线性代数 李建平版本 复旦大学出版社 答案

合集下载

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲第一章3.如果排列nx x x 21是奇排列,则排列11x xx n n的奇偶性如何?解:排列11x x x n n 可以通过对排列nx x x 21经过(1)(1)(2)212n n n nL 次邻换得到,每一次邻换都改变排列的奇偶性,故当2)1( n n 为偶数时,排列11x x x n n 为奇排列,当2)1( n n 为奇数时,排列11x xx n n为偶排列。

4. 写出4阶行列式的展开式中含元素13a 且带负号的项.解:含元素13a 的乘积项共有13223144(1)taa a a,13223441(1)taa a a,13213244(1)t a a a a ,13213442(1)taa a a,13243241(1)taa a a,13243142(1)taa a a六项,各项列标排列的逆序数分别为(3214)3t ,(3241)4t ,(3124)2t ,(3142)3t ,(3421)5t ,(3412)4t , 故所求为132231441aa a a,132134421a a a a,132432411a a a a。

5.按照行列式的定义,求行列式nn 0000100200100的值.解:根据行列式的定义,非零的乘积项只有1,12,21,1(1)t n n n nna a a a L ,其中(1)(2)[(1)(2)21]2n n t n n n L ,故行列式的值等于:(1)(2)2(1)!n n n6. 根据行列式定义,分别写出行列式xx x x x111123111212 的展开式中含4x 的项和含3x 的项.解:展开式含4x 的乘积项为411223344(1)(1)22ta a a a x x x x x含3x 的乘积项为1312213344(1)(1)1taa a a x x x x8. 利用行列式的性质计算下列行列式: 解:(1) 4113112342112341111111141023412341012110310()3412341201212412341230321r r r r r r r r r r r4243321111111130121012110101011(4)(4)160004000410044004r r r r r r (2)2605232112131412 1231211241124113210562202132035005620562c c r r r r (第二行与第四行相同) (3)22231132222221111111222202221110a ab b r a r a a b b r r a a b b b ab a r ar a ab b ab a b a2332111111()()012()012()000b a b a r ar b a a b a b a b a(4)3421211111101111111111111111000011111111111111x xxr r x x x x r r x x x x x x41224432111110011011001100111100r r x x x r r x x r r x x9.若540030087654321x =0,求.x 解:12341500567826001544(512)003374263500454835x x x x 转置即有:124(512)05x x11. 利用行列式按行或列展开的方法计算下列行列式: 解: (2)12431010110(1)(1)01011011011a aa a a D a D a a a a aaa按第一行展开11323212(1)(1)(1)(1)(1)]n n n a D a D a D aD D a D aD [一般地有221221(1)[(1)](1)(1)a a D aD aD a a D a a D ,其中:2221(1)111a a D a a a a a,111D a a .带入上式即可。

线性代数第二章习题部分答案

线性代数第二章习题部分答案

线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α13α2+α3= (5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2β3= (2,8,2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=03k2k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,1)T, α3=(5,3,t)T,问t取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 131 +k3 53t =0即k1+k2+5k3=0k1+3k23k3=0k2+tk3=0 k1+k2+5k3=0k24k3=0k2+tk3=0k1+k2+5k3=0k1+3k23k3=0(t4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=k1a1k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=k1k1+k2a1k2k1+k2a2.五、已知向量组α1,α2,,α2n,令β1=α1+α2,β2=α2+α3,,β2n=α2n+α1,求证向量组β1,β2,,β2n线性相关。

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-?-?=-(2)12130111110101(1)(1)21011110++=-+-= (3)13120010020020030(1)3002(1)243000040040004++=-=?-=-(4)111213100002300234645(1)4562(1)3(1)4045681089891078910+++=-=?-+?-=2. 利用行列式的性质计算下列各题(1)2 1412141312150620123212325625062-==(2)2851285110513102531906196512511310805120512121117609712--------==---=----=----------(3)111111111ab ac ae b c e bdcd de adf b c e adfbce bfcfefbce----=-=----111024020adfbce adfbce -== (4)3300011()()010a b b ba b b b a b a b a b a a b a a b a a b a a b b a a b b b b ab a b a-==--=--------(5)x a a aa x a aa a x a a a ax =(1)(1)(1)(1)x n a a a ax n a xa a x n a a x a x n a a a x+-+-+-+- =[(1)]x n a +-1111a aa x a a a x a a ax=[(1)]xn a+-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)2222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)012111110001012111 11200213111112201231230 123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a bb c c a a b c c a b b c c a ++++++++++=++++++++++++111111*********22222222222223333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)0()()()()00x y z x z y x y z y z x z x y x y z y z x zy x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111xx x xxy y y y yy+---=++++---21000111111111001111110111001111110111000x x x x y xy x y y yy y y y-?-?- ?=++=++++ ?---??22222210011001100y xy x y x xy xy x y x y y y + ?=+-=-+= ?- ?-?(4)设012110001000100n n n a a x D a x a x----=-,则按最后一行展开,可得011132 10001101(1)00110n n n n n a a x x D a xa x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++.332123223321123210n n n n n n n n n n na xa a x a x x D a xa a x a x a x a x -----------= =+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=? 有非零解时,必须满足什么条件?解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-.又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -+=-=---2. 解:由A X B +=,得020133.221X B A -??=-=-- ? ?--?? 3. 解:213220583221720,0564292290T AB A A B -???? ? ?-=--=- ? ? ? ?- 4. 解:(1)()31,2,32132231101?? ?=?+?+?= ? (2)()22411,212336-???? ? ?-=- ? ? ? ?-????,(3)12110162134021311491231042217--?????? ??? ?= -(4) 1312140012678113413120510402??--???? ?= ? ? ?---????5. 解:(1)错误,令1101,,0111A B == ? ?则有AB BA ≠;(2)错误,令1101,,0111A B == ? ?则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B == ? ?则可得22()().A B A B A B +-≠- (4) 错误,设00,10A ??=则有20A =,但0.A ≠(5)错误,设10,00A ??=则有2A A =,但.A I ≠6.解:2221010(),0101AB A B -== ? ?-7.证明:因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明:因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解:由32,A X B -=得43/211(3)15/2127/211/25/2X B A -?? ?=--=- ? ???. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-??=cos sin sin cos n n n A n n θθθθ-??=对n 作数学归纳法. 当2n =时,22222cos 2s in 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-??--??==-??, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-??=. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--=cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---??=+-??cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+??=++??因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-??=. 11. (1)解:由初等行变换可得,111031113111031107221240012200122001043314500244000390001311118002150000000000A -------???????? ?----=→→→ ? ? ? ?------ ?-(2)解:由初等行变换可得,111111107125016016234000000 ? ? ?-→-→- ? ? ? ? ? ?-12. 解法见第38页例2.14.13. (1) 解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ→→--- ? ? ? ? ? ?---?2221101100(1)(2)(1)(1)λλλλλλλλλλ?? ?→--- ? ?-+-+?,当2λ=-时,方程组无解,当1λ=时,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当1λ≠,且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---??--→-- ? ? ? ?---?112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--???? ? ?→-+--→--- ? ? ? ?-------当1λ=时,方程组无解,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解:通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015?- ? ? ? ? ? ? ? ? ?-?15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-→→ ? ? ?--,故 112522521--= ? ?-相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解:原线性方程组可写成123123122103430x x x= ??? ? ??? ???????,因此,11231123132210234301x x x -??==- ? ? ? ? ? ? ? ?17.(1)由原矩阵方程可得121122111321182431511133X --??-??-?? ? ?== ? ? ?-- ??? ?-,(2)由原矩阵方程可得1111143120112011104X --???????? ?== ? ??? ?---??????(3)由原矩阵方程可得11010143100210100201001134001120010102X ----???????? ? ??? ?=-=- ? ??? ? ? ??? ?--????????18证明:因为21()()k k I A I A A A I A I +-++++=-=,所以12()()k I A I A A A --=++++19.解:由220A A I --=,得()2A I AI -=,3(2)4A IA I I -+=-,因此,1(),2A I A --=13(2)4A IA I --+=-20. 证明:由220A AB B ++=,且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=- 21. 令11123,01121001B C ??== ? ??? ?,则111311044,0111100122B C --??-??- ? ?==--,因此1111130004411000002200001100001100001B B A A A ----??- ? ?-=== ?- ? ?- ?. 22. 证明:若,B C 可逆,则有11000B C I CB --= ? ?,所以A 可逆,且1110.0C A B---??= 反之,若A 可逆, 设其逆为X Y Z V ??,则, 000B X Y I o CZ V I= ??? ???????,因此,,BZ I CY I ==,因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =,得211A A AA --=,即A E =,这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ? ? ? ? ?-- ? ? ? ? ?=+++ ? ? ? ? ?-- ? ? ? ? ?-- 解得, 12345111 ,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x++= ? ? ? ? ? ???????,上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ? ? ?=-→-→- ? ? ? ? ? ?-, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立. 7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()?设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=??+=??+=? 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()? 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关,所以123123123(000k k k k k k k k k +-=??-++=??-+=? 解得上面方程组只有零解,因此,123,,ααα线性无关. 证明: 9.(?)设1mi i i k αα==∑,和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(?)设11m m i i i i i i k l ααα====∑∑,则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关,则存在不全为零的数12,,,m k k k 使得,10.mi ii k α==∑若有某个0i k =,不妨设10k =,则有20,mi ii k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====,这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零,命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ? ? ?=-→--→-- ? ? ? ? ? ?--+-+所以,当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关,且312111.77ααα=+ 13. 解:(1)因为2344112311231123112323440501005010326132610501000001021102101020000A --------=→→→ ? ? ? ?------因此,向量组1234,,,αααα的秩为2,12,αα是一个极大线性无关组,且314122,2.ααααα==-+用类似的方法可求(2),(3),答案见教材.14. (1) 因为120131(,)1224αα?? ?-= ? ???,有一个二阶子式01331=--,所以秩(12,αα)=2,即12,αα线性无关.(2)容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++? 因此,2V 不是线性空间. 17. 证明:因为01101111101101211110011==-=--,所以123,,ααα线性无关,即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++,即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=??-++=??+=?,解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明:因为A 是正交阵,所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==,故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000?????? ? ?--- ? ? ?→→-- ? ?-, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=??-=?选取3x 作为自由未知量,解得基础解系为1971-?? ? ? ???,因此,方程组的解为1971k -?? ? ? ???(2)313411311131159815980467113131340000--------→--→-- ? ? ? ? ? ?----,选取选取34,x x 作为自由未知量,解得基础解系为3/23/43/27/4,1001-故方程组的同解为123/23/43/27/41001k k -+ ? ? ? ?????(3)见教材答案(4)见教材答案2. (1)对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --???? ? ?=--→ ? ? ? ?----解得特解为5/6101/6??-??,对应的齐次线性方程组的基础解系为3510-?? ?- ? ? ???,因此方程组的同解为5/6101/6?? ? ? ? ?-??+3510k -?? ?- ? ? ???(2)答案见教材 3. (略)4. 证明:令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

线性代数(李建平)习题答案详解

线性代数(李建平)习题答案详解

线性代数习题一1.2.3(答案略)4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645.(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-⋅ 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅ 原式=(1)(2)(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅-- (1)212(1)1(1)n n n n n a a a --=-7.8(答案略)9. ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)111(1)11(1)1101x x n x x x n x x x n x x n x x +-+--==+-+--[]1(1)(1)n x n x -=+--(2)按第一列展开:11100000(1)(1)00n n n n n y x y D x x y x y x y-++=⋅+-=+-(3)1231134114512(1)2113211221n nnn nDn n nn n-+=----12310111101111(1)20111101111n nnnn nnn---+=--11111111(1)211111111nnn nnn--+=--(2)(3)2111111111(1)(1)211111111n nnnn nnn-+-+++--+=⨯---(1)(2)211111111(1)(1)211111111n nnn nnn-----+=-⋅----(1)(2)(1)11000100(1)(1)(1)2100100n n n n n nnn n n nnn-------++=-⋅=-⋅----习题二1.2.3.4.5(答案略) 6. 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA 即 111211122122212211111111x x x x x x xx ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ====7. (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9.2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10.(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11. ∵21,()2==+A A A B E ∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12. (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++ 22212i i in a a a =+++ (,1,2,,i j n =当 1,2,,i j n == 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============ ∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==当 i j = 时,有 222120(1,2,,)i i in a a a i n +++== 故 120(1,2,,)i i in a a a i n ===== 即 0=A 13.(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A 由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的和。

线性代数课后习题答案全解.pdf

线性代数课后习题答案全解.pdf

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102−−−;解 381141102−−−=2×(−4)×3+0×(−1)×(−1)+1×1×8 −0×1×3−2×(−1)×8−1×(−4)×(−1) =−24+8+16−4=−4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba −bbb −aaa −ccc =3abc −a 3−b 3−c 3. (3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2−ac 2−ba 2−cb =(a −b )(b −c )(c −a ). 2(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx −y 3−(x +y )3−x =3xy (x +y )−y 3 3−3x 2 y −x 3−y 3−x =−2(x 3 3+y 3 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:).(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n −1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(−n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个)(6)1 3 ⋅ ⋅ ⋅ (2n −1) (2n ) (2n −2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n −1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n −2) (n −1个) 3. 写出四阶行列式中含有因子a 11a 23 解 含因子a 的项. 11a 23(−1)的项的一般形式为t a 11a 23a 3r a 4s 其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. ,所以含因子a 11a 23 (−1)的项分别是t a 11a 23a 32a 44=(−1)1a 11a 23a 32a 44=−a 11a 23a 32a 44 (−1), t a 11a 23a 34a 42=(−1)2a 11a 23a 34a 42=a 11a 23a 34a 42 4. 计算下列各行列式:.(1)71100251020214214; 解 71100251020214214010014231020211021473234−−−−−======c c c c 34)1(143102211014+−×−−−= 143102211014−−=01417172001099323211=−++======c c c c .(2)2605232112131412−; 解 2605232112131412−26053212213041224−−=====c c 041203212213041224−−=====r r 0000003212213041214=−−=====r r . (3)efcf bf de cd bd aeac ab −−−;解 ef cf bf de cd bd ae ac ab −−−ec b e c b ec b adf −−−=abcdef adfbce 4111111111=−−−=.(4)dc b a 100110011001−−−. 解d c b a 100110011001−−−dc b aab ar r 10011001101021−−−++===== d c a ab 101101)1)(1(12−−+−−=+01011123−+−++=====cd c ada ab dc ccdad ab +−+−−=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a −b )3 证明;1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c −−−−−−=====ab a b a b a ab 22)1(22213−−−−−=+21))((a b a a b a b +−−==(a −b )3 (2) . y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2, c 2−c 1 得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b −−−−−−−−−=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++−−−= ))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++−++−−−−−−= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++−−−−−= =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−− =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+−=, 命题成立. 假设对于(n −1)阶行列式命题成立, 即 D n −1=x n −1+a 1 x n −2+ ⋅ ⋅ ⋅ +a n −2x +a n −1则D , n 按第一列展开, 有 11100 100 01)1(11−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−+=+−x x a xD D n n n n =xD n −1+a n =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n 因此, 对于n 阶行列式命题成立. .6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(−−==, D 3 证明 因为D =det(a =D .ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−− )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(−−+−+⋅⋅⋅++−=−=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=− )1(11112)1(2D D n n T n n 2)1(2)1()1()1(−−−=−=. D D D D D n n n n n n n n =−=−−=−=−−−−)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k (1)为k 阶行列式): aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(−×−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=n n n aa a )1()1(2 )1(−×−⋅⋅⋅⋅−+n n n a a an n n n n a a a+⋅⋅⋅−⋅−=−−+)2)(2(1)1()1(=a n −a n −2=a n −2(a 2−1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(−1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n −−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−+=0000 0 000 00 )1(=[x +(n −1)a ](x −a )n −1 (3). 111 1 )( )1()( )1(1111⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−=−−−+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1−⋅⋅⋅−−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=−−−++此行列式为范德蒙德行列式.∏≥>≥++++−−+−−=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++−−−=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+−++−⋅−⋅−=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+−=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn −−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+. 再按最后一行展开得递推公式D 2n =a n d n D 2n −2−b n c n D 2n −2, 即D 2n =(a n d n −b n c n )D 2n −2于是 . ∏=−=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D −==,所以 ∏=−=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij 解 a =|i −j |; ij =|i −j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213−⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−+⋅⋅⋅+=====n n n n n c c c c =(−1)n −1(n −1)2n −2 (6).nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=====−−100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 −−−−−−+−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=−−−−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1) =+++−=−−−−=+−+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111−=−−−−=D , 142112105132412211151−=−−−−−−=D , 284112035122412111512−=−−−−−=D , 426110135232422115113−=−−−−=D , 14202132132212151114=−−−−−=D , 所以 111==D D x , 222==D Dx , 333==DD x , 144−==D D x .(2)=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100065000611==D , 114551010651000650000601000152−==D , 703511650000601000051001653==D , 39551601000051000651010654−==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452−=x , 6657033=x , 6653954−=x , 6652124=x .9. 问λ, µ取何值时, 齐次线性方程组 =++=++=++0200321321321x x x x x x x x x µµλ有非零解?解 系数行列式为µλµµµλ−==1211111D .令D =0, 得 µ=0或λ=1.于是, 当µ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组 =−++=+−+=+−−0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ−−+−−=−−−−=101112431111132421D=(1−λ)3 =(1−λ)+(λ−3)−4(1−λ)−2(1−λ)(−3−λ) 3+2(1−λ)2 令D =0, 得+λ−3. λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3 解 由已知:的线性变换.= 221321323513122y y y x x x ,故= −3211221323513122x x x y y y−−−−=321423736947y y y ,−+=−+=+−−=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换++=++−=+=32133212311542322y y y x y y y x y y x ,+−=+=+−=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3 解 由已知的线性变换.−= 221321514232102y y y x x x−− −=321310102013514232102z z z−−−−=321161109412316z z z ,所以有 +−−=+−=++−=3213321232111610941236z z z x z z z x z z z x .3. 设 −−=111111111A ,−−=150421321B , 求3AB −2A 及A T 解 B .−−− −− −−=−1111111112150421321111111111323A AB−−−−= −−− −=2294201722213211111111120926508503,−= −− −−=092650850150421321111111111B A T.4. 计算下列乘积: (1)−127075321134;解 −127075321134 ×+×+××+×−+××+×+×=102775132)2(71112374=49635.(2)123)321(;解123)321(=(1×3+2×2+3×1)=(10).(3))21(312−;解 )21(312−×−××−××−×=23)1(321)1(122)1(2−−−=632142. (4)−−−−20413121013143110412 ; 解−−− −20413121013143110412 −−−=6520876. (5)321332313232212131211321)(x x x a a a a a a a a a x x x ;解321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3321x x x )322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设 =3121A ,=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为=6443AB ,=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2 解 (A +B )吗? 2≠A 2+2AB +B 2 因为.=+5222B A ,=+52225222)(2B A=2914148,但 + +=++43011288611483222B AB A=27151610,所以(A +B )2≠A 2+2AB +B 2 (3)(A +B )(A −B )=A . 2−B 2 解 (A +B )(A −B )≠A 吗? 2−B 2 因为.=+5222B A ,=−1020B A ,==−+906010205222))((B A B A ,而= −=−718243011148322B A ,故(A +B )(A −B )≠A 2−B 2 6. 举反列说明下列命题是错误的:.(1)若A 2 解 取=0, 则A =0;=0010A , 则A 2 (2)若A =0, 但A ≠0. 2 解 取=A , 则A =0或A =E ;=0011A , 则A 2 (3)若AX =AY , 且A ≠0, 则X =Y .=A , 但A ≠0且A ≠E . 解 取=0001A , −=1111X ,=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k 解 . ==12011011012λλλA , ===1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=101λk A k . 8. 设=λλλ001001A , 求A k 解 首先观察. =λλλλλλ0010010010012A=222002012λλλλλ,=⋅=3232323003033λλλλλλA A A ,=⋅=43423434004064λλλλλλA A A ,=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=k A k k k k k k k k k k λλλλλλ0002)1(121−−−−. 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,−=⋅=−−−+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A+++=+−+−−+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:−=−−−k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T 证明 因为A AB 也是对称矩阵.T (B =A , 所以T AB )T =B T (B T A )T =B T A T B =B T 从而B AB ,T 10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .AB 是对称矩阵.证明 充分性: 因为A T =A , B T (AB )=B , 且AB =BA , 所以 T =(BA )T =A T B T 即AB 是对称矩阵.=AB ,必要性: 因为A T =A , B T =B , 且(AB )T AB =(AB )=AB , 所以T =B T A T 11. 求下列矩阵的逆矩阵:=BA .(1)5221; 解=5221A . |A |=1, 故A −1 存在. 因为−−= =1225*22122111A A A A A ,故 *||11A A A =−−−=1225. (2)−θθθθcos sin sin cos ; 解−=θθθθcos sin sin cos A . |A |=1≠0, 故A −1 存在. 因为−= =θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =−−=θθθθcos sin sin cos . (3)−−−145243121; 解−−−=145243121A . |A |=2≠0, 故A −1 存在. 因为−−−−−= =214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =−−−−−−=1716213213012. (4)n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解=n a a a A 0021, 由对角矩阵的性质知=−n a a a A 10011211 . 12. 解下列矩阵方程:(1) −=12643152X ; 解 −=−126431521X − −−=12642153 −=80232. (2) −=−−234311*********X ; 解 1111012112234311−−− −=X−−− −=03323210123431131 −−−=32538122. (3) −= − −101311022141X ;解 11110210132141−− − − −=X− −=210110131142121 =21010366121=04111. (4)−−−= 021102341010100001100001010X . 解 11010100001021102341100001010−−−−− =X −−− =010100001021102341100001010 −−−=201431012. 13. 利用逆矩阵解下列线性方程组:(1) =++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为= 321153522321321x x x , 故 = = −0013211535223211321x x x ,从而有 ===001321x x x . (2) =−+=−−=−−05231322321321321x x x x x x x x x . 解 方程组可表示为=−−−−−012523312111321x x x , 故 =−−−−−= −3050125233121111321x x x , 故有 ===305321x x x . 14. 设A k =O (k 为正整数), 证明(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1 证明 因为A . k =O , 所以E −A k E −A =E . 又因为k =(E −A )(E +A +A 2+⋅ ⋅ ⋅+A k −1所以 (E −A )(E +A +A ),2+⋅ ⋅ ⋅+A k −1由定理2推论知(E −A )可逆, 且)=E ,(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1.证明 一方面, 有E =(E −A )−1 另一方面, 由A (E −A ).k E =(E −A )+(A −A =O , 有2)+A 2−⋅ ⋅ ⋅−A k −1+(A k −1−A k )=(E +A +A 2+⋅ ⋅ ⋅+A k −1故 (E −A ))(E −A ),−1(E −A )=(E +A +A 2+⋅ ⋅ ⋅+A k −1两端同时右乘(E −A ))(E −A ),−1 (E −A ), 就有−1(E −A )=E +A +A 2+⋅ ⋅ ⋅+A k −1.15. 设方阵A 满足A 2−A −2E =O , 证明A 及A +2E 都可逆, 并求A −1及(A +2E )−1 证明 由A .2 A −A −2E =O 得2或 −A =2E , 即A (A −E )=2E ,E E A A =−⋅)(21, 由定理2推论知A 可逆, 且)(211E A A −=−. 由A 2 A −A −2E =O 得2或 −A −6E =−4E , 即(A +2E )(A −3E )=−4E ,E A E E A =−⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A −=+−.证明 由A 2−A −2E =O 得A 2 |A −A =2E , 两端同时取行列式得 2即 |A ||A −E |=2,−A |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2由 A ≠0, 故A +2E 也可逆. 2 ⇒A −A −2E =O ⇒A (A −E )=2E−1A (A −E )=2A −1)(211E A A −=−E ⇒,又由 A 2 ⇒ (A +2E )(A −3E )=−4 E ,−A −2E =O ⇒(A +2E )A −3(A +2E )=−4E所以 (A +2E )−1(A +2E )(A −3E )=−4(A +2 E )−1 ,)3(41)2(1A E E A −=+−.16. 设A 为3阶矩阵, 21||=A , 求|(2A )−1 解 因为−5A *|.*||11A A A =−, 所以 |||521||*5)2(|111−−−−=−A A A A A |2521|11−−−=A A=|−2A −1|=(−2)3|A −1|=−8|A |−1 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)=−8×2=−16.−1=(A −1 证明 由)*.*||11A A A =−, 得A *=|A |A −1 |A *|=|A |, 所以当A 可逆时, 有n |A −1|=|A |n −1从而A *也可逆.≠0,因为A *=|A |A −1 (A *), 所以−1=|A |−1又A .*)(||)*(||1111−−−==A A A A A , 所以(A *)−1=|A |−1A =|A |−1|A |(A −1)*=(A −1 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:)*.(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n −1 证明.(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)−1 A =A A *(A *)=E , 由此得 −1=|A |E (A *)−1所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.=O ,(2)由于*||11A A A =−, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n 若|A |≠0, 则|A *|=|A |.n −1 若|A |=0, 由(1)知|A *|=0, 此时命题也成立.;因此|A *|=|A |n −1.19. 设−=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A −2E )B =A , 故− −−−=−=−−321011330121011332)2(11A E A B −=011321330. 20. 设 =101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2 (A −E )B =A +B 得 2即 (A −E )B =(A −E )(A +E ).−E , 因为01001010100||≠−==−E A , 所以(A −E )可逆, 从而=+=201030102E A B .21. 设A =diag(1, −2, 1), A *BA =2BA −8E , 求B . 解 由A *BA =2BA −8E 得 (A *−2E )BA =−8E , B =−8(A *−2E )−1A =−8[A (A *−2E )]−1 =−8(AA *−2A )−1 =−8(|A |E −2A )−1 =−8(−2E −2A )−1 =4(E +A )−1 =4[diag(2, −1, 2)]−1−1)21 ,1 ,21(diag 4−==2diag(1, −2, 1).22. 已知矩阵A 的伴随阵−=8030010100100001*A , 且ABA −1=BA −1+3E , 求B .解 由|A *|=|A |3 由ABA =8, 得|A |=2. −1=BA −1 AB =B +3A ,+3E 得 B =3(A −E )−1A =3[A (E −A −1)]−1 A 11*)2(6*)21(3−−−=−=A E A E−=−−=−1030060600600006603001010010000161. 23. 设P −1 −−=1141P AP =Λ, 其中,−=Λ2001, 求A 11 解 由P . −1AP =Λ, 得A =P ΛP −1, 所以A 11= A =P Λ11P −1 |P |=3, .−=1141*P ,−−=−1141311P ,而−= −=Λ11111120 012001,故−− −−−=31313431200111411111A −−=68468327322731. 24. 设AP =P Λ, 其中−−=111201111P ,−=Λ511,求ϕ(A )=A 8(5E −6A +A 2 解 ϕ(Λ)=Λ). 8(5E −6Λ+Λ2 =diag(1,1,5)8)[diag(5,5,5)−diag(−6,6,30)+diag(1,1,25)]=diag(1,1,58 ϕ(A )=P ϕ(Λ)P )diag(12,0,0)=12diag(1,0,0).−1 *)(||1P P P Λ=ϕ−−−−−− −−−=1213032220000000011112011112=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A −1+B −1 证明 因为也可逆, 并求其逆阵.A −1(A +B )B −1=B −1+A −1=A −1+B −1而A ,−1(A +B )B −1是三个可逆矩阵的乘积, 所以A −1(A +B )B −1可逆, 即A −1+B −1 (A 可逆.−1+B −1)−1=[A −1(A +B )B −1]−1=B (A +B )−1 26. 计算A .−−−30003200121013013000120010100121. 解 设 =10211A , =30122A , −=12131B ,−−=30322B ,则 2121B O B E A O E A+=222111B A O B B A A ,而 −= −−+−=+4225303212131021211B B A ,−−= −− =90343032301222B A , 所以 2121B O B E A O E A +=222111B A O B B A A−−−=9000340042102521, 即−−−30003200121013013000120010100121−−−=9000340042102521. 27. 取==−==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==−−=−−=D C B A , 而 01111|||||||| ==D C B A ,故 ||||||||D C B A D C B A ≠. 28. 设 −=22023443O O A , 求|A 8|及A 4解 令. −=34431A ,=22022A , 则=21A O O A A ,故 8218=A O O A A=8281A O O A ,1682818281810||||||||||===A A A A A .= =464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1−O B A O ; 解 设 =−43211C C C C O B A O , 则O B A O 4321C C C C = =s n E O O E BC BC AC AC 2143. 由此得====s n EBC OBC O AC E AC 2143⇒ ====−−121413B C O C O C A C ,所以= −−−O A B O O B A O 111. (2)1−B C O A . 解 设 =−43211D D D D B C O A , 则 = ++= s nE O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得=+=+==s nEBD CD O BD CD O AD E AD 423121⇒ =−===−−−−14113211B D CA B D O D A D ,所以−= −−−−−11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)2500380000120025; 解 设 =1225A , =2538B , 则−−= =−−5221122511A ,−−==−−8532253811B .于是 −−−−= = =−−−−850032000052002125003800001200251111B A B A .(2)4121031200210001. 解 设 =2101A ,=4103B ,=2112C , 则−= =−−−−−−1111114121031200210001B CA B O A BC O A−−−−−=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1)−−340313021201;解−−340313021201(下一步: r 2+(−2)r 1, r 3+(−3)r 1 ~. )−−−020*********(下一步: r 2÷(−1), r 3 ~÷(−2). )−−010*********(下一步: r 3−r 2 ~. )−−300031001201(下一步: r 3 ~÷3. )−−100031001201(下一步: r 2+3r 3 ~. )−100001001201(下一步: r 1+(−2)r 2, r 1+r 3 ~. )100001000001.(2)−−−−174034301320;解−−−−174034301320(下一步: r 2×2+(−3)r 1, r 3+(−2)r 1 ~. )−−−310031001320(下一步: r 3+r 2, r 1+3r 2 ~. )0000310010020(下一步: r 1 ~÷2. )000031005010.(3)−−−−−−−−−12433023221453334311;解−−−−−−−−−12433023221453334311(下一步: r 2−3r 1, r 3−2r 1, r 4−3r 1~. )−−−−−−−−1010500663008840034311(下一步: r 2÷(−4), r 3÷(−3) , r 4~÷(−5). )−−−−−22100221002210034311(下一步: r 1−3r 2, r 3−r 2, r 4−r 2~. )−−−00000000002210032011.(4)−−−−−−34732038234202173132. 解−−−−−−34732038234202173132(下一步: r 1−2r 2, r 3−3r 2, r 4−2r 2~. )−−−−−1187701298804202111110(下一步: r 2+2r 1, r 3−8r 1, r 4−7r 1 ~. )−−41000410002020111110(下一步: r 1↔r 2, r 2×(−1), r 4−r 3~. )−−−−00000410001111020201(下一步: r 2+r 3~. )−−00000410003011020201. 2. 设= 987654321100010101100001010A , 求A .解100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(−1))−=100010101.− =100010101987654321100001010A= − =287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)323513123;解 100010001323513123~−−−101011001200410123~ −−−−1012002110102/102/3023~−−−−2/102/11002110102/922/7003~−−−−2/102/11002110102/33/26/7001故逆矩阵为−−−−21021211233267.(2)−−−−−1210232112201023.解−−−−−10000100001000011210232112201023~−−−−00100301100001001220594012102321~−−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321 ~−−−−−−−−−−10612631110`1022111000010000100021 ~−−−−−−−106126311101042111000010000100001故逆矩阵为−−−−−−−10612631110104211. 4. (1)设 −−=113122214A ,−−=132231B , 求X 使AX =B ;解 因为−−−−=132231 113122214) ,(B A−−412315210 100010001 ~r ,所以−−==−4123152101B A X .(2)设−−−=433312120A , −=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为−−−−=134313*********) ,(T T B A−−−411007101042001 ~r ,所以−−−==−417142)(1T T T B A X ,从而−−−==−4741121BA X . 5. 设−−−=101110011A , AX =2X +A , 求X .解 原方程化为(A −2E )X =A . 因为−−−−−−−−−=−101101110110011011) ,2(A E A−−−011100101010110001~,所以−−−=−=−011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r −1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r −1阶子式, 也可能存在等于0的r 阶子式. 例如,=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, −1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:−0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1)−−−443112112013;解−−−443112112013(下一步: r 1↔r 2 ~. )−−−443120131211(下一步: r 2−3r 1, r 3−r 1 ~. )−−−−564056401211(下一步: r 3−r 2 ~. )−−−000056401211, 矩阵的2秩为, 41113−=−是一个最高阶非零子式.(2)−−−−−−−815073*********;解−−−−−−−815073*********(下一步: r 1−r 2, r 2−2r 1, r 3−7r 1 ~. )−−−−−−15273321059117014431(下一步: r 3−3r 2~. )−−−−0000059117014431, 矩阵的秩是2, 71223−=−是一个最高阶非零子式.(3)−−−02301085235703273812. 解−−−02301085235703273812(下一步: r 1−2r 4, r 2−2r 4, r 3−3r 4~. )−−−−−−023*********63071210(下一步: r 2+3r 1, r 3+2r 1~. )−0230114000016000071210(下一步: r 2÷16r 4, r 3−16r 2. )~−02301000001000071210 ~−00000100007121002301, 矩阵的秩为3, 070023085570≠=−是一个最高阶非零子式.10. 设A 、B 都是m ×n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设−−−−=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 −−−−=32321321k k k A+−−−−−)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =−2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠−2时, R (A )=3.12. 求解下列齐次线性方程组: (1) =+++=−++=−++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−212211121211~ −−−3/410013100101,于是 ==−==4443424134334x x x x x x x x ,故方程组的解为−= 1343344321k x x x x (k 为任意常数).(2) =−++=−−+=−++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−−−5110531631121~−000001001021,于是 ===+−=4432242102x x x xx x x x ,故方程组的解为+−= 10010*********k k x x x x (k 1, k 2 (3)为任意常数).=−+−=+−+=−++=+−+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =−−−−−7421631472135132~1000010000100001,于是 ====0004321x x x x ,故方程组的解为 ====00004321x x x x .(4) =++−=+−+=−+−=+−+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =−−−−−3127161311423327543~−−000000001720171910171317301,于是 ==−=−=4433432431172017191713173x x x x x x x xx x ,故方程组的解为−−+= 1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1) =+=+−=−+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章
x 0
x 0
lim f ( x) lim ex 0
x 0
所以,当 a 0 时, lim f ( x) 存在。
x 0
4. 利用极限的几何意义说明 lim sinx 不存在.
x
解:因为当 x 时,sin x 的值在-1 与 1 之间来回振摆动,即 sin x 不无限接近某一 定直线 y A ,亦即 y f ( x) 不以直线 y A 为渐近线,所以 lim sin x 不存在。
lim xn 0
n
n.
即 xn 0
2. 证明:若 lim xn=a,则 lim ∣xn∣=|a|.考察数列 xn=(-1)n,说明上述结论反之不成立.
ne
由数列极限的定义得
lim xn k a .
t
1
xn k a
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
此文档由天天learn()为您收集整理。
第二章
习题 2-1 1. 证明:若 lim xn=a,则对任何自然数 k,有 lim xn+k=a.
n n
证:由 lim xn a ,知 0 , N1 ,当 n N1 时,有
n
xn a
n.
x 0
1 x
当 x 从小于 0 的方向无限接近于 0 时, e 的值无限接近于 0,故 lim e 0.
x 0
ww
(2)若 lim f ( x) 存在,则 lim f ( x) lim f ( x) ,
x 0 x 0
x 0
由(1)知
lim f ( x) lim ( x 2 a) lim ( x 2 a) a ,

线性代数习题答案详解__复旦大学出版社

线性代数习题答案详解__复旦大学出版社

线性代数课后习题答案习题一1、2、3(答案略)4、 (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645、(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6、 (1) (2341)(1)12n n τ-⋅L L 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅L L 原式=(1)(2)2(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅--L L (1)212(1)1(1)n n n n n a a a --=-L7、8(答案略)9、 ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10、 (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)1110(1)11(1)111x x n x x x n x x x n x x n x x +-+--==+-+--L LL L L L L L L L L L L L L L L L LLL[]1(1)(1)n x n x -=+--(2)按第一列展开: 11100000(1)(1)0n n n n n y xy D x x yx y xy-++=⋅+-=+-L L L L L L L L(3)1231134114512(1)2113211221n n n n n D n n n n n -+=----L L L LL L L L L L L 12310111101111(1)20111101111n n n n n n n n ---+=--L L L LL L L L L L L11111111(1)211111111n n n n n n--+=--L L LL L L L L L(2)(3)2111111111(1)(1)211111111n n nn n n n n-+-+++--+=⨯---L L L L L L L L L L(1)(2)211111111(1)(1)211111111n n n n n n n-----+=-⋅----L L LL L L L L L (1)(2)(1)1221100(1)(1)(1)221001n n n n n n n n n n n n n-------++=-⋅=-⋅----LLL L LL L LL习题二1、2、3、4、5(答案略) 6、 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA即 111211122122************x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ==== 7、 (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9、2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10、(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11、 ∵21,()2==+A A A B E∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12、 (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++L 22212i i in a a a =+++L (,1,2,,)i j n =L当 1,2,,i j n ==L 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============L L L∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++L∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==L 当 i j = 时,有 222120(1,2,,)i i in a a a i n +++==L L 故 120(1,2,,)i i in a a a i n =====L L 即 0=A 13、(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的与。

线性代数习题册参考解答.docx

线性代数习题册参考解答.docx

第一章行列式1、 求下列排列的逆序数,并确定它们的奇偶性。

(1) 1347265; (2) 〃(〃 —1)・・・321。

【解(1) r(1347265)=0 + 0 + 0 + 0 + 3 + l + 2 = 6,偶排列;(2) "〃(〃_1)...321] = 0 + ] + 2 + ... + (〃_1) = 〃(;1)。

当〃=4奴4女+ 1时,〃(〃;1)=2机4*—1),2机4* + 1)为偶数,即为偶排列;当〃 = 412,413时,丝* = (2*+1)(4*+ 1),(2*+1)(4*+ 3)为奇数,即为奇 排列。

■2、 用行列式定义计算2x x 1 21x1-1 f (X )=-- [3 2x1111%中『和r 的系数,并说明理由。

【解】由行列式定义可知:含b 有的项只能是主对角线元素乘积,故的系数为2; 含有尸的项只能是(1, 2), (2, 1), (3, 3), (4, 4)的元素乘积项,而7(2134) = 0 + 1 + 0 + 0 = 1,故/的系数为一1. ■2-512 --37-14 3、 求 =o45 -9 2 7 4-612【解】三角化法:2-5121-522 1-522 尸2+八1-12 0 6C[0 2-160 113D 4 =- _八3-211 1 0 3 0 113 0 2-16 r 4+r 211 0 60 1160 1161 -52 2 r3~2r 2 0 11 3r4~r 2 00 -3 00 0 31111 rk~r l0 10 0=120= 120o )l=2,3,40 0 100 0 0 1【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。

1 x 2q+C2 +•••+&n D"=(,-就1 x 2-mi=l1x21 0 0C k -X L C I 凡 q (»i) k=2,3,---,n1 —m ••- 01 0…-m【解】观察特点: 行和相等。

线性代数(李建平)讲义__复旦大学出版社__第二章

线性代数(李建平)讲义__复旦大学出版社__第二章

那么,对线性方程组的研究就可转化为对这张表的
研究.
例2 某企业生产4种产品, 各种产品的季度产值如下表
产品 产值 季度
1
2
3
4
1
2 3 4
80
98 90 88
58
70 75 70
75
85 90 82
78
84 90 80
这个排成4行4列的产值阵列
80 58 75 78 98 70 85 84 90 75 90 90 88 70 82 80 具体描述了这家企业各种产品各季度的产值及
3
2a13 2a23 2a33
a22 a32
3
a23 a33
a31
3
(2) | A | ( 2) ( 2) 16
二、矩阵的乘法 定义6 给定矩阵 A (aij )ml ,及
l

cij ai1b1 j ai 2b2 j ail blj aik bkj (2.6)
2如果a可逆则aijjiijji一分块矩阵的概念一分块矩阵的概念对于行数和列数比较多的矩阵a有时为了简化运算或者从理论上表达问题的简洁经常采用矩阵分块法使大矩阵的运算化成若干小矩阵间的运算同时也使原矩阵的结构显得简单而清晰具体做法是将大矩阵a用若干条横线和纵线分成多个小矩阵每个小矩阵称为a的子块以子块为元素的矩阵称为分块矩阵
0
4.由于
a1 k
a2
ka1 an
b2
ka2
kan
a2 b2 an bn
a1
a2
b1 an

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。

线性代数(复旦大学出版社周勇)课后习题答案(三)

线性代数(复旦大学出版社周勇)课后习题答案(三)

线性代数(复旦大学出版社周勇)课后习题答案(三)第三章课后答案1、略2、略3、略4、)1,0,1()1,1,0()0,1,1(21-=-=-αα)2,1,0()0,4,3()1,1,0(2)0,1,1(323321=-+=-+ααα5、)523(61)(5)(2)(3321321αααααααααα-+=→+=++-6、设存在一组数r k k k ,,,21 使得)()()()(02212121212112211=++++++++=+++++++==+++r r r r r r r r k k k k k k k k k k k k αααααααααβββ因r ααα ,,21线性无关,有==++=+++000221r r r k k k k k k 即021====r k k k ,所以r βββ ,,21线性无关。

7、设存在一组数4321,,,k k k k 使得044332211=+++ββββk k k k 有0)()()()(443332221141=+++++++ααααk k k k k k k k 因000000004332214=k k k k k k k k ,且不全为0,所以4321,,,ββββ线性相关。

8、讨论向量组相关性。

(本题的特点是向量组的个数等于向量的维数,其判断法是求向量组成的行列式值是否为0)(1)0520520111631520111321===ααα,相关(2)02100020011321≠==ααα,无关9、由向量组组成的行列式为 12021011131321111321-==t t ααα (1)如果,5,41=→=-t t 行列式等于0,向量组线性相关,(2)如果,5,41≠→≠-t t 行列式不等于0,向量组线性无关,(3)当5=t 时,向量组相关,设22113αααk k +=即=-=??+????? ??=????? ??213211115312121k k k k10、用矩阵的秩判别向量组的相关性(方法是求由向量组构成的矩阵的秩r 与向量组个数关系)(1)()---→??????? ??----??→---==--015026014010515626414010412420311113213321c c c c A ααα所以 2)(=A R ,相关。

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

线性代数(李建平)讲义__复旦大学出版社__第六章

线性代数(李建平)讲义__复旦大学出版社__第六章
由此可知二次型能否化简为只含平方项的标准形问题归结为二次型的矩阵能否合同于对角矩阵的问题将二次型化为标准型第二节化二次型为标准形一配方法原二次型的矩阵为线性变换的矩阵为可见要把二次型化为标准形关键在于求出一个非奇异矩阵c使得cac是对角矩阵
第六章 二次型
第一节
定义1
二次型的基本概念
系数在数域 R中的含有 n 个变量的二次齐次多项式
2
d1 y1 d 2 y2 d n yn
2 2
2
例如 已知 f ( x1 , x2 ) x1 2 x1 x2 x2 ,
2
x1 1 1 y1 y1 y2 令 x 0 1 y y , 2 2 2 则原二次型化为f ( y1 , y2 ) y1 .
2 3
(原二次型的标准型)
x1 y1 y2 y2 y3 x2 x y3 3
原二次型化成标准型
1 1 | C | 0 0
2 1 2 2
0 1 1 0 1
1 0
2 3
y y y
其矩阵
1 0 0 B 0 1 0 0 0 1
确定一个二次型.这样,二次型与对称矩阵之间存在
一一对应的关系.因此,我们把实对称矩阵A叫做 二次型的矩阵,也把二次型叫做实对称矩阵A的二次型, 矩阵A的秩称为二次型的秩.
例1 求二次型 f 的秩.
2 2 f ( x , y , z ) x1 2 x2 2 x1 x2 3 x2 x3
2 1 2 2
2 n
化为矩阵形式.

(1)因为
a11 1, a22 2 , a33 3 ,

线性代数课后习题答案第1――5章习题详解(优选.)

线性代数课后习题答案第1――5章习题详解(优选.)

xx .. ..第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4xx .. .. (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b axx .. ..(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++xx .. ..=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=xx .. ..同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n nn n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解xx .. ..(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得xx .. ..nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a Dxx .. ..即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221xx .. ..nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=xx .. ..112035122412111512-----=D 811507312032701151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=xx .. ..51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.xx .. ..10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.xx .. ..第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.xx .. ..解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.xx .. ..(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x xxx .. ..322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.xx .. ..6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察xx .. ..⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:xx .. ..⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;xx .. ..解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知xx .. ..⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121xx .. ..⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为xx .. ..⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,xx .. ..或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.xx .. ..解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;xx .. ..若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1xx .. ..=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,xx .. ..而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .xx .. ..26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.xx .. ..28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.xx .. ..(2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.xx .. ..解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201xx .. ..33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数习题及答案(复旦版)1

线性代数习题及答案(复旦版)1

线性代数习题及答案(复旦版)1线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 9; (2) 1; (3) n (n 1)...321; (4) 13 (2)1)(2n )(2n2)…2.【解】(1) τ(9)=11; (2) τ(1)=36;(3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项. 解:设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-+-=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2) abac ae bdcd de bfcfef-------; (3)111001101a bc d ---; (4) 1234234134124123.【解】(1) 12562312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------; 2111111(3)(1)11101100111;b c D a a b cd cc d d d d abcd ab ad cd --?--? =+-=+++--=++++ 3212 211331421441210234234102341034101130113(4)160.10412022200441012301114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d dd ++++++=++++++; (3) 232232232111()111a a a a bb ab bc ca b b c c c c =++ (4) 20000()000n n a b a b D ad bc c d cd==-ONN O;(5)121111111111111nn i i i i na a a a a ==++??=+ +∑∏L L M M M . 【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n a b aba b a b D abc dc dc d c d d c ad D bc D ad bc D ---=-=?-?=-ONONN O NO据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-L 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n 1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+L L LL L L L L L L L L L LL LLL但由归纳假设11121111,n n n i iD a a a a ---=??+=∑L 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===?? +=+ ?++== ? ?????∑∑∑∏L L L8. 计算下列n 阶行列式.(1) 111111n x x D x=LL M M ML(2) 122222222232222n D n=L L L LL L L L L; (3)000000000000n x y x y D x y y x=L L LL L L L L L L . (4)n ij D a =其中(,1,2,,)ij a i j i j n =-=L ;(5)2100012100012000002100012n D =L L L M M M M ML L.【解】(1) 各行都加到第一行,再从第一行提出x +(n 1),得11111[(1)],11n x D x n x=+-LL M M M L将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---L L M M M L (2) 213111222210000101001002010002n r r n r r r r D n ---=-MLL LL M M M M M L按第二行展开222201002(2)!.00200002n n =---L LL M M M M L(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)000000000000(1)(1).n n n n n n n n x y y x y xy D x y xy x y yxx yx x y y x y +-+-+=+-=?+?-?=+-L L L L M M M M M M L L M M M M M LL(4)由题意,知1112121222120121101221031230nnn n n nnn a a a n a a a D n a a a n n n --==----L L L LL M M MM M MM LL122111111111111111111111n n ------------LL L M M M M M L L后一行减去前一行自第三行起后一行减去前一行012211221111112000020000200000000022n n n n --------=-L L L LL LM MM M M M M M M L LL按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---LL M M M L按第列展开. (5) 2100020000010001210012100121000120001200012000002100 02100021000120001200012n D ==+L L L L L L L L L M M M M M M M M M M M M MM ML L L LLL122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=L 由 ()()()112211nn n n D D D D D D n ----+-++-=-L 得 11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n nn na a a a a a D a a a ++=+LL M M M L【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+??=+++∑LL L M M M M L将第一行乘(1)后加到其余各行,得23111010011.00100001n nnn i i i i a a a D a a ==??=+=+∑∑L L LM M M M L10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=L ). 1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=L L M M M M L L. 【解】行列式的各列提取因子1(1,2,,)n j a j n -=L ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤= ? ? ? ? ? ? ? ???-= ∏L LL L L L L L LL11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=??+-+=??+-+=??++=? (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=??++=??++=??++=?+=??【解】方程组的系数行列式为1110111013113121110131180;1210521211012112301401230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========-12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66 513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=??++=??++=? 有非零解【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=??+++=??+-+=??+++=? 有非零解时,a ,b 必须满足什么条件【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=??++=??++=? 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题二1. 计算下列矩阵的乘积.(1)[]11321023??-??-=;(2)500103120213-????;(3) []32123410;(4)()111213112321222323132333a a a x x x x a a a x a a a x ;(5) 111213212223313233100011001a a a a a a a a a;(6) 1210131010101210021002300030003---. 【解】(1) 32103210;64209630-??--?-?-??(2)531??--??; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +++??; (6) 1252012400430009??--??-??. 2. 设111111111=--??A ,121131214=-??B ,求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗【解】(1) 2422;400024-=??AB A (2) 440;531311??-=----??AB BA (3) 由于AB ≠BA ,故(A +B )(A B )≠A 2B 2.3. 举例说明下列命题是错误的.(1) 若2=A O ,则=A O ; (2) 若2=A A ,则=A O 或=A E ;(3) 若AX =AY ,≠A O ,则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000==??0A A ,但A ≠0(2) 令110000001-??=A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110=≠=-A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ=-, 求A 2,A 3,…,A k .【解】2312131,,,.010101kk λλλ===?A A A L 5. 100100λλλA =,求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----??A =. 【解】2322233223213302,03.0000λλλλλλλλλλλ??A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----??A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-+??+=+??A A A=所以,对于一切自然数k ,都有121(1)2.000k k k k kk k k k k k λλλλλλ----??A =6. 已知AP =PB ,其中100100000210001211--B =,P =求A 及5A .【解】因为|P |= 1≠0,故由AP =PB ,得1100200,611-??==??--??A PBP而51551()()100100100100210000210200. 211001411611--===--==----????????A PBP PB P A 7. 设a bc d ba d c c d ab dcba --?--??--??A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *--??-+++=-+++??--??--??A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0即 42222222224()()a b c d a b c d -++++++A =A A =A E于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+=-++=+=++=-+?? 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z===--????===-??????-??==---??X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++??=-+??=--+? 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵. 【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以(B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB . 则AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵. (2) ABBA 是对称矩阵,AB +BA 是反对称矩阵.【证明】因A ′=A ,B ′= B ,故(B 2)′=B ′·B ′= B·(B )=B 2; (ABBA )′=(AB )′(BA )′=B ′A ′A ′B ′= BA A ·(B )=ABBA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= BA +A ·(B )= (AB +BA ).所以B 2是对称矩阵,AB BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101??可交换的全体二阶矩阵.【解】设与A 可交换的方阵为a b c d ??,则由 1101a b c d =a b c d 1101, 得a cb d a a bcd c c d +++=+?. 由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ??的方阵,其中a,b为任意数.13. 求与A =100012012??-??可交换的全体三阶矩阵. 【解】由于A =E +000002013-??,而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c =--????????可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c --=----由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=- 所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ??-??其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵. (1) 1225; (2) 123012001??; (3)121342541----??; (4) 1000120021301 214; (5) 5200210000830052; (6) ()1212,,,0nn a a a a a a≠L O ,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221--??; (2) 121012001-??-; (3) 12601741632142-----??; (4) 10011002211102631511824124??-----????; (5) 1200250000230058-??--??-??; (6) 12111n a a aO. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=??+=??-=? 【解】因123111102211102x x x =-,而1110022110≠- 故112311101111122.02211130122110221112x x x -?-===---???????--????16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A * .(2) 若A 可逆,则A *可逆且(A *)1=(A 1)* . (3) 若AA ′=E ,则(A *)′=(A *)1.【证明】(1)因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A *=(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A 1,从而(A 1) *=|A 1|(A 1)1=|A |1A . 于是A * (A 1) *=|A |A 1·|A |1A =E ,所以(A 1) *=(A *)1. (3) 因AA ′=E ,故A 可逆且A 1=A ′. 由(2)(A *)1=(A 1) *,得(A *)1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++??=++??=++? 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ===X AY且|A |=1≠0,故A 可逆,因而。

线性代数课后习题答案 复旦大学出版社 熊维玲(1)

线性代数课后习题答案 复旦大学出版社 熊维玲(1)

第一章3.如果排列n x x x 21是奇排列,则排列11x x x n n 的奇偶性如何?解:排列11x x x n n 可以通过对排列n x x x 21经过(1)(1)(2)212n n n n L 次邻换得到,每一次邻换都改变排列的奇偶性,故当2)1( n n 为偶数时,排列11x x x n n 为奇排列,当2)1( n n 为奇数时,排列11x x x n n 为偶排列。

4. 写出4阶行列式的展开式中含元素13a 且带负号的项.解:含元素13a 的乘积项共有13223144(1)t a a a a ,13223441(1)t a a a a ,13213244(1)ta a a a ,13213442(1)t a a a a ,13243241(1)t a a a a ,13243142(1)t a a a a 六项,各项列标排列的逆序数分别为(3214)3t ,(3241)4t ,(3124)2t ,(3142)3t ,(3421)5t ,(3412)4t , 故所求为132231441a a a a ,132134421a a a a ,132432411a a a a 。

5.按照行列式的定义,求行列式nn 000010200100的值. 解:根据行列式的定义,非零的乘积项只有1,12,21,1(1)tn n n nn a a a a L ,其中(1)(2)[(1)(2)21]2n n t n n nL ,故行列式的值等于:6. 根据行列式定义,分别写出行列式xx x x x 111123111212 的展开式中含4x 的项和含3x 的项.解:展开式含4x 的乘积项为0411223344(1)(1)22t a a a a x x x x x 含3x 的乘积项为1312213344(1)(1)1t a a a a x x x x8. 利用行列式的性质计算下列行列式:解: (1) 4113112342112341111111141023412341012110310()3412341201212412341230321r r r r r r r r r r r4243321111111130121012110101011(4)(4)1600040004100440004r r r r r r (2) 26052321121314121231211241124113210562202132035005620562c c r r r r (第二行与第四行相同)(3)22231132222221111111222202221110a ab b r a r a a b b r r a a b b b a b a r ar a ab b ab a b a (4)3421211110011001111111111111111000011111111111111xx x r r x x x x r r x x x xx x9.若540030087654321x =0,求.x解:12341500567826001544(512)003374263500454835x x x x 转置 即有:124(512)05x x11. 利用行列式按行或列展开的方法计算下列行列式: 解: (2)221221(1)[(1)](1)(1)a a D aD aD a a D a a D ,其中:2221(1)111a a D a a a a a,111D a a .带入上式即可。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数(低分数版)
习题一
1.2.3(答案略)
4. (1) ∵ (奇数)
∴为偶数
故所求为
(2) ∵(奇数)
∴所求为397281564
5.(1)∵ (偶数)
∴项前的符号位(正号)
(2)∵
∴项前的符号位(负号)
6. (1)
(2)
(3)原式=
7.8(答案略)
9. ∵

10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得
(2)按第一列展开:
(3)
习题二
1.2.3.4.5(答案略)
6. 设为与可交换的矩阵,则有

解之得
7. (1),记为
,记为
(2)即
8(答案略)
9.
10.(1)
(2)
=
11. ∵

反之若 , 则 ,即
12. (1) 设∵∴
又∵∴

当时,有

(2)设,则
∵∴
当时,有
故即
13.(1) ∵∴为对称矩阵
同理也为对称矩阵
(2)∵
∴为对称矩阵
又∵
∴为反对称矩阵
(3)∵
由(2)知,为对称矩阵,为反对称矩阵
故可表示成一个对称矩阵与一个反对称矩阵的和。

14. (1)必要性:∵

充分性:∵

(2) 必要性:∵

充分性:∵

(3) 必要性:∵


充分性:∵

15(答案略)
16. ∵
∴可逆。


17. ∵
∴可逆,且
18.(答案略)
19. ∵,若可逆,则
∴故可逆,且
20.设,∵是对称矩阵∴记,则
,即为对称矩阵,又∵ , ∴为对称矩阵。

21.(1)设,则
(2)∵∴
又∵

于是即
(3)∵∴
于是
(4) (注意加条件:可逆)
∵可逆∴

22. ∵∴
23. 24.(答案略)
25. ∵∴
∴可逆,且
26. ∵∴
又∵, ,

27(答案略)
28. ∵∴
又∵∴

29.
∵∴

30.(答案略)
31.(1)
(2)
32.
33. (1) ∵

(2) ∵

习题三
1.2.3.4(答案略)
5. ∵不能由线性表示
∴线性方程组无解
不妨假设能由线性表示,则存在一组数,使
从而
此式与方程组无解矛盾。

故不能由的任何部分组线性表示
6. 依题意
所以

7. ∵∴
令∵
∴可逆,于是

8.(答案略)
9.当即当或时,线性相关
否则线性无关。

10 .(1)设

∴即
故线性无关。

(2)设

∵线性无关∴解之得
11. 一方面,向量组能由基本单位向量组线性表示;
另一方面,基本单位向量组由向量组线性表示为
∴向量组与向量组等价。

12. 一方面可由向量组线性表示;另一方面由于与有相同的秩,所以就是向量组的一个极大无关组,从而可以由线性表示.

13.设是向量组中任意一个向量
∵可由线性表示
又,∴线性无关
∴是的一个极大无关组。

14. ∵可由线性表示,而也可由线性表示
∴从而
故线性无关。

15.必要性:∵是一组维向量,若线性无关,显然任意维向量都可由线性表示。

充分性:∵任意维向量都可以由线性表示,∴基本单位向量组可由线性表示,故
∴从而线性无关。

习题四
1.2.3.4.5.6(答案略)
7. 设,由得即
可见,是方程组的两个解
又∵∴是方程组的两个线性无关的解。

于是,问题就转化为求解方程组∵
取即为所求。

8、设所求方程组为不妨设
依题设,

故所求方程组为
9、由题设可知为的解,又因为,所以的基础解为所含向量个数为.
故为的基础解系
于是的通解为
10、的互解为

方程组有非零解.
显然满足方程所以是所求非零的公共解.
11(答案略)
12.由题设知,方程组的基础解系含一个解向量.
可见是方程组的基础解系
由知,知

又线性无关.
可见为它的一个解,
从而为的一个特解。

故的通解为
13(1)假设线性相关
线性无关
纯由向量组线性表示
从而是方程组的解与已知矛盾
线性无关.
(2)设
又线性无关
从而故线性无关.
14.设是的一个解,是的基础解系由13知
又的任一解都可由向量组线性表示.的解向量组所含向量个数
15.设是的一个特解
是的一个基础解系
则的任意解


显然是的个线性无关的解.
则其中
习题五
1(答案略)
2、设是的属于特征值的特征向量,则

解此方程组得或
3、设是的特征值,是的属于特征值的特征向量,则

故即或
4、
故的特征值为.
5.由题设知为的特征值。

于是

6.
7. 存在可逆矩阵,使
于是故B是幂等矩阵.
8.令
依题设
9.由,得(二重),
可见方程的基础解系含2个解向量,
从而

10(答案略)
11.(1)设
原矩阵不是正交矩阵.
(2)

所以原矩阵为正交矩阵.
12(答案略)
13. 设为与正交的向量.
则即,此方程组的通解为
(1) A的属于特征值的特征向量为(2)记则
又。

相关文档
最新文档