鱼类粘膜免疫机制

合集下载

鱼类免疫系统的调控机理

鱼类免疫系统的调控机理

鱼类免疫系统的调控机理细胞免疫和体液免疫是鱼类免疫系统中最重要的两个组成部分。

鱼类免疫系统与陆生生物不同,因为受到水环境中微生物和物理变化等多种因素的影响,它需要更加灵活的调节机制来适应环境的变化。

本文将讨论鱼类免疫系统的调控机理和相关的分子机制。

体液免疫调控机理鱼类体液免疫系统主要依赖鱼体内的免疫球蛋白(Ig)来对抗病原体入侵。

IgM是哺乳动物和鸟类体内最主要的抗体,但是在鱼类中却是IgT。

IgT是在鱼类体内最早发现的一种Ig,它属于IgA系列,具有三个亚类IgT1、IgT2和IgT3。

研究发现,IgT在体液免疫反应中发挥着关键作用,因为它可以与多种病原体结合并诱导抗原特异性T细胞免疫反应的形成。

研究表明,IgT在调控鱼类免疫反应中发挥着重要的作用。

IgT的表达量受到多种因素的影响,其中包括鱼类免疫系统内的分子调控机制和环境因素等。

一些研究表明,IgT的表达量能够由组蛋白去乙酰化修饰的水平来调节。

这种组蛋白修饰能够转录启动子区域的开放程度。

此外,STAT1、STAT3和IRF3等信号转导分子在IgT表达调控中也发挥了重要的作用。

细胞免疫调控机理鱼类的细胞免疫反应是其应对细胞内病原体入侵的重要机制。

免疫细胞包括鱼类成熟的巨噬细胞、树突状细胞和自然杀伤细胞等。

这些免疫细胞受到多种调控机制的影响,而这种调控机制能够调节免疫细胞在免疫反应中的功能。

Toll样受体(Toll-like receptors, TLRs)是鱼类免疫细胞中最重要的受体家族之一。

TLRs受体的结合能够激活多种信号通路,如NF-κB和IRF等,从而激活细胞免疫反应。

此外,细胞因子和化学因子等分子也能够调节鱼类免疫细胞的功能。

白细胞介素(IL)和干扰素(IFN)等细胞因子因其在细胞免疫反应中的重要作用而备受关注。

这些因子经由自身的受体结合后能够激活多种信号通路,如JAK-STAT、NF-κB和MAPK等,从而调节丰富多彩的免疫反应。

鱼类免疫学概述-精品文档

鱼类免疫学概述-精品文档

7.粘膜免疫组织及粘膜免疫应答: 分布于皮肤、鳃和肠等器官中的粘膜相关淋巴组织,又称为粘 膜淋巴组织(mucosa-associated lymphoid tissue, MALT), 它们共同构建了鱼体免疫的组织细胞学基础(Dalmo et al., 201 9; Delamare-Deboutteville et al., 2019; Cain et al., 2000; Ro mbout et al., 1993)。由其承担的免疫应答反应为粘膜免疫应 答。
1.1.3 肠 免疫组织与细胞: 比较解剖学研究结果表明,大量的白细胞群分布于肠道粘膜组织中;Rom ano等(2019b)及Heidi(2019)对鲤鱼、Santos等(2019)、Scapigliati (2019)对鲈鱼的肠单细胞悬液中的白细胞进行单抗间接荧光标记及流式细胞 计数后发现,鱼肠组织中存在一定数量B、T细胞。 免疫因子: 诸多学者已经证明鱼类肠道内分泌粘液(Jones et al., 2019; Hart et al., 1988; Joosten et al., 2019; Esteve-Gassent et al., 2019)及胆汁(Romb out et al., 1986; Lobb et al.,1981b; Jenkins et al., 1994; Vervarcke et al., 2019)中存在抗体蛋白;Mulder等(2019)认为,在虹鳟鱼肠粘膜组织中存 在能够合成干扰素IL-1b,IL-8,TNF-α和IFN-γ的功能细胞;另外,一些学者 还在肠组织检测到一些非特异免疫因子,如补体(Lange et al., 2019)、蛋 白酶及溶菌酶等(MagnadÓ ttir et al., 2019;华育平等,2019)。
鱼类免疫学概述

鱼类粘膜免疫系统

鱼类粘膜免疫系统

鱼类粘膜免疫系统真骨鱼类粘膜相关淋巴组织( mucosa2associatedlymphoid tissues) 主要包括肠道、皮肤和鳃, 这些暴露于外环境的组织及其表面的粘液构成了抵御病原入侵的第一道屏障[6].这些组织中分布有各种免疫细胞,使其具有独立完成局部免疫应答的功能[7].1. 1 肠道鱼类的肠道粘膜层可分为两层: 肠上皮层( laminaepithelialis) 和肠固有层(lamina propria) [7,8].粘膜层中分布有粒细胞、巨嗜细胞等白细胞,主要存在于肠道皱褶的固有层,而上皮层中较少[9].鱼类肠道虽然没有类似哺乳动物Peyer 氏淋巴集结,但是还有着相当数量的淋巴细胞,主要分布在肠道的中后部.根据它们的位置, 可以分为肠道固有层淋巴细胞(lamina proprialymphocytes ,LPLs )和上皮内淋巴细胞(intraepitheliallymphocytes ,IELs).通过免疫组化检测发现,后肠中的Ig+淋巴细胞主要分布在固有层,上皮层中的淋巴细胞则大多是Ig-细胞[10]也有报道在中肠上皮层有Ig+细胞的分布.Ig-的细胞一般被认为是T细胞,Abelli等[11]应用胸腺细胞的单抗检测肠道淋巴细胞,也证实T细胞主要分布于肠道上皮层.McMillan 和Secombes[9]发现,肠上皮层细胞淋巴细胞对肿瘤靶细胞具有类似T细胞的细胞毒性,这个结果与T、B淋巴细胞在肠道中的分布情况相吻合.1. 2 皮肤鱼类的皮肤表皮主要由上皮细胞组成,其间分布有粘液细胞和囊状细胞,另外还证实,皮肤表皮还存在抗体分泌细胞.1. 3 鳃鳃组织的细胞主要由大淋巴细胞、小淋巴细胞巨嗜细胞、中性粒细胞、嗜酸性粒细胞、杯状细胞、泌氯细胞(chloride cells) 、上皮细胞等构成.鳃上淋巴细胞和巨嗜细胞基础[13].通过检测这些细胞内酶的活性, 结果表明部分粒细胞及巨嗜细胞具有酸性磷酸酶、碱性磷酸酶及非特异性脂酶的活性,类似于外周血免疫细胞的酶活性特点[12].进一步研究表明鱼类鳃上的细胞能产生和分泌一种化学趋化物质(chemoattractants ) ,能引起白细胞向鳃的局部迁移;而鳃上的白细胞迁移活性远远低于头肾白细胞,这种现象与肠道白细胞类似,意味着白细胞迁移到粘膜组织后,就对趋化物质不敏感了,因而驻留在粘膜组织.从鳃淋巴细胞对有丝分裂原LPS和PHA的应答情看,PHA 能明显引起淋巴细胞转化,而LPS引起的淋巴细胞转化则相对较弱,推测鳃上的淋巴细胞中T细胞占多数[14].2 粘膜免疫系统的非特异性免疫鱼类的非特异性免疫,如通过一些非特异性的溶菌酶、蛋白酶及呼吸暴发产生的活性氧自由基等来杀灭入侵微生物,是鱼类相当重要的防御机制之一.研究表明,粘膜免疫系统也存在这些非特异性的免疫机制.通过对鱼的皮肤和粘液抽提物进行研究,发现其中具有一些非特异性的抗细菌、真菌的物质[15] ,这些物质对病原的作用具有广谱性.对皮肤粘液与寄生虫感染的关系研究发现,虹鳟鳍条和皮肤粘液细胞密度与三代虫感染强度呈负相关,并认为粘液中的溶菌酶、蛋白酶、免疫球蛋白及C3补体对寄生虫的感染都有影响.鱼类鳃和肠道的吞噬细胞都存在活性氧自由基(O·-2 )鳃上的吞噬细胞具有吞噬活性,但是从其O·-2活性看,其呼吸暴发( respiratory burst ) 强度不如头肾白细胞.而对肠道巨嗜细胞的呼吸暴发进行研究, 结果表明虹鳟后肠巨嗜细胞对PMA 刺激后的化学发光反应(chemiluminescence response) 强度明显比前肠细胞强,这种差别并不是因为巨嗜细胞在前、后肠中数量上的明显差别,而是两个部位的巨嗜细胞细胞反应强度不相同.此外,大剂量的维生素E 可以增强鱼类肠道白细胞的吞噬活性,这可能与维生素E 能增强吞噬细胞膜的流动性有关.鱼类的嗜曙红粒细胞(eosinophilic granule cells ,EGCs)在非特异性免疫中也有相当重要的作用。

鱼类免疫学概述

鱼类免疫学概述
stemic lymphoid tissue),由其承担的免疫应答反应为系统免疫应答。
7.粘膜免疫组织及粘膜免疫应答:
分布于皮肤、鳃和肠等器官中的粘膜相关淋巴组织,又称为粘 膜淋巴组织(mucosa-associated lymphoid tissue, MALT), 它们共同构建了鱼体免疫的组织细胞学基础(Dalmo et al., 201 9; Delamare-Deboutteville et al., 2019; Cain et al., 2000; Ro mbout et al., 1993)。由其承担的免疫应答反应为粘膜免疫应 答。
鱼类免疫学概述
前言
鱼类具有与高等脊椎动物相似免疫防御系统调控基因及基因控制产物, 具备机体行使免疫功能的组织、细胞及分子基础。鱼体免疫组织除了分布 于胸腺、脾脏及头肾等器官中的系统淋巴组织(Systemic lymphoid tissu e)外,还包括分布于皮肤、鳃和肠等器官中的黏膜相关淋巴组织,又称为 粘膜淋巴组织(mucosa-associated lymphoid tissue, MALT),它们共同 构建了鱼体免疫的物质基础 )。
关的一对免疫过程,两者相互协同、彼此加强, 两者具有部分相同的功能细胞, 例如巨噬细胞,其既可以行使非特异性免疫的吞噬功能,同时其在特异性免 疫中又具有抗原吞噬、加工、处理及呈递的功能 (Yano,2019;安庆云,201 9)。
6.系统免疫组织及系统免疫应答: 除了分布于胸腺、脾脏及头肾等器官中的免疫组织成为系统淋巴组织(Sy
鱼类的系统淋巴组织一般是由网状细胞作为框架支撑着能迁移或不能迁 移的细胞群所构成,具有一定的组织结构,其中的主要细胞群是行使淋巴 组织特异性和非特异性免疫防御的主要功能细胞,如:B、T淋巴细胞、巨 噬细胞、粒细胞等。与系统淋巴组织相比,鱼类粘膜免疫系统的组织细胞 学基础研究还不深入,其组织结构及功能细胞没有被充分认识,特别是鳃 及皮肤免疫组织的相关研究则更为薄弱,一定程度上阻碍了鱼类免疫学的 发展及免疫技术的应用。

12-鱼类免疫

12-鱼类免疫

• 凝集素和沉积素
鱼类具有相对非特异性自发产生的固有凝 集素,属于蛋白质或糖蛋白,在理化、生物学 和抗原特异性方面均不同于抗原刺激物产生的 免疫球蛋白。凝集素能够与碳水化合物和糖蛋 白结合,是机体自然防御机制中原始的识别分 子和免疫监督分子
• 干扰素
干扰素具有抗病毒、抗肿瘤和免疫调节功能 鱼类干扰素的抗病毒机制类似于哺乳动物的干扰素, 在同种细胞上具有广谱的抗病毒活性,但在不同的 细胞间具有相对的抗病毒特异性
2.吞噬细胞
• 鱼类吞噬细胞也是组成非特异性防御系统的关键 成分,在抵御微生物感染的各个阶段发挥重要作 用。吞噬细胞作为辅助细胞具有特异性免疫功能, 其中起重要作用的主要有单核细胞、巨噬细胞和 各种粒细胞
(1) 单核细胞
具有较多的细胞质突起, 具有较强的黏附和吞噬能 力,能在血流中对异物和 衰老的细胞进行吞噬消化; 它是在造血组织中产生并 进入血液的分化不完全的 终末细胞;环境污染或疾 病感染都能引起鱼类血液 中单核细胞数目的显著增 加
• 表皮
表皮层位于黏液层下,由四层细胞组成, 最外层为鳞状扁平上皮细胞层。鱼类的表皮层 不出现脱落的死细胞层,在该层下面,就可见 到有丝分裂,这是鱼类和哺乳动物所不同的.
• 真皮
真皮位于基底膜下,是皮肤的另一层保护屏 障。这层皮肤由散布的结缔组织组成,同时布有 毛细血管,这有利于鱼类的体液免疫功能
(2) 巨噬细胞
炎症反应时,巨噬细胞可 以分泌许多生物活性物质 巨噬细胞接触病原微生物 后,能够生成肿瘤坏死因 子
对鱼类巨噬细胞凝集或黑 色素巨噬细胞中心的检测, 可以成为衡量鱼体健康水 平及环境污染状况的生物 标志
(3) 嗜酸性粒细胞
嗜酸性粒细胞的前体产生于造 血淋巴器官,随血液循环进入 不同器官如鳃和肠道,然后分 化成粒细胞 鱼类嗜酸性粒细胞与哺乳动物 的肥大细胞有相似性,具有吞 噬能力

硬骨鱼类黏膜免疫机理研究概况

硬骨鱼类黏膜免疫机理研究概况
等 方 面 , 论 了黏 膜 免 疫 和 系统 免 疫 之 间 的 黏液中与血清中的球蛋白在结构 和功能上不完全相 讨
关 键 词 : 骨 鱼 类 ; 膜 ; 膜 免 疫 硬 黏 黏
在着一个黏液性免疫 系统 的假说 , 认为在皮肤和胆
鱼用疫 苗 的研 究与 开发 受 到普 遍 重视 。除注射 囊 中存 在 着 一 种 局 部 产 生 的 分 泌 型 免 疫 球 蛋 白
收稿 日期 :0 60 —2 20 —11 基金 项 目 : 国家 8 3高 新技 术研 究 计 划 项 目(0 3 A6 2 5) 广 东省 自然科 学基 金 项 目(4 0 5 3 6 20A 200 I 00 1 0 )
作者简介 : 巩
华( 9 7 , 山东日照人 , 1 7 一) 男, 硕士研 究生, 主要从事鱼类病害和免 疫学研 究. ・通讯作者
点, 具有 丰 富 的 吞饮 小 泡 和 线 粒 体n 与 哺 乳 动 物 程 中 , 管在 硬骨鱼 类 肠道 中没 有 明显 的 P pr , , 尽 ye结
接 中的关于膜 性细胞 ( cl 的特 点 功能 的表 述 具有 这 些抗 原传递 上 皮 和 许 多 抗 原 递 呈 给 巨 噬细 胞 , M e ) 1 很 大 的 相 似 之 处[ 。 鳗 鲡 经 过 创 伤 弧 菌 ( 5 ] . r nf cs mli iu )疫苗浸 泡和 直 接接 触 鳃 部 后 , 部 黏液 鳃
维普资讯
动 物 医学 进 展 .0 6 2 ( ) 2 —8 2 0 , 7 6 :42
Pr g e si e e i r e ii o r s n V t rna y M d cne
硬 骨 鱼 类黏 膜 免 疫 机 理 研 究概 况
巩 华 , 淑 勤 。 潘 厚 军 吴 ,

鱼类免疫反应的分子机制研究

鱼类免疫反应的分子机制研究

鱼类免疫反应的分子机制研究鱼类作为一种重要的水生生物,其免疫反应机制一直备受研究者的关注。

目前已经有很多关于鱼类免疫反应的分子机制的研究成果,本篇文章将就这方面的研究成果进行探讨和总结。

一、鱼类免疫反应的基本过程鱼类的免疫反应分为原生性免疫和适应性免疫两个阶段。

原生性免疫是通过鱼类的皮肤、粘液、眼膜等机制防御外来病原体,具有天然的免疫防御功能;适应性免疫是指鱼类对于病原体侵入后产生的针对性免疫反应,如细胞免疫和体液免疫等。

在抵御病原体时,鱼类免疫反应的分子机制发挥了重要的作用。

二、鱼类免疫反应的免疫分子鱼类的免疫反应分子包括受体、配体、信号途径等。

鱼类中最常见的免疫分子为Toll样受体(TLR)、核苷酸结合寡聚化区域受体(NLR)、RIG-I样受体(RLR)。

TLR家族是免疫反应中最为重要的一类受体,可以识别不同种类的微生物,并启动免疫反应,包括Toll-like receptor 1-9。

NLR家族受体主要参与胞内的病原体感知,包括NOD1、NOD2、替代性的NOD-Like受体(ALR)等。

RLR家族受体则主要识别病毒感染,包括RIG-I、MDA5和LGP2等。

除了免疫受体外,免疫分子还包括各种配体和信号途径,如MyD88、TRAF6等。

三、鱼类免疫反应的信号途径在鱼类的免疫反应中,信号途径扮演着重要的角色。

经过TLR识别外来的病原体,便会激活TLR信号途径,进而活化MyD88、TRAF6等分子。

这些分子进而诱导下游的转录因子NF-κB等,从而调节免疫反应中相关的基因表达。

另外,鱼类的免疫反应还包括sytokine信号途径、JAK/STAT信号途径等。

四、鱼类免疫反应的一些研究成果近年来,对于鱼类免疫反应的分子机制进行了大量的研究,取得了很多重要的成果。

其中一些研究表明,鱼类的免疫反应机制具有多样性和灵活性。

例如,研究表明不同种类的鱼类,其免疫反应机制和用到的免疫分子可能存在一定的差异。

还有一些研究发现,环境因素和营养因素也可以影响鱼类免疫反应机制,进而影响其对外来病原体的抵抗能力。

养殖渔业工作中的养殖鱼类的免疫机制与健康评价

养殖渔业工作中的养殖鱼类的免疫机制与健康评价

养殖渔业工作中的养殖鱼类的免疫机制与健康评价在养殖渔业工作中,养殖鱼类的免疫机制和健康评价是非常重要的一部分。

掌握鱼类的免疫机制,能够有效预防和控制疾病的发生,提高养殖鱼类的健康质量和养殖效益。

本文将介绍养殖鱼类的免疫机制和健康评价的相关知识。

一、养殖鱼类的免疫机制养殖鱼类的免疫机制是指鱼类在抵御外界病原体入侵和感染过程中所产生的免疫反应。

鱼类的免疫机制主要包括先天免疫和适应性免疫两个方面。

1. 先天免疫先天免疫是鱼类固有的免疫反应机制,不需要经过特异性免疫记忆的过程。

鱼类的先天免疫主要通过生理和生化机制来实现,包括鱼类的黏膜屏障、非特异性防御蛋白和细胞相关的免疫反应等。

鱼类的黏膜屏障是免疫机制的第一道防线,黏膜上分布着大量的黏液和黏液细胞,能有效阻止病原体的侵入。

同时,黏膜上的鱼类菌群也可以通过竞争优势抑制有害细菌的生长。

非特异性防御蛋白是鱼类先天免疫中的重要组成部分,包括溶菌酶、抗原抗体、抗菌肽等。

这些蛋白质可以直接杀死细菌和病毒,起到防御和清除病原体的作用。

细胞相关的免疫反应是指鱼类的免疫细胞对抗病原体的反应。

鱼类的免疫细胞主要包括巨噬细胞和自然杀伤细胞,它们能够吞噬和杀伤病原体,保护鱼类免受感染。

2. 适应性免疫适应性免疫是鱼类针对特定病原体而产生的免疫反应,经过一系列的免疫细胞和免疫分子的参与,能够识别和清除病原体。

适应性免疫包括细胞免疫和体液免疫两个方面。

细胞免疫是指通过T淋巴细胞的介导来清除感染鱼体内的病原体。

在感染过程中,T淋巴细胞能够分化成细胞毒性T淋巴细胞和辅助T淋巴细胞,从而杀伤病原体并促进免疫应答。

体液免疫是指通过B淋巴细胞产生抗体来清除感染鱼体内的病原体。

B淋巴细胞能够识别特定的病原体,并产生抗体来中和和消灭病原体。

二、养殖鱼类的健康评价养殖鱼类的健康评价是指通过一系列的指标和方法来评估养殖鱼类的健康状况。

正确评价养殖鱼类的健康水平,可以及时采取相应的措施,预防和控制疾病的发生。

短盖巨脂鲤苗的免疫生理与病原感染机制

短盖巨脂鲤苗的免疫生理与病原感染机制

短盖巨脂鲤苗的免疫生理与病原感染机制短盖巨脂鲤是一种重要的经济鱼类,具有较高的养殖价值。

然而,疾病是短盖巨脂鲤养殖过程中的主要限制因素之一。

因此,研究短盖巨脂鲤苗的免疫生理与病原感染机制对于鱼类养殖业的发展具有重要意义。

短盖巨脂鲤的免疫系统是其抵抗病原感染的关键。

免疫系统主要包括天然免疫和获得性免疫两种类型。

天然免疫是指鱼体内固有的免疫防御机制,包括外表皮、粘液、呼吸道、消化道黏膜以及巨噬细胞等。

获得性免疫是指在鱼体内通过适应性免疫系统产生的针对特定抗原的免疫应答。

首先,短盖巨脂鲤苗的外表皮是其最重要的免疫防御屏障之一。

外表皮具有抗菌和抗病毒活性,并通过产生黏液来促进病原体的排除。

外表皮的完整性和黏液层的质量对于短盖巨脂鲤苗的免疫防御至关重要。

其次,短盖巨脂鲤苗的粘液是其重要的免疫机制之一。

粘液中含有多种抗菌物质,如抗菌肽、黏液球蛋白等。

这些物质可以直接杀死病原体或抑制其生长,从而起到保护鱼体免受感染的作用。

短盖巨脂鲤苗的呼吸道和消化道黏膜也是其免疫防御的重要部分。

这些黏膜中含有大量的免疫细胞,如巨噬细胞、T细胞和B细胞等,它们可以识别和消灭入侵的病原体。

此外,黏膜中还存在着丰富的免疫球蛋白,如IgM、IgT、IgD等,它们可以与抗原结合并激活免疫应答。

巨噬细胞是短盖巨脂鲤苗重要的免疫细胞类型之一。

它们具有吞噬和杀伤病原体的能力,并通过产生多种免疫诱导剂来调节免疫应答。

巨噬细胞的活性与其数量和功能直接相关,因此增强巨噬细胞的功能对于提高短盖巨脂鲤苗的抗病能力至关重要。

此外,短盖巨脂鲤苗的获得性免疫也是其重要的免疫机制之一。

获得性免疫由T细胞和B细胞等免疫细胞参与,通过识别和消灭入侵的病原体来保护鱼体免受感染。

T细胞可以识别并杀伤感染细胞,而B细胞则能产生特异性抗体来中和病原体。

然而,短盖巨脂鲤苗的免疫系统也会受到病原体的攻击。

病原体可以通过侵入鱼体、破坏免疫细胞或抑制免疫应答等方式来感染短盖巨脂鲤苗。

鱼类的免疫组织研究

鱼类的免疫组织研究

鱼类的免疫组织研究近几十年来,随着世界人口的增长和消费水平的提高,世界渔业也得到了长足的发展。

但与此同时,高密度养殖模式也引起水产动物病害的频繁发生,并造成一定的环境污染。

作为主要水产养殖对象的鱼类,在其与病原和环境之问相互作用的过程中,主要是靠其免疫系统来抵御外来病原生物的侵害,通过非特异性和特异性的免疫防御机制来维持体内环境的稳定。

因此,对鱼类免疫系统的研究,不仅可以认识鱼体同病原问的作用方式,反映鱼类赖以生存的水环境的质量,还可用以研究脊椎动物免疫系统的进化规律。

1 免疫组织和器官免疫组织和器官是免疫细胞发生、分化、成熟、定居和增殖以及产生免疫应答的场所。

鱼类与哺乳动物在免疫器官组成上的主要区别在于前者没有骨髓和淋巴结,头肾为其主要的造血器官。

胸腺、肾脏和脾脏是鱼类最主要的免疫器官,黏膜淋巴组织(MALT)同样是其免疫系统的重要组分。

1.1胸腺鱼类胸腺为一成对器官,是位于鳃盖骨背连合外皮下的一对卵圆形淋巴组织,由与咽囊上皮结合在一起的原基发育而成。

淡水鱼类免疫淋巴器官发育的研究结果表明:胸腺原基是最早形成的,其淋巴化即小淋巴细胞的出现也是最早的。

海水鱼类胸腺原基的出现与淡水鱼类有所不同,出现最晚,而淋巴化最早。

鱼类胸腺淋巴细胞的起源是鱼类免疫学家们争论的焦点。

关于胸腺的起源和淋巴细胞的分化有两种假说:一种假说认为胸腺起源于咽上皮,所有的淋巴细胞来自于胸腺,直接由胸腺上皮细胞转化而来;另一种假说提出胸腺起源于外源干细胞,即来自于其他部位的于细胞移植并定居于胸腺。

胸腺细胞起源于外源干细胞这一观点在鸟类、两栖动物、爬行动物和哺乳动物已普遍接受。

在鱼类,究竟是胸腺细胞控制头肾和脾脏分化,还是由头肾造血干细胞迁移到胸腺,控制胸腺的分化呢?据报道金头鲷胸腺与头肾之间有细胞桥,在发育过程中胸腺与头肾靠拢,与头肾相连,并伴有明显的细胞迁移。

在罗非鱼、虹鳟鱼和鲽鱼也出现这种现象,因此认为头肾的淋巴细胞是从胸腺迁移来的。

鱼的黏膜免疫研究进展

鱼的黏膜免疫研究进展

f 3 益 突出的抗 生素使 用_ 2 ] , 这些 技术 的研发 同样有 赖 于对 鱼 类 黏 膜免 疫 机 制 的深 入 了解 。
1 鱼 黏 膜 免疫 系统 的组 成
黏 膜 相关 淋 巴组 织 ( mu c o s a — a s s o c i a t e d l y mp h o i d t i s s u e . MAL T ) 又 称黏 膜 免疫 系统 ( mu c o s a l i mm u n e
摘要 : 各 种鱼类 病害 的 防治 是水 产养殖业 的重 要任务 。鱼 类生活 于水 环境 中 , 其 黏膜持 续暴 露 于各种 病原 菌及 物
理、 化学有 害 因素 , 是 鱼类感染 的重要 门户 。鱼类 黏膜免疫 机制和应 用逐渐 成为近来 研究 的热点 。本文对 这一 领域
的研究 进展作 一简要综述 。鱼类 黏膜免疫 系统 主要 由肠道 、 皮 肤和鳃相 关淋 巴组织 构成 , 它既包含 固有 免疫成 分 ,
s y s t e m, M I S ) ,指 黏膜 固有层 和上皮细胞下散 在 的 无包 膜 的淋 巴组 织 。 鱼 的 MI S包 括 肠 相 关淋 巴组 织
( g u t . a s s o c i a t e d l y m p h o i d t i s s u e , G A L T ) 、 皮 肤 相 关 淋
水 产 养 殖 业 是 我 国农 业 产 业 的重 要 组 成 部 分 。
鲤鱼 ( C y p r i n u s c a r p i o ) 肠 黏 膜 上 皮 层 和 固 有 层 内均
水产养 殖生物 的健 康管理对 于这一产业 的持续发 展至关重要。 鱼 类 的黏 膜 是 鱼类 抵 御 外 界 有 害 环境

鱼类免疫系统的分子机制及应用研究

鱼类免疫系统的分子机制及应用研究

鱼类免疫系统的分子机制及应用研究在科技飞速发展的今天,人们对于动物免疫系统的研究愈发深入。

其中,鱼类免疫系统的研究备受瞩目,因其具有独特的分子机制及应用价值。

本文将探讨鱼类免疫系统的分子机制以及其在医学领域中所存在的应用研究。

1. 鱼类免疫系统的分子机制免疫系统是人类和动物体内重要的防御力量,能够识别和消灭外来病原体。

而鱼类免疫系统的研究主要集中在其膜免疫系统和细胞免疫系统两个方面。

1.1 膜免疫系统膜免疫系统是鱼类免疫系统中的关键部分,其中最主要的功能就是识别和清除外来病原体。

鱼类的膜免疫系统主要包括T细胞和B细胞两种类型细胞。

众所周知,T细胞是机体中的免疫细胞,能够发挥杀死病原体、清除有毒物质等功效,并分为多种类型,包括Th1和Th2等。

而鱼类中T细胞则由CD4+T细胞来代表,并区分为Th1和Th2两种类型。

据研究发现,当鱼类体内存在病原体时,Th1类型的T细胞会被激活,产生出大量的干扰素等细胞因子,从而对患病组织进行清除。

与此同时,Th2类型的T细胞也会被激活,产生出IL-4等细胞因子,协助B细胞产生抗体,以达到消灭病原体的目的。

1.2 细胞免疫系统细胞免疫系统是另一重要的免疫防御机制,它能够依靠特定的细胞介导机制,直接清除体内的有害物质和病原体。

细胞免疫系统主要包括自然杀伤细胞、巨噬细胞、NK细胞等。

这些细胞能够通过识别并杀死还未完全发展成真正病原体的外来异物,以保护机体的免疫功能。

2. 鱼类免疫系统在医学领域的应用研究2.1 免疫增强剂目前,以鱼类免疫系统为研究对象的免疫增强剂已经有了诸多应用。

比如,一些抗生素类药物常常被用作免疫增强剂,以促进机体免疫系统的健康发展。

此外,某些天然植物提取物也被证明对鱼类免疫系统有着一定的增强作用,例如与日常饮食中常见的蒜、生姜等能够增强机体的免疫力。

2.2 疫苗的研究随着鱼类免疫系统的研究不断深入,疫苗研究成为了一大发展方向。

目前,鱼类疫苗的研制主要有两种类型:一种是使用活疫苗,即将带有病原体的物质注射到鱼体内,以便诱发免疫反应;另外一种是使用灭活疫苗,即将带有病原体、但已被处理为死亡或不活跃状态的物质注射到鱼体内,达到相同的效果。

鱼类免疫和抗病机制的研究

鱼类免疫和抗病机制的研究

鱼类免疫和抗病机制的研究已经成为近几年来的一项热点。

鱼类作为水生动物,其天然免疫力和抗病能力相对较弱,常常受到各种病原生物的侵袭,造成很大的经济损失。

因此,研究鱼类免疫和抗病机制对于提高鱼类养殖效益、促进水产业发展具有重要意义。

鱼类免疫系统鱼类免疫系统包括天然免疫系统和获得性免疫系统两部分,其中天然免疫系统因为其迅速而高效的反应速度,被认为在防御鱼类病害中是非常重要的一部分。

鱼类天然免疫系统主要包括非特异性体防御和特异性体防御两种机制。

其中,非特异性体防御包括皮肤、黏液、鳃和唾液腺等黏膜组织中分泌的抗菌蛋白、溶菌酶以及代表古代人类免疫系统的补体系统。

而特异性体防御则是由反应特异性的B细胞、T细胞和免疫球蛋白(Ig)等免疫细胞和分子组成的。

鱼类天然免疫系统对于防御细菌、病毒等病原微生物非常重要,特别是在鱼类的初次感染中,它可以迅速地发挥作用并抵御病原菌的入侵,从而后来产生获得性免疫。

除此之外,黏液和补体系统也具有对细菌和真菌的直接杀伤和诱导炎症等重要作用,是鱼类天然免疫系统中不可或缺的组成部分。

鱼类的获得性免疫系统鱼类获得性免疫系统主要由特异性T淋巴细胞和B淋巴细胞以及它们所合成的抗体组成。

当鱼类遭遇到病原微生物,特异性体免疫将被启动,免疫细胞将进入淋巴组织,进行信息交流与识别特定的病原微生物。

T细胞和B细胞分别扮演着不同的角色,B细胞主要负责分泌抗体,而T细胞则调节和监管免疫应答反应,以及抗体的产生和体内浓度的维护。

抗病毒机制鱼类一旦感染了病毒,其免疫系统会产生一系列的防御反应,以防止病毒进一步侵入和扩散。

其中,产生干扰素(Interferon,IFN)是一种重要的响应。

IFN 与一些信号转导分子和细胞受体相互作用,激发细胞产生自身天然免疫物质,例如酶类、抗病毒蛋白质等,这些物质则能够识别和杀灭病毒。

除此之外,抗病毒机制还涉及到鱼类天然免疫细胞的作用。

研究发现,在愈合期间中性粒细胞是重要的天然免疫细胞之一,它们能产生吞噬和杀菌作用,同时也能协调调节抗病毒的天然免疫和获得性免疫。

水产养殖中的鱼类免疫系统与疫苗应用

水产养殖中的鱼类免疫系统与疫苗应用

水产养殖中的鱼类免疫系统与疫苗应用在水产养殖业中,鱼类免疫系统的健康与否对于鱼类的生长和抵抗病毒、细菌感染至关重要。

为了保障鱼类的免疫系统稳定并提高其免疫力,养殖人员广泛应用疫苗来预防和控制疾病的发生。

本文将探讨水产养殖中鱼类的免疫系统以及疫苗在水产养殖业中的应用。

一、鱼类免疫系统鱼类免疫系统是指鱼类通过天然免疫和适应性免疫两个层次来保护自身免受外界病原体的侵害。

天然免疫是指鱼类通过皮肤和鳃上覆盖的黏液、呼吸道粘膜以及体液中的抗体等来抵御病原体的进入。

适应性免疫是指鱼类通过产生特异性抗体和免疫记忆来对抗特定的病原体。

1.1 天然免疫天然免疫是鱼类免疫系统中的第一道防线。

鱼类身上的黏液和鳃上的细丝状物质能够抑制病原菌的滋生,防止其侵入鱼体。

此外,黏液中的抗体也能中和病原微生物,起到抵御病原体的作用。

鱼类的呼吸道粘膜上也有一定的杀菌作用,能够通过呼吸道黏膜上的纤毛排除病原体。

1.2 适应性免疫适应性免疫是鱼类免疫系统中的第二道防线,主要通过产生抗体来对抗特定的病原体。

当鱼类受到感染时,其体内会产生特定的抗体来中和病原体,并形成免疫记忆。

在之后的感染中,免疫记忆能够使鱼类更快地产生抗体,从而更早地对抗病原体,减轻病害的程度。

二、鱼类疫苗的应用为了提高鱼类的免疫力并降低疫病发生的风险,水产养殖业广泛应用疫苗进行预防和控制。

根据不同的病原体和感染方式,鱼类疫苗可以分为活疫苗、灭活疫苗和次单位疫苗三种类型。

2.1 活疫苗活疫苗是指使用活的病原体或减毒病原体来诱发鱼类产生免疫反应。

该疫苗具有较强的免疫原性,能够有效地诱导鱼类产生抗体和免疫记忆,并具有长期保护的效果。

但是,由于活疫苗中存在活病原体,使用过程中需要严格控制疫苗的接种剂量和接种条件,以免引发过度的免疫反应。

2.2 灭活疫苗灭活疫苗是指将病原体在实验室中培养和繁殖后,通过热处理、化学处理或其他方式将其杀死,制成疫苗。

灭活疫苗安全性较高,不会引起鱼类感染,但免疫效果相对较差。

鱼类免疫系统及其抗病机制研究

鱼类免疫系统及其抗病机制研究

鱼类免疫系统及其抗病机制研究近年来,随着水产养殖业的不断发展,鱼类养殖的种类和规模都有了显著提高。

同时,由于高密度养殖、环境污染和气候变化等因素,鱼类免疫系统面临着越来越多的挑战。

因此,研究鱼类免疫系统及其抗病机制成为了当前重要的课题之一。

鱼类免疫系统是由外周免疫系统和内部免疫系统组成的。

外周免疫系统包括皮肤、鳞片、黏液、肝、脾、肠等。

鱼类皮肤和鳞片是一种天然的防御屏障,可以有效地防止外来病原体的入侵。

同时,鱼类皮肤和鳞片还具有抗菌和抗病毒作用。

鱼类黏液是一种重要的外泌物,可以防御大部分的病原体。

黏液中的黏蛋白可以抑制细菌的生长和附着,同时还可以聚集免疫细胞和吞噬细菌的白细胞。

鱼类的肝、脾和肠道也是重要的免疫器官,其中肝脏是免疫细胞的主要来源。

鱼类的脾脏是免疫细胞的主要聚集地,而肠道上皮细胞则是免疫细胞的主要附着地。

内部免疫系统包括细胞免疫和体液免疫。

细胞免疫主要是由T淋巴细胞和巨噬细胞等细胞介导的免疫反应。

T淋巴细胞在鱼类的免疫应答中发挥着重要的作用,可以识别和杀死病原体。

巨噬细胞是一种具有吞噬细菌和杀死病原体能力的细胞。

在体液免疫中,鱼类的主要防御物质是抗体,可以识别和中和病原体。

同时,鱼类的体液免疫还包括补体系统和溶酶体系统等。

除了上述免疫系统外,鱼类的抗病防御系统还包括颜色保持和非特异性防御机制。

例如,蓝绿藻对草鱼的皮肤具有致病性,草鱼可以通过改变皮肤颜色防御蓝绿藻病原体的入侵。

另外,鱼类还可以通过杀菌物质、炎症反应和压力抗性等机制来抵抗各种病原体。

在研究鱼类免疫系统及其抗病机制时,一般会采用多种手段,包括分子生物学、免疫学、病理学等方法。

例如,可以通过拟南芥、斑马鱼等模式生物来研究鱼类免疫基因的功能及其调控机制。

同时,也可以利用鱼类病理学方法来分析鱼体组织中的病原体分布和病理变化情况。

需要注意的是,在研究鱼类免疫系统及其抗病机制时,需要考虑到环境因素和遗传因素等影响。

例如,水温、盐度、氧气含量等环境因素可以影响鱼类免疫响应的强度和速度。

鱼类免疫系统的结构与功能研究

鱼类免疫系统的结构与功能研究

鱼类免疫系统的结构与功能研究在鱼类的生物体中,免疫系统是维护鱼类身体健康和稳定的重要部分,它能够有效识别和激活特异性免疫的抗体和细胞免疫反应,同时具备适应性和记忆性。

本文将着重描述鱼类免疫系统的结构与功能,并探讨其在免疫防御中的重要性。

一、鱼类免疫系统的结构鱼类免疫系统的结构主要包括:体表免疫系统、黏膜免疫系统和体内免疫系统。

其中,体表免疫系统包括鳞片、颜色和皮肤等层次的组成成分,黏膜免疫系统则存在于鱼类肠壁、气道、泌尿道和生殖系统等组织中,主要由上皮层、支持组织、特异细胞、淋巴组织和黏液等构成。

体内免疫系统则包括骨髓和免疫细胞、淋巴器官和免疫分子等部分。

图一为鱼类免疫系统的结构示意图。

图一、免疫系统的基本构成二、鱼类免疫系统的功能鱼类免疫系统具有吞噬食品和致病微生物的能力,预防和清除微生物、抗肿瘤和细胞毒性等作用。

我们可以分别从下面三个方面来描述鱼类免疫系统的功能:1、体表免疫系统的功能体表免疫系统是鱼类免疫系统的首要部分,它成为了鱼类整个免疫系统的第一道防线。

鳞片可以缓冲全身的外界影响,提供保护性的屏障,同时丰富的黏液和皮肤颜色还能让鱼类更有效地抵御寄生虫和细菌入侵,其中一些具有攻击性。

2、黏膜免疫系统的功能黏膜免疫系统存在于各种鱼类生物的颈、喉、茎、羽毛和口腔等部位,主要由吞噬细胞、T、B淋巴细胞,上皮层、黏液、黏膜免疫细胞和丰富的免疫分子等构成。

这些部分共同作用,能够有效地抵御感染病原体,起到保护鱼类身体健康的作用。

同时,黏膜免疫系统也启动特异性免疫,增强宿主的免疫能力。

3、体内免疫系统的功能体内免疫系统主要建立在与免疫器官、免疫元素和免疫分子有关的鱼体环境之中,包括鱼体所制造的抗体、免疫细胞和吞噬细胞等元素。

体内免疫系统的作用主要是通过淋巴细胞、激素和抗体来完成保护宿主免受感染和抵御外源性干扰。

三、鱼类免疫系统的重要性免疫系统的作用是为宿主提供多层次、多元化的免疫防御,它可以在第一时间有效响应感染,清除损害,降低生病危险;同时,它还可以转化成针对致病微生物的特异性免疫,产生高亲和力的抗体,以及多种免疫细胞。

金鱼的免疫系统介绍

金鱼的免疫系统介绍

金鱼的免疫系统介绍
金鱼(详情介绍)
金鱼是比较容易饲养的品种,这与它们的免疫力密切相关,想要金鱼健康不生病,提高他们的免疫力是最重要的。

那么什么是金鱼的免疫系统呢?
第一层免疫系统:是金鱼体表黏液,黏液就是金鱼身体表面很黏滑的物质。

这层物质很重要,是第一道防线,防止病菌的侵入。

如果我们发现金鱼身体有损伤,那么,这条金鱼实际上就处在危险之中。

保护金鱼身体黏液的重要性在于此。

第二层免疫系统:鳞片,鳞片掉了,实际上黏液也跟着受到破坏。

两个同时受损,情况比较危险,这时最常见的病是立鳞等。

第三层免疫系统:体液。

金鱼体液有免疫细胞,专门对付入侵的病菌。

平时养护的好,营养充足,金鱼可以有效对付这些病菌。

反之,就很快灭亡。

以前曾经受过病菌的侵袭,那么金鱼的体内存有记忆细胞。

这时的威力会更大。

这就是我们常说的打疫苗的作用。

鱼类粘膜免疫机制

鱼类粘膜免疫机制

水产动物免疫学—鱼类粘膜免疫1 粘膜免疫系统的非特异性免疫鱼类的非特异性免疫,如通过一些非特异性的溶菌酶、蛋白酶及呼吸暴发产生的活性氧自由基等来杀灭入侵微生物,是鱼类相当重要的防御机制之一.研究表明,粘膜免疫系统也存在这些非特异性的免疫机制.通过对鱼的皮肤和粘液抽提物进行研究,发现其中具有一些非特异性的抗细菌、真菌的物质[15] ,这些物质对病原的作用具有广谱性.对皮肤粘液与寄生虫感染的关系研究发现,虹鳟鳍条和皮肤粘液细胞密度与三代虫感染强度呈负相关,并认为粘液中的溶菌酶、蛋白酶、免疫球蛋白及C3补体对寄生虫的感染都有影响.鱼类鳃和肠道的吞噬细胞都存在活性氧自由基(O·-2 )鳃上的吞噬细胞具有吞噬活性,但是从其O·-2活性看,其呼吸暴发( respiratory burst ) 强度不如头肾白细胞.而对肠道巨嗜细胞的呼吸暴发进行研究, 结果表明虹鳟后肠巨嗜细胞对PMA 刺激后的化学发光反应(chemiluminescence response) 强度明显比前肠细胞强,这种差别并不是因为巨嗜细胞在前、后肠中数量上的明显差别,而是两个部位的巨嗜细胞细胞反应强度不相同.此外,大剂量的维生素E 可以增强鱼类肠道白细胞的吞噬活性,这可能与维生素E 能增强吞噬细胞膜的流动性有关.鱼类的嗜曙红粒细胞(eosinophilic granule cells ,EGCs)在非特异性免疫中也有相当重要的作用。

Flano等发现虹鳟鱼体外培养的鳃在受到细菌刺激时,EGCs数量增加,并推测EGCs 是由局部的前体细胞分化而来.Holland等[16]的结果也证实了这一点,在体外培养的鳃受到LPS 和人重组TNFα刺激时,EGCs的数量有显著的增加,并且还发现鱼体受急性应激(acute stress )和慢性应激(chronicstress)时,EGCs 的数量也会增加,这些现象类似于哺乳动物肥大细胞应激时的反应机制.另外鱼类皮肤、鳃及肠道的EGCs与哺乳动物肥大细胞有类似的细胞酶活性(如磷酸酶,非特异性脂酶等) ,并在P物质(substance P,SP)、辣椒素等物质的刺激下发生去颗粒化,因而一般认为鱼类的EGCs 细胞与哺乳动物肥大细胞是同源的.2 粘膜免疫系统的特异性免疫在哺乳动物中,当抗原接触粘膜时, 可以引起局部的免疫应答,并分泌特异性的IgA 抗体.成特异性免疫应答.最初, 研究表明口服和肠道灌注的方法进行免疫都可以引起体液和细胞免疫应答,而且口服疫苗可以使鱼体产生不依赖于血清抗体的粘膜抗体.近十年来,围绕这一问题的研究取得了很大的进展,越来越多的学者倾向于粘膜免疫系统可以不依赖系统免疫,独立地完成特异性免疫应答这一观点;粘膜免疫系统可独立完成抗原摄取、呈递及抗体分泌,并且局部的免疫应答对抵御病原的入侵起着重要的作用[17].3粘膜免疫系统的免疫调节目前鱼类的免疫调节的研究尚为起步阶段,对粘膜免疫系统的免疫调节则还很欠缺.Dezfuli 等[18]对感染绦虫的褐鳟(Salmo trutta) 肠道中的多种神经调节因子,包括P物质(substance P ,SP)、降钙素基因相关肽( calcitonin generelated peptide ,CGRP)、甲硫啡肽、肠血管肽( vasoactiveintestinal peptide ,VIP)、血清素等进行研究,这些神经因子都是哺乳动物肠道免疫调节相关因子,结果表明鱼类抗肠道绦虫炎症反应中,这些神经因子的水平也有发生变化,如SP、甲硫啡肽、VIP、血清素水平都有不同程度的上升,暗示着这些神经因子参与了鱼类肠道的免疫调节,但这些因子如何调节免疫系统则还有待于进一步的研究.另外有研究表明粘膜免疫系统对抗原的应答具有选择性,J ones等发现鱼类肠道对KLH(keyhole limpet hemocyanin)不产生免疫应答,而通过注射KLH却可以引起系统免疫应答,其原因是肠道B淋巴细胞对该抗原是选择性不应答,对肠道适应性的B细胞层次的免疫调节.4 粘膜免疫研究展望由于鱼类是进化上最早具有较完善免疫系统的动物,对其粘膜免疫系统的研究,将丰富人们对鱼类免疫学、比较和发育免疫学的认识,对免疫系统的发生和进化都有重要意义,日前已逐渐为人们所重视,成为鱼类免疫学中的又一热点.然而目前仍然有许多问题尚待进一步研究,包括粘膜免疫应答的机制,如抗原的摄取、呈递、T/ B淋巴细胞的应答;细胞因子及内分泌系统对粘膜免疫系统的调节;致敏免疫细胞从诱导部位到效应部位的归巢(homing)(这一点是目前哺乳动物免疫学研究中的前沿及热点[3]);粘膜免疫与系统免疫之间的相互协作关系等等.另外,对鱼类粘膜免疫的研究,最初很大程度上是出于浸泡疫苗和口服疫苗研制的需要,而今后这两种疫苗相关的研究也还会是粘膜免疫研究中的重点之一,其中主要包括以下两个问题:一是如何进一步优化抗原的包被方法,使抗原能成功被粘膜免疫组织摄取,并引起有效的免疫应答;二是如何选取增强粘膜免疫系统应答的佐剂,刺激粘膜免疫系统产生更强的应答.。

鱼类的免疫组织研究

鱼类的免疫组织研究

鱼类的免疫组织研究近几十年来,随着世界人口的增长和消费水平的提高,世界渔业也得到了长足的发展。

但与此同时,高密度养殖模式也引起水产动物病害的频繁发生,并造成一定的环境污染。

作为主要水产养殖对象的鱼类,在其与病原和环境之问相互作用的过程中,主要是靠其免疫系统来抵御外来病原生物的侵害,通过非特异性和特异性的免疫防御机制来维持体内环境的稳定。

因此,对鱼类免疫系统的研究,不仅可以认识鱼体同病原问的作用方式,反映鱼类赖以生存的水环境的质量,还可用以研究脊椎动物免疫系统的进化规律。

1 免疫组织和器官免疫组织和器官是免疫细胞发生、分化、成熟、定居和增殖以及产生免疫应答的场所。

鱼类与哺乳动物在免疫器官组成上的主要区别在于前者没有骨髓和淋巴结,头肾为其主要的造血器官。

胸腺、肾脏和脾脏是鱼类最主要的免疫器官,黏膜淋巴组织(MALT)同样是其免疫系统的重要组分。

1.1胸腺鱼类胸腺为一成对器官,是位于鳃盖骨背连合外皮下的一对卵圆形淋巴组织,由与咽囊上皮结合在一起的原基发育而成。

淡水鱼类免疫淋巴器官发育的研究结果表明:胸腺原基是最早形成的,其淋巴化即小淋巴细胞的出现也是最早的。

海水鱼类胸腺原基的出现与淡水鱼类有所不同,出现最晚,而淋巴化最早。

鱼类胸腺淋巴细胞的起源是鱼类免疫学家们争论的焦点。

关于胸腺的起源和淋巴细胞的分化有两种假说:一种假说认为胸腺起源于咽上皮,所有的淋巴细胞来自于胸腺,直接由胸腺上皮细胞转化而来;另一种假说提出胸腺起源于外源干细胞,即来自于其他部位的于细胞移植并定居于胸腺。

胸腺细胞起源于外源干细胞这一观点在鸟类、两栖动物、爬行动物和哺乳动物已普遍接受。

在鱼类,究竟是胸腺细胞控制头肾和脾脏分化,还是由头肾造血干细胞迁移到胸腺,控制胸腺的分化呢?据报道金头鲷胸腺与头肾之间有细胞桥,在发育过程中胸腺与头肾靠拢,与头肾相连,并伴有明显的细胞迁移。

在罗非鱼、虹鳟鱼和鲽鱼也出现这种现象,因此认为头肾的淋巴细胞是从胸腺迁移来的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水产动物免疫学—鱼类粘膜免疫
1 粘膜免疫系统的非特异性免疫
鱼类的非特异性免疫,如通过一些非特异性的溶菌酶、蛋白酶及呼吸暴发产生的活性氧自由基等来杀灭入侵微生物,是鱼类相当重要的防御机制之一.研究表明,粘膜免疫系统也存在这些非特异性的免疫机制.通过对鱼的皮肤和粘液抽提物进行研究,发现其中具有一些非特异性的抗细菌、真菌的物质[15] ,这些物质对病原的作用具有广谱性.对皮肤粘液与寄生虫感染的关系研究发现,虹鳟鳍条和皮肤
粘液细胞密度与三代虫感染强度呈负相关,并认为粘液中的溶菌酶、蛋白酶、免疫球蛋白及C3补体对寄生虫的感染都有影响.鱼类鳃和肠道的吞噬细胞都存在活性氧自由基(O·-2 )鳃上的吞噬细胞具有吞噬活性,但是从其O·-2活性看,其呼吸暴发( respiratory burst ) 强度不如头肾白细胞.而对肠道巨嗜细胞的呼吸暴发进行研究, 结果表明虹鳟后肠巨嗜细胞对PMA 刺激后的化学发光反应(chemiluminescence response) 强度明显比前肠细胞强,这种差别并不是因为
巨嗜细胞在前、后肠中数量上的明显差别,而是两个部位的巨嗜细胞细胞反应强度不相同.此外,大剂量的维生素E 可以增强鱼类肠道白细胞的吞噬活性,这可能与维生素E 能增强吞噬细胞膜的流动性有关.鱼类的嗜曙红粒细胞
(eosinophilic granule cells ,EGCs)在非特异性免疫中也有相当重要的作用。

Flano等发现虹鳟鱼体外培养的鳃在受到细菌刺激时,EGCs数量增加,并推测EGCs 是由局部的前体细胞分化而来.Holland等[16]的结果也证实了这一点,在体外培养的鳃受到LPS 和人重组TNFα刺激时,EGCs的数量有显著的增加,并且还发现鱼体受急性应激(acute stress )和慢性应激(chronicstress)时,EGCs 的数量也会
增加,这些现象类似于哺乳动物肥大细胞应激时的反应机制.另外鱼类皮肤、鳃
及肠道的EGCs与哺乳动物肥大细胞有类似的细胞酶活性(如磷酸酶,非特异性脂
酶等) ,并在P物质(substance P,SP)、辣椒素等物质的刺激下发生去颗粒化,因而一般认为鱼类的EGCs 细胞与哺乳动物肥大细胞是同源的.
2 粘膜免疫系统的特异性免疫
在哺乳动物中,当抗原接触粘膜时, 可以引起局部的免疫应答,并分泌特异性的IgA 抗体.成特异性免疫应答.最初, 研究表明口服和肠道灌注的方法进行免疫
都可以引起体液和细胞免疫应答,而且口服疫苗可以使鱼体产生不依赖于血清抗体的粘膜抗体.近十年来,围绕这一问题的研究取得了很大的进展,越来越多的学
者倾向于粘膜免疫系统可以不依赖系统免疫,独立地完成特异性免疫应答这一观点;粘膜免疫系统可独立完成抗原摄取、呈递及抗体分泌,并且局部的免疫应答对抵御病原的入侵起着重要的作用[17].
3粘膜免疫系统的免疫调节
目前鱼类的免疫调节的研究尚为起步阶段,对粘膜免疫系统的免疫调节则还很欠缺.Dezfuli 等[18]对感染绦虫的褐鳟(Salmo trutta) 肠道中的多种神经调节因子,包括P物质(substance P ,SP)、降钙素基因相关肽( calcitonin generelated peptide ,CGRP)、甲硫啡肽、肠血管肽( vasoactiveintestinal peptide ,VIP)、血清素等进行研究,这些神经因子都是哺乳动物肠道免疫调节相关因子,结果表明鱼类抗肠道绦虫炎症反应中,这些神经因子的水平也有发生变化,如SP、甲硫啡肽、VIP、血清素水平都有不同程度的上升,暗示着这些神经因子参与了鱼类肠道的免疫调节,但这些因子如何调节免疫系统则还有待于进一步的研究.另外有研究表明粘膜免疫系统对抗原的应答具有选择性,J ones等发现鱼类肠道对KLH(keyhole limpet hemocyanin)不产生免疫应答,而通过注射KLH却可以引起系统免疫应答,其原因是肠道B淋巴细胞对该抗原是选择性不应答,对肠道适应性的B细胞层次的免疫调节.
4 粘膜免疫研究展望
由于鱼类是进化上最早具有较完善免疫系统的动物,对其粘膜免疫系统的研究,将丰富人们对鱼类免疫学、比较和发育免疫学的认识,对免疫系统的发生和进化都有重要意义,日前已逐渐为人们所重视,成为鱼类免疫学中的又一热点.然而目前仍然有许多问题尚待进一步研究,包括粘膜免疫应答的机制,如抗原的摄取、呈递、T/ B淋巴细胞的应答;细胞因子及内分泌系统对粘膜免疫系统的调节;致敏免疫细胞从诱导部位到效应部位的归巢(homing)(这一点是目前哺乳动物免疫学研究中的前沿及热点[3]);粘膜免疫与系统免疫之间的相互协作关系等等.另外,对鱼类粘膜免疫的研究,最初很大程度上是出于浸泡疫苗和口服疫苗研制的需要,而今后这两种疫苗相关的研究也还会是粘膜免疫研究中的重点之一,其中主要包括以下两个问题:一是如何进一步优化抗原的包被方法,使抗原能成功被粘膜免疫组织摄取,并引起有效的免疫应答;二是如何选取增强粘膜免疫系统应答的佐剂,刺激粘膜免疫系统产生更强的应答.。

相关文档
最新文档