新华师大版八年级数学复习题及答案
最新华师大版八年级数学下册单元测试题及答案全套
最新华师大版八年级数学下册单元测试题及答案全套第16章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.使分式2x -1有意义的x 的取值范围是( )A .x ≠0B .x >1C .x <1D .x ≠1 2.计算3x -2x 的结果是( )A.6x 2B.6xC.52xD.1x3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法可表示为( )A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-44.如果把2y2x -3y 中的x 和y 都扩大5倍,那么分式的值( )A .扩大5倍B .不变C .缩小为原来的15 D .扩大4倍5.分式方程1x =2x -2的解为( )A .x =2B .x =-2C .x =-23D .x =236.已知a =⎝⎛⎭⎫12-2,b =-⎪⎪⎪⎪-12,c =(-2)3,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <aC .c <b <aD .a <c <b7.化简a 2-4a 2+2a +1÷a 2-4a +4(a +1)2-2a -2的结果为( ) A.a +2a -2 B.a -4a -2 C.a a -2D .a 8.若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠49.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程,其中正确的是( )A.110x +2=100x B.110x =100x +2C.110x -2=100x D.110x =100x -210.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠0二、填空题(每小题3分,共24分) 11.当x =________时,分式x -13x +2的值为0.12.当a =2016时,分式a 2-4a -2的值是________.13.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种________公顷.14.当x =________时,分式1-x x +5的值与x -1x -2的值互为相反数. 15.若a 2+5ab -b 2=0,则b a -ab的值为________.16.若关于x 的分式方程x x -3-2=m 2x -3无解,则m =________.17.若x +y =1,且x ≠0,则⎝⎛⎭⎫x +2xy +y 2x ÷x +yx 的值为________.18.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是________km/h.三、解答题(共66分)19.(每小题4分,共8分)计算:(1)9-4×⎝⎛⎭⎫12-2+|-5|+(π-3)0;(2)⎝⎛⎭⎫1+1a -1÷aa 2-2a +1.20.(每小题6分,共12分)解方程: (1)1-x x -2=1-3x -2;(2)x x -2+2x 2-4=1.21.(每小题6分,共12分)先化简,再求值: (1)a a -b ⎝⎛⎭⎫1b -1a +a -1b ,其中a =2,b =13;(2)先化简:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.22.(每小题6分,共12分)按要求完成下列各题.(1)已知实数m ,n 满足关系1m +n +1m -n =nm 2-n 2,求2mn +n 2m 2;(2)如果3(x +1)(x -2)=Ax +B x +1+Cx -2,求A ,B ,C 的值.23.(10分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支铅笔的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支铅笔售价至少是多少元?24.(12分)有一列按一定顺序和规律排列的数:第一个数是11×2;第二个数是12×3;第三个数是13×4;……对任何正整数n ,第n 个数与第(n +1)个数的和等于2n (n +2).(1)经过探究,我们发现:11×2=11-12,12×3=12-13,13×4=13-14.设这列数的第5个数为a ,那么a >15-16,a =15-16,a <15-16,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明“第n 个数与第(n +1)个数的和等于2n (n +2)”;(3)设M 表示112,122,132,…,120162,这2016个数的和,即M =112+122+132+…+120162,求证:20162017<M <40312016.参考答案与解析1.D 2.D 3.B 4.B 5.B 6.C 7.C 8.C 9.A10.D 解析:原分式方程可化为(5-a )x =25,即x =255-a .∵原分式方程有解,∴x ≠5,∴255-a≠5,即a ≠0,又当5-a =0时整式方程无解,则a ≠5.综上所述,a ≠5且a ≠0.11.1 12.2018 13.aAm (m -a )14.1 15.5 16.±3 17.118.80 解析:设这辆汽车原来的速度是x km/h ,由题意列方程得160x -0.4=160x (1+25%),解得x =80.经检验,x =80是原方程的解,所以这辆汽车原来的速度是80km/h.19.解:(1)原式=3-4×4+5+1=-7.(4分)(2)原式=a a -1÷a (a -1)2=a a -1·(a -1)2a =a -1.(8分)20.解:(1)方程两边同乘以x -2,得1-x =x -2-3.解得x =3.(4分)检验:当x =3时,x -2≠0,故原分式方程的解是x =3.(6分)2)(x +2)≠0,故原分式方程的解是x =-3.(12分)21.解:(1)原式=a a -b ·a -b ab+a -1b =1b +a -1b =a b .(4分)当a =2,b =13时,原式=213=6.(6分)(2)原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x2x -1.(9分)其中⎩⎪⎨⎪⎧(x -1)2≠0,(x -1)x ≠0,x +1≠0,即x ≠-1,0,1.又∵-2<x ≤2且x 为整数,∴x =2.(10分)当x =2时,原式=222-1=4.(12分)22.解:(1)由1m +n +1m -n =2m m 2-n 2=nm 2-n 2可得n =2m (3分),将n =2m 代入2mn +n 2m 2=2m ·2m +(2m )2m 2=8.(6分)(2)Ax +B x +1+C x -2=(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B (x +1)(x -2)=3(x +1)(x -2)(9分),∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3,∴⎩⎪⎨⎪⎧A =0,B =-1,(12分)C =1.23.解:(1)设第一次每支铅笔进价为x 元,根据题意列方程得600x -60054x =30,解得x =4.(3分)经检验:x =4是原分式方程的解.(4分)答:第一次每支铅笔的进价为4元.(5分)(2)设每支铅笔售价为y 元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为4×54=5元.(6分)根据题意列不等式为6004·(y -4)+6005·(y -5)≥420,解得y ≥6.(9分)答:每支铅笔售价至少是6元.(10分) 24.(1)解:a =15×6=15-16正确.(2分)(2)解:第n 个数为1n (n +1)(3分),∵第(n +1)个数为1(n +1)(n +2),∴1n (n +1)+1(n +1)(n +2)=1n +1(1n +1n +2)=1n +1·n +2+n n (n +2)=1n +1·2(n +1)n (n +2)=2n (n +2),即第n 个数与第(n+1)个数的和等于2n (n +2).(5分)(3)证明:∵1-12=11×2<112=1,12-13=12×3<122<11×2=1-12,13-14=13×4<132<12×3=12-13,…,12015-12016=12015×2016<120152<12014×2015=12014-12016,12016-12017=12016×2017<120162<1=1-1,(7分)∴1-1<12+12+12+…+12+12<2-1,(9分)即2016<12+122+132+…+120152+120162<40312016,(11分)∴20162017<M <40312016.(12分)第17章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.在函数y =2x -4中,自变量x 的取值范围是( ) A .x >2 B .x ≤2 C .x ≥2 D .x ≠22.在平面直角坐标系中,点P (-2,-3)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于行驶速度v (单位:千米/时)的函数关系式是( )A .t =20vB .t =20vC .t =v 20D .t =10v4.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x 的关系的大致图象是( )5.下面四条直线,其中直线上每个点的坐标都是二元一次方程x -2y =2的解的是( )6.反比例函数y =6x 的图象上有两点(-2,y 1),(1,y 2),那么y 1与y 2的关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为( ) A .y =x +1 B .y =x -1 C .y =x D .y =x -28.当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )9.如图,直线y =mx 与双曲线y =kx 交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为点M ,连接BM ,若S △ABM =2,则k 的值为( )A .-2B .2C .4D .-4第9题图第10题图10.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分;④小刚上课迟到了1分钟.其中正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.若y =(a +3)x +a 2-9是正比例函数,则a =________.12.已知一次函数y =(1+m )x +m -2,若y 随x 的增大而增大,则m 的取值范围是________. 13.已知点A (x ,1)与点B (2,y )关于y 轴对称,则(x +y )2016的值为________.14.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab -5的值为________.15.如图,一个正比例函数的图象与一次函数y =-x +1的图象相交于点P ,则这个正比例函数的表达式是________________________________________________________________________.第15题图第16题图16.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =-4x 和y =2x 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为________.17.直线y =kx (k >0)与双曲线y =2x 交于A 、B 两点.若A 、B 两点的坐标分别为A (x 1,y 1)、B (x 2,y 2),则x 1y 2+x 2y 1的值为________.与时间x (min)的函数关系如图所示.已知药物燃烧阶段,y 与x 成正比例,燃完后y 与x 成反比例.现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.当每立方米空气中含药量低于1.6mg 时,对人体无毒害.那么从消毒开始,经过________min 后学生才可进入教室.三、解答题(共66分)19.(8分)已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x 轴的交点A 的坐标,与y 轴的交点B 的坐标; (3)在(2)的条件下,求出△AOB 的面积;(4)利用图象直接写出当y <0时,x 的取值范围.20.(10分)如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请直接写出它的解;(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.21.(10分)已知反比例函数y =kx (k 为常数,k ≠0)的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.22.(12分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=mx (m ≠0)的图象交于点A (-1,6),B (a ,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y 1>y 2时,x 的取值范围.23.(12分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x ,购票款为y ):方案一:提供8000元赞助后,每张票的票价为50元; 方案二:票价按图中的折线OAB 所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少? (2)求方案二中y 与x 的函数关系式;(3)至少买多少张票时选择方案一比较合算?24.(14分)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早12小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y (千米)与所用时间x (小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y (千米)与x (小时)的函数关系式; (3)两车出发后经过多长时间相距90千米的路程?参考答案与解析1.C 2.C 3.B 4.B 5.C 6.C 7.A 8.A 9.A10.B 解析:∵小刚从家出发7分钟时与家的距离是1200米,即小刚从家出发7分钟时距离学校3500-1200=2300(m),∴公交车的速度为2300-30012-7=400米/分,故①正确;由①知公交车速度为400米/分,∴公交车行驶的时间为3100-300400=7(分钟),12-7=5(分钟),∴小刚从家出发5分钟时乘上公交车,故②正确;∵从上公交车到他到达学校共用10分钟,∴小刚从下公交车后跑向学校的速度是30010-7=100米/分,故③正确;∵小刚从下车至到达学校所用时间为5+10-12=3(分钟).而小刚下车时发现还有4分钟上课,∴小刚上课提前1分钟,故④错误.故选B.11.3 12.m >-1 13.1 14.-1315.y =-2x16.3 解析:设P (0,b ),∵直线AB ∥x 轴,∴A ,B 两点的纵坐标都为b .∵点A 在反比例函数y =-4x 的图象上,∴当y =b 时,x =-4b ,即A 点坐标为⎝⎛⎭⎫-4b ,b .又∵点B 在反比例函数y =2x 的图象上,∴当y =b 时,x =2b ,即B 点坐标为⎝⎛⎭⎫2b ,b ,∴AB =2b -⎝⎛⎭⎫-4b =6b ,∴S △ABC =12·AB ·OP =12·6b·b =3.17.-418.50 解析:设药物燃烧后y 与x 之间的函数解析式为y =k 2x ,把点(10,8)代入y =k 2x ,得8=k 210,解得k 2=80,∴y 关于x 的函数式为y =80x ;当y =1.6时,1.6=80x ,解得x =50,∴50分钟后学生才可进入教室.19.解:(1)当x =0时,y =4,当y =0时,x =-2,则图象如图所示.(2分)(2)由(1)可知A (-2,0),B (0,4).(4分) (3)S △AOB =12×2×4=4.(6分)(4)x <-2.(8分)20.解:(1)∵点P 在直线l 1上,∴b =1+1=2.(2分)(2)⎩⎪⎨⎪⎧x =1,y =2.(4分) (3)直线y =nx +m 也经过点P .(6分)理由如下:∵直线y =mx +n 经过点P (1,2),∴2=m +n .当x =1时,y =n +m =2,即直线l 3也经过点P .(10分)21.解:(1)∵y =k x 的图象经过点A (2,3),∴3=k 2,解得k =6,∴y =6x.(2分)(2)当x =-1时,y =6-1=-6;当x =3时,y =63=2,∴点B 不在此函数的图象上,点C 在此函数的图象上.(6分)(3)∵当x =-3时,y =-2;当x =-1时,y =-6.(8分)又由k >0知,在x <0时,y 随x 的增大而减小, ∴y 的取值范围是-6<y <-2.(10分)22.解:(1)把点A (-1,6)代入反比例函数y 2=m x (m ≠0),得m =-1×6=-6,∴y 2=-6x .(3分)将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).(5分)将A (-1,6),B (3,-2)代入一次函数y 1=kx +b ,得⎩⎪⎨⎪⎧-k +b =6,3k +b =-2,解得⎩⎪⎨⎪⎧k =-2,b =4.∴y 1=-2x +4.(8分)(2)由函数图象可得:当y 1>y 2时,x <-1或0<x <3.(12分)23.解:(1)按方案一应付购票款8000+120×50=14000元,(1分)按方案二应付购票款13200元.(2分)(2)设直线OA 的解析式为y =k 1x ,由图可知其过点A (100,12000),则100k 1=12000,k 1=120.∴直线OA 的解析式为y =120x .(4分)设直线AB 的解析式为y =k 2x +b ,由图可知其过点A (100,12000),B (120,13200),可得⎩⎪⎨⎪⎧100k 2+b =12000,120k 2+b =13200,解得⎩⎪⎨⎪⎧k 2=60,b =6000,∴直线AB 的解析式为y =60x +6000,(7分)∴y =⎩⎪⎨⎪⎧120x (0≤x ≤100),60x +6000(x ≥100).(8分)(3)设至少买x 张票时选择方案一比较合算.由题意可知60x +6000>8000+50x ,解得x >200.∴至少买201张票时选择方案一比较合算.(12分)24.解:(1)慢车速度为180÷⎝⎛⎭⎫72-12=60(千米/时),(1分)快车速度为60×2=120(千米/时).(2分) (2)快车停留的时间为72-180120×2=12(小时),12+180120=2(小时),即C (2,180).(3分)设CD 的解析式为y=kx +b ,则将C (2,180),D ⎝⎛⎭⎫72,0代入,得⎩⎪⎨⎪⎧180=2k +b ,0=72k +b ,解得⎩⎪⎨⎪⎧k =-120,b =420,∴快车返回过程中y (千米)与x (小时)的函数关系式为y =-120x +420⎝⎛⎭⎫2≤x ≤72.(7分) (3)相遇之前:120x +60x +90=180,解得x =12;(9分)相遇之后:120x +60x -90=180,解得x =32;(11分)快车从甲地到乙地需要180÷120=32(小时),快车返回之后:60x =90+120⎝⎛⎭⎫x -12-32,解得x =52.(13分)综上所述,两车出发后经过12或32或52小时,相距90千米的路程.(14分)第18章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分) 1.已知▱ABCD 的周长为32,AB =4,则BC 的长为( ) A .4 B .12 C .24 D .282.如图,在▱ABCD 中,若∠A =2∠B ,则∠D 的度数是( ) A .50° B .60° C .70° D .80°第2题图第3题图3.如图,▱ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是( ) A .S ▱ABCD =4S △AOB B .AC =BDC .AC ⊥BD D .▱ABCD 是轴对称图形4.在下列图形的性质中,平行四边形不一定具有的是( ) A .对角相等 B .对角互补C .对边相等D .对角线互相平分5.在平面直角坐标系中,有A (0,1),B (-1,0),C (1,0)三点,若点D 与A ,B ,C 三点构成平行四边形,则点D 的坐标不可能是( )A .(0,-1)B .(-2,1)C .(-2,-1)D .(2,1)6.如图,已知四边形ABCD的面积为8cm2,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是()A.4cm2B.3cm2C.2cm2D.1cm2第6题图第7题图7.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DFC.AD=2BF D.BE=2CF8.如图,在▱ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,AB=3,AD=5,则EF的长为()A.1 B.1.5 C.2 D.2.5第8题图第9题图第10题图9.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,则△EDF 与△BCF的周长之比是()A.1∶2 B.1∶3 C.1∶4 D.1∶510.如图,以▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.12.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足为E,F,若∠EAF=59°,则∠B=________度.第12题图第13题图第14题图13.如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF 为平行四边形,DE=2,则AD=________.14.如图,4×4的方格中每个小正方形的边长都是1,若四边形ABDC的面积记作S1,四边形ECDF 的面积记作S2,则S1与S2大小关系是__________.15.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成________个平行四边形.第15题图第16题图16.如图,四边形ABCD中,AD∥BC,作AE∥DC交BC于E.△ABE的周长是25cm,四边形ABCD 的周长是37cm,那么AD=________cm.17.如图,点A 是反比例函数y =-6x (x <0)的图象上的一点,过点A 作▱ABCD ,使点B ,C 在x 轴上,点D 在y 轴上,则▱ABCD 的面积为________.第17题图第18题图18.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是________[提示:直角三角形中,斜边上的中线等于斜边的一半].①∠DCF =12∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .三、解答题(共66分)19.(8分)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA =DE .20.(10分)如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD ,连接CE . 求证:CE 平分∠BCD .21.(10分)如图,在直角三角形ABC 中,∠ACB =90°,AC =BC =10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.(1)线段A 1C 1的长度是________,∠CBA 1的度数是________; (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.22.(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)求证:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.23.(12分)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE =DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.24.(14分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC;(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明;(3)若AC=6,DE=4,则DF=________.参考答案与解析1.B 2.B 3.A 4.B 5.C 6.C 7.D 8.A 9.A10.B 解析: ∵四边形ABCD 是平行四边形,∴AD =BC ,∠BAD =∠BCD ,∠BAD +∠ADC =180°.∵AD =DE =CE ,∴AD =DE =CE =BC ,∴∠DAE =∠AED ,∠CBE =∠CEB .∵∠DEC =90°,∴∠EDC =∠ECD =45°.设∠DAE =∠AED =x ,∠CBE =∠CEB =y ,∴∠ADE =180°-2x ,∠BCE =180°-2y .∴∠ADC =∠ADE +∠EDC =180°-2x +45°=225°-2x ,∠BCD =∠BCE +∠ECD =225°-2y ,∴∠BAD =180°-(225°-2x )=2x -45°,∴2x -45°=225°-2y ,∴x +y =135°,∴∠AEB =360°-∠AED -∠CEB -∠DEC =360°-135°-90°=135°.故选B.11.45° 12.59 13.7 14.S 1=S 2 15.4 16.617.6 解析:如图,连接OA ,CA ,则S △OAD =12|k |=12×6=3.∵四边形ABCD 为平行四边形,∴BC ∥AD ,∴S △CAD =S △OAD =3,∴S ▱ABCD =2S △CAD =6.18.①②④ 解析:①∵F 是AD 的中点,∴AF =FD .∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠FCB ,∴∠DCF =12∠BCD ,故①正确;②延长EF 交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF .∵F 为AD 的中点,∴AF =DF .在△AEF 和△DMF 中,⎩⎪⎨⎪⎧∠A =∠MDF ,AF =DF ,∠AFE =∠DFM ,∴△AEF ≌△DMF ,∴FE =FM ,∠AEF=∠M .∵CE ⊥AB ,∴∠AEC =90°.∵AB ∥CD ,∴∠ECD =90°.∵FM =EF ,∴FC =EF ,故②正确;③∵EF=FM ,∴S △EFC =S △CFM .∵MC >BE ,∴S △BEC <2S △EFC ,故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°-x ,∴∠EFC =180°-2x ,∴∠EFD =90°-x +180°-2x =270°-3x .∵∠AEF =90°-x ,∴∠DFE =3∠AEF ,故④正确.故答案为①②④.19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,(2分)∴∠E =∠BAE .(4分)∵AE 平分∠BAD , ∴∠BAE =∠DAE ,(6分)∴∠E =∠DAE ,∴DA =DE .(8分) 20.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE .(3分)∵AE +CD =AD ,∴AE +AB =BC ,∴BE =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BCD .(10分)21.(1)10 135°(4分)(2)证明:∵∠A 1C 1B =∠C 1BC =90°,∴A 1C 1∥BC .(6分)∵A 1C 1=AC =BC ,∴四边形CBA 1C 1是平行四边形.(10分)22.(1)证明:∵BD 垂直平分AC ,∴∠BCD =∠BAD .∵∠BCD =∠ADF ,∴∠BAD =∠ADF ,∴AB ∥DF .(3分)∵AF ⊥AC ,BD ⊥AC ,∴∠F AE =∠DEC =90°,∴AF ∥BD ,∴四边形ABDF 是平行四边形.(5分)(2)解:∵四边形ABDF 是平行四边形,∴AB =DF =5,BD =AF =5.设BE =x ,则DE =BD -BE =5-x .(8分)在△ABD 中,∵AE ⊥BD ,∴AD 2-DE 2=AB 2-BE 2,∴36-(5-x )2=25-x 2,解得x =1.4,即BE =1.4,(11分)∴AE =AB 2-BE 2=4.8,∴AC =2AE =9.6.(12分)23.(1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .(1分)在△OBE 与△ODF中,⎩⎪⎨⎪⎧∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF ,∴△OBE ≌△ODF ,(4分)∴BO =DO .(5分)(2)解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE .(7分)∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD =∠G =45°,∴DG =DO ,∴OF =FG =1.(9分)由(1)可知,OE =OF =1,(10分)∴GE =OE +OF +FG =3,∴AE =3.(12分)24.(1)证明:∵DF ∥AC ,DE ∥AB ,∴四边形AFDE 是平行四边形,∴AF =DE .(2分)∵DF ∥AC ,∴∠FDB =∠C .(3分)又∵AB =AC ,∴∠B =∠C ,∴∠FDB =∠B ,∴DF =BF .(6分)∴DE +DF =AF +BF =AB =AC .(7分)(2)图②中:AC +DF =DE .(9分)图③中:AC +DE =DF .(11分) (3)2或10(14分)第19章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分 D .两组对角分别相等2.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.310第2题图第3题图 3.如图,在菱形ABCD 中,AC ,BD 是对角线,若∠BAC =50°,则∠ABC 等于( ) A .40° B .50° C .80° D .100°4.正方形ABCD 的面积为36,则对角线AC 的长为( )A .6B .6 2C .9D .9 2 5.下列命题中,真命题是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.四边形ABCD 的对角线AC =BD ,AC ⊥BD ,分别过A ,B ,C ,D 作对角线的平行线,所成的四边形EFMN 是( )A .正方形B .菱形C .矩形D .任意四边形7.如图,菱形ABCD 中,∠A =60°,周长是16,则菱形的面积是( ) A .16 B .16 2 C .16 3 D .8 3第7题图第9题图第10题图8.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下列结论正确的有( ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④9.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长为( )A .4B .6C .8D .1010.如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥AB .下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90°,那么四边形AEDF 是矩形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是菱形.其中,正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.顺次连接矩形四边中点所形成的四边形是________.12.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,则∠AFC =________.第12题图第14题图13.已知▱ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件____________使其成为一个菱形(只添加一个即可).14.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为________度时,两条对角线长度相等.15.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为____________.第15题图第16题图 16.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD ,CB 为边作平行四边形CDEB ,当AD =________时,平行四边形CDEB 为菱形.17.如图,已知双曲线y =kx (x >0)经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为6,则k =________.第17题图第18题图18.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD 于点F.若AB=6,BC=10,则FD的长为________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD =∠BCD,AM=AN,求证:四边形ABCD是菱形.20.(10分)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD,BC于点E,F(保留作图痕迹,不写作法和证明);(2)连接BE,DF,问四边形BEDF是什么四边形?请说明理由.21.(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.22.(12分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.23.(12分)如图,在菱形ABCD中,AB=4,点E为BC的中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.24.(12分)如图,在△ABC 中,D 是BC 边上的一点,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF .(提示:在直角三角形中,斜边的中线等于斜边的一半)(1)试判断线段BD 与CD 的大小关系;(2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论;(3)若△ABC 为直角三角形,且∠BAC =90°时,判断四边形AFBD 的形状,并说明理由.参考答案与解析1.B 2.B 3.C 4.B 5.C 6.A 7.D 8.B 9.C10.D 解析:∵DE ∥CA ,DF ∥AB ,∴四边形AEDF 是平行四边形,故①正确;若∠BAC =90°,则平行四边形AEDF 为矩形,故②正确;若AD 平分∠BAC ,∴∠EAD =∠F AD .∵DE ∥CA ,∴∠EDA =∠F AD ,∴∠EAD =∠EDA ,∴AE =DE ,∴平行四边形AEDF 为菱形,故③正确;若AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,故④正确,则其中正确的个数有4个.故选D.11.菱形 12.112.5° 13.AC ⊥BD (答案不唯一)14.90 15.(2+2,2) 16.7517.6 解析:设F ⎝⎛⎭⎫a ,k a ,则B ⎝⎛⎭⎫a ,2k a ,因为S 矩形ABCO =S △OCE +S △AOF +S 四边形OEBF ,所以12k +12k +6=a ·2ka,解得k =6.18.256 解析:连接EF ,∵E 是AD 的中点,∴AE =DE .∵△ABE 沿BE 折叠后得到△GBE ,∴AE =EG ,BG =AB =6,∴ED =EG .∵在矩形ABCD 中,∠A =∠D =90°,∴∠EGF =90°.在Rt △EDF 和Rt △EGF 中,⎩⎪⎨⎪⎧ED =EG ,EF =EF ,∴Rt △EDF ≌Rt △EGF (HL),∴DF =FG .设DF =x ,则BF =BG +GF =6+x ,CF =CD -DF =6-x .在Rt △BCF 中,BC 2+CF 2=BF 2,即102+(6-x )2=(6+x )2,解得x =25.即DF =25.19.证明:∵AD ∥BC ,∴∠BAD +∠B =180°.(1分) ∵∠BAD =∠BCD ,∴∠B +∠BCD =180°,∴AB ∥CD ,(3分)∴四边形ABCD 为平行四边形,(4分) ∴∠B =∠D .∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.(6分)在△ABM 与△ADN 中, ⎩⎪⎨⎪⎧∠AMB =∠AND ,∠B =∠D ,AM =AN ,∴△ABM ≌△ADN ,(9分) ∴AB =AD ,∴四边形ABCD 是菱形.(10分) 20.解:(1)如图所示,EF 为所求直线.(4分) (2)四边形BEDF 为菱形.(5分)理由如下:∵EF 垂直平分BD ,∴BF =DF ,BE =DE ,∠DEF =∠BEF .(6分)∵四边形ABCD 为矩形,∴AD ∥BC ,(7分)∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF .∵BF =DF ,∴BE =ED =DF =BF ,(9分)∴四边形BEDF 为菱形.(10分)21.(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°.(1分)∵△EBF 是等腰直角三角形,其中∠EBF =90°,∴BE =BF ,∠EBC +∠FBC =90°.(2分)又∵∠ABF +∠FBC =90°,∴∠ABF =∠CBE .(3分)在△ABF 和△CBE 中,有⎩⎪⎨⎪⎧AB =CB ,∠ABF =∠CBE ,BF =BE ,∴△ABF ≌△CBE (SAS).(5分)(2)解:△CEF 是直角三角形.(6分)理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180°-∠BFE =135°.又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,(8分)∴∠CEF =∠CEB -∠FEB =135°-45°=90°,(9分)∴△CEF 是直角三角形.(10分)22.(1)证明:∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC , ∴∠BAD =∠DAC .(1分)∵AE 平分∠CAM ,∴∠CAE =∠EAM ,∴∠DAE =∠DAC +∠CAE =12(∠BAC +∠CAM )=90°.(4分)∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,(5分)∴四边形ADCE 为矩形.(6分)(2)解:当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形.(8分)证明如下∵∠BAC =90°,∴∠DAC =∠DCA =45°,∴AD =CD .(10分)又∵四边形ADCE 为矩形,∴四边形ADCE 为正方形.(12分)23.解:(1)连接AC ,BD ,并且AC 和BD 相交于点O .∵AE ⊥BC 且E 为BC 的中点,∴AC =AB .∵四边形ABCD 为菱形,∴AB =BC =AD =DC ,AC ⊥BD ∴△ABC 和△ADC 都是正三角形,∴AB =AC =4.(3分)∴AO =12AC =2,∴BO =AB 2-AO 2=23,∴BD =43,∴菱形ABCD 的面积是12AC ·BD =8 3.(7分)(2)∵△ADC 是正三角形,AF ⊥CD ,∴∠DAF =30°.∵CG ∥AE ,BC ∥AD ,AE ⊥BC ,∴四边形AECG 为矩形,(10分)∴∠AGH =90°,∴∠AHC =∠DAF +∠AGH =120°.(12分)24.解:(1)BD =CD .∵AF ∥BC ,∴∠F AE =∠CDE .∵点E 是AD 的中点,∴AE =DE .(2分)在△AEF 和△DEC 中, ⎨⎪⎧∠F AE =∠CDE ,AE =DE ,∴△AEF ≌△DEC (ASA),(3分)∴AF =CD .∵AF =BD ,∴BD =CD .(4分)(2)四边形AFBD是矩形.(5分)证明如下:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.(6分)∵AB=AC,BD=CD,∴AD⊥BC,(7分)∴∠ADB=90°,∴四边形AFBD是矩形.(8分)(3)四边形AFBD为菱形,(9分)理由如下:∵∠BAC=90°,BD=CD,∴BD=AD.(10分)同(2)可得四边形AFBD是平行四边形,∴四边形AFBD是菱形.(12分)第20章检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.62.明明班里有10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)如下:10,12,13.5,40.8,19.3,20.8,25,16,30,30.这10名同学平均捐款() A.25 B.23.9 C.19.04 D.21.743.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.804.某校七年级有13名同学参加百米跑竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的() A.中位数B.众数C.平均数D.最大值与最小值的差5.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.我市欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,将录取()8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数10.图①、图②分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b,中位数分别为c、d,则下列关于a、b、c、d的大小关系,正确的是()A.a>b,c>d B.a>b,c<dC.a<b,c>d D.a<b,c<d二、填空题(每小题4分,共32分)11.2016年南京3月份某周7天的最低气温分别是-1℃,2℃,3℃,2℃,0℃,-1℃,2℃,则这7天最低气温的众数是________℃.12则该校女子排球队队员的平均年龄为________岁.13.某学习小组在“世界读书日”统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.一组正整数2,3,4,x是从小到大排列的,已知这组数据的中位数和平均数相等,那么x的值是5.16.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是________(填“小明”或“小华”).17.为实现“畅通重庆”,加强交通管理,严防“交通事故”,一名警察在高速公路上随机观察6辆车的。
2022-2023华东师大版八年级数学上册《12-2整式的乘法》同步知识点分类练习题(附答案)
2022-2023华东师大版八年级数学上册《12.2整式的乘法》同步知识点分类练习题(附答案)一.单项式乘单项式1.下列运算正确的是()A.2a2•3a=6a3B.(2a)3=2a3C.a6÷a2=a3D.3a2+2a3=5a52.计算(﹣3x)2⋅(﹣2x3)的正确结果为()A.18x5B.36x5C.﹣18x5D.﹣36x53.下列各题的运算结果是五次单项式的是()A.2mn2+3mn2B.3mn3×2m C.(3m2n)2D.(2m2)34.计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y35.化简(﹣a)3•(﹣b)的结果是()A.﹣3ab B.3ab C.﹣a3b D.a3b6.一个长方形的长为8×103cm,宽为5×102cm,则它的面积为cm2.7.计算3x•2x2y的结果是.8.计算:(3m)2•m3=.9.计算:(1)(﹣2ab2)•(﹣3a2)=;(2)=.10.计算:2(a2)3•(﹣3a2b)=.11.用科学记数法表示:(4×108)×(﹣8×103)=.12.已知单项式﹣3x2a y3与x2y2b﹣3的和仍是一个单项式,则它们的积是.13.计算:(﹣2a2b3)•(﹣2ab)2=.14.计算:.15.(1)计算:﹣5+(﹣3)×(﹣2)2.(2)化简:3a+2(a2﹣a)﹣2a•3a.16.计算:(1)a•a2•a3+(a3)2﹣(2a2)3;(2)(2a)3•(﹣3a2b).17.计算:(1)(﹣3x2y)2•(﹣xyz)•xz2;(2)5a3b•(﹣3b)2+(﹣6ab)2•(﹣ab)﹣ab3•(﹣4a)2.二.单项式乘多项式18.若一个长方体的长、宽、高分别是3x﹣4,2x和x,则它的体积等于()A.(3x﹣4)•2x•x=3x3﹣4x2B.x•2x=x2C.(3x﹣4)•2x•x=6x3﹣8x2D.2x(3x﹣4)=6x2﹣8x19.计算:﹣5xy(2y+x﹣8)=﹣10xy2﹣5x2y□,□内应填写()A.﹣10xy B.﹣5x2y C.+40D.+40xy 20.下列计算正确的是()A.﹣x(﹣x+y)=x2+xyB.m(m﹣1)=m2﹣1C.5a﹣2a(a﹣1)=﹣2a2+3aD.(a﹣2a2+1)•(﹣3a)=6a3﹣3a2﹣3a21.化简(﹣8x2)•(5x3﹣3x2+x)的结果是()A.﹣40x5﹣24x4﹣8x3B.﹣40x5+24x4﹣8x3C.﹣40x5+24x4+8x3D.﹣40x5﹣24x4+8x322.计算﹣2x2(x2﹣3x﹣1)+(﹣2x2)(﹣x+1)的结果为()A.2x3+8x4B.﹣2x2+8x4C.2x4﹣8x3D.﹣2x4+8x3 23.已知a﹣2b=3,则代数式a(b+2)﹣b(a+4)的值为.24.探究:①2x3•5x2=;②3a2•2a3=;③(﹣9a2b3)•8ab2=;④﹣6x2y(a﹣b)•xy2(b﹣a)2=;练习:①(﹣3x2y2z3)•(x3y3)=;②(﹣5a2b3)•(﹣4b2c)=;③(﹣3x2y3)•(5x3y2z)=.25.计算:=.26.(﹣2x2y)•(3xyz﹣2y2z+1).27.化简:(1)(x﹣xy)•(﹣12y)(2)(﹣2ab)(3a2﹣2ab﹣4b2)(3)(﹣xy2)2(3xy﹣4xy2+1)28.计算:2x(3x2﹣4x)﹣3x2(2x﹣3).29.计算:(1)(﹣2a2b)3•(3b2﹣4a+6);(2)(﹣2m)2•(m2﹣5m﹣3).三.多项式乘多项式30.若x+y=2,xy=﹣2,则(x﹣1)(y﹣1)的值是()A.﹣1B.1C.5D.﹣3 31.若(x+1)(x﹣2)=x2+mx﹣n,则mn的值为()A.﹣1B.2C.﹣2D.1 32.若多项式2x+1与x2+ax﹣1的乘积中不含x的一次项,则a的值()A.B.2C.D.﹣2 33.若(x2﹣mx+1)(x﹣2)的积中不含x的二次项,则m的值是()A.﹣1B.﹣2C.1D.2 34.计算(3a+m)(﹣6a+2)的结果是﹣18a2+2m,则m的值是()A.m=﹣2B.m=2C.m=﹣1D.m=1 35.计算:(x﹣3)(x﹣4)=x2+ax+b,则a=,b=.36.计算(3m+2n)(m﹣2n)的结果为.37.已知a,b为常数,对于任意x的值都满足(x﹣10)(x﹣8)+a=(x﹣9)(x﹣b),则a+b的值为.38.已知多项式x﹣a与2x2﹣2x+1的乘积的结果中不含x2项,则常数a的值是.39.若(2x﹣1)(x+3)=2x2+bx﹣3,则b=.40.已知(x2+mx﹣n)(2x﹣3)的展开式中不含x和x2项.(1)求m,n的值;(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.41.已知(mx+n)(x2﹣3x+4)的展开式中不含x2项,并且x3的系数为2.(1)求m,n的值;(2)在(1)的条件下,若a3=m,b3=n,求(a﹣b)(a2+ab+b2)的值.42.计算:(x+3)(x﹣7)﹣x(x﹣1).43.计算:(1)﹣a2•(﹣a)3•(﹣a)4;(2)(x﹣1)(5x+3)﹣(2x+4)(3x﹣2).参考答案一.单项式乘单项式1.解:A、2a2•3a=6a3,故A符合题意;B、(2a)3=8a3,故B不符合题意;C、a6÷a2=a4,故C不符合题意;D、3a2与2a3不能合并,故D不符合题意;故选:A.2.解:(﹣3x)2⋅(﹣2x3)=9x2⋅(﹣2x3)=﹣18x5.故选:C.3.解:A、2mn2+3mn2=5mn2,5mn2是三次单项式,不符合题意;B、3mn3×2m=6m2n3,6m2n3是五次单项式,符合题意;C、(3m2n)2=9m4n2,9m4n2是六次单项式,不符合题意;D、(2m2)3=8m6,8m6是六次单项式,不符合题意;故选:B.4.解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.5.解:原式=﹣a3•(﹣b)=a3b.故选:D.6.解:长方形的面积为:8×103×5×102=4×106(cm2).故答案为:4×106.7.解:3x•2x2y=6x3y,故答案为:6x3y.8.解:(3m)2•m3=9m2•m3=9m5.故答案为:9m5.9.解:(1)(﹣2ab2)•(﹣3a2)=6a3b2;故答案为:6a3b2;(2)=(32)2020×(﹣)2020×(﹣)=[9×(﹣)]2020×(﹣)=﹣1×(﹣)=;故答案为:.10.解:2(a2)3•(﹣3a2b)=2a6•(﹣3a2b)=﹣6a8b.故答案为:﹣6a8b.11.解:(4×108)×(﹣8×103)=(﹣8×4)×(108×103)=﹣32×1011=﹣3.2×1012,故答案为:﹣3.2×1012.12.解:∵单项式﹣3x2a y3与x2y2b﹣3的和仍是一个单项式,∴式﹣3x2a y3与x2y2b﹣3是同类项,∴2a=2,2b﹣3=3,解得a=1,b=3,∴﹣3x2y3•x2y3=﹣3x4y6.故答案为:﹣3x4y6.13.解:原式=(﹣2a2b3)•(4a2b2)=﹣8a4b5.故答案为:﹣8a4b5.14.解:==﹣9a10÷a5=﹣9a5.15.解:(1)原式=3﹣5+(﹣3)×4=3﹣5﹣12=﹣14,(2)原式=3a+2a2﹣2a﹣6a2,=a﹣4a2.16.解:(1)原式=a6+a6﹣8a6=﹣6a6;(2)原式=8a3•(﹣3a2b)=﹣24a5b.17.解:(1)原式=9x4y2•(﹣xyz)•xz2=﹣x6y3z3;(2)原式=5a3b•(9b2)+12a2b2•(﹣ab)﹣ab3•16a2=45a3b3﹣12a3b3﹣16a3b3=17a3b3.二.单项式乘多项式18.解:长方体的体积=2x•x(3x﹣4)=6x3﹣8x2.故选:C.19.解:﹣5xy(2y+x﹣8)=﹣10xy2﹣5x2y+40xy.∴□内应填写+40xy.故选:D.20.解:A.﹣x(﹣x+y)=x2﹣xy,故计算错误,不合题意;B.m(m﹣1)=m2﹣m,故计算错误,不合题意;C.5a﹣2a(a﹣1)=5a﹣2a2+2a=7a﹣2a2,故计算错误,不合题意;D.(a﹣2a2+1)•(﹣3a)=6a3﹣3a2﹣3a,故计算正确,符合题意.故选:D.21.解:原式=(﹣8x2)•5x3﹣(﹣8x2)•3x2+(﹣8x2)•x=﹣40x5+24x4﹣8x3,故选:B.22.解:﹣2x2(x2﹣3x﹣1)+(﹣2x2)(﹣x+1)=﹣2x4+6x3+2x2+2x3﹣2x2=﹣2x4+8x3,故选:D.23.解:a(b+2)﹣b(a+4)=ab+2a﹣ab﹣4b=2a﹣4b=2(a﹣2b),将a﹣2b=3代入,原式=2×3=6,故答案为:6.24.解:①2x3•5x2=10x5;②3a2•2a3=6a5;③(﹣9a2b3)•8ab2=﹣72a3b5;④﹣6x2y(a﹣b)•xy2(b﹣a)2=﹣6x2y(a﹣b)•xy2(a﹣b)2=﹣4x3y3(a﹣b)3;练习:①(﹣3x2y2z3)•(x3y3)=﹣5x5y5z3;②(﹣5a2b3)•(﹣4b2c)=20a2b5c;③(﹣3x2y3)•(5x3y2z)=﹣15x5y5z.故答案为:①10x5;②6a5;③﹣72a3b5;④﹣4x3y3(a﹣b)3;①﹣5x5y5z3;②20a2b5c;③﹣15x5y5z.25.解:原式=12xy•﹣12xy•y=6x2y﹣4xy2,故答案为:6x2y﹣4xy2.26.解:(﹣2x2y)•(3xyz﹣2y2z+1)=﹣6x3y2z+4x2y3z﹣2x2y.27.解:(1)(x﹣xy)•(﹣12y)=x•(﹣12y)﹣xy•(﹣12y)=﹣4xy+9xy2;(2)原式=﹣6a3b+4a2b2+8ab3;(3)原式=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.28.解:原式=6x3﹣8x2﹣6x3+9x2=(6x3﹣6x3)+(﹣8x2+9x2)=x2.29.解:(1)原式=﹣8a6b3⋅(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3;(2)原式=.=m4﹣20m3﹣12m2.三.多项式乘多项式30.解:当x+y=2,xy=﹣2时,(x﹣1)(y﹣1)=xy﹣x﹣y+1=xy﹣(x+y)+1=﹣2﹣2+1=﹣3.故选:D.31.解:∵(x+1)(x﹣2)=x2﹣x﹣2,(x+1)(x﹣2)=x2+mx﹣n,∴m=﹣1,n=2.∴mn=﹣2.故选:C.32.解:(2x+1)×(x2+ax﹣1)=2x3+(2a+1)x2+(a﹣2)x﹣1;∵多项式2x+1与x2+ax﹣1的乘积中不含x的一次项,∴a﹣2=0,a=2,故选:B.33.解:(x2﹣mx+1)(x﹣2)=x3﹣mx2+x﹣2x2+2mx﹣2=x3﹣(m+2)x2+(2m+1)x﹣2,∵积中不含x的二次项,∴﹣(m+2)x2=0,∴m=﹣2.故选:B.34.解:由题意得(3a+m)(﹣6a+2)=﹣18a2+6a﹣6am+2m,∴﹣18a2+6a﹣6am+2m=﹣18a2+2m,∴m=1.故选:D.35.解:(x﹣3)(x﹣4)=x2﹣7x+12.∵(x﹣3)(x﹣4)=x2+ax+b,∴a=﹣7,b=12.故答案为:﹣7,12.36.解:(3m+2n)(m﹣2n)=3m2﹣6mn+2mn﹣4n2=3m2﹣4mn﹣4n2.故答案为:3m2﹣4mn﹣4n2.37.解:∵(x﹣10)(x﹣8)+a=(x﹣9)(x﹣b),∴x2﹣18x+80+a=x2﹣(9+b)x+9b,∴9+b=18,80+a=9b,∴b=9,a=1,∴a+b=1+9=10,故答案为:10.38.解:(x﹣a)(2x2﹣2x+1)=2x3﹣2x2+x﹣2ax2+2ax﹣a=2x3﹣(2+2a)x2+x+2ax﹣a∵结果不含x2项,∴2+2a=0,解得:a=﹣1.故答案为:﹣1.39.解:(2x﹣1)(x+3)=2x2﹣x+6x﹣3=2x2+5x﹣3.∵(2x﹣1)(x+3)=2x2+bx﹣3,∴2x2+5x﹣3=2x2+bx﹣3.∴b=5.故答案为:5.40.解:(1)(x2+mx﹣n)(2x﹣3)=2x3﹣3x2+2mx2﹣3mx﹣2nx+3n=2x3+(2m﹣3)x2﹣(3m+2n)x+3n,∵展开式中不含x和x2项,∴2m﹣3=0,﹣(3m+2n)=0,∴m=,n=﹣;(2)(m+n)(m2﹣mn+n2)=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3,当m=,n=﹣时,原式=()3+(﹣)3=﹣=﹣.41.解:(1)原式=mx3﹣3mx2+4mx+nx2﹣3nx+4n =mx3+(n﹣3m)x2+(4m﹣3n)x+4n,由题意可知:m=2,n﹣3m=0,∴m=2,n=6.(2)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3,当a3=2,b3=6时,原式=2﹣6=﹣4.42.解:(x+3)(x﹣7)﹣x(x﹣1)=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.43.解:(1)原式=﹣a2•(﹣a3)•a4=a5•a4=a9.(2)原式=(5x2﹣2x﹣3)﹣(6x2+8x﹣8)=5x2﹣2x﹣3﹣6x2﹣8x+8=﹣x2﹣10x+5.。
最新华师大版八年级数学上册单元测试题附答案全套
最新华师大版八年级数学上册单元测试题附答案全套(含期中、期末试题,共7套)第11章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.7的平方根是( )A.7 B .49 C .±49 D .±72.在实数-2,2,0,-1中,最小的数是( )[来源学科网]A .-2B .2C .0D .-13.下列各数:1.414,2,-13,0,其中是无理数的是( )A .1.414 B. 2 C .-13D .04.下列计算正确的是( ) A .-|-2|= 2 B.49=±7 C.3-8=2 D .±4=±2 5.下列说法中,正确的是( ) A .不带根号的数不是无理数 B.64的立方根是±2C .绝对值等于3的实数是 3D .每个实数都对应数轴上一个点 6.估算37-3的值是( )A .6B .3C .3或4D .4或57.-27的立方根与81的平方根的和是( ) A .0 B .-6 C .0或-6 D .68.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q .若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .QC .mD .n 9.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .2B .2- 2C .4-2 2D .22-210.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是( )A .①②③B .①③④C .②③④D .①②③④二、填空题(每小题3分,共24分)11.计算:1-925=________. 12.在实数5,227,0,π2,36,-1.414,3-64中,无理数有________个.13.能够说明“x 2=x 不成立”的x 的值是________(写出一个即可). 14.比较大小:35________27.15.若x ,y 为实数,且|x +2|+y -2=0,则⎝⎛⎭⎫x y 2018的值为________.16.若一个正数的两个平方根是2a -1和a -2,这个正数是________. 17.已知2013≈44.87,201.3≈14.19,则20.13≈________. 18.观察数表:1 2 第1行3 2 5 6 第2行7 8 3 10 11 12 第3行13 14 15 4 17 18 19 20 第4行 ……根据数表排列的规律,第10行从左向右数第8个数是________. 三、解答题(共66分)19.(8分)求下列各式中的x . (1)25(x +1)2=16;(2)127(x -1)3=1.20.(8分)计算:(1)3π-132+78(精确到0.01);(2)(-9)2-364+|-5|-(-2)2.21.(8分)已知表示a ,b 两个实数的点在数轴上的位置如图所示,化简|a -b |+(a +b )2.22.(10分)已知|2a +b |与3b +12互为相反数. (1)求2a -3b 的平方根;(2)解关于x 的方程ax 2+4b -2=0.23.(10分)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的2815倍,篮球场的四周必须留出至少1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?24.(10分)如图是一个数值转换器.(1)当输入x =25时,求输出的y 的值;(2)是否存在输入x 的值后,始终输不出y 的值?如果存在,请直接写出所有满足要求的x 值;如果不存在,请说明理由;(3)输入一个两位数x ,恰好经过三次取算术平方根才能输出无理数y ,则x =________(只填一个即可).25.(12分)你能找出规律吗?(1)计算:4×9=________,4×9=________; 16×25=________,16×25=________; (2)请按找到的规律计算:①5×125; ②123×935;(3)已知a =2,b =10,用含a ,b 的式子表示40.参考答案与解析1.D 2.A 3.B 4.D 5.D 6.B 7.C 8.A 9.D 10.B 11.25 12.2 13.-2(答案不唯一) 14.> 15.1 16.1 17.4.48718.98 解析:分析每一行的第1个数发现,第n 行的第1个数为(n -1)·n +1,故第10行第1个数为9×10+1=91,而每一行的数的被开方数依次递增,故第10行从左向右数第8个数是98.19.解:(1)∵25(x +1)2=16,即(x +1)2=1625,∴x +1=±1625,即x +1=±45,∴x =-95或x =-15.(4分) (2)∵127(x -1)3=1,即(x -1)3=27,∴x -1=327,即x -1=3,∴x =4.(8分) 20.解:(1)原式≈3×3.142-3.6062+0.875≈8.50.(4分)(2)原式=9-4+5-4=6.(8分)21.解:由数轴知b <a <0,∴a -b >0,a +b <0,(3分)∴|a -b |=a -b ,(a +b )2=|a +b |=-(a +b )=-a -b ,(6分)∴原式=a -b -a -b =-2b .(8分)22.解:由题意得3b +12+|2a +b |=0,∴3b +12=0,2a +b =0,解得b =-4,a =2.(3分)(1)2a -3b =2×2-3×(-4)=16,(4分)∴2a -3b 的平方根为±4.(6分)(2)把b =-4,a =2代入方程,得2x 2+4×(-4)-2=0,即x 2=9,(8分)解得x =±3.(10分)23.解:设篮球场的宽为x m ,那么长为2815x m.由题意知2815x ·x =420,所以x 2=225.(5分)因为x 为正数,所以x =15,2815x =28.又因为28+1×2=30(m),15+1×2=17(m),且1000≈31.6,所以30<1000,17<1000且30×17=510<1000,所以按规定能在这块空地上建一个篮球场.(10分)24.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)(2)x =0或1时,始终输不出y 的值.(7分) (3)81(答案不唯一)(10分)25.解:(1)6 6 20 20(4分)(2)①原式=25.(6分) ②原式=4.(8分)(3)40=2×2×10=2·2·10=a 2b .(12分)第12章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.计算(ab 2)3的结果为( )A .3ab 2B .ab 6C .a 3b 6D .a 3b 2 2.下列运算正确的是( ) A .(-2x )4=x 8 B .a 6÷a 2=a 3 C .a 2+a 3=a 5 D .(-a 2b )2=a 4b 2 3.计算(2x -1)(5x +2)等于( ) A .10x 2-2 B .10x 2-x -2 C .10x 2+4x -2 D .10x 2-5x -24.下列四个多项式,能因式分解的是( ) A .a 2+b 2 B .a 2-a +2 C .a 2+3b D .(x +y )2-45.若9x 2+mxy +16y 2是一个完全平方式,则常数m 的值是( ) A .±12 B .-12 C .±24 D .-246.下列计算:(x +y )2=x 2+y 2;(3m -n )2=9m 2-3mn +n 2;(-x -2y )2=x 2+4xy +4y 2;⎝⎛⎭⎫12a -12=12a 2-a +1.其中错误的有( ) A .1个 B .2个C .3个D .4个7.已知3a =5,9b =10,则3a +2b 的值为( ) A .50 B .-50 C .500 D .-5008.若(x +2y )(2x -ky -1)的结果中不含xy 的项,则常数k 的值为( ) A .4 B .-4 C .2 D .-2 9.根据图中数据,计算大长方形的面积,通过不同的计算方法,你得到的结论是( )A .(a +b )(a +2b )=a 2+3ab +2b 2B .(3a +b )(a +b )=3a 2+4ab +b 2C .(2a +b )(a +b )=2a 2+3ab +b 2D .(3a +2b )(a +b )=3a 2+5ab +2b 210.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?你的答案是( )A.a 2016-1a -1B.a 2017-1a -1C.a 2016-1aD .a 2016-1二、填空题(每小题3分,共24分) 11.计算:(-3a 2b )·(ab 2)3=________.12.多项式ax 2-a 与多项式x 2-2x +1的公因式是________.13.若(a m +n b m b 2n )2=a 8b 16,则m =________,n =________.14.光的速度约为3×105km/s ,太阳光照到地球上要5×102s ,则太阳与地球的距离为__________km(用科学记数法表示).15.若关于x 的代数式x +m 与x -4的乘积中一次项是5x ,则常数项为________. 16.已知a 2+b 2=13,ab =6,则a 4-2a 2b 2+b 4=________.17.将4个数a ,b ,c ,d 排成两行,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.18.已知2a =3,2b =6,2c =12,则a ,b ,c 的关系为:①b =a +1;②c =a +2;③a +c =2b ;④b +c =2a +3.其中正确的是________(填序号).三、解答题(共66分) 19.(9分)计算: (1)(-a 3b )2÷(-3a 5b 2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)(a -b +c )(a +b -c ).20.(9分)分解因式:(1)9x2-36y2;(2)(x+y)2+4(x+y+1);(3)x4+64.21.(8分)张老师给同学们出了一道题:当x =2018,y =2017时,求[(2x 3y -2x 2y 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.22.(8分)先化简,再求值: (1)(9x 3y -12xy 3+3xy 2)÷(-3xy )-(2y +x )(2y -x ),其中x =1,y =-2;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.23.(10分)如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a +3b )米、宽为(2a +3b )米的长方形草坪上修建两条宽为b 米的通道.(1)通道的面积是多少平方米? (2)剩余草坪的面积是多少平方米?24.(10分)(1)已知a x ·a y =a 5,a x ÷a y =a ,求x 2-y 2的值; (2)已知13x 2-6xy +y 2-4x +1=0,求(x +y )2018·x 2017的值.25.(12分)如图所示为杨辉三角的一部分,它的作用是指导读者按规律写出形如(a +b )n (n 为正整数)的展开式中各项的系数,请你仔细观察下列等式中的规律,利用杨辉三角解决下列问题.11 1 12 11 3 3 1 …… (a +b )=a +b ;(a +b )2=a 2+2ab +b 2;(a +b )3=a 3+3a 2b +3ab 2+b 3; ……(1)(a +b )4的展开式中第二项是________; (2)求(2a +1)5的展开式;(3)计算:26+6×25×⎝⎛⎭⎫-12+15×24×⎝⎛⎭⎫-122+20×23×⎝⎛⎭⎫-123+15×22×⎝⎛⎭⎫-124+6×2×⎝⎛⎭⎫-125+⎝⎛⎭⎫-126.参考答案与解析1.C 2.D 3.B 4.D 5.C 6.C 7.A 8.A 9.D10.B 解析:设S =1+a +a 2+a 3+a 4+…+a 2016①,在①式的两边都乘以a ,得aS =a +a 2+a 3+a 4+a 5+…+a 2017②,②-①得aS -S =a 2017-1,即(a -1)S =a 2017-1,所以S =a 2017-1a -1.故选B.11.-3a 5b 7 12.x -1 13.0 4 14.1.5×108 15.-36 16.2517.2 解析:∵⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,∴(x +1)2-(1-x )2=8,∴(x 2+2x +1)-(x 2-2x +1)=8,即4x =8,解得x =2.18.①②③④ 解析:∵2b =6=3×2=2a ×2=2a +1,∴b =a +1,故①正确;∵2c =12=3×22=2a ×22=2a +2,∴c =a +2,故②正确;∵2a +c =2a ×2c =3×12=36=62=(2b )2=22b ,∴a +c =2b ,故③正确;∵2b +c =2b ×2c =6×12=72=9×8=32×23=(2a )2×23=22a +3,∴b +c =2a +3,故④正确.综上可知正确的有①②③④.19.解:(1)原式=a 6b 2÷(-3a 5b 2)=-13a .(3分)(2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分)(3)原式=[a -(b -c )][a +(b -c )]=a 2-(b -c )2=a 2-b 2+2bc -c 2.(9分) 20.解:(1)原式=9(x 2-4y 2)=9(x +2y )(x -2y ).(3分) (2)原式=(x +y )2+4(x +y )+4=(x +y +2)2.(6分)(3)原式=x 4+16x 2+64-16x 2=(x 2+8)2-16x 2=(x 2-4x +8)(x 2+4x +8).(9分)[来源学*科*网]21.解:小明说得有道理.(2分)理由如下:原式=(2x 3y -2x 2y 2+2x 2y 2-x 3y )÷x 2y =x 3y ÷x 2y =x .所以该式子的结果与y 的值无关,即小明说得有道理.(8分)22.解:(1)原式=-3x 2+4y 2-y -4y 2+x 2=-2x 2-y .(2分)当x =1,y =-2时,原式=-2+2=0.(4分)(2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,由①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.故方程组的解是⎩⎪⎨⎪⎧m =3,n =-1.(5分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(8分)23.解:(1)b (2a +3b )+b (4a +3b )-b 2=2ab +3b 2+4ab +3b 2-b 2=(6ab +5b 2)(平方米). 答:通道的面积是(6ab +5b 2)平方米.(5分)(2)(4a +3b )(2a +3b )-(6ab +5b 2)=8a 2+12ab +6ab +9b 2-6ab -5b 2=(8a 2+12ab +4b 2)(平方米).答:剩余草坪的面积是(8a 2+12ab +4b 2)平方米.(10分)24.解:(1)∵a x ·a y =a x +y =a 5,∴x +y =5.(2分)∵a x ÷a y =a x -y =a ,∴x -y =1.(4分)∴x 2-y 2=(x +y )(x -y )=5.(5分)(2)由题意可知9x 2-6xy +y 2+4x 2-4x +1=0,∴(3x -y )2+(2x -1)2=0,(6分)∴3x -y =0,2x -1=0,∴x =12,y =32.(8分)∴原式=⎝⎛⎭⎫12+322018×⎝⎛⎭⎫122017=2.(10分)25.解:(1)4a 3b (3分)(2)(2a +1)5=(2a )5+5·(2a )4+10·(2a )3+10·(2a )2+5·2a +1=32a 5+80a 4+80a 3+40a 2+10a +1.(7分)(3)原式=⎝⎛⎭⎫2-126=⎝⎛⎭⎫326=72964.(12分)第13章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.一个等腰三角形的底角为70°,则它的顶角为( ) A .100° B .140° C .50° D .40°2.下列命题中,属于假命题的是( ) A .等角的余角相等 B .相等的角是对顶角C .同位角相等,两直线平行D .有一个角是60°的等腰三角形是等边三角形3.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,A ,B 分别与D ,E 对应,且AB =35cm ,DF =30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm4.如图,点P 在∠BAC 的平分线AD 上,PE ⊥AB 于点E ,PF ⊥AC 于点F ,则下列结论中,错误的是( )A .PE =PFB .AE =AFC .△APE ≌△APFD .AP =PE +PF5.如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是( )A .10B .15C .20D .306.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于 12AB 的长为半径画弧,交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C的度数为()A.40°B.50°C.60°D.70°7.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE,AC=5,BC=3,则BD的长为()A.1 B.1.5 C.2 D.2.58.如图,在Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC交AD于E,EF∥AC,则下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE9.如图所示是由三个等边三角形随意摆放的图形,则∠1+∠2+∠3的度数为() A.90°B.120°C.150°D.180°10.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形.若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3条B.5条C.7条D.8条二、填空题(每小题3分,共24分)11.将命题“等腰三角形的两个底角相等”改写成“如果……,那么……”的形式是______________________________.12.已知等腰三角形两边的长分别为5cm,2cm,则该等腰三角形的周长是________.13.如图,线段AD与BC交于点O,连接AB,CD,且∠B=∠D,要使△AO B≌△COD,可添加一个条件是________(只填一个即可).14.如图,在△ABC中,∠ABC=30°,∠ACB=50°,且D,E两点分别在BC,AB上.若AD为∠BAC的平分线,AD=AE,则∠AED的度数为________.15.如图,已知△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,则AD的长为________.16.如图,在等边△ABC中,BD=CE,AD与BE交于点P,则∠APE的度数是________.17.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,F为BC边上一点,且EF=BF,则∠EFC=________°.18.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BD=CE;②BD⊥CE;③∠ACE +∠DBC=45°;④BE=AD+AB.其中正确的结论是________(填序号).三、解答题(共66分)19.(8分)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.20.(8分)如图,在△ABC中,AB的垂直平分线DM交BC于D,交AB于M,E为CD 的中点,∠CAE=25°,∠C=65°.求证:BD=AC.21.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF交AF的延长线于D,CE⊥AF于E.已知CE=5,BD=2,求ED的长度.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC+AC =12,过O作OD⊥BC于点D,且OD=2,求△ABC的面积.23.(10分)如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F 作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,求证:∠BAD=∠CAE;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图①,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E,F作射线GA的垂线,垂足分别为P,Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论;(2)如图②,若连接EF交GA的延长线于H,由(1)中的结论你能判断EH与FH的大小关系吗?并说明理由;(3)图②中的△ABC与△AEF的面积相等吗(不用证明)?参考答案与解析1.D 2.B 3.A 4.D 5.B 6.A 7.A 8.A9.D 解析:如图,∵图中是三个等边三角形,∴∠1=180°-60°-∠ABC =120°-∠ABC ,∠2=180°-60°-∠ACB =120°-∠ACB ,∠3=180°-60°-∠BAC =120°-∠BAC .∵∠ABC +∠ACB +∠BAC =180°,∴∠1+∠2+∠3=360°-180°=180°.故选D.10.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①所示,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②所示,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.如果一个三角形是等腰三角形,那么它的两个底角相等 12.12cm 13.AB =CD (答案不唯一) 14.65° 15.8 16.60°17.45 解析:∵AB =AC ,BE ⊥AC ,EF =BF ,∴∠EBC =∠BEF =90°-∠C ,∠FEC =90°-(90°-∠C )=∠C .∵DE 垂直平分AB ,BE ⊥AC ,∴∠BAC =45°.∵2∠C +∠BAC =180°,又∵∠EFC +2∠C =180°,∴∠EFC =∠BAC =45°.18.①②③ 解析:由题意易证△ABD ≌△ACE ,∴BD =CE ,故①正确;由全等得∠ABD =∠ACE .∵∠ABC =45°,∴∠ABD +∠DBC =45°,∴∠ACE +∠DBC =45°.又∵∠ACB =45°,∴∠BDC =90°,即BD ⊥CE ,故②③正确;在△ABE 中,AB +AE >BE ,∴AD +AB >BE ,故④错.故正确的结论为①②③.19.解:答案不唯一,如添加条件∠BAC =∠DAC .(3分)理由如下:在△BAC 与△DAC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC .(8分)20.证明:连接AD .∵∠CAE =25°,∠C =65°,∴∠AEC =90°,∴AE ⊥CD .(3分)又∵E为CD 的中点,∴AE 垂直平分CD ,∴AD =AC .(5分)又∵DM 垂直平分AB ,∴BD =AD .(7分)∴BD =AC .(8分)21.解:∵∠BAC =90°,∴∠BAD +∠CAE =90°.∵BD ⊥AF ,∴∠ADB =90°,∴∠BAD +∠ABD =90°,∴∠CAE =∠ABD .∵CE ⊥AF ,∴∠CEA =90°.(3分)在△ABD 和△CAE 中,⎩⎪⎨⎪⎧∠ADB =∠CEA ,∠ABD =∠CAE ,AB =CA ,∴△ABD ≌△CAE (AAS).(6分)∴AD =CE ,BD =AE .∴DE =AD -AE =CE -BD =5-2=3.(8分)22.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 的平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO+S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2(AB +BC +AC )=12×2×12=12.(10分)23.(1)证明:∵AE ∥BC ,∴∠B =∠DAE ,∠C =∠CAE .(2分)∵AE 平分∠DAC ,∴∠DAE =∠CAE .(3分)∴∠B =∠C ,∴AB =AC ,∴△ABC 是等腰三角形.(4分)(2)解:由(1)知∠C =∠CAE ,AC =AB =10.∵点F 是AC 的中点,∴AF =CF .(5分)在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠F AE =∠C ,AF =CF ,∠AFE =∠CFG ,∴△AEF ≌△CGF (ASA).∴GC =AE =8.∵GC =2BG ,∴BG =4,∴BC =12.(9分)∴△ABC 的周长为AB +AC +BC =10+10+12=32.(10分)24.(1)证明:∵△ABC ,△ADE 均为等边三角形,∴∠BAC =∠DAE =60°,∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠BAD =∠CAE .(4分)(2)解:∠DCE =60°,不发生变化.(5分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC +∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE .(7分)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =180°-∠ACB -∠ACE =60°.(10分)25.解:(1)EP =FQ .(1分)证明如下:∵△ACF 是等腰直角三角形,∴AC =AF ,∠F AC =90°.∵FQ ⊥GQ ,∴∠FQA =90°,∠QF A +∠QAF =∠QAF +∠GAC =90°,∴∠QF A =∠GAC .又∵AF =CA ,∠FQA =∠AGC =90°,∴△FQA ≌△AGC ,∴FQ =AG .(3分)同理可证△EAP ≌△ABG ,(4分)∴EP =AG ,∴EP =FQ .(5分)(2)EH =FH .(6分)理由如下:如图,分别过E ,F 作EM ⊥GH 交GH 的延长线于M ,FN ⊥GH 于N ,由(1)得EM =FN .又∵∠EMH =∠FNH =90°,∠EHM =∠FHN ,∴△EMH ≌△FNH ,(9分)∴EH =FH .(10分)(3)相等.(12分)第14章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列四组长度的线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5C.2,3,4 D.1,2,32.在△ABC中,∠C=90°,AB=6,BC=5,则边AC的长为()A.61或11B.61C.11 D.以上都是不对3.若△ABC三边的长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形4.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于D,PE⊥OB于E.若OD=12cm,PO=13cm,则PE的长为()A.8cm B.6cm C.5cm D.2cm5.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交6.把一个边长为1的正方形按如图所示方式放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1 B. 2 C. 3 D.27.如图所示是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .x 2-6=(10-x )2B .x 2-62=(10-x )2C .x 2+6=(10-x )2D .x 2+62=(10-x )2 9.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则BD 的长为( )A.45B.85C.165D.24510.如图,在Rt △ABC 中,∠ACB =90°,AC =12,BC =5.分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABDE ,ACFG ,BCIH ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于( )A .90B .60C .169D .144二、填空题(每小题3分,共24分) 11.在Rt △ABC 中,∠C =90°.若a =5,b =12,则c =________.12.某养殖场有一个长2米、宽1.5米的长方形栅栏,现在要在对角的顶点间加固一条木板,则木板的长应取________米.13.若3,4,a 和5,b ,13是两组勾股数,则a +b 的值是________.14.如图,在长方形纸片ABCD 中,AB =8cm ,把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F .若AF =254cm ,则AD 的长为________cm.15.如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若阴影部分的面积为92,则斜边AB 的长为________.16.已知x ,y 为直角三角形的两边的长,满足(x -2)2+|y -3|=0,则第三边的长为________________.17.如图是一种饮料的包装盒,其长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____________.18.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,……则OA n的长度为________.三、解答题(共66分)19.(6分)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.20.(8分)如图,星期天小明去钓鱼,鱼钩A在离水面BD1.3米处,在距离鱼线1.2米处D点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才可能到达鱼饵处?21.(10分)如图,在△ABC中,∠C=90°,AC=8cm,BC=4cm,将△ABC沿直线DE折叠,使A与B重合,连接BE,则BE的长是多少?22.(10分)如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-AE2=AC2.(1)判断△ABC的形状,并证明你的结论;(2)若DE=3,BD=4,求AE的长.23.(10分)有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.24.(10分)定义:若三角形三个内角的度数分别是x°,y°和z°,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,判断“直角三角形是勾股三角形”是真命题还是假命题,并说明理由;(2)已知一勾股三角形三个内角从小到大依次为x°,y°和z°,且xy=2160,求x+y的值.25.(12分)图甲是任意一个直角三角形ABC,它的两条直角边的长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为__________;(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?参考答案与解析1.B 2.C 3.D 4.C 5.D 6.B 7.B 8.D 9.C10.A 解析:如图,过D 作DN ⊥BF 于N ,连接DI .易知S 2=S Rt △DOI ,S △BOC =S △MND ,∴S 2+S 4=S Rt △ABC .可证明Rt △AGE ≌Rt △ACB ,Rt △DNB ≌Rt △BHD ,∴S 1+S 2+S 3+S 4=S 1+S 3+(S 2+S 4)=S Rt △ABC +S Rt △ABC +S Rt △ABC =12×12×5×3=90.故选A.11.13 12.2.5 13.17 14.615.3 解析:在Rt △ABC 中,AB 2=AC 2+BC 2,S 阴影=S △AHC +S △BFC +S △AEB =12AH 2+12BF 2+12BE 2=12·AC 22+12·BC 22+12·AB 22=14(AC 2+BC 2+AB 2)=12AB 2=92.所以AB =3(负值舍去).16.13或5 17.3cm ≤h ≤4cm 18.2n 19.解:△ABC 是直角三角形.(2分)理由如下:∵AC 2=22+42=20,AB 2=12+22=5,BC 2=32+42=25,∴AB 2+AC 2=BC 2,(5分)∴△ABC 是直角三角形.(6分)20.解:如图,过点C 作CE ⊥AB 于点E ,连接AC .(1分)∵AB =1.3米,CD =0.8米,∴AE =0.5米.∵BD =1.2米,∴CE =1.2米.(3分)在Rt △ACE 中,∠AEC =90°,根据勾股定理,得AC 2=CE 2+AE 2,∴AC =CE 2+AE 2= 1.22+0.52=1.3(米),1.3÷0.2=6.5(秒).(7分)答:这条鱼至少6.5秒后才可能到达鱼饵处.(8分)21.解:由折叠可知AE =BE .(2分)设BE =AE =x cm ,则CE =AC -AE =(8-x )cm.(4分)在Rt △BCE 中,BC 2+CE 2=BE 2,∴42+(8-x )2=x 2,(7分)∴x =5,即BE =5cm.(10分)22.解:(1)△ABC 是直角三角形.(1分)证明如下:连接CE .∵D 是BC 的中点,DE ⊥BC ,∴CE =BE .∵BE 2-AE 2=AC 2,∴CE 2-AE 2=AC 2,∴AE 2+AC 2=CE 2,∴△ACE 是直角三角形,∠A =90°,∴△ABC 是直角三角形.(4分)(2)∵DE ⊥BC ,∴∠BDE =90°.在Rt △BDE 中,DE =3,BD =4,∴BE 2=DE 2+BD 2=25,∴CE =BE =5.(6分)由(1)可知∠A =90°,∴AC 2=CE 2-AE 2=25-AE 2.∵D 是BC 的中点,∴BC =2BD =8.(8分)在Rt △ABC 中,AB =5+AE ,由勾股定理得BC 2-BA 2=AC 2,∴64-(5+AE )2=25-AE 2,∴AE =75.(10分)23.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 交BC 于点Q ,连接AQ ,蚂蚁沿着A →Q →G 的路线爬行时,路程最短.(5分)(2)∵在Rt △A ′EG 中,A ′E =2AB -AE =80cm ,EG =60cm ,∴由勾股定理得A ′G =100cm ,(8分)∴最短路线长为AQ +QG =A ′Q +QG =100cm.(10分)24.(1)解:“直角三角形是勾股三角形”是假命题.(1分)理由如下:设直角三角形的三个内角分别为x °,y °和z °,其中x +y =90,z =90,∴(x +y )2=8100=z 2,∴x 2+y 2+2xy =z 2.若直角三角形是勾股三角形,则x 2+y 2=z 2,∴xy =0,这与题意不符,∴“直角三角形是勾股三角形”是假命题.(5分)(2)解:由题意可得⎩⎪⎨⎪⎧x +y +z =180,xy =2160,x 2+y 2=z 2,解得x +y =102.(10分)25.解:(1)a b c (3分)(2)a 2 b 2 c 2(6分) (3)a 2+b 2(7分)(4)S ①+S ②=S ③.(8分)理由如下:由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b )2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a 、宽为b 的长方形,(10分)根据面积相等得(a +b )2=a 2+b 2+2ab ,由图丙可得(a +b )2=c 2+4×12ab .所以a 2+b 2=c 2,所以S ①+S ②=S ③.(12分)第15章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列统计图能够显示数据变化趋势的是( ) A .条形图 B .扇形图 C .折线图 D .直方图 2.在“5·18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这次数据的收集与处理过程,下列说法正确的是( )A .调查的方式是普查B .该街道约有18%的成年人吸烟C .该街道只有820个成年人不吸烟D .样本是180个吸烟的成年人3.地球上陆地面积约占全球面积的310,海洋面积约占710,若要制成统计图,则表示陆地的扇形圆心角为( )A .30°B .72°C .108°D .120°4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:[来源:Z_xx_]通话时间x /min ,0<x ≤5,5<x ≤10,10<x ≤15,15<x ≤20频数(通话次数),20,16,9,5则通话时间不超过15min 的频率为( )A .0.1B .0.4C .0.5D .0.95.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A .25人B .35人C .40人D .100人6.如图所示是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是( )A .6月1日B .6月2日C .6月3日D .6月5日7.某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是( )A .表示汽车尾气污染的圆心角约为72°B .表示建筑扬尘的约占6%C .汽车尾气污染约为建筑扬尘的5倍D .煤炭以及其他燃料燃烧占所有PM2.5污染源的35%8.八年级(1)班有48名学生,春游前,班长把全班学生对春游的意向绘制成了扇形统计图,其中,“想去苏州乐园的学生人数”的扇形圆心角是60°,则下列说法正确的是( )A .想去苏州乐园的学生占全班学生的16B .想去苏州乐园的学生有12人C .想去苏州乐园的学生肯定最多D .想去苏州乐园的学生占全班学生的60% 9.有一种公益叫“光盘”,所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人数绘制折线统计图(如图),则下列说法错误的是()A.九(2)班参加光盘行动的人数最多B.九(6)班参加光盘行动的人数最少C.九年级参加此次活动的总人数为354人D.九(4)班与九(2)班相差人数最多10. 某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图所示的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生人数为()A.240人B.120人C.80人D.40人二、填空题(每小题4分,共32分)11.小雪掷一枚硬币30次,有20次正面向上,则正面向上的频数是________,正面向上的频率是________.12.如图所示是小明家今年1月份至5月份的每月用电量的统计图,则小明家1月份至5月份用电最多的月份是________月份,比它的前一个月多用电________度.13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这次调查共有________个数据.14.小亮一天的时间安排如图所示,请根据图中的信息计算小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的________%.15.为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普知识”的学生有________人.16.为了估计某市空气质量情况,某同学在30天里做了如下记录:污染指数(w),40,60,80,100,120,140天数(天),3,5,10,6,5,1其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染.若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为________天.17.如图所示是A,B两所学校艺术节期间收到的各类艺术作品情况的统计图.已知A 学校收到的各类艺术作品总数比B学校的多20件,收到的书法作品比B学校少100件,则A,B两所学校收到艺术作品的总数分别是________件、________件.18.本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动,为了解本校师生的出行方式,在本校范围内随机抽查部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是________.三、解答题(共58分)19.(10分)如图是一位病人的体温记录折线图,看图回答下列问题:(1)护士每隔________小时给病人量一次体温;(2)这个病人的最高体温是________℃,最低体温是________℃;(3)他在第二天12时的体温是________℃;(4)从图中看,这个病人的病情在________(填“恶化”或“好转”).20.(12分)某校九年级有1200名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A、B、C、D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.(1)求抽取参加体能测试的学生人数;(2)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人.21.(12分)某中学举行演讲比赛,分段统计参赛同学成绩如下(分数均为整数,满分为100分):分数段(分),61~70,71~80,81~90,91~100人数(人),2,8,6,4请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)成绩在91~100分的同学为优胜者,那么优胜率为________;(3)画出表示各分数段人数的扇形统计图,写出各个扇形的圆心角的度数.22.(12分)对某班50名学生喜欢的体育项目进行了一次调查,情况如下表.喜欢的体育项目,乒乓球,羽毛球,篮球,足球人数(人),40,20,25,30根据上表,回答下列问题:(1)分别计算喜欢各项体育项目的人数占全班总人数的百分比;(2)上述百分比能否用扇形统计图表示?为什么?(3)若想表示上述百分比,可选用什么统计图?画出统计图.23.(12分)某校为了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其他),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出).根据以上信息解答下列问题:学生孝敬父母情况统计表学生孝敬父母情况条形统计图选项,频数,频率A,m,0.15B,60,pC,n,0.4D,48,0.2(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?参考答案与解析1.C 2.B 3.C 4.D 5.C 6.D7.C8.A9.B10.D11.202312.22013.20014.37.515.36016.29217.1100108018.15人19.解:(1)6(2分)(2)39.536.8(6分)(3)37.5(8分)(4)好转(10分)20.解:(1)抽取的学生人数为60÷30%=200(人).(5分)(2)抽取的学生中成绩达到B级的学生人数为200-60-200×20%-15=85(人).(8分)故估计该校九年级全体学生参加体能测试成绩为“优”的学生共有1200×60+85 200=870(人).(12分)21.解:(1)20(3分)(2)20%(6分)(3)如图所示.(8分)。
华师大版八年级数学上册单元测试题全册及答案.doc
最新华师大版八年级数学上册单元测试题全册及答案检测内容:第十一章得分_______ 卷后分__________ 评价__________一、选择题(每小题3分,共30分)I.甫的值为(A)A - 2 B. -2 C. ±2 D.不存在2“(一8)$的立方根是(B )A ・一2 B. 2 C. 4 D. -43•下列各式中运算正确的是(C)A - ±V16=4 B,V9=±3 0^8=-2 D.p (_5)空=_54•下列命题中正确的是(C)A •有理数都是有限小数B.无限小数都是无理数C •实数与数轴上的点一一对应D.无理数包括正无理数、0和负无理数5•在实数3.14159,^/64,1.010010001,4.21,n,乍中,无理数有(A)A・1个B. 2个C. 3个D. 4个6•数a在数轴上的位置如图所示,则下列各数中有意义的是(B)1 1 丁a 0A.yfciB.yj _aC.y]—a27• -27的立方根与嗣的平方根的和是(C )A ・ 0 B. -6 C. 0 或一6 D. 68・估算回+3的值(C)A •在5和6之间B.在6和7之间C.在7和8之间D.在8和9乙'可9•比较两个数的大小,错误的是(B )A •一托>一& B.萌一1.74>0 C. 1.42一也>0 D.兀>3.1410•实数a,方在数轴上的位置如图所示,以下说法止确的是(D)a b--- 1_•_I ------- 1_•_I ---------■2-10 1 2A • a+b=0 B. b<a C. ab>0 D. |b|<|d|二、填空题(每小题3分,共24分)II.迈一曲的相反数是二迄_,迈一萌的绝对值是_迈二^/1_.12・一个正数的平方根为2°—3和3a-22,则这个数为塑.13・在数轴上离原点距离是2需的点表示的实数是二且.14-比较大小:(1朋一三_诟;(2)~\/亦—<_一—A/60;(3)朋3_二_么15•已知△ABC的三边长分别为a,b,c、且a,满足(a — 1 )2+y]b—2=0,则c的取值范围是_1 V c V3_.16• 一个正方体的体积变为原来的27倍,则它的棱长变为原来的_3_倍.17 •已知屮0404=102 ‘ 心=0.102 ‘贝Q x= 010 404 :已知^3/78 = 1.558 ‘ 飯=155.8 ‘贝】J y=19・(10分)计算:(1)22 + |-1|-^9;(2寸(~|) 2+^/-0.064.解,2解/ 1.120 • (12分)求下列各式中的兀:(1)*| =晶(2)8(兀一1)—一125;解,'±\[6解:一号(3)25(7—1)=24.解..421 - (10分)己知实数满足p兀一2y +1 + |x+2y—7|=0,求*的平方根.解:±323 • (10分)一个正数a 的算术平方根为2m~6,且a 的平方根为土(2—m). (1) 求m 的值;(2) 求d 的值及d 的平方根.解:(1)由己知得 2m-6>0 » .*.m>3 » .*.2 —m<0 » - (2 — m)>0 » .*.2m -6= — (2 -m) » 解得 m = 4(2) a = (2m - 6)2=4,±*\/a = ±224・(8分)将半径为12 cm 的铅球熔化,重新铸造出8个半径相同的小铅球,不计损耗,则小铅球的半也一4+04—兀 +4x~25求3x+4v 的值.径是多少?(V 球4-322・(8分)已知兀,y 为实数,y= 解:—1025 • (8分)己知5+V7的小数部分是a ,整数部分是m ,5—羽的小数部分是b ,整数部分是n ,求(a + b)2m>—mn 的值.解:甫V 羽V 的,/.m = 7,a = 5+V7-7= -2+^7,n = 2,b = 5—羽一2 = 3— 荷 > .-.(a + b)2015-mn = (-2 4-V7 + 3-V7)2015-7X2 = l-14= -13检测内容:第十二章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1 •计算:(加%尸的结果是(B) A • mn B. mn C.D. mn2 • (2014-丽水)下列式子运算正确的是(A)A • «84-«2=«6B. cr+c^=cPC. (a+l)2=/+lD. 3cT —2cf =1 3 • (2014•安徽)下列四个多项式屮,能因式分解的是(B) A • 672+1 B. 6G +9 C. X 2+5)J D. 5y4 •计算(|)20,5X(|)2016X(-l 严 了 的结果是(°)5 •把 A-2A+/分解因式正确的是(C )A •)心?一2xy+)Z )B . ^y —)\2x —y) C.),(兀一y),D. y (兀+y)“6 •若a m =2,a n=3,cf=5,则严「卩的值是(A ) A ・ 2.4 B. 2 C ・ 1 Dj7 •若 a+b=3,a —b=7,贝ab=( A ) A ・ 一10 B. -40 C. 10 D. 408 •若一多项式除以2? —3,得到的商式为7x-4,余式为一5兀+2,则此多项式是(A ) A • 14^3—8x 2—26x+14 B. 14x 3 — 8x 2—26x~ 10 C - -10X 3+4?-8X -10 D. -10X 3+4? + 22X -109 •因式分解x 2+cLx+b ,甲看错了 a 的值,分解的结果是(x+6)(x —l),乙看错了 b 的值,分解的结果 为(兀一2)(兀+1),那么x"+ax+b 分解因式正确的结果为(B )A •(兀一2)(兀+3) B.(兀+2)(x —3) C. (x —2)(%—3) D. (x+2)(x+3)10 •如图,甲、乙、丙、丁四位同学写出了四种表示该长方形面积的多项式:①(2a+Z?)・O+n);②+n)+b(m+n)\ ③ni(2a+/?)+n(2a+b);④lam+lan+bm+bn.你认为其中正确的有(D )A -①②B.③④C •①②③D.①②③④3--2B 2-3 A3-2 - 2-3二、填空题(每小题3分,共24分)11•计算:(2af ・(一36?)=「-24『_.12•分解因式:一兀\+2兀》一心=_-xy(x- l)2_ .13•二次三项式jC-kx+9是一个完全平方式,则k的值是丸.14•计算:20152 -4026 X 2015 + 20132 = 4 .15•若加=2门+1,则4/??/?+4/?2的值是_X_.16•若\m+6\与n2—2n+\互为相反数5则多项式^+nx+m分解因式为_(x十3)(x —2)_.17・若代数式X2+3X+2可以表示为(X-1)2+«(X-1)+/2的形式,则a+b的值是口 .111X/1 2 1X/13 3 1• • •18 • (2014-巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得屮华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式屮a按次数从大到小排列的项的系数,例如,(a +b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2 +扌展开式中的系数1,3,3,1恰好对应图中第四行的数字•请认真观察此图,写出(a-b)4的展开式为一4a'b + 一4ab‘ + b;_・三、解答题(共66分)19・(8分)计算:(1 )3a3b2 4- a2+b^b - 3ab~5a2b)\(2)(2014-宁波)(a+b)2 + (a - b)(a+b) - 2ab.解:原式=3ab2 + a2b2一3ab2 - 5a2b2 = 一4a2b2解;廉式=a? + 2ab 4- b2 + a2 - b2一2ab = 2a220• (10分)先化简,再求值:(1 )(a2b—2ab2—b3)-i-h—(«+b)(a—b),其中G=*,b= —1;解:恳式=a? - 2ab - b2 - (a2 - b2)= 一2ab.占a=j » b= - 1 讨,斥式=1(2)(2兀+3)(2乂一3)—4兀(兀一1)+仗一2)2,其中7=9.解,,^=4X2-9-4X2+4X + X2-4X +4= X2-5.V X2=9> ^ = 9-5 = 421• (12分)因式分解:(1)(2014-莱芜)a‘ 一4ab2; (2)x2一4(x — 1);解:忌式=a(a + 2b)(a-2b)解:煉式= (x-2/(3)(x+2)(x+4)+?-4; (4)9<_y2_4y_4.解:恳式=(x + 2)(x + 4) + (x + 2)(x — 2) =2(x + 2)(x+l)解:原式=9x2-(y24-4y + 4) = (3x)2- (y + 2)2=(3X + y + 2)(3x -y-2)22・(8分)给出三个多项式,X=2a2+3ab+h2,Y=3a+3ab,Z=a2+ab.^你任选两个进行加(或减) 法运算,再将结果分解因式.解;Y - X = 3a2 + 3ab 一2a2一3ab - b2 = a2 - b2 = (a + b)(a - b); Y + Z = 3a2 + 3ab + a2 + ab = 4a2 + 4ab = 4a(a + b); X -Z=2a2 + 3ab + b2-a2-ab = a2 + 2ab + b2=(a + b)2(^案“一)23・(8分)阅读理解:用平方差公式计算:(2°+1)(2°—1)(4/+1)(16/+1).解决本题可采用逐步运用平方差公式计算来进行,答案如下:解:原式=[(2d +1 )(2°一1)](4/ + 1)(16/ +1) = (4a2一1 )(4/ +1)(16/ +1) = [(4a2 +1 )(4/ 一1)](16a4 +1) =(16『一1)(16/+1)=256/—1.拓广应用:计算(X-1 )(X+1)(X2+1)(/+ 1)(丿+ 1)・・・(严+ 1)(兀紈一J.解:^=X128-2X64+124・(10分)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片'拼成一个大长方形,使它的面积等于/+3〃+2沪,并根据你拼成的图形分解因式:a2 + 3aba 2 + 3ab + 2b 2 = (a + b)(a + 2b)25 • (10分)小红家有一块L 形的菜地,要把厶形的菜地按图那样分成面积相等的梯形,种上不同的蔬 菜,这两个梯形的上底都是,下底都是b m ,高都是(b-a )m.请你给小红家算一算,小红家的菜地的 面积共有多少?当10,b=30时,面积是多少?解,(b 2 - a 2) m 2 800 m 2检测内容:第十三章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1・下列语句不是命题的是(B ) A •对顶角相等B.连接A3并延长至C 点 C •内错角相等D.同角的余角相等2•根据下列条件画三角形,不能确定唯一三角形的是(A ) A •已知三个角 B.己知三边C •己知两角和夹边D.已知两边和夹角3 •如图,已知,ZMBA=ZNDC ,下列不能判定△ AEM 竺厶CDN 的条件是(C )A - ZM=ZNB ・ AB=CD C. AM=CN D. AM//CN 4•下列命题是假命题的有(D )①若cT=b 2,则a=b ;②一个角的余角大于这个角;③若a ,b 是有理数,则\a+b\ = \a\ + \b\;④如果 ZA=ZB+ 2员ab‘那ZA与ZB是对顶角.A ・1个 B. 2个 C. 3个 D. 4个5 •如图,已知AB=AC ,AD=AE ,则下列结论正确的是(D ) ①EB=DC;②5BPE 竺/\CPD;③点P 在ABAC 的平分线上. A •①B.②C.①②D.①②③6 •如图,在AABC 中,BC=8 cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,/XBCE 的周长等 于18 cm ,则AC 的长等于(C )A • 6 cm B. 8 cm C. 10 cm D.,第5题图)7.等樓△M3C 的•个外角为110° ,则比等腰三角形的顶角的度数为(C ) A ・40° B. 70° C ・40°或70° D.以上都不对8 •如图,在HABC 中,ZC=90。
最新华东师大版八年级数学上册单元测试题全套及答案
最新华东师大版八年级数学上册单元测试题全套及答案第11章 数的开方综合测评一、选择题(每小题3分,共30分) 1. -364-的平方根是( )A. ±4B. 2C. ±2D. 不存在 2. 3的相反数是( )A.33-B.3-C.33D.33. 下列说法中正确的是( ) A. 负数没有立方根B. 一个正数的立方根有两个,它们互为相反数C. 如果一个数有立方根,则它必有平方根D. 不为0的任何数的立方根,都与这个数同号 4. 下列各数中,比大的实数是( )A .-5B .0C .3D .5. 实数a ,b 在数轴上的位置如图1所示,且|a|>|b|,化简b a a +-2的结果为( ) A .2a+b B. -2a+bC. b 图1D. 2a-b6. 已知a 2a -2a - ) A .aB .-aC .-1D .07. 用计算器求得333+的结果(精确到0.001)是( ) A. 3.1742 B. 3.174 C. 3.175 D. 3.1743 8. 20n n 为( )A .2B .3C .4D .5aob9. 某居民生活小区需要建一个大型的球形储水罐,需储水113立方米,那么这个球罐的半径r (球的体积V =343r π,π取3.14, 结果精确到0.1米)为( )A. 2.8米B. 2.9米C. 3.0米D. 3.1米 10. 对于实数a ,b ,给出以下三个命题:①若|a|=|b|,则b a =;②若|a|<|b|,则a <b ;③若a=-b ,则(-a )2=b 2.其中真命题有( )A .3个B .2个C .1个D .0个 二、填空题(每小题4分,共24分)11. 若()22340a b c -+-+-=,则a-b+c = . 12. 把7的平方根和立方根按从小到大的顺序排列为 . 13. 图2是一个简单的数值运算程序,若输入x 的值为,则输出的数值为_____.图2 14.16的算术平方根是 ,()29-的平方根是 .15. 已知a 、b 为两个连续整数,且a <<b ,则a+b= .16. 借助于计算器可以求得2243+,224433+,22444333+,2244443333+,…的结果,观察上面几道题结果,试猜想2220032003444333+L L 123123个个=___. 三、解答题(共66分)17. (8分)求下列各数的平方根和算术平方根:14 400,.1615289169,18. (8分)求下列各数的立方根:.729.02718125,,-19. (8分)将下列各数填入相应的集合内. -7,0.32,13,0,8,12,3125,π,0.202 002 000 2….有理数集合:{ … };无理数集合:{ … }; 负实数集合:{ … }. 20. (10分)求下列各式中x 的值. (1)()2162810x +-=;(2)31(21)42x -=-.21. (10分)若623b A a b -=+是a+3b 的算术平方根,2321a B a -=-是1-a 2的立方根,求A 与B的值.22. (10分)已知3a-22和2a-3都是m 的平方根,求a 和m 的值.23. (12分)小丽把一块正方形纸片的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成一个无盖的长方体盒子,如图3,量得这个盒子的容积是150 cm 2.[来源学科网ZXXK](1)由题意可知,剪掉正方形的边长为__________cm . (2)设原正方形的边长为x cm ,用x 表示盒子的容积为 _____________________.(3)求原正方形的边长.图3第11章 数的开方综合测评一、1. C 2. B 3. D 4. C 5. C 6. D 7. B 8. D 9. C 10. C 二、11. 3 12. -<<13. 2 14. 2 ±3 15. 5 16. 2003555L 123个三、17. 解:14 400的平方根为±120,算术平方根为120;289169的平方根为,1713±算术平方根为;1713 1615的平方根为49±,算术平方根为.4918. 解:8125的立方根是25;271-的立方根是31-;0.729的立方根是0.9.19. 解:有理数集合:{-7,0.32,13,0,3125,…}; 无理数集合:{8,12,π,0.202 002 000 2… ,…}; 负实数集合:{ -7, …}.20. 解:(1)由()2162810x +-=,得()281216x +=. 所以924x +=±. 解得14x =或x=174-. (2)由31(21)42x -=-,得(2x-1)3=-8. 所以2x-1=-2. 解得x=21-. 21. 解:由题意,可知6-2b=2,2a-3=3.解得a=3,b=2.所以A=9=3,B=38-=-2.22. 解:当3a-22=2a-3时,解得a=19,此时3a-22=35,所以m=352=1225; 当3a-22+2a-3=0时,解得a=5,此时3a-22=-7,2a-3=7,所以m=(-7)2=49. 综上,a=19,m=1225或a=5,m=49.23. 解:(1)6(2)6(x-12)2(3)由题意,可得6(x-12)2=150. 解得x=17或x=7(舍去). 所以原正方形的边长为17 cm .第12章 整式的乘除综合测评一、选择题(每小题3分,共24分)1. 下列各式从左到右的变形不是因式分解的是( ) A.x 2-5x+6=(x-2)(x-3) B.(x-y)3=-(y-x)3C.x 2+x+41=(x+21)2 D.-mx 2+my 2=-m(x+y)(x-y) 2.多项式2x 2-4xy+2x 提取公因式2x 后,另一个因式为( ) A .x-2y B .x-4y+1 C .x-2y+1 D .x-2y-1 3.下列计算正确的是( )A.(-2x 3y 2)3=-6x 9y 6B.-3x 2·x 3=-3x 6C.(-x 3)2=-x 6D.x 10÷x 6=x 4来源:]4.下列各式不能用乘法公式计算的是( ) A.(a+b )(-a-b ) B.(-a-b )(-a+b ) C.(3x+2y )(3y-2x ) D.(a+2b+3c )(a+2b-3c )5.若长方形的面积是4a 2+8ab+2a ,它的一边长为2a ,则它的周长为( ) A.2a+4b+1 B.2a+4b C.4a+4b+1 D.8a+8b+26.下列计算正确的是( ) A.3a 2·(-2a 3)=6a 6 B.a (a 2-1)=a 3-1 C.(a+b )(a-2b )=a 2-ab-2b 2 D.-2a·(a 2)3=-2a 97.若有理数a ,b 满足a 2+b 2=5,(a+b )2=9,则-4ab 的值为( ) A.2 B.-2 C.8 D.-88.如图1,已知长方形的纸片的长为m+4,宽为m+2,现从长方形纸片剪下一个边长为m 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则另一边长是 ( )A.3m+4B.6m+8C.12m+16D.m 2+3m+4 二、填空题(每小题4分,共32分) 9.计算:(-5ab 3)2=__________.10.多项式10m 2 -25mn 的公因式是_________.11.在如图2所示的日历中,任意划出一竖列上相邻的三个数,设中间的一个数为a ,则这三个数中最小的与最大的积为__________(用含a 的代数式表示).图2 图312.已知一个三角形的面积为8x 3y 2-4x 2y 3,一条边长为8x 2y 2,则这条边上的高为________.13.图3是一个长方形,请你仔细观察图形,写出图3所表示的整式的乘法关系式为_________________. 14.马虎同学在计算A÷(-2a 2b )时,由于粗心大意,把“÷”当做“×”进行计算,结果为16a 5b 5,则A÷(-2a 2b )=___________.15.在一个边长为10.5 cm 的正方形中间,挖去一个边长为4.5 cm 的小正方形,则剩余部分的面积是_______. 16.若y 2+4y-4=0,则3y 2+12y-5的值为_______.三、解答题(共64分)17.(每小题3分,共6分)因式分解: (1) −9x 3y 2−6x 2y 2+3xy ; (2) a 2(a−b )+b 2(b−a ).18.(7分)利用整式乘法公式计算:2014×2012-20142.日 一 二 三 四 五 六 1 23456789 10 11 12 1314 15 16 17[来源网Z,X,X,K]18 19 2021 22 23[来源网Z,X,X,K]24 25 26 2728 29 3019.(每小题5分,共10分)计算: (1)a 2 (-a 2)3+a 10÷(-a 2);(2)[(x-1)(x+2)+2]÷x.20.(7分)先化简,再求值:(x-2)2-(x-1)(x+3),其中x=-31.21.(8分)已知m a =6,m b =5,m c =4,求m a+b-2c 的值.22.(8分)连续两个偶数的平方差一定是4的倍数吗?若不是,简单说明理由;若是,请你用整式的运算加以说明.23.(8分)计算图4中阴影部分的面积.24.(10分)阅读理解:请你仔细阅读以下等式,并运用你发现的规律完成问题: ①x 2-1=(x-1)(x+1);②x 3-1=(x-1)(x 2+x+1);③x 4-1=(x-1)(x 3+x 2+x+1); ④x 5-1=(x-1)(x 4+x 3+x 2+x+1);…问题:(1)x 6-1=(x-1)(________________);(2)_______=(x-1)(x 7+x 6+x 5+x 4+x 3+x 2+x+1);(3)以上各等式,从左到右的变形_______(填“是”或“不是”)因式分解;(4)将x 4-1用平方差公式因式分解,其结果为__________,将该结果与③中右边的代数式进行比较,然后写出将x 3+x 2+x+1因式分解的过程.图4第12章 整式的乘除综合测评一、1.B 2.C 3.D 4.C 5.D 6.C 7.D 8.A[来源学科网ZXXK]二、9.25a 2b 6 10.5m 11.a 2-49 12.2x-y 13.(a+b )(a+2b )=a 2+3ab+2b 2 14.4ab 3 15. 90 cm 2 16.7 三、17. 解:(1) −3xy (3x 2y+2xy−1). (2)(a−b )2(a+b ).18. 解:原式=(2013+1)(2013-1)-(2013+1)2=20132-1-(20132+2×2013×1+1)=20132-1-20132-2×2013×1-1=-4028.19. 解:(1)原式=a 2 (-a 6)+(-a 8)=-a 8+(-a 8)=-2a 8. (2)原式=(x 2+x-2+2)÷x=(x 2+x )÷x=x+1.20. 解:原式=x 2-4x+4-(x 2+2x-3)=x 2-4x+4-x 2-2x+3=-6x+7.当x=-31时,原式=-6×(-31)+7=2+7=9.21. 解:m a+b-2c =m a ·m b ÷m 2c =m a ·m b ÷(m c )2.因为m a =6,m b =5,m c =4,所以m a+b-2c =6×5÷42=30÷16=815. 22. 解:是.设连续两个偶数中最小的数为2a (a 为整数),则较大的为2a+2. [(2a+2)2-(2a )2]÷4=[4a 2+8a+4-4a 2]÷4=(8a+4)÷4=2a+1.因为a 为整数,所以2a+1一定是整数,所以(2a+2)2-(2a )2的结果一定是4的整数倍,即连续两个偶数的平方差一定是4的整数倍.23. 解:S 阴影部分=(2a+b )(3a+2b )-2a ·b ·2=6a 2+7ab+2b 2-4ab=6a 2+3ab+2b 2. 24.解:(1)x 5+x 4+x 3+x 2+x+1(2)x 8-1(3)是(4)(x 2+1)(x+1)(x-1) x 3+x 2+x+1=(x 3+x 2)+(x+1)=x 2(x+1)+(x+1)=(x+1)(x 2+1).第13章 全等三角形检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列命题中,是假命题的是A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等2.已知ABC △中,ABC ∠和ACB ∠的平分线交于点O ,则BOC ∠一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定3.已知两个直角三角形全等,其中一个直角三角形的面积为3,斜边为4,则另一个直角 三角形斜边上的高为( )A.23B.34C.32D.6 4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A.∠1=50°,∠2=40° B.∠1=50°,∠2=50° C.∠1=∠2=45°D.∠1=40°,∠2=40°5.命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线6.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( ) A.∠A =∠D B.BC =EF D.AC =DF第6题图 第7题图 第8题图7.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A.1个B.2个C.3个D.4个 8.已知:如图,B ,C ,E 三点在同一条直线上,AC CD =,B ∠=90E ∠=︒,AC CD ⊥,则不正确的结论是( )A. A ∠与D ∠互为余角B.2A ∠=∠C.ABC CED △≌△D.∠1=∠29.如图,点B ,C ,E 在同一条直线上,ABC △与CED △都是等边三角形,则下列结论不一定成立的是( )A.ACE BCD △≌△B.BGC AFC △≌△C.DCG ECF △≌△D.ADB CEA △≌△10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF .其中正确的结论共有( ) A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”). 12.如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C ′=24°,则∠B = °.13.命题:“如果a b =,那么22a b =”的逆命题是________________,该命题是_____命题(填“真”或“假”). 14.如图,已知ABC △的周长是21,BO ,CO 分别平分ABC ∠和ACB ∠,OD BC ⊥于点D ,且3OD =,则ABC △的面积是 .第12题图 第14题图 第15题图15.如图,在ABC △中,AB AC =,AD 是ABC △的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中①DA 平分EDF ∠;②AE AF =,DE DF =;③AD 上的点到B ,C 两点的距离相等;④图中共有3对全等三角形,正确的有: .16.如图,已知等边ABC △中,BD CE =,AD 与BE 相交于点P ,则APE ∠= 度. 17.如图,AB AC =,AD AE =,BAC DAE ∠=∠,∠1=25°,∠2=30°,则∠3= .18.如图,已知在Rt ABC △中,90ABC ∠=︒,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连结BE ,则下列结论:①ED BC ⊥;②A ∠EBA =∠;③EB 平分AED ∠;④12ED AB =中,一定正确的是 (填写正确选项的序号).第16题图 第17题图 第18题图三、解答题(共46分)19.(4分)下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.(1)一个角的补角比这个角的余角大多少度?(2)等角的补角相等.(3)两条直线相交只有一个交点.(4)同旁内角互补.20.(6分)已知:如图,AB AE =,∠1=∠2,B E ∠=∠.求证:BC ED =.第20题图 第21题图21.(6分)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC .(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.22.(8分)如图,P 是BAC ∠内的一点,PE AB ⊥,PF AC ⊥,垂足分别为E ,F ,AE AF =.求证:(1)PE PF =;(2)点P 在BAC ∠的平分线上.23.(6分)如图,在ABC △中,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥于点E ,点F 在AC 上,BD DF =.求证:(1)CF EB =;(2)2AB AF EB =+.第22题图第23题图24.(8分)已知:在ABC∠=︒,点D是AB的中点,点E是AB边上一点.ACB△中,AC BC=,90(1)BF垂直CE于点F,交CD于点G(如图①),求证:AE CG=.(2)AH垂直CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.①②第24题图25. (8分)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图①,连接BD,AF,则BD AF(填“>”,“<”或“=”号);(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF.求证:BH=GF.图①图②第25题图第13章 全等三角形检测题参考答案 1. B 解析:选项B 错误,两直线平行,同旁内角互补;其余选项都正确.2.C 解析:因为在ABC △中,180ABC ACB ∠+∠<︒,所以119022ABC ACB ∠+∠<︒,所以90BOC ∠>︒.故选C.3.C 解析:设面积为3的直角三角形斜边上的高为h ,则1432h ⨯=,∴ 32h =. 4.C 解析:当∠1=∠2=45°时,∠1+∠2也等于90°.所以命题“如果∠1+∠2=90°,那么∠1≠∠2”是假命题.故选C.5.D 解析:题设是两条直线垂直于同一条直线,结论是这两条直线互相平行.故选D.6.D 解析:添加选项A 中的条件,可用“ASA ”证明△ABC ≌△DEF ;添加选项B 中的条件,可用“SAS ”证明△ABC ≌△DEF ;添加选项C 中的条件,可用“AAS ”证明△ABC ≌△DEF ;只有添加选项D 中的条件,不能证明△ABC ≌△DEF .归纳: 本题考查了全等三角形的判定方法.(1)三边分别对应相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS);(3)有两角及其夹边对应相等的两个三角形全等(ASA);(4)有两角及一角的对边对应相等的两个三角形全等(AAS).7. C 解析:本题主要考查全等三角形的判定,设方格纸中小正方形的边长为1,可求得△ABC 除边AB 外的另两条边长分别是与5,若选点P 1,连接A P 1,B P 1,求得A P 1,B P 1的长分别是与5,由“边边边”判定定理可判断△ABP 1与△ABC 全等;用同样的方法可得△ABP 2和△ABP 4均与△ABC 全等;连接AP 3,BP 3,可求得AP 3=2,BP 3=,所以△ABP 3不与△ABC 全等,所以符合条件的点有P 1,P 2,P 4三个.8.D 解析:∵ 290D ∠+∠=︒,∠1+∠2=90°,190A ∠+∠=︒,∴ 90A D ∠+∠=︒,故A 选项正确. ∵ B ,C ,E 三点在同一条直线上,且AC CD ⊥,∴ ∠1+∠2=90°.∵ 90B ∠=︒,∴ 190A ∠+∠=︒,∴ 2A ∠=∠.故B 选项正确.在ABC △和CED △中,902,,B E A AC CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ ABC CED △≌△,故C 选项正确.∵ AC CD ⊥,∴ 90ACD ∠=︒,∠1+∠2=90°,∠1与∠2不一定相等,故D 选项错误.故选D .9.D 解析:∵ ABC △和CDE △都是等边三角形,∴ BC AC =,CE CD =,60BCA ECD ∠=∠=︒,∴ BCA ACD ECD ACD ∠+∠=∠+∠,即BCD ACE ∠=∠.在BCD △和ACE △中,,,,BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ BCD ACE △≌△,故A 成立.∵ BCD ACE △≌△,∴∠DBC =∠EAC.∵ 60BCA ECD ∠=∠=︒,∴ 60ACD ∠=︒.在BGC △和AFC △中,,,60,CAF CBG AC BC GCB FCA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ BGC AFC △≌△,故B 成立.∵ BCD ACE △≌△,∴ CDB CEA ∠=∠.在DCG △和ECF △中,,,60CDG CEF CD CE GCD FCE =⎧⎪=⎨⎪==︒⎩,∠∠∠∠∴ DCG ECF △≌△,故C 成立.故选D .10. A 解析:由DE ⊥AC ,BF ∥AC 得BF ⊥DF .如图,作DG ⊥AB 于G ,而DE ⊥AC ,由角平分线的性质可得DE =DG .同理可得DG =DF ,所以DE =DF ,故①正确;因为BF ∥AC ,由平行线的性质可得∠C =∠CBF ,∠CED =∠DFB =90°.又DE =DF ,所以△CED ≌△BFD ,所以DB =DC ,故②正确;因为BF ∥AC ,所以∠CAB +∠ABF =180°,AD 是∠CAB 的平分线,BC 平分∠ABF ,所以∠DAB +∠ABD =90°,可得∠ADB =90°,故③正确;由△CED ≌△BFD 可得EC =BF ,而AE =2BF ,所以AC =3BF ,故④正确.故选项A 正确.第10题图11.如果两个三角形的面积相等,那么这两个三角形全等 假12.120 解析:∵ △ABC ≌△A ′B ′C ′,∴ ∠A =∠A ′=36°,∠C =∠C ′=24°.∵ ∠A +∠B +∠C =180°,∴ ∠B =180°-∠A -∠C =180°-36°-24°=120°.点拨:根据全等三角形的对应角相等,再利用三角形的内角和等于180°求解.13.如果22a b =,那么a b = 假 解析:根据题意,得命题“如果a b =,那么22a b =”的条件是“a b =”,结论是“22a b =”,故逆命题是“如果22a b =,那么a b =”,该命题是假命题.14.31.5 解析:作OE AC ⊥,OF AB ⊥,垂足分别为E ,F ,连结OA .∵ BO ,CO 分别平分ABC ∠和ACB ∠,OD BC ⊥,∴ OD OE OF ==.∴ ABC OBC OAC OAB S S S S =++△△△△ =111222OD BC OE AC OF AB ⨯⨯+⨯⨯+⨯⨯ =1()2OD BC AC AB ⨯⨯++=132131.52⨯⨯=. 15.①②③④ 解析:在ABC △中,AB AC =,AD 是ABC △的角平分线,已知DE AB ⊥,DF AC ⊥,可证ADE ADF △≌△.故有EDA FDA ∠=∠,AE AF =,DE DF =,①②正确.AD 是ABC △的角平分线,在AD 上可任意取一点M ,可证BDM CDM △≌△,∴ BM CM =,∴ AD 上的点到B ,C 两点的距离相等,③正确.根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.16.60 解析:∵ ABC △是等边三角形,∴ ABD C ∠=∠,AB BC =.∵ BD CE =,∴ ABD BCE △≌△,∴ BAD CBE ∠=∠.∵ 60ABE EBC ∠+∠=︒,∴ 60ABE BAD ∠+∠=︒,∴ 60APE ABE BAD ∠=∠+∠=︒.17.55︒ 解析:在ABD △与ACE △中,∵ 1CAD CAE CAD ∠+∠=∠+∠,∴ 1CAE ∠=∠.又∵ AB AC =,AD AE =,∴ ABD ACE △≌△.∴ 2ABD ∠=∠.∵ 3112ABD ∠=∠+∠=∠+∠,125∠=︒,230∠=︒,∴ 355∠=︒.18.①②④ 解析:根据作图过程可知EB EC =.∵ D 为BC 的中点,∴ ED 垂直平分BC ,∴ ①ED BC ⊥正确.∵ 90ABC ∠=︒,∴ PD AB ∥,∴ E 为AC 的中点,∴ EC EA =,④12ED AB =正确. ∵ EB EC =,∴ EB EA =,②A EBA ∠=∠正确;③EB 平分AED ∠错误.故正确的有①②④. 点拨:本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.19.分析:根据命题的定义先判断出哪些是命题,再把命题的题设写在“如果”后面,结论写在“那么”后面.将题设与结论互换写出它的逆命题.解:对一件事情做出判断的句子是命题,因为(1)是问句,所以(1)不是命题,其余4个都是命题.(2)如果两个角相等,那么它们的补角相等,真命题;逆命题:如果两个角的补角相等,那么这两个角相等,真命题.(3)如果两条直线相交,那么它们只有一个交点,真命题;逆命题:如果两条直线只有一个交点,那么这两条直线相交,真命题.(4)如果两个角是同旁内角,那么它们互补,假命题;逆命题:如果两个角互补,那么这两个角是同旁内角,假命题.20.分析:要证BC ED =,需证ABC AED △≌△.证明:因为12∠=∠,所以12BAD BAD ∠+∠=∠+∠,即BAC EAD ∠=∠.又因为AB AE =,B E ∠=∠,所以ABC AED △≌△,所以BC ED =.21.分析:(1)由BF =EC 可得BC =EF ,再根据已知条件,利用“SSS”判定△ABC ≌△DEF ;(2)根据△ABC ≌△DEF ,得∠ABC =∠DEF ,∠ACB =∠DFE ,利用“内错角相等,两直线平行”得出AB ∥DE ,AC ∥DF .(1)证明:∵ BF =EC ,∴ BF +FC =EC +CF ,即BC =EF .又AB =DE ,AC =DF ,∴ △ABC ≌△DEF .(2)解:AB ∥DE ,AC ∥DF .理由:∵ △ABC ≌△DEF ,∴ ∠ABC =∠DEF ,∠ACB =∠DFE ,∴ AB ∥DE ,AC ∥DF .22.证明:(1)连结AP ,因为AE AF =,AP AP =,PE AB ⊥,PF AC ⊥,所以Rt Rt APE APF △≌△,所以PE PF =.(2)因为Rt Rt APE APF △≌△,所以FAP EAP ∠=∠,所以点P 在BAC ∠的平分线上.23.分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD DE =.再根据Rt Rt CDF EDB △≌△,得CF EB =.(2)利用角平分线性质证明ADC ADE △≌△,∴ AC AE =,再将线段AB 进行转化.证明:(1)∵ AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,∴ DE DC =.又∵ BD DF =,∴ Rt Rt CDF EDB △≌△,∴ CF EB =.(2)∵ AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,∴ ADC ADE △≌△,∴ AC AE =,∴ 2AB AE BE AC EB AF CF EB AF EB =+=+=++=+.24.(1)证明:因为BF 垂直CE 于点F ,所以90CFB =︒∠,所以90ECB CBF ∠+∠=︒.又因为90ACE ECB ∠+∠=︒,所以ACE CBF ∠=∠.因为AC BC =,90ACB =︒∠,所以45A CBA ∠=∠=︒.又因为点D 是AB 的中点,所以45DCB =︒∠.所以DCB A ∠=∠.因为ACE CBF ∠=∠,DCB A =∠∠,AC BC =,所以CAE BCG △≌△,所以AE CG =.(2)解:BE CM =.证明如下:在ABC △中,因为AC BC =,90ACB ∠=︒,所以45CAB CBA ∠=∠=︒,90ACH BCE ∠+∠=︒.因为CH AM ⊥,即90CHA =︒∠,所以90ACH CAM ∠+∠=︒,所以BCE CAM ∠=∠.因为CD 为等腰直角三角形斜边上的中线,所以CD AD =,45ACD ∠=︒.在BCE △和CAM △中,BC CA =,BCE CAM ∠=∠,CBE ACM ∠=∠,所以CAM BCE △≌△,所以BE CM =.25.分析:(1)根据平移的性质得到AB =AC =DE =DF ,∠ABC =∠ACB =∠DEF =∠DFE ,再由公共边BF 可证明△ABF ≌△DFB ,从而得到BD =AF .(2)欲证明BH =GF ,需证明△BEH ≌△FCG .根据平移的性质易证明BE =CF , ∠BEH =∠FCG ,只需证明HE =CG 即可.解:(1)=(2)证明:将△DEF 沿FE 方向平移,使点E 与点C 重合,设ED 平移后与MN 相交于R ,如答图所示. ∵ ∠GRC =∠RHE =∠DEF ,∠RGC =∠GCB ,∴ ∠GRC =∠RGC ,∴ CG =CR ,∴ CG =HE .又∵BE=CF,∠HEB=∠GCF,∴△BEH≌△FCG,∴BH=GF.第25题图第14章勾股定理勾股定理的实际应用专题检测题1.如图,为测量小区内池塘最宽处A,B两点间的距离,在池塘边定一点C,使∠BAC=90°,并测得AC的长18 m,BC的长为30 m,则最宽处AB的距离为()A.18 m B.20 m C.22 m D.24 m2.如图,边长为1的立方体中,一只蚂蚁从A顶点出发沿着立方体的外表面爬到B顶点的最短路程是() A.3 B. 5 C.2+1 D.13.如图,正方形OABC的边长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.1 B. 2 C.1.5 D.24.为迎接新年的到来,同学们准备了许多拉花布置教室,准备召开新年晚会,大宏搬来一架长2.5 m的木梯,准备把拉花挂在2.4 m高的墙上,则梯脚与墙脚的距离为()A.0.7 m B.0.8 m C.0.9 m D.1.0 m5.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直,如小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约()A.600 m B.500 m C.400 m D.300 m6.如图,从电线杆离地面6米处向地面拉一条10米长的钢缆,地面钢缆固定点A到电线杆底部B 的距离AB是________米.7.如图,有一圆柱形油罐,现要以油罐底部的一点A环绕油罐建梯子,并且要正好建到A点正上方的油罐顶部的B点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为________米.8.如图,每个小正方形的边长都是1,每个小正方形的顶点叫格点,在每幅图中以格点为顶点,分别画出一个符合下列要求的三角形.(1)三边长分别为3,,5,并求此三角形的面积;(2)边长是无理数的等腰直角三角形,并求此三角形的斜边长.9.小亮准备测量一段河水的深度,他把一根竹竿插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端和岸边的水面刚好相齐,则河水的深度为()A.2 m B.2.5 m C.2.25 m D.3 m10.如图,放学以后,小林和小明从学校出发,分别沿东南方向和西南方向回家,他们行走的速度都是40米/分,小林用了15分钟到家,小明用了20分钟到家,则他们两家相距()A.600米B.800米C.1000米D.以上都不对11.如图,将一根长24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的取值范围是()A.12 cm≤h≤19 cm B.12 cm≤h≤13 cmC.11 cm≤h≤12 cm D.5 cm≤h≤12 cm12.一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为________cm.13.如图是一个轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm),计算两圆孔中心A和B的距离为________.14.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30 m处,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?答案:1---5 DBBAB6. 87. 138.(1)如图所示,△ABC为所求,S△ABC=12×3×3=92(2)如图所示,△DEF为所求,EF=DE2+DF2=29. D10. C11. C12. 3413. 100 mm14. 这辆小汽车超速了,依题意得AB=50 m,AC=30 m,由勾股定理得BC=AB2-AC2=502-302=40(m),小汽车的速度为40÷2=20 m/s=72 km/h,∵小汽车在城市道路上行驶速度不得超过70 km/h,∴这辆小汽车超速了第15章数据的收集与表示检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.在一列数1,2,3,…,10中,数字“0”出现的频数是()A.1B.2C.3D.42.下面是四名同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()A. B. C. D.3.某电脑厂家为了安排台式电脑和手提电脑的生产比例,进行了一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理()A.你明年是否准备购买电脑?(1)是;(2)否B.如果你明年购买电脑,打算买什么类型的?(1)台式;(2)手提C.你喜欢哪一类型电脑?(1)台式;(2)手提D.你认为台式电脑是否应该被淘汰?(1)是;(2)否4.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°第4题图C.108°D.180°5.(2013•浙江丽水中考)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.4 0.35 0.1 0.15A.16人B.14人C.4人D.6人6.已知数据:13,2,3,π,2,其中无理数出现的频率为( )A.0.2B.0.40C.0.60D.0.807.设计问卷调查时,下列说法不合理的是()A.提问不能涉及提问者的个人观点 B.问卷应简短C.问卷越多越好 D.提问的答案要尽可能全面8.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的统计图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约等于()A.50%B.55%C.60%D.65%第8题图第9题图第10题图9.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.310.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况二、填空题(每小题4分,共24分)11.“Welcome to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母“o”出现的频率是.12.下图是七年级二班英语成绩统计图,根据图中的数据可以算出,优秀人数占总人数的;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是__________度.第12题图第14题图13.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组∼第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是.14.八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的统计图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次竞赛成绩达到优秀的人数占全班人数的百分比是_________.15.为了解某市老人的身体健康状况,在以下选取的调查对象中,你认为较好的是 .(填序号):①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.16.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是.三、解答题(共46分)第16题图17.(6分)小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,记录本地车辆与外地车辆的数量,同时也对汽车牌照的尾号进行了记录.(1)在这个过程中他要收集种数据;(2)设计出记录用的表格是怎样的.18.(6分)为了帮助数学成绩差的学生,老师调查了180名学生,设计的问题是“你的数学作业完成情况如何”给出五个选项(独立完成、辅导完成、有时抄袭完成、经常抄袭完成、经常不完成)供学生选择.结果老师发现选择独立完成和辅导完成这两项的学生一共占了52%,明显高于他平时观察到的比例,你能解释这个统计数字失真的原因吗?19.2 8 9 6 5 43 3 11 10 12 10 12 34 9 12 35 1011 2 12 7 2 9 12 8 1 12 11 4 12 10 5 3 2 8 10 12(1)请你重新设计一张统计表,使全班同学在每个月的出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月过生日的每一位同学送一份小礼物,那你应该准备多少份礼物?20.(8分)“六一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以类别儿童玩具童车童装抽查件数90(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?21.(8分)下面是两个班的成绩统计图:(1)如果85分以上(包括85分)为优秀,分别计算两班的优秀率:第20题图一班优秀率:______________;二班优秀率:______________.哪个班的优秀率高?(2)指出一班人数最多的扇形的圆心角的度数.(3)这两个班的及格率分别是多少?第21题图22.(10分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?第22题图第15章数据的收集与表示检测题参考答案1.A 解析:在1,2,3,…,10中,数字“0”出现1次.2.C 解析:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.3.D 解析:根据设计问卷调查应该注意的问题可知D不合理,问题和调查的目的不符合,故选D.4.B 解析:唱歌兴趣小组人数所占百分比为1-50%-30%=20%, 故唱歌兴趣小组人数的扇形的圆心角度数为360°×20%=72°.5.A 解析:本班A 型血的人数为400.416⨯=(人),故选A.6.C 解析:在13π,2-中,π是无理数,共3个,所以,无理数出现的频率为30.65=.故选C. 7.C 解析:设计问卷调查时,提问不能涉及提问者的个人观点,否则影响被调查者的观点.问卷应简短,便于调查对象进行回答.被调查的对象要具有代表性,所以不是问卷越多越好.提问的答案要尽可能全面,能让尽可能多的人有选择的机会.故选C.8.C 解析:40511420m =---=,该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约是204100%60%40+?,故选C .9.D 解析:根据统计图知道绘画兴趣小组的人数为12,∴ 七年级学生参加绘画兴趣小组的频率是12÷40=0.3.故选D .10.A 解析:从图中能够看出各项消费占总消费额的百分比,故A 项正确.因为不知消费的具体数额,所以从图中不能确定各项的消费金额,故B 项错误.从图中不能看出消费的总金额,故C 项错误. 从图中不能看出增减情况,故D 项错误. 11.0.2 解析:在这个句子中,有25个字母,其中有5个“o ”,故字母“o ”出现的频率为50.225=. 12.24% 144 解析:优秀人数占总人数的百分比为12÷50×100%=24%; 成绩中等的人数的扇形所对的圆心角度数为360°×(20÷50)=144°.13.0.1 解析:∵ 都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组∼第四组的人数分别为10,5,7,6,第五组的频率是0.2,∴ 第五组的频数为40×0.2=8,则第六组的频数为40-(10+5+7+6+8)=4,∴ 第六组的频率是4÷40=0.1.14.30% 解析:总人数是5+10+20+15=50,优秀的人数是15,则该班这次竞赛成绩达到优秀的人数占全班人数的百分比是30%=100%× 5015. 15.③ 解析:①100位女性老人没有男性代表,没有代表性.②公园内的老人一般是比较健康的,也没有代表性.③在城市和乡镇选10个点,每个点任选10位老人比较有代表性,故填③.16.240° 解析:用圆周角乘以持“一水多用”观点的人数所占60名同学的百分比即可求得其所占的圆心角的度数,即4036024060︒⨯=︒. 17.分析:根据题意可知需要收集2种数据,本地车辆与外地车辆的数量,汽车牌照的尾号,设计表格合理即可. 解:(1)2; (218.解:抄袭和不完成作业是不好的行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计的不好,得到的结果容易失真. 19.分析:(1)根据题意,按生日的月份重新分组统计可得表格; (2)根据频数与频率的概念可得答案;。
华东师大版数学八年级下册全册练习题(含答案)
2.分式的基本性质1.下列运算正确的是( D )(A)=- (B)=(C)=x+y (D)=-2.下列分式中是最简分式的是( A )(A)(B)(C)(D)3.若将分式中的x,y都扩大到原来的3倍,则分式的值( A )(A)不变 (B)扩大3倍(C)扩大6倍 (D)缩小到原来的4.(整体求解思想)(2018新乡一中月考)若y2-7y+12=0,则分式的值是( B )(A)1 (B)-1 (C)13 (D)-135.若=2,=6,则= 12 .6.若梯形的面积是(x+y)2(x>0,y>0),上底是2x(x>0),下底是2y(y>0),高是z(z>0),则z=x+y .7.化简:= x-y+1 .8.(辅助未知数法)若==≠0,则= .9.不改变分式的符号,使分式的分子、分母最高次项的系数为正数.解:==.10.通分:(1),,;(2),.解:(1),,的最简公分母为12x3y4z,所以==,==,==.(2),的最简公分母为x(x-y)(x+y),所以==,==.11.(拓展探究)不改变分式的值,把分式中分子、分母的各项系数化为整数,然后选择一个你喜欢的整数代入求值.解:==.因为6x-5≠0,所以x≠.所以当x=0时,原式==-.12.(一题多解)已知=3,求的值.解:法一分子、分母的每一项除以y2,得===.法二已知=3,得x=3y,代入得====.16.2 分式的运算1.分式的乘除1.若分式(-)2与另一个分式的商是2x6y,则另一个分式是( B )(A)- (B)(C)(D)-2.计算:的结果为( A )(A)1 (B)(C) (D)03.如果x等于它的倒数,那么÷的值是( A )(A)1 (B)-2(C)-3 (D)2或-34.计算()2·()3÷(-)4得( A )(A)x5 (B)x5y (C)y5 (D)x155.化简:÷= .6.(2018洛阳伊川期末)若·△=,则△表示的代数式是-.7.学习分式的乘除时,李老师在黑板上写出这样一道题目:若分式没有意义,则÷()2·的值是-.8.化简下列各式:(1)÷;(2) ÷(x+3)·;(3)·÷(-ab4).解:(1)原式=÷=×=.(2)原式=··=-.(3)原式=··=.9.已知a=b+2 018,求代数式·÷的值.解:原式=××(a-b)(a+b)=2(a-b),因为a=b+2 018,所以a-b=2 018,所以原式=2×2 018=4 036.10.(拓展探究)若=x-,化简:(x+)(x2+)(x4+)(x8+)(x16+) (x2-1). 解:因为=x-,所以原式=[(x-)(x+)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x2-)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x4-)(x4+)(x8+)(x16+)](x2-1)÷=[(x8-)(x8+)(x16+)](x2-1)÷=[(x16-)(x16+)](x2-1)÷=(x32-)(x2-1)·=(x32-)·x=x33-.11.(拓展探究)(1)计算:(a-b)(a2+ab+b2);(2)利用所学知识以及(1)所得等式,化简代数式÷. 解:(1)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.(2)原式=·=m+n.2.分式的加减第1课时分式的加减1.若-β=,则β等于( D )(A)(B)(C)(D)2.计算++的结果为( D )(A)(B)(C)(D)3.化简-等于( B )(A)(B)(C)-(D)-4.化简:+的结果是a-b .5.化简:-+1=x .6.若=+,则A= 3 ,B= 6 .7.计算:(1)-;(2)-+;(3)+.解:(1)-=+===.(2)-+=-+====.(3)+=-=-===-.8.(2018广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 解:(1)T=+=+====.(2)因为正方形ABCD的边长为a,面积为9,所以a2=9,所以a=3(负值已舍去),所以T==.9.(规律探索题)(2018安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.解:(1)++×=1.(2)++·=1.证明如下:因为左边=++·===1,右边=1,所以左边=右边,所以等式成立.所以第n个等式为++·=1.第2课时分式的混合运算1.化简:(-)·(x-3)的结果是( B )(A)2 (B)(C) (D)2.计算:(1+)÷(1+)的结果是( C )(A)1 (B)a+1(C)(D)3.当x=6,y=3时,代数式(+)·的值是( C )(A)2 (B)3 (C)6 (D)94.化简(y-)÷(x-)的结果是( D )(A)- (B)-(C)(D)5.若x=-1,则÷-2+x的值是0 .6.化简:·÷+= .7.(整体求解法)若x+=2,则(x2+2+)·(x2-)÷(x-)+2 019的值是 2 027 .8.化简:(+)÷.解:(+)÷=·=·=.9.先化简:·+,再在-3,-1,0,,2中选择一个合适的x值代入求值. 解:·+=·+=+===x,为使原分式有意义x≠-3,0,2,所以x只能取-1或.当x=-1时,原式=-1.或当x=时,原式=.(选择其中一个即可)10.(分类讨论题)若a的立方等于它的本身,求(+)÷·的值. 解:原式=÷·=·(a+2)(a-2)·=a3.因为a的立方等于它的本身,所以a=0或1或-1.所以当a=0时,原式=03=0;当a=1时,原式=13=1;当a=-1时,原式=(-1)3=-1.所以(+)÷·的值是0或1或-1.11.(拓展题)(2018德州)先化简,再求值:÷-(+1),其中x是不等式组的整数解.解:原式=·-(+)=-=.因为不等式组的解集是3<x<5,所以不等式组的整数解是x=4.所以当x=4时,原式==.16.3 可化为一元一次方程的分式方程第1课时分式方程及解法1.(2018德州)分式方程-1=的解为( D )(A)x=1 (B)x=2 (C)x=-1 (D)无解2.若方程=+的解为x=15,则?表示的数为( C )(A)7 (B)5 (C)3 (D)13.对于非零的实数a,b,规定a⊕b=-.若2⊕(2x-1)=1,则x等于( D )(A)5 (B)6 (C) (D)4.关于x的方程=2+无解,则m的值为( A )(A)-5 (B)-8 (C)-2 (D)55.若关于x的方程+=3的解为正数,则m的取值范围是( B )(A)m<(B)m<且m≠(C)m>-(D)m>-且m≠-6.有四个方程为-=1,=2,()2=+-1,+6=.其中分式方程有 1 个.7.(2018潍坊)当m= 2 时,解分式方程=会出现增根.8.解分式方程:+=4.解:方程两边同乘(x-1),得x-2=4(x-1),整理得-3x=-2,解得x=,经检验x=是原方程的解,故原方程的解为x=.9.若|a-1|+(b+2)2=0,求方程+=1的解.解:因为|a-1|+(b+2)2=0,所以a-1=0,b+2=0.所以a=1,b=-2.把a=1,b=-2代入方程,得-=1.解得x=-1.经检验x=-1是原方程的解.所以原方程的解是x=-1.10.(拓展题)若分式无意义,则当-=0时,m= .11.(归纳猜想思想)已知方程x-=1的解是x1=2,x2=-;x-=2的解是x1=3,x2=-;x-=3的解是x1=4,x2=-;x-=4的解是x1=5,x2=-.问题:(1)观察上述方程及其解,再猜想x-=n+(n为正整数)的解(不要求证明);(2)写出方程x-=10的解并且验证你写的解是否正确.解:(1)x1=n+1,x2=-.(2)x1=11,x2=-.验证:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边.所以x1=11,x2=-都是原方程的解.第2课时分式方程的应用1.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是( A )(A)-=5 (B)-=5(C)+5=(D)-=52.(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( A )(A)-=10 (B)-=10(C)-=10 (D)+=103.(2018嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意可列出方程=(1-10%) .4.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.5.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是80 km/h.6.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .7.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为x km/h,汽车的速度为2x km/h,根据题意得=+,解得x=15,经检验x=15是原方程的解,所以2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.8.(2018威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件.根据题意,得-=+.解得x=60.经检验x=60是原方程的解.所以(1+)x=80.答:软件升级后每小时生产80个零件.9.(拓展题)某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求甲工程队完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的分配方案是什么?(甲、乙两工程队完成的天数均为整数)解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x-20)米.根据题意,得=,解得x=70.经检验x=70是原方程的解,所以x-20=70-20=50.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,则分配给乙工程队(1 000-y)米.所以甲工程队完成该项工程的工期为天,乙工程队完成该项工程的工期为天,根据题意,得≤10,解得y≤700.因为y是以百米为单位,所以y=100,200,300,400,500,600,700.所以1 000-y=900,800,700,600,500,400,300.因为甲、乙两工程队完成的天数均为整数,所以y=700.所以1 000-y=300.答:分配给甲工程队700米,分配给乙工程队300米.10.(分类讨论)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.解:(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得=,解得x=10,经检验x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元.(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得10m+6n=100,整理得m=10-n,因为m,n都是正整数,所以①n=5时,m=7,②n=10时,m=4,③n=15,m=1.所以有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2.科学记数法1.下列计算正确的是( D )(A)(-1)0=-1 (B)(-1)-1=1(C)3m-2= (D)(-a)÷(-a)3=2.计算:-()2+(+π)0+(-)-2的结果是( D )(A)1 (B)2 (C)(D)33.(2018洛阳伊川模拟)某种流感病毒的直径约为0.000 000 08 m,若把0.000 000 08用科学记数法表示为8×10n,则n的值是( A )(A)-8 (B)-7 (C)-6 (D)-54.计算:|-5|+()-1-2 0170的结果是( B )(A)5 (B)6 (C)7 (D)85.某颗粒物的直径是0.000 002 5米,把0.000 002 5用科学记数法表示为 2.5×10-6.6.(2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数据用科学记数法表示为9.3×10-26kg.7.计算:|1-|+()0= .8.若(3x-15)0+8有意义,则x的取值范围是x≠5 .9.用科学记数法表示:(1)0.000 03;(2)-0.000 006 4;(3)0.000 031 4.解:(1)0.000 03=3×10-5.(2)-0.000 006 4=-6.4×10-6.(3)0.000 031 4=3.14×10-5.10.若52x-1=1,3y=,求x y的值.解:因为52x-1=1,3y=,所以52x-1=50,3y=3-3.所以2x-1=0,y=-3,所以x=,所以x y=()-3==8.11.计算:(1)|-1|-+(π-3)0+2-2;(2)(-1)2 017+(-)-2×-|-2|.解:(1)原式=1-+1+=1-2+1+=.(2)原式=-1+4×1-2=-1+4-2=1.12.(易错题)计算的结果是( B )(A)(B)(C)(2a-1)b (D)(2a-1)b313.(规律探究题)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”)①1-2> 2-1,②2-3> 3-2,③3-4< 4-3,④4-5< 5-4,…;(2)由(1)可以猜测n-(n+1)与(n+1)-n (n为正整数)的大小关系:当n ≤2 时,n-(n+1)>(n+1)-n;当n >2 时,n-(n+1)<(n+1)-n.第17章函数及其图象17.1 变量与函数1.(2018洛阳伊川期末)在函数y=+(9x-81)-1中,自变量x的取值范围是( D )(A)x≠1 (B)x≠-5(C)x≠9 (D)x≠-5且x≠92.下列说法正确的是( D )(A)在球的体积公式V=πr3中,V不是r的函数(B)若变量x,y满足y2=x,则y是x的函数(C)在圆锥的体积公式V=πR2h中,当h=4厘米,R=2厘米时,V是π的函数(D)变量x,y满足y=-x+,则y是x的函数3.某地的地面温度为21 ℃,如果高度每升高1千米,气温下降6 ℃,则气温T(℃)与高度h(千米)之间的表达式为( A )(A)T=21-6h (B)T=6h-21(C)T=21+6h (D)T=(21-6)h4.下列曲线中不能表示y是x的函数的是( C )5.(2018灵宝期中)若等腰△ABC的周长是36,则底边y与腰长x之间的函数表达式是y=36-2x ,其中自变量x的取值范围是9<x<18 .6.根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为 1 .7.下面的表格列出了一个实验的统计数据(单位:厘米),表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,则能表示这种关系的式子是b= d .d 50 80 100 150b 25 40 50 758.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y 与n之间的函数表达式为y= 4n .9.分别指出下列表达式中的变量与常量.(1)三角形的一边长为8,它的面积S与这条边上的高h之间满足表达式S=4h;(2)圆的半径r与该圆的面积S之间满足表达式S=πr2.解:(1)变量为S与h,常量为4.(2)变量为S和r,常量为π.10.求下列函数中自变量x的取值范围.(1)y=-8x;(2)y=-x+10;(3)y=x2+2x-3;(4)y=.解:(1)自变量x的取值范围是全体实数.(2)自变量x的取值范围是全体实数.(3)自变量x的取值范围是全体实数.(4)因为11x-88≠0,所以x≠8.所以自变量x的取值范围是x≠8.11.某市出租车价格是这样规定的:不超过2.5千米,付车费8元,超过的部分按每千米2.5元收费.已知某人乘坐出租车行驶了x(x>2.5)千米,付车费y元,请写出出租车行驶的路程x(千米)与所付车费y(元)之间的表达式.解:根据题意可知所付车费为y=8+2.5×(x-2.5)=2.5x+1.75(其中x>2.5).12.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.07升/千米.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200千米时,油箱中还有多少汽油?解:(1)根据题意,得每行驶x千米,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49-0.07x,所以y与x的函数关系式为y=49-0.07x.(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.07x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得x≤700.综上所述,自变量x的取值范围是0≤x≤700.(3)当x=200时,代入x,y的函数关系式得,y=49-0.07×200=35.所以汽车行驶200千米时,油箱中还有35升汽油.13.(分类讨论)已知两个变量x,y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的表达式,若不是,说明理由.解:(1)由2x-3y+1=0,得y=,因为对于x的每一个取值,y都有唯一确定的值,所以y是x的函数.(2)由2x-3y+1=0,得x=,因为对于y的每一个取值,x都有唯一确定的值,所以x是y的函数.14.(拓展探究题)用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样的规律搭下去,搭n个三角形需要y根火柴棒.(1)求y关于n之间的函数表达式;(2)当n=2 019时,求y的值;(3)当y=2 021时,求n的值.解:(1)因为3=2×1+1,5=2×2+1,7=2×3+1,…,所以y与n之间的函数表达式为y=2n+1.(2)当n=2 019时,y=2×2 019+1=4 039.(3)当y=2 021时,2n+1=2 021.所以n=1 010.17.2 函数的图象1.平面直角坐标系1.如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为( D )(A)(2,1) (B)(1,2)(C)(-1,2) (D)(-1,3)2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( D )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.(2018洛阳栾川期末)若|3-x|+|y-2|=0,则点(x y,y x)在( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B )5.若点P的坐标是(8,6),则坐标原点O到点P的距离是10 .6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为a+b=0 .7.若21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,且22 017的个位数字是a,22 018的个位数字是b,22 019的个位数字是c,22 020的个位数字是d,则点A(a-b,c-d)在第二象限.8.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个符合上述条件的点P的坐标: (-1,3)或(-1,2)或(-1,1)或(-2,1)或(-2,2)或(-3,1) .9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,求“距离坐标”是(2,1)的点的个数,并画出草图.解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个,如图所示.10.在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3,2)和(3,-2)的两个标点A,B,并且知道藏宝地点C的坐标为(4,4),除此之外不知道其他信息,如何确定平面直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?解:根据题意,建立如图所示的坐标系,点C的位置就是宝藏的位置.11.(探索规律)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(5,0) .2.函数的图象1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA BC为折线),这个容器的形状可以是( D )3.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列4幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( C )4.(2018渑池模拟)星期天晚饭后,小红从家里出去散步,如图是描述她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象信息,则描述符合小红散步情景的是( B )(A)从家出发,到了一个公共阅报栏,看了一会儿报就回家了(B)从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了(C)从家出发,一直散步,然后回家了(D)从家出发,散了一会儿步,就找同学去,18分钟后才开始返回5.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量x的取值范围是4<x≤6 .6.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,请你观察:(1)这是一次100 米赛跑;(2)甲、乙两人先到达终点的是甲;(3)在这次赛跑中乙的速度是8米/秒.7.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.8.星期天,小明与小刚骑自行车去距家15千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在如图的平面直角坐标系中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的函数图象.解:由题意可知,2.5个小时走完全程15千米,所以1.5小时走了9千米,休息0.5小时后1小时走了6千米,由此作图即可.9.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时),看图回答下列问题:(1)小强让爷爷先爬了多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)图中两条线段的交点表示什么意思?(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,这对问题的结论有影响吗?允许这样做吗?解:(1)小强让爷爷先爬了60米.(2)山顶离山脚的距离有300米,小强先爬上山顶.(3)图中两条线段的交点表示小强出发8分钟时,小强赶上爷爷,并且都爬了240米.(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,对问题结论没有影响,可以这样做.10.拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中剩余油量Q(升)与工作时间t(时)之间的函数表达式;(2)写出自变量t的取值范围;(3)画出函数的图象.解:(1)所求的函数表达式是Q=-5t+30.(2)自变量t的取值范围是0≤t≤6.(3)①列表:t 0 2 4 6Q 30 20 10 0②描点并连线,函数图象如图所示.11.(拓展探究)如图①,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图①的边线运动,运动路径为G-C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图②,若AB=6 cm,则下列四个结论中正确的个数为( D )(1)图①中的BC长是8 cm;(2)图②中的M点表示第4秒时y的值为24 cm2;(3)图①中的CD长是4 cm;(4)图②中的N点表示第12秒时y的值为18 cm2.(A)1个(B)2个(C)3个(D)4个12.(实际应用)汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几分钟?速度是多少?在这段时间内,它走了多远?解:(1)这辆汽车的最高时速是120千米/时.(2)汽车在行驶了10分钟后停了下来,停了2分钟.(3)汽车在第一次匀速行驶时共用了4分钟,速度是90千米/时,在这段时间内,它走了90×=6千米.17.3 一次函数1.一次函数1.(2018洛阳实验中学月考)若长方形的周长是y,长是2x,宽比长少1,则y与x的函数表达式是( D )(A)y=2x (B)y=2x-1(C)y=2x-2 (D)y=8x-22.(2018郑州一中月考)有下列四个式子:①y-2x2=0;②y+9x=0;③6y=60-2x;④xy-18=0;⑤x-y=0.其中y是x的一次函数的有( B )(A)2个(B)3个(C)4个(D)5个3.用同样规格的黑白两种颜色的正方形瓷砖按如图所示的方式铺地板,设自左向右第x个图形中需要黑色瓷砖y块,则y与x之间的函数表达式是( D )(A)y=x2(B)y=2x+1(C)y=x+3 (D)y=3x+14.函数,一次函数和正比例函数之间的包含关系是( A )5.当m= -1 时,y=(m-1)x m+2是正比例函数.6.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶超过3千米的部分,按每千米 1.60 元计费.则出租车收费y(元)与行驶路程x(千米)之间的函数表达式是y=.7.如图是由若干盆花组成的形如三角形的图案,每条边有n(n>1)盆花,每个图案中花盆的总数是S,按此规律,则S与n的函数关系式是S=3n-3 .8.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6 ℃.已知某处地面气温为23 ℃,设该处离地面x千米(0≤x≤11)处的气温为y ℃,则y与x的函数表达式是y=23-6x (0≤x≤11) .9.某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求m和n的值,并求该单位余煤量y(吨)与烧煤天数x(天)之间的函数表达式;(2)当烧煤12天后,还余煤多少吨?解:(1)由题意,得解得即m=120,n=6.余煤量y吨与烧煤天数x的函数表达式为y=120-6x.(2)当x=12时,y=120-6×12=48.即当烧煤12天后,还余煤48吨.10.水是人类的生命之源,节约用水,人人有责.据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明在洗手时,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y 毫升水.(1)说明y与x之间的关系;(2)当滴了1 620毫升水时,小明离开水龙头多少小时?解:(1)水龙头每秒钟会滴下两滴水,每滴水约0.05毫升,所以离开x小时滴的水为3 600×2×0.05x毫升,所以y=360x(x≥0).所以y与x之间是正比例函数的关系.(2)当y=1 620时,有360x=1 620,解得x=4.5.所以当滴了1 620毫升水时,小明离开水龙头4.5小时.11.(图表信息题)某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.(1)完成下表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余油量y/升(2)写出x与y之间的关系.解:(1)填表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余100 91 82 73 64 46 油量y/升(2)x与y之间的关系为y=100-0.18x.12.(分类讨论题)新学期开始,小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每本练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第1本开始就按标价的85%出售.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的表达式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少本练习本?解:(1)甲店:10+10×0.7=17(元),乙店:20×0.85=17(元),所以到两个商店一样.(2)甲店:y=10+0.7×(x-10),即y=0.7x+3(x>10),不是正比例函数;乙店:y=0.85x,是正比例函数.(3)因为24元钱到甲店,24=0.7x+3,解得x=30(本);24元钱到乙店,24=0.85x,解得x≈28(本),所以到甲店买,最多可买30本练习本.2.一次函数的图象1.已知坐标平面上,一次函数y=3x+a的图象经过点(0,-4),其中a为一常数,则a的值为( B )(A)-12 (B)-4(C)4 (D)122.把直线y=2x-1向左平移1个单位,平移后直线的表达式为( B )(A)y=2x-2 (B)y=2x+1(C)y=2x (D)y=2x+23.如图所示的计算程序中,y与x之间的函数关系所对应的图象是( C )4.(2018滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图象为( A )5.如图,在△ABC中,点O是△ABC的角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( B )6.若点P(-3,-4)在直线y=kx-8上,则直线y=kx-8与x轴的交点坐标是(-6,0) .7.在平面直角坐标系xOy中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4 (用含m的代数式表示).8.画出y=2x与y=2x+3的图象,根据图象的特点,说明两者的联系.解:如图所示,从形状看:将y=2x的图象向上平移3个单位可得y=2x+3的图象.9.在直角坐标系中,求原点O到直线y=-x+5的距离.解:如图,因为当x=0时,y=5,所以直线y=-x+5与y轴的交点A的坐标是(0,5).因为当y=0时,-x+5=0,所以x=12,所以直线y=-x+5与x轴的交点B的坐标是(12,0),所以OA=5,OB=12,所以AB==13.作OC⊥AB于点C,所以×13×OC=×5×12,所以OC=.所以原点O到直线y=-x+5的距离是.10.画出函数y=x-3的图象,求出与x轴、y轴的交点坐标及这条直线与两坐标轴围成的三角形的面积.解:当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0),当x=0时,y= -3,所以直线与y轴的交点坐标是B(0,-3).所以S△OAB=OA·OB=×2×3=3.11.(探究题)已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数表达式;(2)画出函数的图象.解:(1)因为y+2与x成正比例,所以设y+2=kx(k是常数,且k≠0),当x=-2时,y=0,所以0+2=k·(-2),解得k=-1.所以函数表达式为y+2=-x,即y=-x-2.(2)列表如下:x 0 -2y -2 0描点、连线,画图,如图所示.3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,。
华师大版八年级数学上册单元测试题及答案全套.doc
最新华师大版八年级数学上册单元测试题及答案全套含期末试题,共6套第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列4个数:的、年、兀、(诵)°,其中无理数是()224筋B— C. 7t D.(V3)°2.8的平方根是()A. 4B. ±4 0.^8 D.3.(2015*安徽)与1 +诉最接近的整数是()A. 4B. 3C. 2D. 14.下列算式中错误的是()A.—V(i64=-0.8B. ±7^96=± 145.如图,数轴上点N表示的数可能是()Bf C.书D 迈6.比较扌,爭,一当的大小,正确的是()7.若a?=4, b2=9,且ab>0,贝a+b 的值为()A. -1 B・ ±5 C. 5 D. -58.如图,有一个数值转换器,原理如下:丿金入乡/ 取算术平方根|遢无『数夕金出妙/(第8题)当输入的X为64时,输出的y等于()A. 2B. 8C.y/2D.y[s9.已知2x—l的平方根是±3, 3x+y—l的立方根是4,贝0 y-x2的平方根是()4・ 5 B. -5 C. ±5 D. 2510・如图,己知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列(第10题)各数最接近的是()A. 0.1 5.V^04 C.^/008 D. 0.3二、填空题(每题3分,共30分)11.实数迈一2的相反数是 ________ ,绝对值是 _______ •12.在肩疋,-4, 0这四个数中,最大的数是_____________ .13.4+^3的整数部分是_________ ,小数部分是________ ・14.某个数的平方根分别是a+3和2a+15,则这个数为____________ .15.若寸2x_b + |y J|=0,则坂是 ______________ 理数.(填“有”或“无”)16.点P在数轴上和原点相距迈个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P, Q之间的距离为 _______________ .(注:数轴的正方向向右)17.—个正方体盒子的棱长为6c〃?,现要做一个体积比原正方体体积大127幼丿的新盒子,则新盒子的棱长为 _______ cm.18.对于任意两个不相等的实数a, b,定义运算※如下:那么7探9= _________________________ .19.若何是整数,则正整数n的最小值是____________ .20.请你认真观察、分析下列计算过程:(1) vn2=i2i, ・・・V^T=II;(2) V 1112=12 321, .*.^12 321 = 111;(3) VI 1112=1 234 321, ・・・pl 234 321 = 1 111;・・•由此可得:p 12 345 678 987 654 321= _____________________ .三、解答题(22题9分,26题7分,27, 28题每题10分,其余每题6分,共60分)21・求下列各式中x的值.(1 )4x2=25 ;(2)(x一0.7)3 = ° 027.22 •计算:(一3) ?+(2一苗一3|).⑵戸 + M (_1) 3+乜(_1) 2+寸(_1) 2;23.已知|3x—y—1|和p2x + y—4互为相反数,求x+4y的平方根.24.己知3既是x-l的算术平方根,又是x-2y+1的立方根,求4x+3y的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a| = |c|,化简|b+迈| + |a—迈| + |c—迈| + 2c.-2* -1—o―1 *2 (第25 题)26.某段公路规定汽车行驶速度不得超过80肋〃力,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v= 16嗣,其中v表示车速(单位:km/h), d表示刹车后.车轮滑过的距离(单位:加),f表示摩擦系数.在一次交通事故中,己知d=16, f=1.69.请你判断一下,’肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(V2+1)(V2-1)=1, (75+迈)(诵一迈)=1,(甫+诵)(甫一迈)=1, (&+甫)(诉一甫)=1,・・•(1)观察上面的规律,计算下面的式子:V2+l +V3 + 迈 + 甫+迈 + …+p2 015 +p2 014(2)利用上面的规律,试比较、币一帧与辰一帧的大小.28. 李奶奶新买了一套两室一厅的住房,将原边长为1加的方桌换成边长是1.3 m 的方桌,为使新方•桌 有块桌布,且能利用原边2为1〃?的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的 小刚想了想说:“奶奶,你再去买一块和原來一样的桌布,按照如图①,图②所示的方法做就行了. ”(1) 小刚的做法对吗?为什么?(2) 你还有其他方法吗?请画出图形.答案—、l.C 2.D 3・B 4.C 5.A 6.D l.B 8.D 9.C10. B 点拨:由题意可得,正方形的边长为1,则圆的半径为*,阴影部分的面积为1— 故选二、11・2—筋;2-^3 12.Tr 13.5; ^3-1 14.9 15•有16. 2-J3或 2+羽 17.7 18.-2 19.5 20. Ill 111 111三、21 •解:⑴因为4x2=25,所以x 2=y,(2) 因为(x —0.7尸=0.027,所以 x —0.7 = 0.3,所以 x=l.(第28题) 5_-222.解:⑴原式=j+2—2=T. (2)原式=一1一1 + 1 + 1=0・x+4y 的平方根是±3.24. 解:根据题意得x-l=9且x —2y+l=27,解得x=10, y=-8. A4x + 3y=16,其平方根为±4,立方根为横.25. 解:由题图知,c <寸b <—"\/3, /.原式=—b —*\/3 + a —\/2+^2 —c + 2c= — b —*\/3 + a+c.又|a| = |c|, a + c=0,・;原式=—b —y[3.26. 解:把 d=16, f=1.69 代入 v=16嗣,得 v = 16X#16X 1.69 = 83.2伙加仏),V83.2>80,二肇事 汽车当时的速度超出了规定的速度.27-解:⑴詬+^^+^^+“・+顾;顾=(返7)+心一沏+曲一曲+…+ (寸2 015-A /2 014)=#2 015 -1.⑵因为而勺矿回+你,辰勺倉如+帧’-aVii+Vio <Vi2+ViT.所以而勺!訐 ]V^-V H *又因为边1一帧>0, 如一帧>0,所以QTT —帧>7迁一帧.点拨:此题运用归纳迭,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:⑴小刚的做法是对的,因为将边长为1 〃?的两个正方形分别沿着一条对角线剪开,成为四个 大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为迈, 而也>1.3,故能铺满新方桌;(2)有.如图所示.第12章达标检测卷(120分,90分钟)题号—・二三总分得分一、选择题(每题3分,共30分)1. (2015-B 照)计算(一/)2的结果是() A. a 5 B, —a 5 C. a 6 D. —a 62. 下列运算正确的是()23.解:根据题意得:|3x —y —l|+p2xlf^4 = 0, 3x —y —1=0,即2x+p —4 = 0, 解得 x=LV=2, 所以x+4y=9.所以 (3)原式=A. (a+l)2 = a2+lB. 3a2bWb2=3abC. (-2ab2)3=8a3b6D. x3 x=x43.下列从左边到右边的变形,是因式分解的是()A. (3-x)(3+x)=9-x2B. (y+l)(y_3)=_(3—y)(y+l)C. 4yz—2y2z+z=2y(2z—yz)+zD.—8x2 + 8x—2= —2(2x— l)2Q、2013 Z,X20144.计算自X(—1严5的结果是()D・一5.若a m=2, a n=3, a p=5, WO a2m+n_p的值是( )A. 2.4B. 2C. 1 DO6.下列各式中,不能用两数和(差)的平方公式分解因式的个数为()①X2—10x + 25;②4a'+4a—1;③x2—2x—1;④一n?+m—*;⑤4x°—只彳+右力・1 B. 2 C, 3 D. 47.己知a, b都是整数,则2(a2+b2)-(a+b)2的值必是( )A.正整数B.负整数C.非负整数D. 4的整数倍8.已知一个长方形的而积为18x3y4+9xy2-27x2y2,长为9xy,则宽为( )A. 2x2y,+y+3xyB. 2x2y3—2y+3xyC. 2x2y3 + 2y —3xyD. 2x2y3 + y—3xy9.因式分解x' + ax+b,甲看错了a的值,分解的结果是(x + 6)(x—1),乙看错了b的值,分解的结果为(X —2)(x+1),那么x2 + ax+b分解因式正确的结果为()A. (x-2)(x+3)B. (x + 2)(x-3)C. (x-2)(x-3)D. (x + 2)(x + 3)10.用四个完全一样的长方形(长和宽分别设为x, y)拼成如图所示的大正方形,己知大正方形的而积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是()(第10题)A, x+y=6 B. x—y=2 C. xy=8 D. x2+y2 = 36二、填空题(每题3分,共30分)11.(1)计算:(2af・(一3a?)= ___________ ;⑵若a m=2, a n=3,则a m+n= _______________ , a m_n= ___________ .12.已知x+y=5, x—y=l,则代数式x2-y2的值是________________ ・13.若x+p与x+2的乘积屮不含x的一次项,则p的值是____________14. 计算:2 015 X 2 017 - 2 0162= __________ .15. 若|a+2| + a 2—4ab+4b 2=0,则 a= ___________ , b= _________ . 16. 若一个正方形的面积为a 2+a+|,则此正方形的周长为 _____________ 17. 分解因式:4+12(x —y)+9(x —y)2= ___________ . 18. 观察下列等式: 1 X32X5+4=72=(12+4X 1+2)2 2 X 42 X 6 +4=142=(22 + 4 X 2 + 2)2 3 X 52 X 7 +4 = 232=(32 +4 X 3 + 2)2 4 X 62 X 8 + 4 = 342=(42 + 4 X 4 + 2)2根据你发现的规律:可知 ii(n + 2)2(n+4)+4= _________2 (2+a)(2 - a)+a(a - 5b)+3 a 5b 3-( - a 2b)2,其中 ab=-|.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成打定义cb.=ad —be, dx+11—x上述记号就叫做2阶行列式.若,=8,则x= _____________1—X X 十120.根据(X — l)(x+ 1) = X 2— 1 , (X — l)(x 2 + x+ 1) = X 3— 1 , (X — l)(x 3 + x 2 + x+ 1) = X 4— 1, (x — l)(x 4 + x 3 +x 2+x+l)=x 5-l,-的规律,则可以得tn 2201-4+22013 + 22012+- + 23+22 + 2+l 的末位数字是 ______________________三、解答题(27题12分,其余每题8分,共60分)21 •计算:22. 先化简,再求值:(l) (x+5)(x —l) + (x —2几 其中 x=-2;23. 把下列各式分解因式: (l)6ab 3-24a 3b ;(3 )a 2(x —y)+4b 2(y —x); (4)4m 2n 2—(m 2 + n 2)2.24. 己知 x 3m =2, y 2m =3, >R(x 2m )3 + (y m )6-(x 2y)3m -y m 的值.25. 已知a, b, c 是Z\ABC 的三边长,且a 2+2b 2+c 2-2b(a+c)=0,你能判断ZXABC 的形状吗?请 说明理rh.26. 因为(x+a)(x + b)=x 2 + (a+b)x+ab,所以 x 2+(a+b)x + ab = (x+a)(x + b).利用这个公式我们可 将形如x 2+(a+b)x+ab 的二次三项式分解因式.例如:X 2+6X +5=X 2+(1+5)X +1X5=(X +1)(X +5),X 2-6X + 5=X 2 + (-1-5)X + (-1)X(-5) = (X -1)(X -5), X 2-4X -5=X 2 + (-5+1)X +(-5)X l=(x-5)(x+l), X 2+4X — 5=X 2+(5— l)x + 5 X (— l)=(x + 5)(x — 1).请你用上述方法把下列多项式分解因式:(l)y 2 + 8y+15; (2)y 2-8y+15;(3)y 2-2y-15; (4)y 2 + 2y-15.(l) [x(x 2—2x+3) —3x]^-^x 2;(2) x (4x + 3y)—(2x+y)(2x —y);(4)(a —2b —3c)(a —2b+3c).(2)2x 2y-8xy+8y ;27.仲考哒州)选取二次三项式ax2+bx+c (aHO)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:X2-4X+2=(X-2)2-2;②选収二次项和常数项配方:x?—4x + 2 = (x—迈尸+(2迈一4)x,或x?_4x+2 = (x+迈y_(4 + 2迈)x;③选取一次项和常数项配方:x2—4x + 2 = —A/2)2—x2.根据上述材料,解决下而的问题:(1)写出X2-8X+4的两种不同形式的配方;(2)已知x2+y2+xy—3y+3=0,求x y的值.答案—、l.C 2.D 3.D 4・D 5.A 6・C 7.C 8.D 9・B 10.Z)二、11.(1)-24a5 (2)6; | 12.5 13.-2 14.-115.-2; -1 16.|4a + 2| 17,(3x-3y+2)218.(n2+4n + 2)2 19.220. 7 点拨:由题意可知22 0,44-22 0,3+22 0,2+-+23+22+2+l=(2-l)X(22 014+22013+22 0,2 + - +23 + 22+2+1)=22015-1,而2*=2, 22=4, 23 = 8, 24=16, 25=32, 26=64,…,•可知2%n 为正整数) 的末位数字按2、4、8、6的顺序循环,而2 015-4=503……3,所以,恥的末位数字是8,则22015-1的末位数字是7.三、21 •解:⑴原式=(x3— 2x2+3x — 3x)-^-^x2=(x3—2x2)^-^x2=2x—4.(2)原式=4x2+3xy—(4x2—y2)=4x2+3xy—4x2+y2=3xy+y2.(3)原式=5a2b^—|ab^-4a2b4 = — 60a3b4.(4)原式=[(a—2b)—3c] [(a—2b)+3c] = (a—2b)2—(3c)2 = a2—4ab+4b2—9c2.22.解:(1)原式=x2—x+5x—5+x2—4x+4=2x2— 1.当x=-2 时,原式=2X(—2尸一1=7.(2)原式=4—a2+a2—*时,原式=4—2X— 5ab +3a5b3-^a4b2=4—a' + a2— 5ab+3ab=4 — 2ab.当ab =23.解:⑴原式=6ab(b2-4a2)=6ab(b+2a)(b-2a).(2)原式=2y(x2-4x+4)=2y(x 一2)2.(3)原式= a2(x—y)—4b2(x—y) = (x—y)(a2—4b2)=(x—y)(a+2b)(a—2b).(4)原式=(2mn+n?+n2)(2mn — m2—n2)=— (m+n)2(m—n)2.24.解:原A=(x3m)2+(y2m)3-(x3m)2-(y2m)2 = 22+33-22X32=4+27-4X9=-5.25.解:AABC是等边三角形.理由如下:Va2+2b2+c2—2b(a+c)=0, Aa2—2ab + b~ + b2—2bc+c“ = 0, BP (a—b)2+(b—c)2=0. /.a—b = 0,且b —c=0,即a=b=c.故厶ABC是等边三角形.26.解:(l)y2+8y+15=y2+(3+5)y+3X5=(y+3)(y+5).(2)y2-8y+15=y2+(-3-5)y+(-3)X(-5)=(y-3)(y-5).(3)y2-2y-15=y2+(-5 + 3)y+(-5)X3 = (y-5)(y+3).(4)y2+2y-15=y2+(5-3)y+5X(-3)=(y+5)(y-3).27.解:解:(1)答案不唯一,例如:x2-8x+4=x2-8x+16- 16+4=(x-4)2-12 或x2-8x+4=(x -2)2-4X.(2)因为x2+y2 + xy-3y + 3=0,所以(x+劲+|(y—2尸=0,即x+*=0, y—2=0,所以y=2, x= —1,所以x y=(—1)2=1.第13章达标检测卷(120分,90分钟)题号—二总分得分一、选择题(每题3分,共30分)1.下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等A. S.S.A.B. S.S.S.C. A.S.A. D・ S.A.S.3.如图,已知AABC的六个元素,则下列甲、乙、丙三个三角形中和AABC全等的是(2.下列方法中,不能判定三角形全等的是()A.甲、乙3•甲、丙C.乙、丙D•乙4.在Z\ABC中,ZB=ZC,与AABC全等的ADEF中有一个角是100。
最新华师大版八年级数学上册单元测试题及答案全套
最新华师大版八年级数学上册单元测试题及答案全套一、单项选择题(每小题1分,共20分)1. ( ) Which date is your birthday?A. WhatB. HowC. WhichD. When2. ( ) That is a______ car. It's Tom's car.A. nurseB. nurse'sC. nurses'D. nurses3. ( ) They are ______ big books.A. a fewB. a littleC. a lotD. a lot of4. ( ) The fish tastes _____. I like it.A. goodB. wellC. badlyD. bad5. ( ) He is going to____home to play the guitar.A. beB. doC. makeD. return6. ( ) Do you often go to the park by______?A. bikesB. bikeC. a bikeD. two bike7. ( ) The students can't____ = it + waterA. drinkB. goC. comeD. eat8. ( ) I have_____ to say.A. somethingB. anythingC. nothingD. sometime9. ( ) He has already ______home.A. goesB. wentC. is goingD. go10. ( ) Did you see_______?A. hearB. to hearC. hearingD. to hearing11. ( ) There are many __________.A. so many applesB. so much applesC. such applesD. such many apples12. ( ) These bags are ______.A. IB. meC. myD. mine13. ( ) This is ________ interesting book.A. aB. anC. theD. that14. ( ) Is this __ fruit?A. herB. her'sC. her orangesD. hers15. ( ) ______me to the zoo right now.A. ComeB. PassC. DriveD. Go16. ( ) Lily often ______ustla.A. goB. goesC. is goingD. went17. ( ) Mike doesn't like sport, ____?A. do heB. does heC. does sheD. is he18. ( ) These shoes ______ me ten dollars.A. spendB. costC. payD. take19. ( ) He _______ many new things in the travelling.A. sawB. seesC. has seenD. see20. ( ) ______ a picture of your grandmother on the wall?A. Have you gotB. Do you haveC. Is thereD. Are there二、单词拼写(每小题1分,共10分)21. I want to buy some________(橙子).22. There are some_______(花)in the garden.23. She has three_______(牙).24. Can you see a red kite in the_________(天空)?25. My uncle's wife is my_______(卧室).26. I want to buy some chicken_______(肉).27. Jenny is a good ________[音乐].28. He has a nice ________(运动).29. Is there a ________[汉堡] restaurant near the school?30. She takes a _________(乐器) lesson on Sundays.三、根据汉语意思完成句子(20)31. 手表在哪里了?__ _____ ______ the watch?32. 每天他们都锻炼身体。
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案【新】
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,矩形的顶点在反比例函数的图像上,点的坐标为则的值为()A.-18B.8C.9D.182、如图,在矩形ABCD中,E是AD边的中点,BE^AC,垂足为点F,连接DF,分析下列四个结论:①DAEF∽DCAB;②CF=2AF;③DF=DC,其中正确的结论有()A.3个B.2个C.1个D.0个3、下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.角的平分线就是角的对称轴D.形状相同的两个三角形就是全等三角形4、如图,在边长为6.75cm的正方形纸片上,剪去一个边长为3.25cm的小正方形,则图中阴影部分的面积为()A.3.5cm 2B.12.25cm 2C.27cm 2D.35cm 25、如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点在射线上,且,与相交于点G,连接、、.则下列结论:① ;②的周长为;③ ;④ 的面积的最大值是;⑤当时,G是线段的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤6、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③△PFD∽△PDB④DP2=PH·PC其中正确的有( )A.①②③④B.②③C.①②④D.①③7、如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A. B. C.1﹣ D.1﹣8、如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A.5B.6C.9D.139、如图,在菱形ABCD中,∠BAD=120°,以B为圆心,AB为半径作圆弧交BD 于点E,连接EC,则∠BEC的度数是()A.75°B.72.5°C.70°D.65°10、正方形ABCD中,P、Q分别为BC、CD的中点,则∠CPQ大小为()A.50°B.60°C.45°D.70°11、如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A 重合,则CN的长为().A. B. C. D.12、如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC 的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A. B. C. D.13、如图,矩形在以为原点的平面直角坐标系中,且它的两边分别在轴、轴的正半轴上,反比例函数的图象与交于点,与相交于点,若且的面积为4,则的值为()A. B.3 C.4 D.14、如图,正方形ABCD和正方形DEFG的边长分别是5和3,且点E、C分别在AD、CD边上,H为BF的中点,连接HG,则HG的长为()A.4B.C.D.215、下列说法不正确的是()A.有三个角相等的四边形是矩形B.三个角都相等的三角形是等边三角形 C.四条边都相等的四边形是菱形 D.等腰梯形的两条对角线相等二、填空题(共10题,共计30分)16、正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG=________.交FH于点M,当GB平分∠CGE时,BM=2 ,AE=8,则S四边形EFMG17、已知正方形ABCD的边长为4,点E,F分别在边BC、CD上,∠EAF=45°,若AE•AF= ,则EF的长为________.18、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.19、菱形ABCD的一条对角线长为6,边AB的长是方程的解,则菱形ABCD的周长为________ .20、如图,长方形ABCD中,AD=5,AB=3.已知点M是BC边上一点,且AM=4,则点D到AM的距离为________.21、如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,=1,则正方形ABCD的面积为________.GH,IJ都垂直于AO,若已知S△AIJ22、如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M 作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP= BD;③BN+DQ=NQ;④ 为定值。
华师大版八年级上册数学全册复习试题(含参考答案和评分标准)
华师大版八年级上册数学全册复习试题时间:100分钟姓名: _____________ 总分 __________________________一、选择题(每小题 3分,共24分)1.81的算术平方根是【 】(A ) 9(B ) 9 (C ) 3 (D ) 32.实数—,0,3一27,6,0.10100100013.14中无理数的个数是【 】(A ) 1(B ) 2 (C ) 3(D ) 43.若 32m 35,则m 的值是【 】(A ) 2(B ) 9 (C ) 15(D ) 274.若X 4 X 3 X 2 mx n ,则m, n 的值分别是【 】(A ) m1,n12(B ) m1,n12(C ) m 1,n 12 (D ) m 1,n 125.某校八(3)班有50名学生,他们上学的方式有三种:①步行;②骑车;③乘公共 汽车•根据表中信息,下列结论错误的是上学方式 步行骑车乘公共汽车频数 ab20频率36%Cd(A)a 18,b(C) b 12,d40% (D) C 24%,d 40%6.如图,若MBND l MBA条件后不能判定厶ABM 也△ CDN 的是 【 (A)AM //CN(B) M N (C ) AC DB(D ) AM CN7.直角三角形的斜边长为20 cm,两条直角边长之比为3 :4 ,那么这个直角三角形的周长为 (A) 27 Cm(B) 30 Cm(C) 40 Cm(D) 48 CmNDC ,则添加下列】第6题图8.如图,在RtAABC 中,C 90 ,按如下步骤作图:①分别以A 、B 为圆心,以大于 1 - 一-AB 的长为半径画弧,两弧交于M 、N;②作直线MN,交BC 于点D;③连结AD.若 29. 两个连续整数x,y 满足X 、、3 2 10. 若 a b 217, a b 2 11,则 a 2 11. 因式分解:3x 2y 18xy 27y12. 等腰三角形的周长为20 cm,—边长为6 cm,则底边长为 ____________ cm. 13. 期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优等生人数为 _________ .14. _________ 如图,直线I 上有三个正方形a 、b 、C 若a 、C 的面积分别为5和11,则b 的面 积为 .15. 如图,长方形ABCD 中,AB 10, AD 4,E 为AB 的中点,在线段CD 上找一点 P,>^ APE 为一个腰长为5的等腰三角形,则线段DP 的长为 ______________第14题图DI ----------AE第15题图y ,则 X y __________ . b 2 __________ .ADE 64 ,则CAD 的度数为二、填空题(每小题 3分,共21分)第13题图三、解答题(共75分)16.计算:(8分)327; (2)9 x 2 X 2 3x2 . 2018(1)2 117. (12分)化简求值:(1) XX 2 2X 1 X 1 X 2 ,其中X 1.(2)已知X22X 3 0,求值:X18. (8分)如图,△ ACB和厶ECD都是等腰直角三角形,ACB ECD 90 ,D为AB边上一点.(1)求证:△ ACE^△ BCD;(2)若 AD 5, BD 12 ,求DE 的长.A19. (8分)如图,在等边三角形ABC中,点P在厶ABC内,点Q在厶ABC外,且ABP ACQ l BP CQ .(1)求证:△ ABP^△ ACQ;(2)请判断△ APQ的形状并说明理由.A20.(9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行了体能测试,测试结果分为A B、C、D四个等级,并绘制了两幅不完整的统计图,请根据图中的信息解答下列问题:(1)本次调查一共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形统计图;(3)若该校八年级共有700名学生,请你估计该校八年级学生中体能测试结果为D 等级的学生有多少名.21.(9 分)如图,在Rt△ ABC 中,C 90 I AC 6, BC 8,将厶ABC 沿直线AD折叠,使点C落在AB边上的点E处,求CD的长.C22. (9分)如图,在△ ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN的延长线相交于点F.(1)若厶CMN的周长为15 cm,求AB的长;(2)若MFN 70 ,求MCN的度数•CB23. (12分)问题情景:如图1,在等边三角形ABC内有一点P, PA 5,PB 4,PC 3,求BPC的度数.(1)问题解决:小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△ BPC绕点B逆时针旋转60 ,得到了厶BP'A (如图2),然后连结PP',请你参考小明同学的思路,求BPC的度数;BPC的度数.(3)类比迁移:如图3,在正方形ABCD内有一点P, PA , 5, PB 2PC 1 ,求A 图1A图2 图3新华师大版八年级上册数学全册复习试题参考答案、选择题(每小题3分,共30 分)二、填空题(每小题3分,共21分)29. 7 10. 14 11. 3y X 3 12. 8 或6 13. 1014. 16 15. 3或2或8(注意:答错一个或少答一个均不给分)部分题目答案提示:15.如图,长方形ABCD中,AB 10, AD 4,E为AB的中点,在线段CD上找一点P,>^ APE为一个腰长为5的等腰三角形,则线段DP的长为E第15题图CB三、解答题(共75 分)16.计算:(8分)X2 4X 4 X29(1)... 2 2 1 2018 3一27解:原式 2 1 33 36 •…••4分(2) 9 X 2 X 2 3X 1 2解:原式9 X2 4 9χ26χ 1 9X236 9X26χ 16χ37…•••8 分17. (12 分) 化简求值:(1) X X 2 X 12X 1 X 2 , 其中X 1.解:X X 2 X 1 2 X 1 X 2X2 2 2X X 2X 1 X2 X 2 2x2 1 χ2 x 2χ2 X 3 ................... 4 分当X 1时原式I2 1 33 .................... 6分(2 )已知 X22χ 30 ,求值:X 2 2 X 3 3 X .解:X 2 2 X 3 3 X2X24X2 X 2χ2 X 2χ原式 21118. (8 分)2χ 510分12分(1)证明:ACB和厶ECD都是等腰直角三角形∙∙∙ CE CD l CA CBDCE ACB 90B BAC 45 .......... 1 分∙∙∙ DCE ACD ACB ACD ••• 1 .................... 2 2分在厶ACE和厶BCD中CA CB•••△ ACE^△ BCD (SAS); ......................... 5分5322X3 0(2)由(1)可知:△ ACE 和厶BCD∙∙∙ AE BD 12, 3 B 45DAE 3 BAC 45 45 90 •••△ ADE是直角三角形.6分在RtAADE中,由勾股定理得:AD1 2AE2DE2∙∙∙ DE . AD2 AE252 122 13 .......................... 8分19. (8 分)△ ABP^△ ACQ1 证明:•••△ ABC是等边三角形∙∙∙ AB AC, BAC 60 .......................... 1分在厶ABP和厶ACQ中AB ACABP ACQBP CQ•••△ ABP^A ACQ (SAS); .......................... 4分2 ^ APQ是等边三角形.......................... 5分理由如下:由(1)可知:1 2, AP AQ ........ ...6 分1 PAC BAC 602 PAC 60PAQ 60• (7)分在厶APQ中,∙.∙ AP AQ, PAQ 60•••△ APQ是等边三角形. .......................... 8分20. (9 分)解:(1)10 20% 50 (人)答:本次调查一共抽取了50名学生;.......................... 3分(2)50 10 20 4 16 (人).......................... 4分补全条形统计图如图所示;..... 6分答:测试结果为C等级的学生有16人;(说明:不标注数字“ 16”扣1分)4(3)700 —56 (名)50答:估计D等级的学生有56名. .......................... 9分21. (9 分)解:由折叠可知:△ ACD^△ AED∙∙∙ CD ED,AC AE 6C AED BED 90•••△ BDE是直角三角形.3分在RtAABC中,由勾股定理得:AC2 BC2 AB2∙∙∙ AB . AC2 BC2. 62 82 10∙∙∙ BE AB AE 10 6 4 .......................... 5分设CD X,则 BD 8 x,DE X .......................... 6分在RtABDE中,由勾股定理得:BE2DE2BD2∙∙∙ 42 X2解之得:X 3∙CD 3 .................... 9 分22. (9 分)解:(1)V DM、EN分别垂直平分AC和BCV C CMN CM MN CN 15 cm∙ AM MN BN 15 ∙AB 15cm; ............... 4 分(2)在厶ACM和厶BCN中V AM CM , BN CN∙ A 1, B 2 ......................... 5分在四边形DCEF中V MFN 70DCE 360 90 70 90 110 ∙ACB 110 ......................... 7分∙ A B 180 110 70∙ 1 2 70 ........... 8 分∙MCN 110 70 40 ......................... 9分23. (12 分)解:(1)由旋转可知:△ BPC^ABP A PBP' 60∙ PB P'B 4,PC P'A 3∙ AM CM ,BN CNBCBV PB P'B, PBP' 60•••△ PBP'是等边三角形∙∙∙ PP'B 60 ,P'B P'P PB 4.......................... 3分在厶APP'中,V PA 5, P'P 4, P'A 3∙∙∙ P'A 2 P'P 2 32 42 52PA 2•••△ APP'是直角三角形∙∙∙ AP'P 90 ............. 5 分 ∙∙∙ BP'A 60 90 150•••△ BPC^ △ BP A ∙∙∙ BPC BP'A 150 ;.......................... 6分要点:可证:△ BP'P 为等腰直角三角 形,△AP'P 为直角三角形 ∙∙∙ BP'A 45 90 135.......................... 11分 •••△ BPC^ △ BP ABPC BP'A 135 .12分(2)如图所示将厶BPC 绕点B 逆时 针旋转90 ,得到△ BP'A ,连结P' P ........................... 8分A图2BC图3。
2022-2023学年度华师大版八年级下册数学期末复习卷(含答案)
学校 班级 姓名 考号 考试时间◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆2022-2023学年度八年级数学期末复习卷本试卷共印11个班:初二全年级, 命题人:数学组 时间:2023-06-4一、选择题(30分):1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为( )A .B .C .D .2.在平面直角坐标系中,点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平行四边形ABCD 中,若,,则平行四边形ABCD 的周长为( )A .12B .15C .20D .244.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的( )A .平均数B .众数C .中位数D .方差5.关于矩形的性质,以下说法不正确的是( )A .邻边相互垂直B .对角线相互垂直C .是中心对称图形D .对边相等6.若关于x 的方程无解,则a 的值为( )A .1B .2C .1或2D .0或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为( )A .B .C .D .8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是( )A .220,220 B .210,215 C .210,210D .220,2159.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是( )A .B .C .D .10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为二、填空题(15分):11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)15.如图为6个边长相等的正方形的组合图形,则__.三、解答题(75分):16.先化简,再求值:,其中x217.计算下列各题:(1);(2)解方程:.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.21.2023年是爱国卫生运动开展71周年,2023年4月也是第35个爱国卫生月,为了倡导文明健康绿色环保生活方式,某市决定开展“爱国卫生行动,从我开始行动”主题演讲比赛.该市某中学将参加本校选拔赛的选手的成绩(满分为100分,得分为正整数)分成六组,并绘制了如下不完整的统计图表.请根据以下信息,回答下列问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.频数分布表.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.求卫龙辣条和普通辣条每包的进价分别是多少元?该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获,若分式的值为因为,所以关于+=分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:+==的方程+=.求的值.期末模拟卷答案版一、单选题1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为()A.B.C.D.【答案】C2.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B3.在平行四边形ABCD中,若,,则平行四边形ABCD的周长为()A.12B.15C.20D.24【答案】D4.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的()A.平均数B.众数C.中位数D.方差【答案】C5.关于矩形的性质,以下说法不正确的是( )A.邻边相互垂直B.对角线相互垂直C.是中心对称图形D.对边相等【答案】B6.若关于x的方程无解,则a的值为( )A.1B.2C.1或2D.0或2【答案】C【详解】方程去分母得解得由题意,分以下两种情况:(1)当,即时,整式方程无解,分式方程无解(2)当时,当时,分母为0,分式方程无解,即解得综上,a的值为1或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为()A.B.C.D.【答案】B【详解】解:∵点在反比例函数的图像上,∴,即,∴,在中,,∴,即,,∴,,∵将沿翻折,∴,即,,如图所示,过点作轴于点,∴,在中,,,∴,,∴,,∵点在反比例函数的图像上,∴,∴,8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是()A.220,220B.210,215C.210,210D.220,215【答案】B【详解】解:数据210出现了4次,最多,故众数为210,共10辆车,排序后位于第5和第6位的数分别为210,220,故中位数为.故选:B.9.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是()A.B.C.D.【答案】D【详解】解:菱形的周长为,,,为等边三角形,为中点,是的中点,10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为【答案】B【详解】解:由函数图象可知:当物距为时,像距为,故选项A说法正确;由函数图象可知:当像距为时,物距为,放大率为,故选项B说法错误;由函数图象可知:物距越大,像距越小,故选项C说法正确;由题意可知:当透镜的放大率为1时,物距和像距均为,故选项D说法正确,二、填空题11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)【答案】甲12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)【详解】解:∵一次函数y随x的增大而减小,∴,不妨设,故答案为:(答案不唯一).13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.【详解】解:∴∴,故答案为:.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)【详解】解:如图,过点D作交延长线于点H,∵四边形为正方形,∴,∴,∴,∵,∴,∴,,∴阴影部分的面积.故答案为:3015.如图为6个边长相等的正方形的组合图形,则__.【详解】解:标注字母,如图所示,在和中,,∴(),∴,∵,∴,又∵,∴.故答案为:.三、解答题16.先化简,再求值:,其中x2【详解】解:=[],当x2时,原式.17.计算下列各题:(1);(2)解方程:.【详解】解:(1)原式==﹣.(2)方程两边同乘(x+3)(x﹣3),得x﹣3+2x+6=12,解得,x=3,当x=3时,(x+3)(x﹣3)=0,所以x=3不是原方程的解,所以原方程无解.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.【详解】证明:∵四边形ABCD为正方形,∴AB=BC=CD,∠ABE=∠BCF=90°,又∵CE=DF,∴CE+BC=DF+CD即BE=CF,在△BCF和△ABE中,∴(SAS),∴AE=BF.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【详解】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.【详解】(1)∵在上,∴.反比例函数的解析式为∵点在上,∴.∴.经过,,解得,∴一次函数的解析式为.(2)C是直线AB与x轴的交点,当时,.∴点,∴.∴.(3)反比例函数值大于一次函数值x取值范围为问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.【详解】(1)解:组人数所占的百分比为:,组的人数所占的百分比为:,∴参加学校选拔赛的总人数为:(人);故答案为:;(2)解:,,补全频数分布直方图如图.(3)不一定正确.理由:将50名选手的成绩从低到高排列,第25名与第26名的成绩都在分数段中,但它们的平均数不一定是87分.22.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.【详解】(1)设普通辣条进价为元,则卫龙辣条的进价为元,∴,解得:,经检验,是方程的解,∴普通辣条的进价为元,卫龙辣条的进价为元.(2)设购买卫龙辣条包,则普通辣条:包,∵普通辣条的数量不超过卫龙辣条数量的倍,∴,解得:,设购进的辣条全部出售后获得的总利润为,∴,,,∵,∴随的增大而减小,∴当时,最大,答:购进卫龙辣条包时,每个月的总获利最大..对于两个不等的非零实数,若分式的值为因为,所以关于+=分别为x1=a,x2=b.+=的方程+=.求的值.)应用上面的结论,x1=-2=∵∴∴∴或∴或∵∴∴。
华师大版数学八年级上册期末考试试卷含答案
华师大版数学八年级上册期末考试试题一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.9的平方根是( )A .±3B .±13C .3D .-32.下列运算正确的是( )A .x 3·x 4=x 12B .(x 3)4=x 7C .x 8÷x 2=x 6D .(3b 3)2=6b 63.将下列长度的三根木棒首尾顺次相连,不能组成直角三角形的是( )A .8、15、17B .7、24、25C .3、4、5D .2、3、74.∠AOB 的平分线的作图过程如下:(1)如图,在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C ;(3)作射线OC ,OC 就是∠AOB 的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是( )A .边角边B .角边角C .角角边D .边边边5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是( )A .汽车尾气约为建筑扬尘的3倍B .表示建筑扬尘的占7%C .表示煤炭燃烧对应的扇形圆心角度数为126°D .煤炭燃烧的影响最大6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°7.下列分解因式正确的是()A.-ma-m=-m(a-1) B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,∠A=40°,BE=DC,CF=BD,则∠EDF的度数为()A.60°B.70°C.80°D.90°9.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. 3 B. 5 C. 6 D.710.根据等式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x +1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1,…的规律,则可以推算得出22021+22020+22019+…+22+2+1的末位数字是()A.1 B.3 C.5 D.7二、填空题(本题共6小题,每小题4分,共24分)11.在实数-7.5、15、4、3-125、15π、⎝⎛⎭⎪⎫222中,有a个有理数,b个无理数,则ba=________.12.已知x2n=5,则(3x3n)2-4(x2)2n的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应角的平分线相等.其中逆命题是假命题的是________.15.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过O作EF∥BC分别交AB、AC于E、F.若△ABC的周长比△AEF的周长大12 cm,O到AB的距离为3.5 cm,则△OBC的面积为________cm2.16.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|+⎝⎛⎭⎪⎫1-432;(2)4(x+1)2-(2x-5)(2x+5);18.(8分)先化简,再求值.(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.19.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC中,AB的长为________,AC的长为________;(2)在网格中,直接画出所有与△ABC全等的△DBC.20.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理并绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的扇形的圆心角为________.22.(10分)如图,一个牧童在小河MN的南4 km的A处牧马,而他正位于他的小屋B的西8 km北7 km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事所走的最短路程是多少?23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).24.(12分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如,可用图①来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图②完成因式分解:2a2+2ab=2a(________);(2)现有足够多的正方形和长方形卡片(如图③),试在图④的虚线框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2.要求:每两张卡片之间既不重叠,也无空隙,拼成的图中必须保留拼图的痕迹,并利用你所画的图形面积对a2+3ab+2b2进行因式分解:a2+3ab+2b2=______________.25.(14分)线段AB⊥直线l于点B,点D在直线l上,分别以AB,AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若BD=2BF,EF=6,则CF=________.答案一、1.A 2.C 3.D 4.D 5.C6.A点拨:∵AD∥BC,∴∠C=∠1=70°.∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°-∠B-∠C=180°-70°-70°=40°.7.C8.B9.B10.B二、11.212.1 02513.1014.①③④15.21点拨:∵∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC.∵△ABC的周长比△AEF的周长大12 cm,∴(AB+BC+AC)-(AE+EF+AF)=12 cm,∴BC=12 cm.∵O到AB的距离为3.5 cm,且O在∠ABC的平分线上,∴O到BC的距离也为3.5 cm,∴△OBC的面积是12×12×3.5=21(cm2).16.2.5三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=4(x2+2x+1)-4x2+25=4x2+8x+4-4x2+25=8x+29. 18.解:(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab. 当a=2,b=1时,原式=22-2×2×1=0.19.解:(1)5;2 5(2)如图,△D1BC、△D2BC、△D3BC即为所求.20.(1)证明:在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD=90°,BE=BD,∴△ABE≌△CBD(S.A.S.).(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°.∵∠CAE=30°,∴∠AEB=∠ACB+∠CAE=45°+30°=75°.由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.解:(1)50;24(2)C级的人数为50-12-24-4=10.补全条形统计图如图所示.(3)72°22.解:如图,作点A关于MN的对称点A′,连结A′B交MN于点P,连结AP,则AP+PB的长度就是最短路程.在Rt△A′DB中,由勾股定理,得A′B=DA′2+DB2=(7+4+4)2+82=17(km).答:他要完成这件事所走的最短路程是17 km.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠BCE.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD 中,根据勾股定理得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)a+b(2)如图所示.(答案不唯一)(a+b)(a+2b)25.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ACB=∠ABC=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(S.A.S.),∴BD=CE,∠ABD=∠ACE.∵AB⊥直线l,∴∠ABD=90°,∴∠ACE=90°,∠CBF=30°.∵点E,C,F在同一条直线上,∠ACB=60°,∴∠BCF=30°,∴∠CBF=∠BCF,∴BF=CF.∵BD=DF+BF,∴BD=DF+CF=CE,即DF=CE-CF.(2)解:题图②中,DF=CF-CE,题图③中,DF=CE+CF.(3)2或6。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
华师大版八年级上册数学第13章 全等三角形含答案(必刷题)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、对于下列各组条件,不能判定的一组是()A. ∠A=∠A′,∠B=∠B′,AB=A′B′B. ∠A=∠A′,AB=A′B′,AC=A′C′C. ∠A=∠A′,AB=A′B′,BC=B′C′ D. AB=A′B′,AC=A′C′,BC=B′C′2、如图,OP平分∠BOA,∠BOA=45°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.2C.2D.23、下列命题中,真命题的个数有()①如果直线a∥b,b∥c,那么a∥c;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④比正实数小的一定是负实数;⑤两条直线平行,同旁内角相等;⑥立方根等于它本身的数是﹣1,0,1.A.1个B.2个C.3个D.4个4、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.5、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=7,DE=2,△ABCAB=4,则AC长是()A.3B.4C.6D.56、如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A.6.5cmB.5cmC.9.5cmD.11cm7、下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.48、如图所示,在△ABC中,∠BAC=130°,AB的垂直平分线ME交BC于点M,交AB于点E,AC的垂直平分线NF交BC于点N,交AC于点F,则∠MAN为()A.80°B.70°C.60°D.50°9、如图,在四边形ABCD中,∠A=90°,AD=4,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.10B.12C.20D.无法确定10、如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7B.8C.9D.1011、如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.612、如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0B.C.D.113、用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°14、下列命题中,是真命题的是()A.长度相等的两条弧是等弧B.顺次连结平行四边形四边中点所组成的图形是菱形C.正八边形既是轴对称图形又是中心对称图形D.三角形的内心到这个三角形三个顶点的距离相等15、如图,已知,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. B. C. D.二、填空题(共10题,共计30分)16、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)17、如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=________.证明:DN2+BM2=MN2.18、如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________.19、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=60° ,AB=16cm,则∠C′=________ °,A′B′=________cm.20、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1, S2,S 3, S4,则S1+S2+S3+S4=________.21、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________22、如图,线段AC与BD交于点O,且OA=OC, 请添加一个条件,使△OAB△OCD,这个条件是________.23、如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.24、如图,两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ________度。
2022-2023学年华师大版八年级数学下册 期末数学试卷(含答案)
期末数学试卷一、选择题1.函数y =xx -2的自变量x 的取值范围是( )A .x ≥0且x ≠2B .x ≥0C .x ≠2D .x >22.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为( )A .0.1×10-7B .1×10-7C .0.1×10-6D .1×10-63.已知点P (x ,3-x )在第二象限,则x 的取值范围为( )A .x <0 B .x <3 C .x >3 D .0<x <34.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如下表:身高(cm)176178180182186188192人数1232111则这11名队员身高的众数和中位数分别是(单位:cm)( )A .180,182 B .180,180C .182,182 D .3,25.如图,在平行四边形ABCD 中,下列结论中错误的是( )A .∠1=∠2B .∠BAD =∠BCDC .AB =CD D .AC ⊥BD第5题图 第8题图6.已知分式(x -1)(x +2)x 2-1的值为0,那么x 的值是( )A .-1B .-2C .1D .1或-27.一次函数y =-2x +1和反比例函数y =3x的大致图象是( )8.如图,在菱形ABCD 中,AC =8,菱形ABCD 的面积为24,则其周长为( )A .20 B .24 C .28 D .409.如图,函数y =-x 与函数y =-4x的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( )A .2B .4C .6D .8第9题图 第10题图10.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论:①点G 是BC 中点;②FG =FC ;③S △FGC =910.其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题11.化简:(x 2-9)·1x -3=________.12.若点(-2,1)在反比例函数y =kx的图象上,则该函数的图象位于第________象限.13.一组数据5,-2,3,x ,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是________.14.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为_________.第14题图 第18题图15.直线y =3x +1向右平移2个单位,再向下平移3个单位得到的直线解析式为________________.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组{x -3≥0,5-x >0的整数,则这组数据的平均数是________.17.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数是甲车的2倍,则甲车单独运完此堆垃圾需要运的趟数为________.18.甲、乙两地相距50千米,星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发______小时,行进中的两车相距8千米. 三、解答题19.计算或解方程:(1)-22+(13)-2-|-9|-(π-2016)0;(2)2+x2-x+16x2-4=-1.20.先化简:x2-1x2-2x+1÷x+1x·(x-1x),然后x在-1,0,1,2四个数中选一个你认为合适的数代入求值.21.如图,四边形ABCD是平行四边形,点E,F是对角线BD上的点,∠1=∠2.求证:(1)BE=DF;(2)AF∥CE.22.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=kx(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并求出直线OD的解析式.23.)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手的成绩较为稳定.24.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(千米)与小明离家的时间x(小时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.25.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A为多少度时,四边形BECD是正方形?请说明你的理由.参考答案一、选择题1.A 2.B 3.A 4.B 5.D 6.B 7.D 8.A 9.D 10.B 解析:∵四边形ABCD 是正方形,∴AB =AD =DC =3,∠B =D =90°.∵CD =3DE ,∴DE =1,则CE =2.∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =1,AD =AF ,∠D =∠AFE =90°,∴∠AFG =90°,AF =AB .在Rt △ABG 和Rt △AFG 中,{AG =AG ,AB =AF ,∴Rt △ABG ≌Rt △AFG (HL),∴BG =FG ,∠AGB =∠AGF .设BG =x ,则CG =BC -BG =3-x ,GE =GF +EF =BG +DE =x +1.在Rt △ECG 中,由勾股定理得CG 2+CE 2=EG 2.即(3-x )2+22=(x +1)2,解得x =1.5,∴BG =GF =CG =1.5,①正确,②不正确.∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同.∴S △CFG S △CEG=FGGE =1.52.5=35,∵S △GCE =12×1.5×2=1.5,∴S △CFG =35×1.5=910,③正确.故选B. 二、填空题11.x +3 12.二、四 13.2 14.103 15.y =3x -8 16.5 17.1518.23或43 解析:由图可知,小聪及父亲的速度为36÷3=12(千米/时),小明的父亲速度为36÷(3-2)=36(千米/时).设小明的父亲出发x 小时两车相距8千米,则小聪及父亲出发的时间为(x +2)小时根据题意,得12(x +2)-36x =8或36x -12(x +2)=8,解得x =23或x =43,所以,出发23或43小时时,行进中的两车相距8千米.三、解答题19.解:(1)原式=-4+9-3-1=1.(2)方程的两边同乘(x -2)(x +2),得-(x +2)2+16=4-x 2,解得x =2.检验:当x =2时,(x -2)(x +2)=0,所以原方程无解.20.解:原式=(x +1)(x -1)(x -1)2·x x +1·x 2-1x =x x -1·(x +1)(x -1)x=x +1.∵x -1≠0,x +1≠0,x ≠0,∴x ≠1,x ≠-1,x ≠0,∴在-1,0,1,2四个数中,使原式有意义的值只有2,∴当x =2时,原式=2+1=3.21.证明:(1)∵四边形ABCD 为平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .∵∠1=∠2,∴∠AEB =∠CFD .在△ABE 与△CDF 中,{∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF ,∴BE =DF .(2)∵△ABE ≌△CDF ,∴AE =CF .∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 为平行四边形,∴AF ∥CE .22.解:(1)当b =-2时,y =2x -2.令y =0,则2x -2=0,解得x =1;令x =0,则y =-2,∴A (1,0),B (0,-2).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点D 的坐标为(2,2).∵点D 在双曲线y =kx(x >0)的图象上,∴k =2×2=4.(2)直线y =2x +b 与坐标轴交点的坐标为A (-b2,0),B (0,b ).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点D 的坐标为(-b ,-b ).∵点D 在双曲线y =kx( x >0)的图象上,∴k =(-b )·(-b )=b 2.即k 与b 的数量关系为k =b 2.23.解:(1)从左到右,从上到下,依次为85,85,80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下,中位数高的初中部成绩好些.(3)∵s 2初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s 2高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,∴s 2初<s 2高,∴初中代表队选手的成绩较为稳定.24.解:(1)20÷1=20(千米/时),2-1=1(小时),即小明的骑车速度为20千米/时,在南亚所游玩的时间为1小时.(2)从南亚所到湖光岩的路程为20×(2560-1060)=5(千米),20+5=25(千米),116+2560=94(小时),则点C 的坐标为(94,25).设直线CD 的解析式为y =kx +b ,把点(94,25),(116,0)代入得{25=94k +b ,0=116k +b ,解得{k =60,b =-110.故CD 所在直线的解析式为y =60x -110.25.(1)证明:∵DE ⊥BC ,∴∠DFB =90°.又∵∠ACB =90°,∴AC ∥DE .∵AD ∥CE ,∴四边形ADEC 为平行四边形,∴CE =AD .(2)解:当D 在AB 中点时,四边形BECD 为菱形.理由如下:∵D 为AB 中点,∴AD =BD .∵CE =AD ,∴CE =BD .∵CE∥BD,∴四边形BDCE为平行四边形.∵DE⊥CB,∴四边形BECD为菱形.(3)解:若D为AB中点,当∠A=45°时,四边形BECD为正方形.理由如下:由(2)得四边形BECD为菱形.∵∠A=45°,∠ACB=90°,∴∠ABC=90°-45°=45°,∴△ACB为等腰直角三角形.∵D为AB中点,∴∠CDB=90°,∴四边形BECD为正方形.。
华师大版八年级上册数学期末测试卷(参考答案)
华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.等腰三角形的两个底角相等C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的2倍2、下列计算正确的是()A. =±3B.a 0=1C.3 -2 =1D.2÷3× =3、下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等4、下面各式计算正确的是()A. B. C. D.5、一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6、 =()A. B. C. D.7、如图,已知等边三角形△ABC边长为a,等腰三角形△BDC中,∠BDC=120º,∠MDN=60º,角的两边分别交AB,AC于点M,N,连结MN.则△AMN的周长为()A. aB.2 aC.3 aD.4 a8、若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.4B.5C.4或5D.69、下列计算结果正确的是()A. B. C. ÷ D.10、下列等式成立的是()A. B. C. D.11、方程的根为()A. B. C. 或 D.以上都不对12、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =3,b=4,则该矩形的面积为( )A.20B.24C.D.13、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2B.±5C.-5D.514、如图,在中,,以点为旋转中心,把顺时针旋转得,记旋转角为, 为,当旋转后满足时,与之间的数量关系为()A. B. C. D.15、如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2 <r<B. <r<3C. <r<5D.5<r<二、填空题(共10题,共计30分)16、计算:(﹣3xy2)2÷(2xy)=________.17、分解因式:2a2-a=________.18、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为________.19、如图,在菱形ABCD中,,对角线,则菱形ABCD的面积为________.20、如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=________,CD=________.21、如图,△ABC中,∠BAC=110°,AB、AC的垂直平分线分别交BC于点E、F,则∠EAF的度数为________.22、如图,商场(点M)距公路(直线l)的距离(MA)为3km,在公路上有一车站(点N),车站距商场(NM)为4km,公交公司拟在公路上建一个公交车站停靠站(点P),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP)的长为________.23、如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD 的论断是________(限填序号).24、因式分解:9a3b-ab________.25、若a+ =3,则a﹣=________.三、解答题(共5题,共计25分)26、计算:.27、如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.28、“尊敬的老师:因为我家里有事了,所以向老师请假了,请假2天了,请老师准假了,谢谢了.”这是小明同学向老师写的请假条.老师见后,对此请假条马上批注,“小明同学:你的请假条中了字用了太多了,以后少用了,明白没有了现在准假了,就这样了.”问请假条和批语中“了”的频数各是多少?频率各是多少?是小明还是老师用“了”更频繁?29、如图,点C是AB的中点,AD=CE,CD=BE,求证:∠D=∠E.30、如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF 分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.(1)求证:OE=OF;(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、A7、B8、C9、D10、C11、C12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
新华师大版八年级数学下期末考试试题及其参考答案
新华东师大版数学八年级下册期末模拟测试数学试题2本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分48分)注意事项:1.答第Ⅰ卷前,考生务必将自已的姓名、考号、考试科目用铅笔涂写在答题卡上;2.1-16小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第Ⅰ卷的机读卡和第Ⅱ卷的答题卡一并收回。
一、选择题(本大题16个小题,每小题3分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限2、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´3、下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()A.平均数B.中位数C.众数D.方差5、点P(3,2)关于x轴的对称点'P的坐标是()A.(3,-2) B.(-3,2) C.(-3,-2) D.(3,2)6、以三角形的三个顶点及三边中点为顶点的平行四边形共有:()(A )1个 (B )2个 (C )3个 (D )4个 7、如图,已知P 、Q 是ABC ∆的BC 边上的两点,且BP PQ QC AP AQ ====,则BAC ∠的大小为( )A .120B .110C .100D .908、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为( )A. 6B. 4C. 3D. 29、 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2ky x=-的图象上,若点A 的坐标为 (-2,-2),则k 的值为( )A.4 B.-4 C.8 D.—810、如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论: ①EC=2DG ;②GDH GHD ∠=∠;③CDGDHGE SS =四边形;④图中有8个等腰三角形。
华师大版新大纲八年级下册数学期末考试卷带参考答案
华师大版新纲领八年级下册数学期末考试卷带参照答案此套华师大版新纲领八年级下册数学期末考试卷带参考答案由整理,全部试卷与八年级数学华师大版教材纲领同步,试卷供大家免费使用下载打印,转载前请注明出处。
若有疑问,请联系网站底部工作人员,将第一时间为您解决问题!试卷内容预览:华师大版数学八年级下册期末模拟测试题一.选择题1.若分式的值为0,那x 的值为()a. 2 c.-3 d.-22.生物学家发现一种病毒的长度约为,用科学记数法表示这个数的结果为()×10-5×10-4×10-510×-63.假如函数 y=ax+b 的图像经过( -1,8),(2,-1)两点,那么它也必经过点()a( 1,-2) b( 3, 4) c( 1,2) d( -3, 4)4. 已知点 a(-3,a), b(-1,b) , c(3,c)都在反比率函数y= 的图像上,则 a, b, c 的大小关系为()>b>c > b> a > c> a > a> b5.数据 1,2,1,0, -1,2,0,-1 这组数据的极差为()6、已知∠ a=∠ d,∠ c=∠f ,那么要使△abc≌△ def,还应给出的条件不正确的选项是()a、∠ e=∠ bb、ed=bcc、 ab=efd、af=cd7.如图,已知四边形abcd 是平行四边形,以下结论中正确的是()a.当 ab =bc 时,它是菱形b.当 ab⊥bd 时,它是矩形c.当∠ abc=90 °时,它是菱形d.当 ac=bd 时,它是正方形8.一鞋店试销一种新款女鞋,试销时期卖出状况以下表:一鞋店试销一种新款女鞋,试销时期卖出状况以下表:这个鞋店的经理来说最关怀哪一种型号鞋热销,则以下统计量对鞋店经理来说最存心义的是()a、均匀数b、中位数c、众数c、方差二、填空题9.假如点 a( -3, a)与点 b( 3,4)对于 y 轴对称那么 a 的值为10. “直角三角形的两直角边的平方和等于斜边的平方”的逆定理是:11.梯形上下底长 6cm, 8cm,一腰长 7cm,另一腰 a 的取值范围为 __________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)期末复习水平测试一、选择题(每小题3分,共30分)1,如果多项式x 2+mx +16恰好能分解为一个二项式的平方的形式,那么m 的值为( )A.4B.8C.-8D 、±82,16 的平方根是( )A.-4B.4C.±4D.不存在3,已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A.5B.25C.7D.5或74,若二次三项式x 2+ax -1可分解为(x -2)(x +b ),则a +b 的值为( )A.-1B.1C.-2D.25,如图1所示,在△ABC 中,∠C =90°,D 为BC 边的中点,DE ⊥AB 于E ,则AE 2-BE 2等于(• )A.AC 2B.BD 2C.BC 2D.DE 26,如图2,△ABC 按顺时针旋转一个角后成为△A ′B ′C ′,指出哪一点是旋转中心( )A.点AB.点BC.点CD.点B ′7,如图3,在平行四边形ABCD 中,BD =CD ,∠A =70︒,CE ⊥BD 于E ,则∠BCE 等于( )A.20︒B.25︒C.30︒D.35︒ 8,如图4所示,在△ABC 中,三边a ,b ,c 的大小关系是( )A.a <b <cB. c <a <bC. c <b <aD. b <a <cBA (A ′) CB´C图2图5图4ADCBE图3图1ABCD7cm 图89,计算:(2-3)2006·(2+3)2007的结果是( )A.2+3B.2-3C.3-2 D.310,如图5所示,已知△ABC 和△DCE 都是等边三角形,图中的三角形,可以通过旋转相互得到的是( )A.△ACE 和△BCDB.△ABF 和△CFDC.△ABC 和△CDED.△AFH 和△EDH二、填空题(每小题3分,共30分)11,一个3 次单项式与一个4次单项式相乘,积是 次单项式.12,已知a =1.2,则a =_______;2(25) 的算术平方根是________.13,将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股 数 , , .14,如图6所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A =_______.15,如图7,梯形ABCD 中,AD ∥BC ,AB =CD ,∠B =45°,它的高为2,上底与下底之和为10,则上底AD 等于_________.图9图7图616,若一个三角形的三边a 、b 、c 满足a 2+b 2+c 2-ab -bc -ca =0,则该在三角形为 . 17,如图8,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.18,如图9,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ′,那么 BB ′的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .19,如图10,正方形ABCD 与正方形OEFG 的面积分别是9cm 2和16cm 2.O 是正方形ABCD 的中心,则图中阴影部分的面积是 cm 2.20,把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为_____个.三、解答题(共60分)21,已知(x +y )2=1,(x -y )2=11.求: (1)x ,y 两数的平方和;(2)x ,y 两数的积.22,若x 、y 都是实数,且y =3-x +x -3+8,求x +3y 的立方根.23,已知5+11的小数部分为a ,5-11的小数部分为b ,求: (1)a +b 的值; (2)a -b 的值.24,如图11,四边形ABEF 与四边形EFCD是两个大小一样的正方形,试找出图中所EF图10有能使正方形EFCD 按顺时针方向旋转一定角度后能与正方形ABFE 重合的点(可另设字母),并分别说出旋转的度数.25,某村有一个呈四边形的池塘,在它的四个角A ,B ,•C ,D 处均种有一棵枣树,这个村准备利用池塘建养鱼池,既想使池塘面积扩大一倍,又想保住枣树不动,并要求扩建后的池塘成平行四边形形状,问该村能否实现这一设想.若能,请你设计并画出图形;若不能,请说明理由.26,如图12所示,正方形ABCD 中,M 是正方形内一点,且为等边三角形,连结MA 、MD ,将ΔADM 绕点D 顺时针旋转多少度才能使AD 与DC 重合?标出点M 的对应点M ′的位置,猜想ΔDMM ′是什么三角形?27,任意剪一个梯形纸片,利用对折的方法找到腰的中点E 、F ,按图13中所示的方法分别将含∠A ,∠B 的部分向里剪下①,②,并按图中箭头所示的方向旋转180°, ①你能得到一个怎样的四边形? ②你能发现关于线段EF 的哪些特性?③请你画出一条直线,将梯形ABCD 分成面积相等的两部分(保留作图痕迹),这样的直线你能画几条?简要说明你的想法.D 'B C D A C 'B 'a b c图14图13图1228,一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图14,火柴盒的一个侧面ABCD 倒下到AB′C′D ′的位置,连接CC′,设AB =a ,BC =b ,AC =c ,请利用四边形BCC′D ′的面积验证勾股定理:a 2+b 2=c 2.29,已知:正方形的边长为1.(1)如图15(a ),可以计算出正方形的对角线长为2.图(b ),求两个并排成的矩形的对角线的长.n 个呢?(2)若把(c )(d )两图拼成如图16“L ”形,过C 作直线交DE 于A ,交DF 于B .若DB =35,求DA 的长度.30,如图17,在△ABC 中,∠ACB =90º,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3,求∠BPC 的度数.ACPB图17 图16图15参考答案:一、1,D ;2,C ;3,D ;4,A .∵x 2+ax -1=(x -2)(x +b ), ∴由常数项为-1,得b =12,又(x -2)(x + 12)=x 2-2x +12x -1=x 2-32x -1,∴a =-32,∴a +b =-1;5,A ;6,A ;7,A ;8,B ;9,A ;10,A .提示:利用旋转图形的特征:图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小都没有发生改变.二、11,7;12,1.44、5-2;13,略;14,∵∠BCB ′=35°,∴∠ACA ′=35°,∴∠A ′=180°-90°-35°=55°,∴∠A =∠A′=55°.答案:55°提示:由旋转图形的特征知,图形中每一点都绕着旋转中心旋转了同样大小的角度;15,3;16,等边三角形;17,49;18,③;19,49;20,3. 三、21,由 (x +y )2=1 得 x 2+2xy +y 2=1, ①由 (x -y )2=11 得 x 2-2xy +y 2=11,②由①+②,得2(x 2 + y 2 ) =12, ∴(1)x 2 +y 2=6.(2)由 ①-②,得 4xy =-10, ∴ xy =-2.5;22,3;23,(1)1,(2)211-7;24,点E ,旋转90º点F ,旋转270º ,EF 的中点M ,旋转180°;25,能.如答图所示,过D ,B 作AC 的平行线,过A ,C 作BD 的平行线,•得□EFGH ,且2EFGH ABCD S S Y Y ;26,ΔADM 绕点D 顺时针旋转270°能使AD 与DC 重合,这时,点M 旋转到CD 的右侧,ΔDMM ′是等腰直角三角形;27,①矩形;②EF 与上下底DC 、AB 平行,且等于AB 、CD 和的一半;③直线l 为所求的.可以画无数条;如图,过两腰中点画与两底构成的矩形,矩形对角线交于O ,过O 点且过DC 上一点的直线为所求的;28,∵ 四边形BCC′D′为直角梯形,∴S梯形BCC′D ′=21(BC+C′D′)·BD′=2)(2b a +.∵Rt △ABC 与Rt △AB′C′全等, ∴∠BAC =∠BAC′.∴∠CAC ′=∠CAB ′+∠B ′AC ′=∠CAB ′+∠BAC =90°.∴S 梯形BCC′D ′=S △ABC +S △CAC ′+S △D′AC′=21ab +21c 2+21ab =222ab c +.∴2)(2b a +=222abc +.∴a 2+b 2=c 2;29,(1)5,12+n ;(2)6135; 30,如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC 与△BEC 全等,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2=BE 2,则∠BPE =90°,∴∠BPC =135°.ACPBE。