2021·全国高三专题练习)近年来,“双11”网购的观念逐渐深入人心.某人统计了近5年某网站“双11”当天的交易额,,统计结果如下表:(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性相关程度,线性相关系数保留三位小数.(统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值i x ,变量y 的观测值为i y (1i n ≤≤),则两个变量的相关系数的计算公式为:.统计学认为,对于变量,如果[]1,0.75r -∈-,那么负相关很强;如果[]0.751r ∈,,那么正相关很强;如果(]0.75,0.30r ∈--或[)0.30,0.75r ∈,那么相关性一般;如果[]0.25,0.25r ∈-,那么相关性较弱);(2)求出关于x 的线性y 回归方程,并预测2020年该网站“双11”当天的交易额.参考公式:121()()()ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-43.1≈. 【答案】(1)0.998;变量y 与x 的线性相关程度很强;(2)ˆ 4.3 4.1yx =+;29.9百亿元. 【解析】(1)由题意,根据表格中的数据, 可得:1(12345)35x =++++=,1(912172126)175y =++++=,则1()()(13)(917)(53)(2617)43niii x x y y =--=--++--=∑,43.1=≈,所以()()430.99843.1niix x y y r --==≈∑ 所以变量y 与x 的线性相关程度很强.(2)由(1)可得3x =,17y =,1()()43niii x x y y =--=∑,又由2221222(13)(23)(3(3)(43)(53)1)0nii x x ==-+-+-+-+-=-∑,所以121()()43 4.30)ˆ1(niii ni i x x y y bx x ==--===-∑∑,则ˆˆ17 4.33 4.1a y bx=-=-⨯=, 可得y 关于x 的线性回归方程为ˆ 4.3 4.1y x =+ 令6x =,可得ˆ 4.36 4.129.9y=⨯+=, 即2020年该网站“双11”当天的交易额29.9百亿元.考向二 独立性检验【例2】(2021·江苏泰州市·高三期末)2021年是脱贫攻坚的收官之年,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利,为确保我国如期全面建成小康社会,实现第一个百年奋斗目标打下了坚实的基础在产业扶贫政策的大力支持下,西部某县新建了甲、乙两家玩具加工厂,加工同一型号的玩具质监部门随机抽检了两个厂的各100件玩具,在抽取中的200件玩具中,根据检测结果将它们分成“A ”、“B ”、“C ”三个等级,A 、B 等级都是合格品,C 等级是次品,统计结果如下表所示:(表一)(表二)在相关政策扶持下,确保每件合格品都有对口销售渠道,但从安全起见,所有的次品必须由原厂家自行销.(1)请根据所提供的数据,完成上面的2×2列联表(表二),并判断是否有95%的把握认为产品的合格率与厂家有关?(2)每件玩具的生产成本为30元,A 、B 等级产品的出厂单价分别为60元、40元.另外已知每件次品的销毁费用为4元.若甲厂抽检的玩具中有10件为A 等级,用样本的频率估计概率,试判断甲、乙两厂能否都能盈利,并说明理由.附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【答案】(1)列联表答案见解析,没有95%的把握认为产品的合格率与厂家有关;(2)甲厂能盈利,乙不能盈利,理由见解析. 【解析】(1)2×2列联表如下()2220075352565 2.38 3.84110010014060K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有95%的把握认为产品的合格率与厂家有关.(2)甲厂10件A 等级,65件B 等级,25件次品, 对于甲厂,单件产品利润X 的可能取值为30,10,34-.X 的分布列如下:()3010341010204E X ∴=⨯+⨯-⨯=>, ∴甲厂能盈利,对于乙厂有10件A 等级,55件B 等级,35件次品, 对于乙厂,单位产品利润Y 的可能取值为30,10,34-,Y 分布列如下:()30103401020205E Y ∴=⨯+⨯-⨯=-<,乙不能盈利. 【举一反三】1.(2021·山东高三专题练习)共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2021年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22⨯列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.参考数据:独立性检验界值表其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++【答案】(1)列联表见解析,有85%的把握可以认为经常使用共享单车与年龄有关;(2)分布列见解析,数学期望为0.3.【解析】(1)补全的列联表如下:于是100a =,20b =,60c =,20d =,∴22200(100206020) 2.083 2.0721208016040K ⨯⨯-⨯=≈>⨯⨯⨯,即有85%的把握可以认为经常使用共享单车与年龄有关. (2)由(1)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为20100%10%200⨯=, 即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1, ∵~(3,0.1)X B ,0,1,2,3X =∴3(0)(10.1)0.729P X ==-=,(1)0.243P X ==(2)0.027P X ==,3(3)0.10.001P X ===,∴X 的分布列为E X=⨯=.∴X的数学期望()30.10.3【举一反三】1.(2021·全国高三专题练习)某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21 改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36 (1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.附:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)见解析,有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)见解析;均值为2.275万元. 【解析】(1)列联表为:()224055151510 6.63520202020K ⨯-⨯∴==>⨯⨯⨯∴有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)由题知,生产周期内有4个维护周期,一个维护周期为30天,一个维护周期内,生产线需保障维护的概率为14P =. 设一个生产周期内需保障维护的次数为ξ,则1~4,4B ξ⎛⎫⎪⎝⎭;一个生产周期内的正常维护费为0.542⨯=万元,保障维护费为()()20.210.10.12ξξξξ⨯+=+万元.∴一个生产周期内需保障维护ξ次时的生产维护费为()20.10.12ξξ++万元.设一个生产周期内的生产维护费为X ,则X 的所有可能取值为2,2.2,2.6,3.2,4.()4181214256P X ⎛⎫==-= ⎪⎝⎭ ()31411272.214464P X C ⎛⎫==-= ⎪⎝⎭ ()222411272.6144128P X C ⎛⎫⎛⎫==-=⎪ ⎪⎝⎭⎝⎭ ()3341133.214464P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭ ()41144256P X ⎛⎫=== ⎪⎝⎭所以,X 的分布列为()2 2.2 2.6 3.242566412864256E X ∴=⨯+⨯+⨯+⨯+⨯ 162237.6140.438.44582.4 2.275256256++++===∴一个生产周期内生产维护费的均值为2.275万元.2.(2021·四川成都市·高三一模)一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:(1)根据列联表判断是否有95%的把握认为“网红乡土直播员”与性别有关系?(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.设被选中的2名“乡土直播推广大使”中男性人数为ξ,求ξ的分布列和期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)分布列见解析;期望为23. 【解析】(1)由题中22⨯列联表,可得()2210010302040 4.762 3.84150503070K ⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系. (2)在“网红乡土直播员”中按分层抽样的方法抽取6人, 男性人数为106230⨯=人;女性人数为206430⨯=人. 由题,随机变量ξ所有可能的取值为0,1,2.()022426620155CC P C ξ====,()1124268115C C P C ξ===,()2024261215C C P C ξ===, ∴ξ的分布列为∴ξ的数学期望()28110201251515153E ξ=⨯+⨯+⨯==. 考向三 非一次性回归方程【例3-1】(2021·全国高三专题练习)在一项调查中有两个变量x 和y ,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y a bx =+B .y c =+C .2y m nx =+D .xy p qc =+(0q >)【答案】B【解析】散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B .【例3-2】.(2021·全国高三专题练习)根据公安部交管局下发的通知,自2021年6月1日起,将在全国开展“一盔一带”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔,为的就是让大家重视交通安全.某地交警部门根据某十字路口的监测数据,从穿越该路口的骑行者中随机抽查了200人,得到如图所示的列联表:(1)是否有97.5%的把握认为自觉带头盔行为与性别有关?(2)通过一定的宣传和相关处罚措施出台后,交警在一段时间内通过对某路口不带头盔的骑行者统计,得到上面的散点图和如下数据:观察散点图,发现两个变量不具有线性相关关系,现考虑用函数y ax=+对两个变量的关系进行拟合,通过分析得y与1有一定的线性相关关系,并得到以下参考数据(其中1w=):请选择合适的参考数据,求出y关于x的回归方程.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++.) 2k对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆni i i ni i u v nuvunu β==-=-∑∑,ˆˆv u αβ=-. 【答案】(1)没有;(2)100ˆ10yx=+. 【解析】(1)由列联表计算22200(30701090)754.68755.024120804016016K ⨯⨯-⨯===<⨯⨯⨯.故没有97.5%的把握认为骑行者自觉带头盔行为与性别有关. (2)由1w x =,则by a x =+可转化为y a bw =+,又306516y ==, 得6162216173.860.415148.34ˆ1001.49260.16810.48346i ii ii w y wybww ==--⨯⨯====-⨯-∑∑,则ˆˆ511000.4110ay bw =-=-⨯=. 故y 关于x 的回归方程为100ˆ1010010yw x=+=+ 【举一反三】1.(2021·河南周口市·高三月考)已知变量y 关于变量x 的回归方程为0.5ˆbx ye -=,其一组数据如下表所示:若9.1ˆye =,则x =( ) A .5B .6C .7D .8 【答案】B【解析】由0.5ˆbx ye -=,得n 0ˆl .5ybx =-,令ln z y =,则0.5z bx =-,由题意,12342.54x +++==,1346 3.54z +++==,因为(),x z 满足0.5z bx =-,所以3.5 2.50.5b =⨯-,解得 1.6b =, 所以 1.60.5z x =-,所以 1.60.5ˆx ye -=,令 1.60.59.1x e e -=,解得6x =.故选:B.2.(2021·全国高三专题练习)近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:表:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内y a bx =+与xy c d =⋅(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断,不必说明理由); (2)根据(1)的判断结果及表中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠,预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()*n n N ∈年才能开始盈利,求n 的值.参考数据:其中lg i i v y =,7117ii v v ==∑ 参考公式:对于一组数据(),i i u v ,()22,u v ,…,(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计公式分别为:1221ni i i n i i u v nuv u nuβ==-=-∑∑,a v u β=-.【答案】(1)xy c d =⋅;(2)0.253.4710x y =⨯,347;(3)7.【解析】(1)因为散点近似在指数型函数的图象上,所以xy c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型:(2)∵xy c d =⋅,两边同时取常用对数得:()lg lg lg lg xy c dc xd =⋅=+;设lg y v =,∴lg lg v c x d =+,∵4x =, 1.54v =,721140i i x ==∑, ∴717221750.1274 1.547lg 0.25140716287i i i ii x v xv d x x ==--⨯⨯====-⨯-∑∑,把样本中心点()4,1.54代入lg 0.25v c x =+,得:lg 0.54c =,∴0540.25v x =+,∴lg 0.540.25y x =+,∴y 关于x 的回归方程式:0.540.250.540.250.25101010 3.4710x x x y +==⨯=⨯; 把8x =代入上式:∴0.2583.4710347y ⨯=⨯=; 活动推出第8天使用扫码支付的人次为347;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4;()20.1P Z ==;()11.80.30.152P Z ==⨯=;()11.60.60.30.73P Z ==+⨯=;()11.40.30.056P Z ==⨯= 所以,一名乘客一次乘车的平均费用为:20.1 1.80.15 1.60.7 1.40.05 1.66⨯+⨯+⨯+⨯=(元), 由题意可知:1.661120.6612800n n ⨯⨯⋅-⨯⋅->,203n >,所以,n 取7;估计这批车大概需要7年才能开始盈利. 3.(2021·全国高三专题练习)某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人.萌宠机器人语音功能让它就像孩子的小伙伴一样和孩子交流,记忆功能还可以记住宝宝的使用习惯,很快找到宝宝想听的内容.同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容可以持续更新.萌宠机器人一投放市场就受到了很多家长欢迎.为了更好地服务广大家长,该公司研究部门从流水线上随机抽取100件萌宠机器人(以下简称产品),统计其性能指数并绘制频率分布直方图(如图1):产品的性能指数在[)50,70的适合托班幼儿使用(简称A 类产品),在[)70,90的适合小班和中班幼儿使用(简称B 类产品),在[]90,110的适合大班幼儿使用(简称C 类产品),A ,B ,C ,三类产品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的性能指数位于各区间的频率代替产品的性能指数位于该区间的概率. (1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,对近5年的年营销费用i x ,和年销售量()1,2,3,4,5i y i =数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中ln i i u x =,ln i i y υ=,5115i i u u ==∑,5115i i υυ==∑.根据散点图判断,by a x =⋅可以作为年销售量y (万件)关于年营销费用x (万元)的回归方程.(i )建立y 关于x 的回归方程;(ii )用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大? (收益=销售利润-营销费用,取 4.15964e =). 参考公式:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu uuυυβ==--=-∑∑,ˆˆu αυβ=-. 【答案】(1)每件产品的平均销售利润为4元(2)(i )1464y x =(ii )该厂应投入256万元营销费. 【解析】(1)设每件产品的销售利润为ξ元,则ξ的所有可能取值为1.5,3.5,5.5, 由直方图可得,A ,B ,C 三类产品的频率分别为0.15、0.45、0.4, 所以,()1.50.15P ξ==,()3.50.45P ξ==,()5.50.4P ξ==, 所以随机变量ξ的分布列为:所以, 1.50.15 3.50.45 5.50.44E ξ=⨯+⨯+⨯=, 故每件产品的平均销售利润为4元;(2)(i )由by a x =⋅得,()ln ln ln ln by a xa b x =⋅=+,令ln u x =,ln y υ=,ln c a =,则c bu υ=+,由表中数据可得,()()()515210.41ˆ0.251.61ii i ii uu buuυυ==--===-∑∑, 则24.8716.30ˆˆ0.25 4.15955cbu υ=-=-⨯=, 所以,ˆ 4.1590.25u υ=+,即14.1594ˆln 4.1590.25ln ln y x e x ⎛⎫=+=⋅ ⎪⎝⎭, 因为 4.15964e =,所以14ˆ64y x =, 故所求的回归方程为1464y x =;(ii )设年收益为z 万元,则()14256z E y x x x ξ=⋅-=-, 设14t x =,()4256f t t t =-,则()()332564464f t t t'=-=-,当()0,4t ∈时,()0f t '>,f t 在()0,4单调递增, 当()4t ,∈+∞时,()0f t '<,ft 在()4,+∞单调递减,所以,当4t =,即256x =时,z 有最大值为768,即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元.1.(2021·全国高三专题练习)给出下列说法:①回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,且至少过一个样本点; ②两个变量相关性越强,则相关系数||r 就越接近1; ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位. 其中说法正确的是( )A .①②④B .②③④C .①③④D .②④ 【答案】B【解析】对于①中,回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不强化练习正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B.2.(2021·全国高三专题练习)对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( ) A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强 B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强 C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强 【答案】C【解析】由线性相关系数10.78590r =>知x 与y 正相关, 由线性相关系数20.95680r =-<知u 与v 负相关,又12r r <,所以,变量u 与v 的线性相关性比x 与y 的线性相关性强, 故选:C.3.(2021·河南新乡市·高三一模)2020年的“金九银十”变成“铜九铁十”,全国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区2019年11月至2020年11月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码113分别对应2019年11月2020年11月)根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到的两个回归方程分别为0.9369y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:注:x 是样本数据中x 的平均数,y 是样本数据中y 的平均数,则下列说法不一定成立的是( ) A .当月在售二手房均价y 与月份代码x 呈正相关关系B .根据0.9369y =+2021年2月在售二手房均价约为1.0509万元/平方米C .曲线0.9369y =+0.95540.0306ln y x =+的图形经过点(),x yD .0.95540.0306ln y x =+回归曲线的拟合效果好于0.9369y =+ 【答案】C【解析】对于A ,散点从左下到右上分布,所以当月在售二手房均价y 与月份代码x 呈正相关关系,故A 正确;对于B ,令16x =,由0.9369 1.0509y =+=,所以可以预测2021年2月在售二手房均价约为1.0509万元/平方米,故B 正确; 对于C ,非线性回归曲线不一定经过(),x y ,故C 错误; 对于D ,2R 越大,拟合效果越好,故D 正确.故选:C.4.(2021·全国高三专题练习)对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .24310r r r r <<<<B .42130r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<< 【答案】A【解析】由给出的四组数据的散点图可以看出,题图1和题图3是正相关,相关系数大于0, 题图2和题图4是负相关,相关系数小于0,题图1和题图2的点相对更加集中,所以相关性更强,所以1r 接近于1,2r 接近于1-, 由此可得24310r r r r <<<<. 故选:A .5.(2021·邵阳市第二中学高三其他模拟(文))某种产品的广告费支出x 与销售额y (单位:万元)。

卫生统计学简答、分析、计算题

卫生统计学简答、分析、计算题

1. 为实验"736"对肉瘤S180的抑制作用,将长出黄豆大肉瘤的小白鼠16只随机地分为两组。

实验组注射"736",对照组注射等量的生理盐水。

10天后取瘤称重,结果如下表所示。

欲比较"736"对肉瘤S180是否有抑制作用,用何种假设检验方法对照组给药组2. 甲院收治肝癌238例,观察期间死亡88例;乙医院同期收治54例,死亡18例。

欲比较两院肝癌病死率有无差别,可用何种假设检验方法3.某作者根据以下资料认为乌鲁木齐缺铁性贫血患病率比贵阳低,是否正确说明理由。

住院病人缺铁性贫血的患病率地区住院人数贫血例数患病率(%)乌鲁木齐 20611 53贵阳 31860 1374.下表中的资料计算方法是否正确某医院各科病死率科别患者数死亡数病死率(%)外科 1500 180内科 500 20传染科 400 24合计 2400 2245.检验血磷含量有甲、乙两种方法,其中,乙法具有快速、简便等优点。

现用甲、乙两法检测相同的血液样品,所得结果如下表。

检验甲乙两法检出血磷是否相同,用何统计方法样本号 1 2 3 4 5 6 7乙法甲法6.某地1968年与1971年几种主要急性传染病情况如下表。

某医师根据此资料中痢疾与乙脑由1968年的%与%分别增加到1971年的%和%,认为该地1971年痢疾与乙脑的发病率升高了,值得注意!你的看法如何为什么1968年 1971年病种病例数%病例数%痢疾 4206 3079麻疹 2813 1465流脑 1650 824乙脑 327 310白喉 524 256合计 9520 59347.对某地200名20岁男子进行身高,体重测量。

结果是:身高均数为厘米,标准差为厘米;体重均数为公斤,标准差公斤。

有人据此资料认为:由于体重的标准差大于身高的标准差,所以该地20岁男子体重间的变异程度比身高的变异程度大。

你认为这样分析对吗8.某地抽样调查144名正常成年男子红细胞数(万/立方毫米), 此资料符合正态分布, 现计算其均数为(万/立方毫米),标准差为(万/立方毫米),标准误为(万/立方毫米), 故该地正常成年男子红细胞的95%可信区间下限为(万/立方毫米); 上限为+×4 =(万/立方毫米)。

辽宁省朝阳市2021届高三数学第二次模拟考试试题含解析

辽宁省朝阳市2021届高三数学第二次模拟考试试题含解析

辽宁省朝阳市2021届高三数学第二次模拟考试试题(含解析)一、单项选择题(共8小题).1.已知全集U=R,设A={x|y=ln(x﹣1)},B={y|y=},则A∩(∁U B)=()A.[1,3)B.[1,3] C.(1,3)D.(1,3]2.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A.150 B.200 C.300 D.4003.过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且x1+x2=,则弦AB的长为()A.B.4 C.D.4.已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知向量,满足||=||=2,•(﹣)=﹣2,则|2|=()A.2 B.2C.4 D.86.今年我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.“三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方,若某医生从“三药三方”中随机选出2种,则恰好选出1药1方的方法种数为()A.15 B.30 C.6 D.97.函数y=(e x﹣e﹣x)sin|2x|的图象可能是()A.B.C.D.8.已知双曲线C:=1(a>0,b>0)的一个焦点为F,点A,B是C的一条渐近线上关于原点对称的两点,以AB为直径的圆过F且交C的左支于M,N两点,若|MN|=2,△ABF 的面积为8,则C的渐近线方程为()A.y=B.y=C.y=±2x D.y=二、多项选择题(共4小题).9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增10.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF=,则下列结论中正确的是()A.AC⊥BEB.EF∥平面ABCDC.△AEF的面积与△BEF的面积相等D.三棱锥E﹣ABF的体积为定值11.下列说法正确的是()A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a倍B.若四条线段的长度分别是1,3,5,7,从中任取3条,则这3条线段能够成三角形的概率为C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱D.设两个独立事件A和B都不发生的概率为,A发生且B不发生的概率与B发生且A不发生的概率相同,则事件A发生的概率为12.已知a>0,m(x)=e x﹣2﹣e2﹣x,f(x)=am(x)﹣sinπx,若f(x)存在唯一零点,下列说法正确的有()A.m(x)在R上递增B.m(x)图象关于点(2,0)中心对称C.任取不相等的实数x1,x2∈R均有D.三、填空题:本题共4小题,每小题5分,共20分.试题中包含两个空的,答对一个的给3分,全部答对的给5分.13.在(x﹣2y+z)7的展开式中,所有形如x a y b z2(a,b∈N)的项的系数之和是.14.已知|z+i|+|z﹣i|=6,则复数z在复平面内所对应点P(x,y)的轨迹方程为.15.已知三棱锥S﹣ABC的三条侧棱SA,SB,SC两两互相垂直且AC=,AB=,此三棱锥的外接球的表面积为14π,则BC=.16.函数y=f(x),x∈[1,+∞),数列{a n}满足,①函数f(x)是增函数;②数列{a n}是递增数列.写出一个满足①的函数f(x)的解析式.写出一个满足②但不满足①的函数f(x)的解析式.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①(b+a﹣c)(b﹣a+c)=ac;②cos(A+B)=sin(A﹣B);③tan=sin C这三个条件中任选两个,补充在下面问题中.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且a=2,______,______?若三角形存在,求b的值;若不存在,说明理由.18.设S n为数列{a n}的前n项和,已知a2=3,a n+1=2a n+1.(1)证明{a n+1}为等比数列.(2)判断n,a n,S n是否成等差数列?并说明理由.19.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查样本中有40名女生.如图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).关注没关注合计男女合计附:P(K2≥k0)0.150 0.100 0.050 0.010 0.005 k0 2.072 2.706 3.841 6.635 7.879,其中n=a+b+c+d(1)完成上面的2×2列联表,并计算回答是否有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”?(2)若将频率视为概率,现从该中学高三的女生中随机抽取3人.记被抽取的3名女生中对“嫦娥五号”新闻关注的人数为随机变量X,求X的分布列及数学期望.20.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.21.设函数f(x)=axlnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线经过点(3,2).(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)证明:f(x)>﹣.22.已知椭圆E:=1(a>b>1)的离心率e=,其左、右顶点分别为点A,B,且点A关于直线y=x对称的点在直线y=3x﹣2上.(1)求椭圆E的方程;(2)若点M在椭圆E上,点N在圆O:x2+y2=b2上,且M,N都在第一象限,MN⊥y轴,若直线MA,MB与y轴的交点分别为C,D,判断sin∠CND是否为定值,若是定值,求出该定值;若不是定值,说明理由.参考答案一、单项选择题(共8小题).1.已知全集U=R,设A={x|y=ln(x﹣1)},B={y|y=},则A∩(∁U B)=()A.[1,3)B.[1,3] C.(1,3)D.(1,3]解:∵y=ln(x﹣1),∴x﹣1>0,∴x>1,∴A=(1,+∞),∵x2+2x+10=(x+1)2+9≥9,∴y=≥3,∴B=[3,+∞),∴∁u B=(﹣∞,3),∴A∩(∁U B)=(1,3).故选:C.2.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A.150 B.200 C.300 D.400解:∵P(X≤90)=P(X≥120)=0.2,∴P(90≤X≤120)=1﹣0.4=0.6,∴P(90≤X≤105)=P(90≤X≤120)=0.3,∴此次数学考试成绩在90分到105分之间的人数约为1000×0.3=300.故选:C.3.过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且x1+x2=,则弦AB的长为()A.B.4 C.D.解:由题意知,p=2,由抛物线的定义知,|AB|=x1+x2+p=+2=.故选:C.4.已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解:已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则当“x1>1且x2>1”时,整理得:“x1+x2>2且x1•x2>1”当x1=0.99,x2=2,满足:“x1+x2>2且x1•x2>1”但是“x1>1且x2>1”不成立,故“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的充分不必要条件,故选:A.5.已知向量,满足||=||=2,•(﹣)=﹣2,则|2|=()A.2 B.2C.4 D.8解:向量,满足||=||=2,•(﹣)=﹣2,可得:•=2,|2|====2.故选:B.6.今年我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.“三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方,若某医生从“三药三方”中随机选出2种,则恰好选出1药1方的方法种数为()A.15 B.30 C.6 D.9解:根据题意,某医生从“三药三方”中随机选出2种,恰好选出1药1方,则1药的取法有3种,1方的取法也有3种,则恰好选出1药1方的方法种数为3×3=9;故选:D.7.函数y=(e x﹣e﹣x)sin|2x|的图象可能是()A.B.C.D.解:函数的定义域为R,f(﹣x)=(e﹣x﹣e x)sin|﹣2x|=﹣(e x﹣e﹣x)sin|2x|=﹣f(x),为奇函数,故排除选项B,C;又,且是第一个大于0的零点,故排除选项D.故选:A.8.已知双曲线C:=1(a>0,b>0)的一个焦点为F,点A,B是C的一条渐近线上关于原点对称的两点,以AB为直径的圆过F且交C的左支于M,N两点,若|MN|=2,△ABF 的面积为8,则C的渐近线方程为()A.y=B.y=C.y=±2x D.y=解:设双曲线的另一个焦点为F',由双曲线的对称性,可得四边形AFBF'是矩形,∴S△ABF=S△ABF',即bc=8,由,可得y=±,则|MN|==2,即b2=c,∴b=2,c=4,∴a==2,∴C的渐近线方程为y=±x,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增解:函数f(x)=|sin x||cos x|=|sin x cos x|=|sin2x|,画出函数图象,如图所示;所以f(x)的对称轴是x=,k∈Z;所以x=是f(x)图象的对称轴,A正确;f(x)的最小正周期是,B正确;f(x)是偶函数,没有对称中心,C错误;x∈[,]时,2x∈[,π],sin2x≥0,所以f(x)=|sin2x|是单调减函数,D错误.故选:AB.10.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF=,则下列结论中正确的是()A.AC⊥BEB.EF∥平面ABCDC.△AEF的面积与△BEF的面积相等D.三棱锥E﹣ABF的体积为定值解:由正方体的结构特征可知,DD1⊥平面ABCD,而AC⊂平面ABCD,则D1D⊥AC,又ABCD为正方形,∴AC⊥BD,∵D1D∩BD=D,且D1D、BD⊂平面DD1B1B,∴AC⊥平面DD1B1B,∵BE⊂平面DD1B1B,∴AC⊥BE,故A正确;∵B1D1∥BD,BD⊂平面ABCD,B1D1⊄平面ABCD,∴BD∥平面ABCD,而EF在B1D1上,∴EF∥平面ABCD,故B正确;点B到EF的距离为正方体的棱长,A到EF的距离大于棱长,则△AEF的面积与△BEF的面积不相等,故C错误;如图所示,连接BD,交AC于O,则AO为三棱锥A﹣BEF的高,•EF•BB1=××1=,=×=,则为定值,故D正确.故选:ABD.11.下列说法正确的是()A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a倍B.若四条线段的长度分别是1,3,5,7,从中任取3条,则这3条线段能够成三角形的概率为C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱D.设两个独立事件A和B都不发生的概率为,A发生且B不发生的概率与B发生且A不发生的概率相同,则事件A发生的概率为解:A.将一组数据中的每个数据都乘以同一个非零常数a后,方差变为原来的a2倍,故A 错误,B.从中任取3条共有4种,若三段能构成三角形,则只有3,5,7,一种,则构成三角形的概率是,故B正确,C.|r|→1,两个变量的线性相关性越强,|r|→0,线性相关性越弱,故C错误,D.由题意知P()•P()=,P()•P(B)=P(A)•P(),设P(A)=x,P(B)=y,则,得得x2﹣2x+1=,即(x﹣1)2=,得x﹣1=或x﹣1=﹣,得x=(舍)或x=,即事件A发生的概率为,故D正确.故正确的是BD,故选:BD.12.已知a>0,m(x)=e x﹣2﹣e2﹣x,f(x)=am(x)﹣sinπx,若f(x)存在唯一零点,下列说法正确的有()A.m(x)在R上递增B.m(x)图象关于点(2,0)中心对称C.任取不相等的实数x1,x2∈R均有D.解:m′(x)=e x﹣2+e2﹣x>0,则m(x)在R上递增,故A正确,m(x)+m(4﹣x)=e x﹣2﹣e2﹣x+e2﹣x﹣e x﹣2=0,则m(x)图象关于点( 2,0)中心对称,故B正确,m″(x)=e x﹣2﹣e2﹣x,当x>2时,m″(x)>0,即m′(x)为增函数,即m(x)图象下凸,此时>m(),故C错误,若f(x)存在唯一零点,则a(e x﹣2﹣e2﹣x)=sinπx只有一个解,即g(x)=a(e x﹣2﹣e2﹣x)与h(x)=sinπx只有一个交点,g'(x)=a(e x﹣2+e2﹣x),h'(x)=πcosπx,由g(2)=h(2)=0,则g(x)、h(x)的图象均关于点(2,0)中心対称,在x=2的右侧附近g(x)为下凸函数,h(x)为上凸函数,要x>2时,图象无交点,当且仅当g'(2)≥h'(2)成立.于是2a≥π,即a≥成立,故D正确,故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.试题中包含两个空的,答对一个的给3分,全部答对的给5分.13.在(x﹣2y+z)7的展开式中,所有形如x a y b z2(a,b∈N)的项的系数之和是﹣21 .解:因为(x﹣2y+z)7=[(x﹣2y)+z]7,所以展开式中含z2的项为C,令x=y=z=1,则所求系数之和为C•(1﹣2)5•12=﹣21,故答案为:﹣21.14.已知|z+i|+|z﹣i|=6,则复数z在复平面内所对应点P(x,y)的轨迹方程为+=1 .解:∵复数z在复平面内所对应点P(x,y),又|z+i|+|z﹣i|=6,∴+=6,即点P(x,y)到点A(0,﹣),和B(0,﹣)的距离之和为:6,且两定点的距离为:2<6,故点P的运动轨迹是以点AB为焦点的椭圆,且2a=6,2c=2,故b==2,∴复数z在复平面内所对应点P(x,y)的轨迹方程为:+=1,故答案为:+=1.15.已知三棱锥S﹣ABC的三条侧棱SA,SB,SC两两互相垂直且AC=,AB=,此三棱锥的外接球的表面积为14π,则BC=.解:由题意三棱锥S﹣ABC的三条侧棱SA,SB,SC两两互相垂直可知,三棱锥S﹣ABC是长方体的一个角,如图:设SA=x,SB=y,SC=z,由题意可得:x2+z2=13,x2+y2=5,y2+z2=BC2,三棱锥的外接球的表面积为14π,三棱锥扩展为长方体,长方体的对角线的长度,就是外接球的直径2R,所以2R=,4πR2=14π,可得x2+y2+z2=14,解得x=2,y=1,z=3,所以BC==.故答案为:.16.函数y=f(x),x∈[1,+∞),数列{a n}满足,①函数f(x)是增函数;②数列{a n}是递增数列.写出一个满足①的函数f(x)的解析式f(x)=x2.写出一个满足②但不满足①的函数f(x)的解析式.解:由题意,可知:在x∈[1,+∞)这个区间上是增函数的函数有许多,可写为:f(x)=x2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为:.则这个函数在[1,]上单调递减,在[,+∞)上单调递增,∴在[1,+∞)上不是增函数,不满足①.而对应的数列为:在n∈N*上越来越大,属递增数列.故答案为:f(x)=x2;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①(b+a﹣c)(b﹣a+c)=ac;②cos(A+B)=sin(A﹣B);③tan=sin C这三个条件中任选两个,补充在下面问题中.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且a=2,______,______?若三角形存在,求b的值;若不存在,说明理由.解:①∵(b+a﹣c)(b﹣a+c)=ac,即b2﹣(a﹣c)2=ac,∴a2+c2﹣b2=ac,由余弦定理知,cos B===,∵B∈(0,π),∴B=.③∵tan=sin C,∴tan=sin C,即=2sin cos,∵C∈(0,π),∴cos>0,∴2sin2=1,即C=.选择①②:由上知B=,∵cos(A+B)=sin(A﹣B),∴cos A﹣sin A=sin A﹣cos A,即(1+)cos A=(1+)sin A,∴tan A=1,∵A∈(0,π),∴A=,sin A=,由正弦定理知,,∴=,∴b=2.选择①③:B=,C=,∵a=2,∴b=2.选择②③:由上知C=,∵cos(A+B)=sin(A﹣B)=cos(π﹣C)=﹣cos C=0,∴A﹣B=0,即A=B=,∴b=a=2.18.设S n为数列{a n}的前n项和,已知a2=3,a n+1=2a n+1.(1)证明{a n+1}为等比数列.(2)判断n,a n,S n是否成等差数列?并说明理由.解:(1)证明:a2=3,a n+1=2a n+1,可得a1=1,即有a n+1+1=2(a n+1),则{a n+1}为首项为1,公比为2的等比数列;(2)由(1)可得a n+1=2n,即有a n=2n﹣1,S n=﹣n=2n+1﹣2﹣n,由n+S n﹣2a n=n+2n+1﹣2﹣n﹣2(2n﹣1)=0,可得n,a n,S n成等差数列.19.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查样本中有40名女生.如图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).关注没关注合计男女合计附:P(K2≥k0)0.150 0.100 0.050 0.010 0.005 k0 2.072 2.706 3.841 6.635 7.879,其中n=a+b+c+d(1)完成上面的2×2列联表,并计算回答是否有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”?(2)若将频率视为概率,现从该中学高三的女生中随机抽取3人.记被抽取的3名女生中对“嫦娥五号”新闻关注的人数为随机变量X,求X的分布列及数学期望.解:(1)2×2列联表如下:关注没关注合计男 30 30 60女 12 28 40合计 42 58 100所以= 3.941>3.841,所以有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”;(2)因为随机选一个高三的女生,对此事关注的概率为=,又因为X~B(3,),所以随机变量X的分布列为:X0 1 2 3P故E(X)=np=.20.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.【解答】(1)证明:∵AB是圆O的直径,∴AC⊥BC,∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC,又DC∩AC=C,∴BC⊥平面ACD,∵DC∥EB,DC=EB,∴四边形DCBE是平行四边形,∴DE∥BC,∴DE⊥平面ACD,又DE⊂平面ADE,∴平面ACD⊥平面ADE.(2)当C点为半圆的中点时,AC=BC=2,以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),∴=(﹣2,2,0),=(0,0,1),=(0,2,0),=(2,0,﹣1),设平面DAE的法向量为=(x1,y1,z1),平面ABE的法向量为=(x2,y2,z2),则,,即,,令x1=1得=(1,0,2),令x2=1得=(1,1,0).∴cos<>===.∵二面角D﹣AE﹣B是钝二面角,∴二面角D﹣AE﹣B的余弦值为﹣.21.设函数f(x)=axlnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线经过点(3,2).(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)证明:f(x)>﹣.解:(I)f′(x)=alnx+a,则f(1)=0,f′(1)=a,故取消y=f(x)在(1,f(1))处的切线方程y=a(x﹣1),把点(3,2)代入切线方程可得,a=1,(II)由(I)可得f′(x)=lnx+1,x>0,易得,当0时,f′(x)<0,函数单调递减,当x>时,f′(x)>0,函数单调递增,故当x=时,函数取得极小值f()=﹣,没有极大值,证明:(III)f(x)>﹣等价于xlnx﹣>0,由(II)可得f(x)=xlnx(当且仅当x=时等号成立)①,所以xlnx﹣,故只要证明即可,(需验证等号不同时成立)设g(x)=,x>0则,当0<x<1时,g′(x)<0,函数单调递减,当x>1时,g′(x)>0,函数单调递增,所以g(x)≥g(1)=0,当且仅当x=1时等号成立,②因为①②等号不同时成立,所以当x>0时,f(x)>﹣.22.已知椭圆E:=1(a>b>1)的离心率e=,其左、右顶点分别为点A,B,且点A关于直线y=x对称的点在直线y=3x﹣2上.(1)求椭圆E的方程;(2)若点M在椭圆E上,点N在圆O:x2+y2=b2上,且M,N都在第一象限,MN⊥y轴,若直线MA,MB与y轴的交点分别为C,D,判断sin∠CND是否为定值,若是定值,求出该定值;若不是定值,说明理由.【解答】(1)解:点A(﹣a,0)关于直线y=x对称的点(0,﹣a)在直线y=3x﹣2上,∴﹣a=0﹣2,解得a=2.又=,a2=b2+c2,联立解得b2=2=c2.∴椭圆E的标准方程为:+=1.(2)证明:设M(x0,y0),AM:y=k(x+2)(k≠0),令x=0,解得y=2k,∴C(0,2k).联立,化为:(2k2+1)x2+8k2x+8k2﹣4=0(k≠0).∴﹣2x0=,解得x0=.∴y0=,即M(,),∴直线BM的斜率==﹣.∴BM的方程:y=﹣(x﹣2),令x=0,解得y=,∴D(0,).设N(x N,y0),则=(﹣x N,2k﹣y0),=(x N,﹣y0).∴•=x N2+y02+2﹣y0.∵x N2+y02=2,y0=,∴•=0.∴NC⊥ND.即∠CND=90°.∴sin∠CND=1.。

2乘2列联表练习题

2乘2列联表练习题

试题解析:解(1):
患三高疾病

24

12
合计 36
不患三高疾病 6 18 24
合计 30 30 60
在患三高疾病人群中抽 9 人,则抽取比例为 9 1 36 4
∴女性应该抽取12 1 3 人.
6分
4
(2


K 2 60(24 18 6 12)2
30 30 36 24
8分
10 7.879 , 那么,我们有 99.5% 的把握认为是否患三高疾病与性别有关系.
5
(1)请将上表补充完整(不用写计算过程);
(2)能否有 99.5 ﹪的把握认为喜爱打篮球与性别有关?说明
你的理由.
3.某班主任对班级22 名学生进行了作业量多少的调查,数据 如下表:在喜欢玩电脑游戏的 12 中,有10 人认为作业多,2 人 认为作业不多;在不喜欢玩电脑游戏的 10人中,有3人认为作 业多,7 人认为作业不多。
∴报考理科的男生有100-40=60 人,报考理科的女生有 100-60=40 人
……4 分
所以 2×2列联表如下:
……6 分
文科
理科
总计

40
60
100

60
40
100
总计
100
100
200
(2)由公式计算 K 2 的 观测值:
k 200 (40 40 60 60)2 8 7.879 100 100 100 100
再查对临界值表,据此回答能否有 99.5 ﹪的把握认为喜爱打篮球与性别有关.
试题解析:(1)列联表补充如下:
喜爱打篮球 不喜爱打篮球 合计
男生
20

用两步连乘解决实际问题 小学数学 测试卷

用两步连乘解决实际问题 小学数学 测试卷

一、选择题1. 学校门口小卖部一共卖出12箱牛奶,每盒2元,要求“一共卖了多少元”,应补充条件()。

A.每车40箱B.每升6元C.每盒100毫升D.每箱15盒2. 李阿姨每天制作12盒蜻蜓标本,每盒有7个蜻蜓标本。

照这样计算,李阿姨6月份可以制作()个蜻蜓标本。

A.2604 B.84 C.504 D.25203. 1.某超市运回3车水果,每车装26箱,每箱重24千克,用“26×24”可以求出(),用“26×24×3”可以求出()。

①运回水果的箱数②每车运水果的质量③一共运水果的质量A.①③B.②③C.①②4. 与125×16相等的算式是()。

A.125×8+8 B.125×8×2 C.125×(8+2)5. 一辆货车每次能送12箱货物,每天可以运送5次,31天可以运送()箱货物。

A.1860 B.1800 C.1550 D.1560二、填空题6. 倩倩买了9张练字纸,每张有12行,每行有16个格,这9张练字纸一共有( )个格。

7. 药店一周卖出5箱口罩,每箱装有6袋口罩,每袋口罩卖25元。

(1)算式“5×6×25”。

解决的问题是___________。

(2)每袋口罩( )只。

8. 牛奶厂将一批牛奶装箱。

18袋装一盒,5盒装一箱,一共装了20箱,这批牛奶一共有( )袋。

9. 一个游泳池长120米,涛涛游5个来回共游了( )米。

10. 啤酒24瓶一箱,每车可以运50箱,3车共可运啤酒( )瓶。

三、解答题11.(l)我校有16个班,平均每班45人,全校学生一学期可收集废纸多少千克?(2)按每5千克废纸可生产4千克再生纸,每千克再生纸可产生2元钱的效益计算,全校同学一学期收集的废纸产生的效益是多少元?12. 商店运来34箱饮料,每箱20瓶,每瓶买5元,如果这些饮料全部卖完,可以卖得多少钱?13. 学校图书馆有3个书架,每个书架有6层,每层可放书42本,图书馆共有多少本图书?14. 红星小学组织四年级学生进行研学旅行。

2-3期未复习题(二)(高二(下)数学同步测试题)

2-3期未复习题(二)(高二(下)数学同步测试题)

高二数学期未复习题(二)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知随机变量X ~B(6,0.4),则当η=-2X+1时,D(η)=( ). A.-1.88B.-2.88C.5.76D.6.762.已知一次考试共有60名同学参加,考生成绩X ~N(110,52),据此估计,大约有57人的分数所在的区间为( ).A.(90,100]B.(95,125]C.(100,120]D.(105,115] 3.满足条件|z |=|3+4i|的复数z 在复平面上对应点的轨迹是( ). A .一条直线 B .两条直线 C .圆 D .椭圆 4. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x)d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y)d xD .S =⎠⎛01(y -y)d y5.样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其方差为( ) A.105 B.305C. 2 D .2 6.曲线y =13x 3-2在点(-1,-53)处切线的倾斜角为( )A .30°B .45°C .135°D .150°7.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n 粒,若这批米合格,则n 不超过( )A .6粒B .7粒C .8粒D .9粒8.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A.60 B.90 C.120 D.1809.一个电路如图所示, C 、D 、E 、F 为4个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A. 916B. 716C. 1316D. 31610.若0<x<π2,则2x与3sin x的大小关系( ).A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关11. 设随机变量X~N(μ,σ2)且P(X<1)=12,P(X>2)=p,则P(0<X<1)的值为( )A.12p B.1-p C.1-2p D.12-p12. 设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85x-85.71,则下列结论中不正确的是( )A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(x,y) C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg二、填空题:本大题共4小题,每小题5分,共20分。

【全程复习方略】2014-2015学年高中数学 第一章 统计案例单元质量评估 新人教A版选修1-2

【全程复习方略】2014-2015学年高中数学 第一章 统计案例单元质量评估 新人教A版选修1-2

"【全程复习方略】2014-2015学年高中数学第一章统计案例单元质量评估新人教A版选修1-2 "一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.散点图在回归分析过程中的作用是( )A.查找个体个数B.比较个体数据的大小关系C.探究个体分类D.粗略判断变量的相关关系【解析】选D.散点图对相关关系的判断是粗略的,在一定程度上存在着误差.2.下列关于线性回归的说法,不正确的是( )A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图C.线性回归方程最能代表观测值x,y之间的关系D.任何一组观测值都能得到具有代表意义的线性回归方程【解析】选D.根据相关关系及散点图等概念知A,B,C均正确.3.(2014·广州高二检测)若身高与体重有关系,则下列选项中可以用来分析此关系的是( )A.残差B.回归分析C.等高条形图D.独立性检验【解析】选B.身高与体重的关系是相关关系,因此可用回归分析来确定其具体的数值关系,而残差分析是用来分析模型拟合效果的,等高条形图和独立性检验是用来判断两个分类变量是否有关的量.4.(2014·泰安高二检测)下列说法正确的个数是( )(1)将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变(2)设有一个回归方程=3-5x,变量增加一个单位时y平均增加5个单位(3)在一个2×2列联表中,由计算得K2=13.079,则在犯错误的概率不超过0.1的前提下认为两个变量有关系A.0B.1C.2D.3【解析】选C.(1)方差反映一组数据的波动大小,将一组数据中的每个数据加上或减去同一常数后,方差恒不变,(1)正确.(2)变量x增加一个单位时,y平均减少5个单位,故(2)错.(3)对照临界值表可得在犯错误的概率不超过0.001的前提下认为两个变量有关系,即在犯错误的概率不超过0.1的前提下认为两个变量有关系是正确的,故(3)正确.5.(2014·永州高二检测)已知x,y的值如表所示,若y与x呈线性相关且回归直线方程为y=x+,则a=( )A.4B.5C.6D.7【解析】选A.由题意可得=×(4+6+8)=6,=(5+a+6),由于回归直线y=x+过点(,),故×(5+a+6)=×6+,解得a=4.【变式训练】已知x与y之间的一组数据如表所示,则y与x的线性回归方程=x+必过点( )A.(2,2)B.C.D.(1,2)【解题指南】回归直线过样本点的中心(,).【解析】选C.由表中数据可计算=(0+1+2+3)=,=(1+3+5+7)=4.因为回归直线过样本中心点(,),所以回归直线过点.6.(2014·铜陵高二检测)如果某地财政收入x(亿元)与支出y(亿元)满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5.如果今年该地区的财政收入为10亿元,则年支出预计不会超过( ) A.9亿元 B.9.5亿元 C.10亿元 D.10.5亿元【解题指南】将所给数据代入y=bx+a+e,利用|e|≤0.5,即可求得结论.【解析】选D.由y=0.8x+2+e知当x=10时,y=0.8x+2+e=10+e,因为|e|≤0.5,所以-0.5≤e≤0.5,所以9.5≤y≤10.5,所以今年支出预计不会超过10.5亿元.7.(2014·江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量【解题指南】根据独立性检验公式分别求出相应的K2,数据大的与性别有关联的可能性大.【解析】选D.()222152852(6221410)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯()22225211252(4201612)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯222352(824128)52(128)K ,2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯222452(143062)52(686)K .2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯分析判断K 42最大,所以选D.8.根据如图所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.其中正确命题的个数为( ) A.1B.2C.3D.4【解析】选B.由K 2=得K 2的观测值k ≈56.632>10.828>6.635,①②均正确,故选B.9.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出( )A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的百分比为60%【解析】选C.由条形图可知,女生中喜欢理科的百分比约为1-0.8=0.2=20%,男生中喜欢理科的百分比约为1-0.4=0.6=60%,因此男生比女生喜欢理科的可能性大些.10.(2014·太原高二检测)变量x,y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的观测值分别为11,9,8,5,若在实际问题中,y最大取值是10,则x的最大值不能超过( )A.14B.15C.16D.17【解析】选B.根据题意y与x呈正相关关系,由最小二乘法或计算器求得回归系数=-0.857,=0.729,所以线性回归方程为=0.729x-0.857,当=10时得x≈15.11.两个分类变量X和Y可能的取值分别为{x1,x2}和{y1,y2},其样本频数满足a=10,b=21,c+d=35,若认为X 与Y有关系的犯错误的概率不超过0.1,则c的值可能等于( )A.4B.5C.6D.7【解题指南】根据条件可知2.706≤k<3.841.再由K2的公式进行估算可得c值.【解析】选B.若认为X和Y有关系的犯错误的概率不超过0.1,则K2的观测值k所在的范围为2.706≤k<3.841,根据计算公式K2=,其中n=a+b+c+d,及a=10,b=21,c+d=35可估算出c的值,选B.12.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程=x+的系数=-2.4,则预测平均气温为-8℃时该商品销售额为( )A.34.6万元B.35.6万元C.36.6万元D.37.6万元【解题指南】先求出横坐标和纵坐标的平均数,写出样本中心点,根据所给的的值,写出线性回归方程,把样本中心点代入求出的值,再代入数值进行预测.【解析】选A.==-4,==25,所以这组数据的样本中心点是(-4,25).因为=-2.4,把样本中心点代入线性回归方程得=15.4,所以线性回归方程是=-2.4x+15.4.当x=-8时,y=34.6.故选A.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知方程=0.85x-82.71是根据女大学生的身高预报体重的回归方程,其中x的单位是cm,y的单位是kg,那么针对某个体(160,53)的随机误差是.【解析】因为回归方程为=0.85x-82.71,所以当x=160时,=0.85×160-82.71=53.29,所以针对某个体(160,53)的随机误差是53-53.29=-0.29.答案:-0.2914.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x(单位:万元)和年教育支出y(单位:万元),调查显示年收入x与年教育支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:=0.15x-0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加万元.【解析】因为线性回归方程=0.15x-0.2,y=0.15(x+1)-0.2,所以1y-=0.15(x+1)-0.2-0.15x+0.2=0.15.所以1答案:0.1515.下表是关于男女生喜欢武打剧的调查表:则列联表中A= ,B= ,C= ,D= .【解题指南】依据列联表中数据的关系,进行加减运算即可.【解析】A=105-39=66,B=100-39=61,C=66+34=100,D=105+95=200.答案:66 61 100 200【互动探究】在本题中条件不变的情况下,在犯错误的概率不超过多少时认为性别与喜欢武打剧有关? 【解析】由表中数据可计算得k=≈14.617>10.828.因P(K2≥10.828)=0.001,所以在犯错误的概率不超过0.001的前提下认为性别与喜欢武打剧有关.16.(2014·三明高二检测)某考察团对中国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)调查,y与x具有相关关系,回归方程为=0.66x+1.562,若A城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为.【解析】因为y与x具有线性相关关系,满足回归方程=0.66x+1.562,A城市居民人均消费水平为y=7.765,所以可以估计该城市的职工人均工资水平x满足7.765=0.66x+1.562,所以x≈9.4,所以该城市人均消费额占人均工资收入的百分比约为×100%≈83%.答案:83%三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1月至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率.(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程,并预报当温差为9℃时的种子发芽数.【解题指南】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,满足条件的事件包括的基本事件有6种,根据等可能事件的概率得出结果.(2)根据所给的数据,先得出x,y的平均数,即得出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程并进行预报.【解析】(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数,每种情况都是等可能出现的,事件A包括的基本事件有6种,所以P(A)=,所以选取的2组数据恰好是不相邻2天数据的概率是.(2)由数据,求得=12,=27,由公式,求得=,=-=-3,所以y关于x的线性回归方程为=x-3.由此可以预报当温差为9℃时的种子发芽数为19或20颗.18.(12分)一项关于A、B两国失业情况的抽样调查结果如下:1512个A国人中有130人曾经被解雇过,其余人未曾被解雇过;而2900个B国人中有87人曾经被解雇过,其余人未曾被解雇过.(1)根据以上数据,建立一个2×2列联表.(2)根据表中数据,你能得到什么结论?【解析】(1)列联表如下:(2)K2的观测值k=≈66.595>10.828,P(K2≥10.828)≈0.001,故在犯错误的概率不超过0.001的前提下认为是否解雇与国家有关.19.(12分)(2013·吉林高二检测)调查某桑场采桑员桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?K2=【解析】由题意知,a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113.所以K2==≈39.6>10.828.所以患桑毛虫皮炎病与采桑有关系.认为两者有关系会犯错误的概率是0.1%.【变式训练】巴西医生马廷思收集各种犯有贪污、受贿罪的官员和廉洁官员寿命的调查资料:500名贪官中有348人的寿命小于平均寿命,152人的寿命大于或等于平均寿命;590名廉洁官员中有93人的寿命小于平均寿命,497人的寿命大于或等于平均寿命.这里,平均寿命是指“当地人均寿命”.试分析官员在经济上是否清廉与他们寿命的长短之间是否有关系?【解析】根据题意列2×2列联表:由公式计算K2的观测值:k=≈325.635.因为325.635>10.828,所以在犯错误的概率不超过0.001的前提下认为官员在经济上是否清廉与他们的寿命长短有密切关系.20.(12分)想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?(2)若年龄相差5岁,则身高有多大差异?(年龄在3~16岁之间)(3)如果身高相差20cm,其年龄相差多少?【解析】(1)散点图如图所示.由散点图可知样本点落在一条直线附近.设年龄x(岁)与身高y(cm)之间的回归直线方程是=x+,由公式计算得=≈6.314,=-≈72.003,所以=6.314x+72.003.(2)若年龄相差5岁,则预报变量变化6.314×5=31.57.(3)如果身高相差20cm,年龄相差Δx=≈3.168≈3(岁).21.(12分)某运动员训练次数与训练成绩之间的数据关系如下:(1)在图1坐标系中作出散点图.(2)求出回归方程.(3)在图2中作出残差图.(4)计算相关指数R2.(5)试预测该运动员训练47次及55次的成绩.【解析】(1)作出运动员训练次数x与成绩y的散点图,如图所示,由散点图可知,它们之间具有相关关系.(2)列表计算如图所示:所以==≈1.0415,=-=-0.00302,所以回归直线方程为=1.0415x-0.00302.(3)残差分析:下面的表格列出了运动员训练次数和成绩的原始数据以及相应的残差数据.作残差图,如图所示,由图可知,残差点比较均匀地分布在水平带状区域内,说明选择的模型比较合适.(4)计算相关指数R 2=1-82i i i 182ii 1y y y y ==--∑∑()()=0.9855.(5)作出预报:由上述分析可知, 回归直线方程=1.0415x-0.00302.将x=47和x=55分别代入该方程可得=49,=57,故预测该运动员训练47次和55次的成绩分别为49和57. 22.(12分)某地区不同身高的未成年男性的体重平均值如表:(1)试建立y 与x 之间的回归方程.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于平均值的0.8倍为偏瘦,则这个地区一名身高为175cm、体重为82kg的在校男生的体重是否正常?【解析】(1)根据表格中的数据画出散点图,如图所示.从图可以看出,样本点分布在某条指数型函数曲线y=c1的周围,于是令z=lny,得到x与z的数据如表:根据上表中的数据作出散点图,如图所示.由表中数据可计算得z与x之间的回归方程为=0.693+0.020x,则有=e0.693+0.020x.(2)当x=175时,预测平均体重为=e0.693+0.020×175≈66.22,因为66.22×1.2≈79.46<82,所以这名男生偏胖.。

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.(3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数618-12现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.?5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]10 12 8 4数量~6(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:~ 经常进行网络购物偶尔或从不进行网络购物合计男性50501006040100/女性合计11090200*(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)&k0[7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)…男02472女1(3731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型<消极型总计男女/总计附:.P(K2≥k0))k0—8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数!女性录用比例A26916762%402460% /B401230%2026231%C$1775732%1845932%D44)59%382258%263267%E32…67%16936%总计53326450%·467(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”…(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5]不获奖合计<200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)'k-9道题分清超几何分布和二项分布参考答案与试题解析…一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为:;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:@X0123 P(…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.!(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P (A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P =1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k )=,>P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123P&【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:;步数[0,4000)[4000,16000)[16000,+∞]人数61812:现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,)所以,所以X的分布列为X 0 1 2P&所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.,【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.?∴Y的分布列为:Y012P,期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)#[15,25)[25,35)[35,45)[45,55]数量 6 10 12【84(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X ,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,|所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0—12 3 4P:∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物-合计偶尔或从不进行网络购物男性5050100100女性60}40合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;/(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)`k0【分析】(1)由列联表数据求出K 2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.、(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,^由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别—(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02~472女1373&1(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男}女总计》附:.P(K2≥k0)《k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k 2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.*【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X 0[231P·则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9—156女41115总计13—3017k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位.男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A269、16762%402460%B4012}30%2026231%C1775732%,1845932%D442659%38.2258%E3267%32:67%总计53326450%46716936%$(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,?所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X01]2P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.'∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。

江苏省镇江市扬中市第二高级中学2023届高三下学期考前模拟数学试题

江苏省镇江市扬中市第二高级中学2023届高三下学期考前模拟数学试题

f (x) ex
的递减区间为 (-¥ , 0) 和(2, +¥ ) ,
故选:B.
【点睛】关键点点睛:解答本题的关键是求解完 f ( x) 的解析式之后,根据 f ¢( x) < 0 去分析
f ( x) 的单调递减区间.
5.C
【分析】根据
P
æçè|
Xn

1 4
ö ÷ø
<
0.0456
得到
P
æçè |
X
试卷第31 页,共33 页
C.{an} 为递增数列
D.
ì í î
1 an
ü ý þ
的前
n
项和 Tn
=
2n+2
- 3n - 4
三、填空题 13.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取 50 名学生,得
到如下 2×2 列联表:
理科 文科
男 13 10
女7
20
已知 P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到 K2 的观测值 k=
为 2. 2
(1)求点 P 的轨迹 C 的方程;
(2)过点(
0,
1)
且斜率为
k
æ çè
1 2
£
k
£
2
ö ÷ø
的直线
l

C
交于
A,B
两点,与
x
轴交于点
M
,线
段 AB 的垂直平分线与 x 轴交于点 N ,求 | AB | 的取值范围. | MN |
试卷第61 页,共33 页
22.已知函数
f (x) =
a cosA

高中数学 《独立性检验》2×2列联表 新人教A版选修2

高中数学 《独立性检验》2×2列联表 新人教A版选修2
系3);如果P(x2>6.635)= 0.01表示有99%的适把用握观认为测”数X与据Y”a、有关系; 4)如果P(x2>5.024)= 0.025表示有97.b5、%的c、把d握不认小为”于X5与Y”有关
系; 5)如果P(x2>3.841)= 0.05表示有95%的把握认为”X与Y”有关系;
6)如果P(x2>2.706)= 0.10表示有90%的把握认为”X与Y”有关系;
13
例1.在500人身上试验某种血清预防感冒作
用,把他们一年中的感冒记录与另外500名 未用血清的人的感冒记录作比较,结果如表 所示。问:该种血清能否起到预防感冒的作 用?
未感冒
感冒
合计
使用血清 258
242
500
未使用血清 216
284
500
合计
474 精选版ppt 526
1000
14
例2:为研究不同的给药方式(口服与注射) 和药的效果(有效与无效)是否有关,进行 了相应的抽样调查,调查的结果列在表中, 根据所选择的193个病人的数据,能否作出 药的效果和给药方式有关的结论?
精选版ppt
1
某医疗机构为了了解呼吸道疾病与吸烟是否 有关,进行了一次抽样调查,共调查了515个 成年人,其中吸烟者220人,不吸烟者295人, 调查结果是:吸烟的220 人中37人患呼吸道 疾病, 183人不患呼吸道疾病;不吸烟的295 人中21人患呼吸道疾病, 274人不患呼吸道 疾病。
根据这些数据能否断定:患呼吸道疾病与 吸烟有关?
口服 注射 合计
有效 58 64 122
无效 40 31 71
合计 98 95 193
精选版ppt

15

第3节 第2课时 列联表与独立性检验--2025年高考数学复习讲义及练习解析

第3节  第2课时  列联表与独立性检验--2025年高考数学复习讲义及练习解析

第2课时列联表与独立性检验课标解读考向预测1.通过实例,理解2×2列联表的统计意义.2.通过实例,了解2×2列联表独立性检验及其应用.预计2025年高考列联表、独立性检验可能会以实际问题为背景,与概率、随机变量的分布列及数字特征相结合命题,难度适中.必备知识——强基础1.分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.2.2×2列联表一般地,假设有两个分类变量X和Y,它们的取值均为0,1,其2×2列联表为XY合计Y=0Y=1X=0a b a+bX=1c d c+d合计a+c b+d a+b+c+d3.独立性检验(1)零假设:以Ω为样本空间的古典概型,设X和Y为定义在Ω上,取值于{0,1}的成对分类变量,H0:01P(Y=1|X=0)=P(Y=1|X=1).通常称H0为零假设或原假设.(2)χ2的计算公式:记n=a+b+c+d,则χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).(3)临界值:对于任何小概率值α,可以找到相应的正实数xα,使得后面关系成立:P(χ2≥xα)=α.我们称xα为α的临界值,这个临界值就可以作为判断χ2大小的标准,概率值α02越小,临界值xα越大.(4)基于小概率值α的检验规则是:当χ2≥xα时,我们就推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;当χ2<xα时,我们没有充分证据推断H0不成立,可以认为X和Y独立.(5)应用独立性检验解决实际问题的主要环节①提出零假设H0:X和Y相互独立,并给出在问题中的解释;②根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值xα比较;③根据检验规则得出推断结论;④在X和Y不独立的情况下,根据需要,通过比较相应的频率,分析X和Y间的影响规律.根据χ2的值可以判断两个分类变量有关的可信程度,若χ2越大,则认为两分类变量有关的把握越大.1.概念辨析(正确的打“√”,错误的打“×”)(1)分类变量中的变量与函数中的变量是同一概念.()(2)2×2列联表是借助两个分类变量之间频率大小差异说明两个变量之间是否有关联.()(3)应用独立性检验的基本思想对两个变量间的关系作出的推断一定是正确的.()(4)若分类变量X,Y关系越密切,则由观测数据计算得到的χ2的观测值越小.()答案(1)×(2)√(3)×(4)×2.小题热身(1)(人教B选择性必修第二册4.3.2练习A T2改编)为了解某大学的学生是否爱好体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女合计爱好a b73不爱好c25合计74则a-b-c=()A.7B.8C.9D.10答案C解析根据题意,可得c =120-73-25=22,a =74-22=52,b =73-52=21,∴a -b -c=52-21-22=9.(2)在下列两个分类变量X ,Y 的样本频数列联表中,可以判断X ,Y 之间有无关系的是()y 1y 2合计x 1a b a +b x 2c d c +d 合计a +cb +da +b +c +dA .|a a +b -b c +d |B .|c a +b -d c +d|C .|b a +b -c c +d |D .|a a +b -c c +d |答案D解析∵χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),则分类变量X 和Y 有关系时,ad 与bc 差距会比较大,由a a +b -c c +d =ac +ad -ac -bc (a +b )(c +d )=ad -bc (a +b )(c +d ),故a a +b 与cc +d 的值相差应该大,即|a a +b -c c +d |的大小可以判断X ,Y 之间有无关系.(3)已知P (χ2≥6.635)=0.01,P (χ2≥10.828)=0.001.在检验喜欢某项体育运动与性别是否有关的过程中,某研究员搜集数据并计算得到χ2=7.235,则根据小概率值α=________的χ2独立性检验,分析喜欢该项体育运动与性别有关.答案0.01解析因为6.635<7.235<10.828,所以根据小概率值α=0.01的χ2独立性检验,分析喜欢该项体育运动与性别有关.考点探究——提素养考点一分类变量的两种统计表示形式(多考向探究)考向1等高堆积条形图例1(2023·四川南充三诊)为考查A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高堆积条形图,根据图中信息,下列说法最佳的是()A .药物B 的预防效果优于药物A 的预防效果B .药物A 的预防效果优于药物B 的预防效果C .药物A ,B 对该疾病均有显著的预防效果D .药物A ,B 对该疾病均没有预防效果答案B解析根据题干中两个等高堆积条形图知,药物A 实验显示不服药与服药时患病差异较药物B 实验显示明显,所以药物A 的预防效果优于药物B 的预防效果.【通性通法】在等高堆积条形图中,a a +b 与cc +d 相差越大,我们认为两个分类变量之间关系越强.【巩固迁移】1.(多选)现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论正确的是()A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理答案ABC解析由等高堆积条形图知,女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选ABC.考向22×2列联表例2(1)下面是一个2×2列联表,则表中a ,c 处的值分别为()X Y 合计y 1y 2x 1a 2573x 221b c合计d 49A .98,28B .28,98C .48,45D .45,48答案C解析由2×2列联表知a +25=73,b +25=49,b +21=c ,解得a =48,b =24,c =45.故选C.(2)假设两个分类变量X 和Y 的2×2列联表如下:X Y 合计y 1y 2x 1a 10a +10x 2c 30c +30合计a +c40100对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是()A .a =40,c =20B .a =45,c =15C .a =35,c =25D .a =30,c =30答案B解析χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=根据2×2列联表和独立性检验的相关知识,知当b ,d 一定时,a ,c 相差越大,a a +10与cc +30相差就越大,χ2就越大,即X和Y有关系的可能性越大,结合选项,知B中a-c=30与其他选项相比相差最大.【通性通法】在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.【巩固迁移】2.(多选)有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀,得到列联表如下:班级数学成绩优秀非优秀合计甲班10b乙班c30合计105已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是()A.c=30,b=35B.c=15,b=50C.c=20,b=45D.由列联表可看出数学成绩与班级有关系答案CD解析依题意10+c105=27,解得c=20,由10+20+b+30=105,解得b=45.补全2×2列联表如下:班级数学成绩合计优秀非优秀甲班104555乙班203050合计3075105甲班学生数学成绩的优秀率为1055≈0.182,乙班学生数学成绩的优秀率为2050=0.4,乙班学生数学成绩的优秀率明显高于甲班学生数学成绩的优秀率,可以认为两班学生的数学成绩优秀率存在差异,所以数学成绩与班级有关.故选CD.考点二独立性检验的应用例3(2024·山西太原模拟)为进一步保护环境,加强治理空气污染,某市环保监测部门对市区空气质量进行调研,随机抽查了市区100天的空气质量等级与当天空气中SO2的浓度(单位:μg/m3),整理数据得到下表:SO2的浓度空气质量等级[0,50](50,150](150,475]1(优)28622(良)5783(轻度污染)3894(中度污染)11211若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”,根据上述数据,回答以下问题:(1)估计事件“该市一天的空气质量好,且SO2的浓度不超过150”的概率;(2)完成下面的2×2列联表;SO2的浓度空气质量[0,150](150,475]合计空气质量好空气质量不好合计(3)根据(2)中的列联表,依据小概率值α=0.01的独立性检验,能否据此推断该市一天的空气质量与当天SO2的浓度有关?解(1)由表格可知,该市一天的空气质量好,且SO2的浓度不超过150的天数为28+6+5+7=46,则“该市一天的空气质量好,且SO2的浓度不超过150”的概率P=46100=0.46.(2)由表格数据可得列联表如下,SO2的浓度空气质量[0,150](150,475]合计空气质量好461056空气质量不好242044合计7030100(3)零假设为H 0:该市一天的空气质量与当天SO 2的浓度无关.由(2)知χ2=100×(46×20-10×24)256×44×70×30≈8.936>6.635=x 0.01,根据小概率值α=0.01的独立性检验,我们推断H 0不成立,即认为该市一天的空气质量与当天SO 2的浓度有关,此推断犯错误的概率不超过0.01.【通性通法】独立性检验的一般步骤(1)根据样本数据制成2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算;(3)比较χ2与临界值的大小关系,作统计推断.【巩固迁移】3.(2022·全国甲卷)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),α0.1000.0500.010x α2.7063.8416.635解(1)根据表中数据,A 家公司共有班次260次,其中准点班次有240次,设A 家公司长途客车准点事件为M ,则P (M )=240260=1213;B 家公司共有班次240次,其中准点班次有210次,设B 家公司长途客车准点事件为N ,则P (N )=210240=78.故A 家公司长途客车准点的概率为1213,B 家公司长途客车准点的概率为78.(2)由题可得χ2=500×(240×30-20×210)2(240+20)×(210+30)×(240+210)×(20+30)≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.课时作业一、单项选择题1.如表是2×2列联表,则表中a ,b 的值分别为()y 1y 2合计x 1a 835x 2113445合计b4280A .27,38B .28,38C .27,37D .28,37答案A解析a =35-8=27,b =a +11=27+11=38.2.某课外兴趣小组通过随机调查,利用2×2列联表和χ2统计量研究数学成绩优秀是否与性别有关.计算得χ2=6.748,经查阅临界值表知P (χ2≥6.635)=0.010,则下列判断正确的是()A .每100名数学成绩优秀的人中就会有1名是女生B .若某人数学成绩优秀,那么他为男生的概率是0.010C .有99%的把握认为“数学成绩优秀与性别无关”D .在犯错误的概率不超过1%的前提下认为“数学成绩优秀与性别有关”答案D解析∵χ2=6.748>6.635,∴有99%的把握认为“数学成绩优秀与性别有关”,即在犯错误的概率不超过1%的前提下认为“数学成绩优秀与性别有关”.故选D.3.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为y1y2合计x1101828x2m26m+26合计m+1044m+54则当整数m取________时,X与Y的关系最弱.()A.8B.9C.14D.19答案C解析在两个分类变量的列联表中,当|ad-bc|的值越小时,认为两个分类变量有关的可能性越小.令|ad-bc|=0,得10×26=18m,解得m≈14.4,又m为整数,所以当m=14时,X与Y的关系最弱.4.(2024·海南华侨中学模拟)某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜偏爱肉类合计50岁以下481250岁以上16218合计201030则可以说其亲属的饮食习惯与年龄有关的把握为()附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.0500.0100.001xα 3.841 6.63510.828A.90%B.95% C.99%D.99.9%答案C解析根据列联表中数据,计算χ2=30×(4×2-8×16)212×18×20×10=10>6.635,可以说其亲属的饮食习惯与年龄有关的把握为99%.故选C.5.为了考查某种病毒疫苗的效果,现随机抽取100只小白鼠进行试验,得到如下2×2列联表:感染未感染合计服用104050未服用203050合计3070100附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.100.050.0250.0100.0050.001xα 2.706 3.841 5.024 6.6357.87910.828根据以上数据,得到的结论正确的是()A.在犯错误的概率不超过2.5%的前提下,认为“小白鼠是否被感染与有没有服用疫苗有关”B.在犯错误的概率不超过1%的前提下,认为“小白鼠是否被感染与有没有服用疫苗有关”C.有95%的把握认为“小白鼠是否被感染与有没有服用疫苗有关”D.有95%的把握认为“小白鼠是否被感染与有没有服用疫苗无关”答案C解析依题意,χ2=100×(10×30-40×20)250×50×30×70=10021≈4.762,显然有3.841<4.762<5.024<6.635,所以有95%的把握认为“小白鼠是否被感染与有没有服用疫苗有关”,A,B,D不正确,C正确.6.假设有两个变量x与y的2×2列联表如下:y1y2x1a bx2c d对于以下数据,对同一样本能说明x与y有关系的可能性最大的一组为()A.a=20,b=30,c=40,d=50B.a=50,b=30,c=30,d=40C.a=30,b=60,c=20,d=50D.a=50,b=30,c=40,d=30答案B解析对于A,|ad-bc|=200;对于B,|ad-bc|=1100;对于C,|ad-bc|=300;对于D,|ad -bc|=300,显然B中|ad-bc|最大,该组数据能说明x与y有关系的可能性最大.7.为了解某社区60岁以上老年人使用手机支付和现金支付的情况,抽取了部分居民作为样本,统计其喜欢的支付方式,并制作出如下等高堆积条形图:根据图中的信息,下列结论中不正确的是()A.样本中多数男性喜欢手机支付B.样本中的女性数量少于男性数量C.样本中多数女性喜欢现金支付D.样本中喜欢现金支付的数量少于喜欢手机支付的数量答案C解析对于A,由题中右图可知,样本中多数男性喜欢手机支付,A正确;对于B,由题中左图可知,样本中的男性数量多于女性数量,B正确;对于C,由题中右图可知,样本中多数女性喜欢手机支付,C不正确;对于D,由题中右图可知,样本中喜欢现金支付的数量少于喜欢手机支付的数量,D正确.故选C.8.针对短视频热,某高校团委对学生性别和喜欢短视频是否有关联进行了一次调查,其中被调查的男生、女生人数均为5m(m∈N*),男生中喜欢短视频的人数占男生人数的45,女生中喜欢短视频的人数占女生人数的35.零假设为H0:喜欢短视频和性别相互独立.若依据α=0.05的独立性检验认为喜欢短视频和性别不独立,则m的最小值为()附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).α0.050.01x α3.8416.635A .7B .8C .9D .10答案C解析根据题意,不妨设a =4m ,b =m ,c =3m ,d =2m ,于是χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=10m ·(5m 2)25m ·5m ·7m ·3m =10m21,由于依据α=0.05的独立性检验认为喜欢短视频和性别不独立,根据表格可知10m 21≥3.841,解得m ≥8.0661,于是m 的最小值为9.二、多项选择题9.(2024·福建福州一中模拟)“一粥一饭,当思来之不易”,道理虽简单,但每年我国还是有2000多亿元的餐桌浪费,被倒掉的食物相当于2亿多人一年的口粮.为营造“节约光荣,浪费可耻”的氛围,某市发起了“光盘行动”.某机构为调研民众对“光盘行动”的认可情况,在某大型餐厅中随机调查了90位来店就餐的客人,制成如下所示的列联表,通过计算得到χ2的观测值为9.认可不认可40岁以下202040岁以上(含40岁)4010已知P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,则下列判断正确的是()A .在该餐厅用餐的客人中大约有66.7%的客人认可“光盘行动”B .在该餐厅用餐的客人中大约有99%的客人认可“光盘行动”C .有99%的把握认为对“光盘行动”的认可情况与年龄有关D .在犯错误的概率不超过0.001的前提下,认为对“光盘行动”的认可情况与年龄有关答案AC解析∵χ2的观测值为9,且P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,又9>6.635,但9<10.828,∴有99%的把握认为对“光盘行动”的认可情况与年龄有关,或者说,在犯错误的概率不超过0.010的前提下,认为对“光盘行动”的认可情况与年龄有关,故C正确,D错误;由表可知,认可“光盘行动”的人数为60,∴在该餐厅用餐的客人中认可“光盘行动”的比例为60×100%≈66.7%,故A正确,B错误.故选AC.9010.为了解阅读量多少与幸福感强弱之间的关系,一个调查机构根据所得到的数据,绘制了如下所示的2×2列联表(个别数据暂用字母表示):幸福感强幸福感弱合计阅读量多m1872阅读量少36n78合计9060150计算得χ2≈12.981,参照下表:α0.100.050.0250.0100.0050.001xα 2.706 3.841 5.024 6.6357.87910.828下列说法正确的是()A.根据小概率值α=0.010的独立性检验,可以认为“阅读量多少与幸福感强弱无关”B.m=54C.根据小概率值α=0.005的独立性检验,可以在犯错误的概率不超过0.5%的前提下认为“阅读量多少与幸福感强弱有关”D.n=52答案BC解析∵χ2≈12.981>7.879>6.635,∴根据小概率值α=0.010的独立性检验,可以在犯错误的概率不超过1%的前提下认为“阅读量多少与幸福感强弱有关”,根据小概率值α=0.005的独立性检验,可以在犯错误的概率不超过0.5%的前提下认为“阅读量多少与幸福感强弱有关”,∴A错误,C正确;∵m+36=90,18+n=60,∴m=54,n=42,∴B正确,D错误.故选BC.三、填空题11.某校为研究该校学生性别与体育锻炼的经常性之间的联系,随机抽取100名学生(其中男生60名,女生40名),并绘制得到如图所示的等高堆积条形图,则这100名学生中经常锻炼的人数为________.答案68解析这100名学生中经常锻炼的人数为60×0.8+40×0.5=68.12.长绒棉是世界上纤维品质最优的棉花,也是全球高端纺织品及特种纺织品的重要原料.新疆具有独特的自然资源优势,是我国最大的长绒棉生产基地,产量占全国长绒棉总产量的95%以上.新疆某农科所为了研究不同土壤环境下棉花的品质,选取甲、乙两地实验田进行种植.在棉花成熟后采摘,分别从甲、乙两地采摘的棉花中各随机抽取50份样本,测定其马克隆值,整理测量数据得到如下2×2列联表(单位:份),其中40≤a≤50且a∈N*.注:棉花的马克隆值是反映棉花纤维细度与成熟度的综合指标,是棉纤维重要的内在质量指标之一.根据现行国家标准规定,马克隆值可分为A,B,C三个级别,A级品质最好,B级为标准级,C级品质最差.A级或B级C级合计甲地a50-a50乙地80-a a-3050合计8020100当a=a0时,有99%的把握认为该品种棉花的马克隆值级别与土壤环境有关,则a0的最小值为________.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.0500.0100.001xα 3.841 6.63510.828答案46解析依题意,χ2≥6.635,即100×[a(a-30)-(50-a)(80-a)]250×50×80×20≥6.635,(10a-400)2≥2654,由于40≤a≤50且a∈N*,所以10a-400≥2654,a≥40+265410,因为45<40+265410<46,所以a0的最小值为46.四、解答题13.某城市地铁将于2024年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:月收入(单位:百元)[15,25)[25,35)[35,45)赞成定价者人数123认为价格偏高者人数4812月收入(单位:百元)[45,55)[55,65)[65,75]赞成定价者人数534认为价格偏高者人数521(1)若以区间的中点值作为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距(结果保留两位小数);(2)由以上统计数据列出2×2列联表,依据小概率值α=0.01的独立性检验,可否认为“月收入以55百元为分界点对地铁定价的态度有差异”?附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.10.050.010.005xα 2.706 3.841 6.6357.879解(1)“赞成定价者”的月平均收入为x1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x1-x2≈50.56-38.75=11.81(百元).(2)根据条件可得2×2列联表如下:对地铁定价的态度月收入合计不低于55百元的人数低于55百元的人数认为价格偏高者32932赞成定价者71118合计104050零假设为H0:月收入以55百元为分界点对地铁定价的态度无差异.χ2=50×(3×11-29×7)232×18×10×40≈6.27<6.635=x0.01,∴根据小概率值α=0.01的独立性检验,没有充分证据推断H0不成立,因此可以认为“月收入以55百元为分界点对地铁定价的态度无差异”.14.(2023·全国甲卷)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表;<m≥m对照组试验组(ⅱ)根据(ⅰ)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),α0.1000.0500.010xα 2.706 3.841 6.635解(1)试验组的样本平均数为120×(7.8+9.2+11.4+12.4+13.2+15.5+16.5+18.0+18.8+19.2+19.8+20.2+21.6+22.8+23.6+23.9+25.1+28.2+32.3+36.5)=39620=19.8.(2)(ⅰ)依题意,可知这40只小白鼠体重的增加量的中位数是将两组数据合在一起,从小到大排序后第20位与第21位数据的平均数,第20位数据为23.2,第21位数据为23.6,所以m=23.2+23.62=23.4,故列联表为<m≥m对照组614试验组146(ⅱ)由(ⅰ)可得,χ2=40×(6×6-14×14)220×20×20×20=6.4>3.841,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.。

高中数学 《独立性检验》2×2列联表课件 新人教A选修2

高中数学 《独立性检验》2×2列联表课件 新人教A选修2
吸烟与不吸烟,患病的可能性的大小是否有差异? 说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大 问题2:差异大到什么程度才能作出“吸烟与患 病有关”的判断?
问题3:能否用数量刻画出“有关”的程度?
独立性检验
通过数据和图表分析,得到 结论是:吸烟与患呼吸道疾
病有关
H0: 吸烟和患呼吸道疾病之间没有关系
列联表
为了调查吸烟是否患呼吸道疾病有影响,某医疗研究 所随机地调查了515人,得到如下结果(单位:人)
吸烟与呼吸道疾病列联表
患病 不患病 总计
吸烟பைடு நூலகம்
37
183
220
不吸烟
21
274
295
总计
58
457
515
在不吸烟者中患呼吸道疾病的比重是 7.12% 在吸烟者中患呼吸道疾病的比重是 16.82%
问题1:判断的标准是什么?
有效 58 64 122
无效 40 31 71
合计 98 95 193
例3:气管炎是一种常见的呼吸道疾病,医药研 究人员对两种中草药治疗慢性气管炎的疗效进 行对比,所得数据如图所示,问:它们的疗效 有无差异
复方江剪刀草 胆黄片 合计
有效 184 91 275
无效 61 9 70
合计 245 100 345
a d - b c 越 小 , 说 明 吸 烟 与 患 肺 癌 之 间 的 关 系 越 弱 ,
a d - b c 越 大 , 说 明 吸 烟 与 患 肺 癌 之 间 的 关 系 越 强
引入一个随机变量:卡方统计量
2abc n a dd a b c c 2bd
其 n 中 a b c d
作为检验在多大程度上可以认为“两个变量 有关系”的标准 。

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。

高中数学 《独立性检验》2×2列联表课件 新人教A版选修2

高中数学 《独立性检验》2×2列联表课件 新人教A版选修2

a c+d ≈c a + b ,
ad bc
独立性检验 ad bc 0.
ad - bc 越小,说明吸烟与患肺癌之间的关系越弱, ad - bc 越大,说明吸烟与患肺癌之间的关系越强
引入一个随机变量:卡方统计量

2
nad bc a b c d a c b d 其中n a b c d
类1 类A 类B
总计 a
类2
b
总计 a+b
c
a+c
d
b+d
c+d
a+b+c+d
要推断“Ⅰ和Ⅱ有关系”,可按下面的步骤进行:
(1)提出假设H0 :Ⅰ和Ⅱ没有关系; (2)根据2× 2列表与公式计算 的值;
2
(3)查对临界值,作出判断。
由于抽样的随机性,由样本得到的推断 2 有可能正确,也有可能错误。利用 进 行独立性检验,可以对推断的正确性的概 率作出估计,样本量n越大,估计越准确。
某医疗机构为了了解呼吸道疾病与吸烟是否 有关,进行了一次抽样调查,共调查了515个 成年人,其中吸烟者220人,不吸烟者295人, 调查结果是:吸烟的220 人中37人患呼吸道 疾病, 183人不患呼吸道疾病;不吸烟的295 人中21人患呼吸道疾病, 274人不患呼吸道 疾病。
根据这些数据能否断定:患呼吸道疾病与 吸烟有关?
H0: 吸烟和患呼吸道疾病之间没有关系
吸烟与呼吸道疾病列联表 患呼吸道疾 不患呼吸道 病 疾病 吸烟 不吸烟 总计 a c a+c b d b+d
总计 a+b c+d a+b+c+d

两位数乘两位数专题练习(含答案)2023-2024学年下学期小学数学三年级 人教版

两位数乘两位数专题练习(含答案)2023-2024学年下学期小学数学三年级 人教版

2023-2024学年下学期小学数学人教新版三年级专题练习之两位数乘两位数一.填空题(共5小题)1.一个小区有25栋楼,每栋楼有3个单元,每个单元有14户人家。

如果每户人家每天丢1袋垃圾,那么这个小区每天会有 袋垃圾,由此,你想到了 。

2.某公园的门票每张10元,还规定30人(含30)以上可买团体票,团体票每张8元.那么28人去公园游玩,门票最少要 元.3.一盒有12支铅笔,14盒共有多少支铅笔?用竖式计算是:4.动物园的门票是每人50元,东风小学5年级有42名同学去动物园,准备了2000元钱,钱 买门票。

(填“够”或“不够” )5.一本书的第三页有21行,每行有28个字,这一页共有 个字。

二.计算题(共5小题)6.用竖式计算.3543⨯=2754⨯=8244÷=4535÷=7.笔算并验算1345⨯=5521⨯=5493÷=验算:6258÷=验算:3605÷=验算:8.列竖式计算,带*的要验算.3572⨯= 1588⨯= 2013÷= *7156÷= 7847⨯= 7549⨯=6737⨯= *9208÷= 6645⨯= 8107÷= *4016÷= 4988÷=9.直接写得数。

15040⨯= 2205⨯=2420⨯= 12230⨯= 4203⨯= 38040⨯= 7811⨯=10840⨯= 10.填一填,算一算.220230240250260++++= 5⨯2514⨯= .三.应用题(共5小题)11.冰墩墩是2022年北京冬季奥运会的吉祥物,深受大家喜爱。

淘气要买16个冰墩墩摆件送给朋友和家人,一共需要多少元?12.学校食堂运来56袋面粉,每袋面粉重25千克,运来的面粉一共有多少千克?13.华强小学“喜迎二十大,争做好少年”演讲比赛,一共有师生430人,能坐得下吗?14.朝阳小学970名师生要去春游,一辆大客车能载客48人,租20辆这样的大客车够吗?15.用一辆载重4吨的汽车运47台机器,每台机器重86千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题解析:解(1):
患三高疾病
不患三高疾病
合计

24
6
30

12
18
30
合计
36
24
60
在患三高疾病人群中抽 人,则抽取比例为
∴女性应该抽取 人. 6分
(2)∵ 8分
, 10分
那么,我们有 的把握认为是否患三高疾病与性别有关系. 12分.
考点:1.分成抽样;2.独立性检验.
2.(1)详见解析;(2)有 ﹪的把握认为喜爱打篮球与性别有关.
5.解:(1)由男女生各100人及等高条形图可知报考文科的男生有100×=40人,报考文科的女生有100×=60人 ……2分
∴报考理科的男生有100-40=60人,报考理科的女生有100-60=40人 ……4分
所以2×2列联表如下: ……6分
文科
理科
总计

40
60
100

60
40
100
总计
100
100
5.某高中课外活动小组调查了100名男生与100名女生报考文、理科的情况,下图为其等高条形图:
(1)绘出2×2列联表;
(2)利用独立性检验方法判断性别与报考文、理科是否有关系若有关系,所得结论的把握有多大
参考答案
1.(1)3人;(2)有 的把握认为是否患三高疾病与性别有关系.
【解析】
试题分析:(1)根据题中所给数据,通过2×2连列表,直接将如图的列联表补充完整;通过分层抽样求出在患三高疾病的人群中抽9人的比例,即可求出女性抽的人数.(2)通过题中所给共识计算出 ,结合临界值表,即可说明有多大的把握认为三高疾病与性别有关.
合计
(2)
有 ﹪的把握认为喜爱打篮球与性别有关.
考点:独立性检验.
3.(1)认为作业多Biblioteka 认为作业不多总 计
喜欢玩电脑游戏
10
2
12
不喜欢玩电脑游戏
3
7
10
总 计
13
9
22
(2)有%的把握认为喜欢玩电脑游戏与认为作业多少有
【解析】
试题分析:(1)根据给出的数据建立 列联;(2)计算卡方变量 ,<<,所以有%的把握认为喜欢玩电脑游戏与认为作业多少有关.
(2)能否有 ﹪的把握认为喜爱打篮球与性别有关说明你的理由.
3.某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多。
求:(1)根据以上数据建立一个 列联表;
(2)试问喜欢电脑游戏与认为作业多少是否有关系
200
(2)由公式计算的观测值:
……10分
又由临界值表知
所以我们有%的把握认为报考文理科与性别有关系 ……12分
【解析】略
4.有甲、乙两个工厂生产同一种产品,产品分为一等品和二等品.为了考察这两个工厂的产品质量的水平是否一致,从甲、乙两个工厂中分别随机地抽出产品109件,191件,其中甲工厂一等品58件,二等品51件,乙工厂一等品70件,二等品121件.
(1)根据以上数据,建立2×2列联表;
(2)试分析甲、乙两个工厂的产品质量有无显著差别(可靠性不低于99%).
试题解析:(1)根据题中所给数据,得到如下列联表:
认为作业多
认为作业不多
总 计
喜欢玩电脑游戏
10
2
12
不喜欢玩电脑游戏
3
7
10
总 计
13
9
22
(2) ,<<
∴有%的把握认为喜欢玩电脑游戏与认为作业多少有关.
在犯错误的概率不超过的前提下不能认为成绩与班级有关系。
考点:×2列联表;2.独立性检验
4.(1)
甲工厂
乙工厂
合计
一等品
58
70
128
二等品
51
121
172
合计
109
191
300
(2)见解析
【解析】
解:(1)
甲工厂
乙工厂
合计
一等品
58
70
128
二等品
51
121
172
合计
109
191
300
(2)提出假设H0:甲、乙两个工厂的产品质量无显著差别.
根据列联表中的数据可以求得
χ2= ≈ 4>.
因为当H0成立时,P(χ2>≈,所以我们有99%以上的把握认为甲、乙两个工厂的产品质量有显著差别.
1.近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
患三高疾病
不患三高疾病
合计

6
30

合计
36
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽 人,其中女性抽多少人
【解析】
试题分析:(1)首先通过全班 人中随机抽取 人,抽到喜爱打篮球的学生的概率为 ,得出喜爱打篮球的共有 人,进而完善此表;(2)通过列联表代入计算公式,得到 的值,再查对临界值表,据此回答能否有 ﹪的把握认为喜爱打篮球与性别有关.
试题解析:(1)列联表补充如下:
喜爱打篮球
不喜爱打篮球
合计
男生
女生
(2)为了研究三高疾病是否与性别有关,请计算出统计量 ,并说明你有多大的把握认为三高疾病与性别有关
2.为了解某班学生喜爱打篮球是否与性别有关,对本班 人进行了问卷调查得到了如下列表:
喜爱打篮球
不喜爱打篮球
合计
男生
女生
合计
已知在全班 人中随机抽取 人,抽到喜爱打篮球的学生的概率为 .
(1)请将上表补充完整(不用写计算过程);
相关文档
最新文档