定积分的几何应用举例
微积分定积分在几何中应用
(二)定积分在几何中的应用定积分在几何中的应用 (1)求平面图形的面积求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。
由此可知通过求函数的定积分就可求出曲边梯形的面积。
例如:求曲线2f x =和直线x=l ,x=2及x 轴所围成的图形的面积。
轴所围成的图形的面积。
分析:由定积分的定义和几何意义可知,由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。
和直线,及轴所围成的图形的面积。
所以该曲边梯形的面积为所以该曲边梯形的面积为2233222112173333x f x dx ===-=ò (2)求旋转体的体积求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()b aV f x d x p=ò。
(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dcV g y d y p =ò。
(III)由连续曲线y=f(x)( ()0f x ³)与直线x=a 、x=b(0a £ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()baV xf x d x p =ò。
例如:例如:求椭圆求椭圆22221x y a b +=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。
转体的体积。
分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆22()b y a x a x a a=--££,与x 轴所围成的图形绕轴旋转一周而成的,轴所围成的图形绕轴旋转一周而成的,因此椭圆因此椭圆22221x y a b+=所围成的图形绕x 轴旋转一周而成的旋转体的体积为轴旋转一周而成的旋转体的体积为 222222222322()()14()33aay aaaa b b v a x dx a x dxaa ba x x aba pp p p ---=-=-=-=òò椭圆绕y 轴旋转时,旋转体可以看作是右半椭圆22,()a x b y b y b b=--££,与y轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为一周而成的旋转体的体积为222222222322()()14()33bby b bb b a a v b y dy b y dy b b a b y y a bb p p p p ---=-=-=-=òò(3)求平面曲线的弧长求平面曲线的弧长(I)、设曲线弧由参数方程、设曲线弧由参数方程 (){()()x t t y t j a b f =££=给出其中''(),()t t j f 在[,]a b 上连续,则该曲线弧的长度为'2'2[()][()]()s t t d xbaj f =+ò。
定积分的几何应用举例
=x2
解 所围成的图形的面积.
y
x y2
(1,1)
得两曲线交点 (0,0) , (1,1) ,
x y
面积元素 dA ( y y2 )dy , o
x
A
1
(
0
y y2 )dx
2 3 y3 1
3 y2
3
0
1. 3
解题步骤:
1. 根据题意画出平面图形 .
2. 求出边界曲线的交点.
3. 确 定 一 个 积 分 变 量 及 其 变 化 区 间 [a , 4.b写]出.微元(面积元素) dA .
在[ , ]上任取小区间[ , d ].o x
面积元素 dA 1[( )]2d
2
曲边扇形的面积 A 1[( )]2d . 2
例 6 求双纽线 2 a2 cos 2 所围平面图形的
面积.
解 由对称性知总面积=4倍第 一象限部分面积
A 4A1
A 4
4
1 a2 cos 2 d
第八节 定积分的几何应用举例
一、平面图形的面积 二、体积 三、平面曲线的弧长
一、平面图形的面积
1、 直角坐标系情形
y y f (x)
设曲线 y=f (x)(x 0) 与直
线 x = a , x = b (a <b)
及 x 轴所 围曲边梯形的面
oa
积为 A , 则
b
dA f (x)dx,
A f ( x)dx .
立体体积
R
V h
R2 x2dx
1 R2h.
R
2
五、平面曲线的弧长
1、平面曲线弧长的概念
设 A、B 是曲线弧上的两 y
个端点,在弧上插入分点
定积分的几个简单应用
定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件). 二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1nn n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b ab a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。
定积分在几何中的应用
变式 1:变速直线运动的物体速度为 v(t ) 1 t 2 ,ห้องสมุดไป่ตู้初 始位置为 x0 1, 求它在前 2 s 内所走的位移及 2 s 末 所在的位置.
知识要点2
如果物体在变力 F ( x) 的作用下做直线运动,并且物 体沿着与 F ( x) 相同方向从 x a 移动到 x b(a b), 则变力 F ( x) 所作的功 b W= F ( x )dx .
a
例 2 在弹性限度内,将一弹簧从平衡位置拉到离平 衡位置 lm 处,求克服弹力所作的功.
o
x x
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用 如图:以 x 为积分变量,积分区间为 [a , b].
知识要点1
作变速直线运动的物体在时间区间 a , b 上所经过的 路程 S ,等于其速度函数 v v(t )(v(t ) 0) 在时间区 b 间 a , b 上的 定积分 ,即 S v ( t )dt
a
例 1 已知一辆汽车的速度——时间的曲线如图所示 30
求(1)汽车 10 s 行驶的路程; (2)汽车 50 s 行驶的路程; (3)汽车 1 min 行驶的路程.
A B
P
本节 知识 引入 本节 目的 与要 求
在区间 [a , b] 内任取一小区间[ x , x dx ], 功的微元数 dW F ( x )dx 所以
o a
x
x dx
F ( x)
b
x
本节 重点 与难 点
本节 复习 指导
定积分的几何应用例题
定积分的几何应用例题定积分,又称定积分法,是一种求取特定函数积分的方法,它是集概率论、统计学和运筹学于一体,是微分几何学中的重要内容。
它在微分几何中一般用来求取曲面积、表面积、空间积分、距离长度等。
下面将介绍几个典型的定积分的几何应用例题,以便读者更好的理解定积分的几何应用。
例题一:求抛物线y=x2的截面积,其中抛物线两端上的y值分别为a和b。
答:这里的抛物线的截面积S=∫a b x2dx。
因此,将原积分变形可得S=(1/3)∫a b (x3+a3-b3)dx,于是,将积分变量替换,此时,S=(1/3)[(b3-a3)/2]。
例题二:求圆柱体的体积,其中圆柱体的底面半径为a,高度为h。
答:首先,将圆柱体拆成无穷多个小圆柱体,那么,圆柱体的体积V=∫0 hπa2dh。
将原积分变形可得V=πa2∫0 hdh=(πa2h2)/2,可见,圆柱体的体积大小取决于高度h和底面半径a的平方乘积。
例题三:求圆锥的表面积,其中圆锥的底面半径为a,高度为h,底面圆心角为2α。
答:此时,圆锥的表面积S=∫0 hΠa2sindαdh,将原积分变形可得S=Πa2∫0 hsindαdh=(2Πahcosα)/2,可以得出,圆锥的表面积大小取决于高度h、底面半径a以及底面圆心角2α因此,定积分在几何学中具有重要意义,可以求出各类几何体的表面积、体积等,解决实际问题。
上面提供了典型的定积分的几何应用例题,可以让读者对定积分的几何应用有一个深入的理解。
定积分的计算方法广泛,不仅可以采用数值积分法,还可以采用把积分分解为若干小段然后求和的方法。
同时,它还可以利用积分变量的变换,把定积分变为求解较为容易的积分,可以较好地解决实际问题。
总之,定积分是一门极其重要的数学科学,在几何学和实际问题中都有重要的应用,使用正确的计算方法,可以较好地解决实际问题。
定积分在物理上的应用举例
浅谈定积分的意义
纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a、
区间终点的垂直线x=b,所围成的面积。
也可以广义而言,定积分的几何意义就是“抽象的面积”。例如:如果横 轴是体积,纵轴是压强,“抽象面积”的意义是热力学系统对外做功; 如果横轴是时间,纵轴是电流,“抽象面积”的意义是电源对外放出的电 量、、、、、、 定积分是一种重要的数学思想,如今定积分思想广泛应用于物理、医学、 经济学、化工等领域,具有极大的应用价值。
上述公式计算,而是应用定积分思想,采用元素法来计算。
例.有一长度为L,密度为ρ的均匀细棒,在其中垂线上距棒a单位处有一质量为m
的质点M,计算该棒对质点M的引力。
解:建立坐标系
取y为积分变量,y∈[这一区间对应
y+dy],
的棒上小段可近似看成质点,
质量为ρdy,小段与质点的距 离为
定积分在物理上的应用举例
目录
1.用定积分求解平均功率问题 2.用定积分求解引力问题
一、平均功率问题
二、引力问题
质量分别为M、m的质点,相距r,两者间引力: 大小:
F K
Mm
方向:沿两质点的连线
r
2
如果要计算一根细棒对一个质点的引力,那么,由于细棒上各点与该
点的距离是变化的,且各点对该点的引力方向也是变化的,故不能用
THANK YOU
r
a
2
y
2
细杆对质点的引力:
dF k mρdy
a
2
y
2
水平方向的分力:
dFx dF cos( π - ) -dF cos a amρdy
a
第十周周一高等数学の5-定积分在几何物理上的应用广义积分
x
设曲线弧由直角坐标方程 yf(x) (axb)给出,其中f(x)在区 间[a,b]上具有一阶连续导数,则
ds 1 y2dx ,s b 1 y2dx . a
讨论:
(1)设曲线弧由参数方程
x
y
(t), (t)
( t )给出,其中
(t)、(t)在[,]上具有连续导数, 问弧长元素ds和弧长 s 各
2
2
1
1a
ab
b2
2(1(1cocso2st2)td)tdt11
a
ab·b·
11
a ab b..
22 0 0
2 2 2 24 4
A 4A1 a b.
2. 极坐标的情形
•曲边扇形及曲边扇形的面积元素:
由曲线r()及射线 , 围成的图形称为曲边扇形.
•曲边扇形的面积元素:
dA 1 [()] 2d .
a2 (1 cos )2 a2 sin 2 d 2a sin d .
2
所求弧长为
s
2 2a sin d
0
2
2a[2
cos
2
]02
8a .
y
2a
O
a
2 a
x
3. 极坐标的情形
设曲线弧由极坐标方程
r = r() ( ) 给出,其中r()在[,]上具有连续导数. 由直角坐标与极坐标的关系可得
是什么?
(2)设曲线弧由极坐标方程r = r() ( )给出,其中r() 在[,]上具有连续导数, 问弧长元素ds和弧长 s 各是什么?
) Ds MO MP ,
ds MP dx2 dy2 ,
直角坐标系下 y f x,
P
O
dy
定积分在几何,物理学中的简单应用
定积分在几何,物理学中的简单应用
定积分在几何,物理学中的简单应用
积分是数学中一个非常重要的概念。
它在几何学和物理学中都有重要的应用。
首先,在几何学中,积分可以用来表示曲线下面积和表面积,通过计算曲线或曲面的积分,我们可以求出它们的面积。
比如说,我们可以使用椭圆的一类函数积分来计算两条椭圆之间的Group重叠面积。
同样,在物理学中,积分也有很多用处。
比如,有一些物理量,比如力,可以用积分的方法来计算它们在不同空间点所引起的效应。
比如说,如果我们想要计算一个球在特定空间点上产生的力,我们可以通过对球的各个点的力进行积分来得到这个力的大小。
综上所述,积分在几何学和物理学中都有广泛的应用,它可以帮助我们计算出面积,也可以帮助我们计算力的大小,它是一个非常重要的概念。
定积分在几何中的应用
782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。
例1:求曲线与直线及轴所围成的平面图形的面积。
解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。
3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。
例2:求直线与抛物线所围成的平面图形的面积。
解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。
例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。
解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。
2.由曲线、直线及轴围成的平面图形面积:。
3.由曲线直线及轴围成的平面图形面积:若,。
可看作是函数由大减小(右减左),积分从下到上。
例4:计算抛物线与直线所围成的图形的面积。
定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。
JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。
二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。
(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。
定积分在几何计算中的应用
定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。
在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。
下面我们就来看看定积分在几何计算中的应用。
定积分可以用来计算曲线的长度。
对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。
这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。
这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。
定积分可以用来计算曲面的面积。
对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。
这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。
这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。
定积分可以用来计算体积。
对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。
这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。
这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。
定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。
这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。
定积分在几何,物理学中的简单应用
定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。
它可以在几何学、物理学中解决积分、面积和容积计算题中应用。
首先,定积分在几何学中的简单应用。
比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。
它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。
它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。
其次,定积分也可以用在物理学中。
比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。
它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。
最后,定积分也可以应用于物理学的温度问题中。
比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。
还可以用它求解温度场、热传导率、热导率等问题。
以上是定积分在几何、物理学中的简单应用。
定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。
只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。
- 1 -。
定积分的应用
b
S a [ f (x)-g(x)]dx
y
a
O
y = f (x)
bx y = g(x)
例1 计算由曲线 y x2 及直线 y x 所围成的平面图形
的面积。
例1 计算由曲线 y x2 及直线 y x 所围成的平面图形
的面积。
解:作出所围成的平面图形
解:在弹性限度内,拉伸(或压
缩)弹簧所需的力F(x)与弹
簧拉伸(或压缩)的长度x成正
比.
即:F(x)=kx
所以据变力作功公式有
W
L
F(x)dx
0
L 0
kxdx
1kx2 2
|0L
1 2
kL2
作业:
课本58页练习(1)(2) 课本59页练习1,2
的面积为 ( )
(A) 2 (C) 2 2
e
(B) 2 e (D) e 1 2
e
二、物理中的应用
1、变速直线运动的路程
设物体运动的速度vv(t),则此物体在时 间间[a, b]内运动的路程s为
b
s a v(t)dt
例 1 一辆汽车的速度一时间曲线如图所示,求
汽车在这 1 min 行驶的路程。
y x
y
x2
解方程组,得交点的横坐标为x=0
和x=1, 即区间为[0,1]。于是,
平面图形的面积
A
1(x x2)dx
0
(1 2
x2
1 3
x3)
1 0
1 6
例 2 求 y = sinx, y = cos x, x 0, x
2
所围成的平面图形的面积。
定积分的基本性质及应用
定积分的基本性质及应用定积分是微积分的重要概念之一,它在数学和各个学科中都有广泛的应用。
本文将重点介绍定积分的基本性质和在实际问题中的应用,并且通过具体的例子来加深理解。
定义:定积分是对一个函数在闭区间上的加权平均值进行求和的过程。
在数学中,一个函数f(x)在[a, b]上的定积分表示为:∫(a to b) f(x) dx其中,∫代表求和的过程,a和b是积分的上下限,f(x)是被积函数。
基本性质:1. 线性性质:定积分具有线性性质,即对于任意两个函数f(x)和g(x),以及任意的实数k,有以下等式成立:∫(a to b) (f(x) + g(x)) dx = ∫(a to b) f(x) dx + ∫(a to b) g(x) dx∫(a to b) k*f(x) dx = k * ∫(a to b) f(x) dx2. 区间可加性:如果一个函数在闭区间[a, b]上有定义,且在其中一个点c上可导,则该函数在[a, b]上的定积分等于该函数在子区间[a, c]和[c, b]上的定积分之和:∫(a to b) f(x) dx = ∫(a to c) f(x) dx + ∫(c to b) f(x) dx3. 积分中值定理:如果一个函数f(x)在闭区间[a, b]上连续,且在该区间内不恒为0,那么至少存在一个点c,使得:∫(a to b) f(x) dx = f(c) * (b - a)4. 边界性质:对于定积分∫(a to b) f(x) dx,当a等于b时,定积分的值为0。
若a小于b,则定积分的值为正数或负数,具体取决于函数f(x)在[a, b]上的正负性。
5. 非负性质:如果一个函数f(x)在闭区间[a, b]上连续且非负,那么定积分的值也是非负的。
应用:定积分在实际问题中有着广泛的应用,下面将介绍两个具体的应用。
1. 几何应用:定积分可以用于计算曲线与坐标轴之间的面积。
如果一个函数在闭区间[a, b]上非负,那么该函数与x轴围成的曲边梯形的面积可以通过定积分来计算:面积= ∫(a to b) f(x) dx同样的,若函数f(x)在闭区间[a, b]上非正,那么面积可以表示为定积分的绝对值。
定积分的意义及其在几何中的应用
定积分的意义及其在几何中的应用定积分是微积分中的一种重要概念,它是反映了函数在一些区间上面积的大小。
定积分的含义非常丰富,不仅可以用于求函数的面积、周长、体积等几何问题,还广泛应用于物理学、经济学、生物学等领域的计算与分析中。
首先,定积分的最基本的含义是求函数在一些区间上的面积。
对于非负连续函数f(x),可以将其图像以下方的函数图形为界,通过分割区间,构造出一系列较窄的矩形,然后求出这些矩形的面积之和,即可近似地得到曲线下面积的值。
随着分割区间的无穷细小,这个近似的面积将趋近一个确切的值,即定积分。
如果函数是负值或者非连续的情况,面积的计算则需要对函数图像进行分段处理,并分别计算每个部分的面积。
所以,定积分在几何中的应用可以明确地用于求曲线与坐标轴之间的面积。
其次,定积分也可以用于求曲线的弧长。
由于曲线的形状较为复杂,无法直接计算其弧长,但通过将曲线分成许多较小的线段,并每个线段用直线段来代替,再对这些直线段进行求和的方式,可以用定积分来近似计算曲线的长度。
当分割的线段无限细小时,这个近似的弧长将趋近于曲线的实际弧长。
这种方法虽然只能得到近似值,但对于一些无法获得解析解的复杂曲线来说,这种近似是非常有用的。
此外,在三维几何中,定积分可以应用于计算旋转体的体积。
对于一个曲线沿着坐标轴旋转形成的立体,可以将其分成许多非常薄的盘状元素,并计算每个盘状元素的体积,然后通过定积分将这些体积相加,即可得到整个旋转体的体积。
这个方法适用于各种形状的旋转体,能够有效地求解这些体积。
除了在几何中的应用,定积分在物理学、经济学、生物学等领域也有广泛的应用。
在物理学中,定积分可以用于计算各种形状物体的质心、重心等。
在经济学中,定积分常用于求解定量经济模型中的微积分方程,如求解需求曲线、利润函数等。
在生物学中,定积分可以用于计算生物体的体积、质量、功率等。
总之,定积分是微积分中一个重要的概念,不仅在几何中用于求解曲线的面积、弧长、旋转体的体积等问题,还在许多学科中都有广泛的应用。
定积分在几何上的应用 主要是平面几何、立体几何和弧长
定积分在几何上的应用非常广泛,主要包括平面几何、立体几何和弧长三个方面。
在平面几何中,定积分可以用来求解面积。
例如,如果有一个曲线y=f(x),那么这条曲线与x轴所夹的面积可以通过对f(x)在x的某个区间[a,b]上进行定积分来求解。
此外,定积分也可以用来求解平面图形的面积,比如矩形、圆形、椭圆形等。
在立体几何中,定积分可以用来求解体积。
例如,如果有一个旋转体,它的基圆半径为r,高为h,那么这个旋转体的体积可以通过对基圆的周长进行定积分来求解。
此外,定积分也可以用来求解其他形状的体积,比如球体、圆锥体、圆柱体等。
在弧长方面,定积分也有应用。
例如,如果有一条曲线的长度为s,那么这条曲线的长度可以通过对曲线的斜率进行定积分来求解。
此外,定积分也可以用来求解其他形状的长度,比如圆弧、摆线等。
总的来说,定积分在几何上的应用非常广泛,它可以用来解决各种与几何量有关的计算问题。
用定积分的几何意义求不规则平面图形面积的思路
备考指南求平面几何图形的面积问题比较常见.对于规则的平面几何图形,可以直接利用三角形、矩形、等腰梯形、圆等的面积公式来求解;而对于不规则的曲边平面图形,直接运用平面几何图形的面积公式往往很难求得,须利用定积分的几何意义求解.定积分的几何意义是指被积函数与坐标轴围成的面积,即曲边图形的面积S =∫a bf (x )d x .若被积函数的图象位于x 轴上方,则函数的定积分为正;若位于x 轴的下方,则函数的定积分为负.定积分与曲边梯形面积的关系,如下表所示.图形阴影部分面积S =∫b a f (x )d x S =-∫baf (x )d xS =∫ca f (x )d x -∫bc f (x )d xS =∫b af (x )dx -∫b ag (x )d x =∫ba [f (x )-g (x )]d x利用定积分的几何意义求平面几何图形面积的步骤如下:(1)根据题意画出平面几何图形;(2)根据几何图形确定被积函数,求出图象与x 轴、y 轴的交点坐标,并求出积分的上、下限;(3)把曲边梯形的面积表示成若干个定积分的和;(4)计算定积分.例1.(1)求函数y =4-x 2在[-2,2]上的图象与x轴所围成的图形的面积;(2)求函数y =sin x 在区间[-π,π]上的图象与x 轴围成的图形的面积.解:(1)由y =4-x 2可得x 2+y 2=4(y ≥0),该式表示的是圆心在原点、半径为2的半圆,如图1中阴影部分所示.根据定积分的几何意义可知该半圆的面积为S=∫-224-x 2d x =12π×22=2π.图1图2(2)根据题意画出图形,函数y =sin x 在区间[-π,π]上的图象与x 轴围成的图形如图2中的阴影部分所示,根据定积分的几何意义可知阴影部分的面积为∫-ππsin x d x =0.当被积函数的图象关于坐标轴或坐标原点对称时,比较容易求得几何图形的面积,直接利用定积分的几何意义和图形的对称性即可解题.例2.求曲线y 2=2x 与y =x -4所围成的图形的面积.分析:题中的图形由两条曲线围成,很难快速求得问题的答案,需将图形分割,把问题转化为求两部分图形的面积的和或差,再根据定积分的几何意义来解题.图3图4解法一:以两曲线的交点为分界点,将阴影部分分割为两部分,如图3所示.S =S 12=2∫022x x +∫28[2x -(x -4)]d x=32)|2032-(12x 2-4x )]|82=18.解法二:以x 轴为分界线,将阴影部分分割为两用定积分的几何意义求不规则平面图形黄文琴56备考指南∫226|图5图6当不能直接用定积分表示不规则平面几何图形的面积时,需采取分割图形的方法或者变换积分变量∫.反证法是解答数学问题的常用方法,是一种间接证明方法.当遇到一些从正面分析、求解较为困难的问题,或采用常规方法难以获解的问题时,采用反证法求解往往比较奏效.反证法是指假设原命题不成立,经过推理后,得到与已知条件、定理、性质等相矛盾的结论,从而证明原命题成立的方法.对于两个互相矛盾的命题和判断来说,根据矛盾律,可由其中一个为真,推断出另一个为假,但是不能由一个为假来断定另一个为真.然而,根据排中律的原理,我们不但能够由其中一个为真推断出另一个为假,同时也能够由一个为假来推断出另一个为真.反证法的逻辑依据是矛盾律和排中律.在运用反证法来证明问题时,根据推出的矛盾和结果来否定反设,用的就是矛盾律;在否定反设之后,能够肯定原命题的正确性,用的是排中律.反证法解题的一般步骤为:第一步:认真读题,准确找到原命题的条件和结论;第二步:对原命题进行反设,即假设原命题不成立;第三步:由假设出发,进行推理论证,得到与已知条件、公理、定理、公式、定义等相矛盾的结论;第四步:得出最后的结论,证明原命题成立.对于命题:p⇒q,则需先假设命题结论q不成立,即¬q成立,然后由p和¬q出发,运用相关的定理、性质、公式等进行推理,得出相矛盾的结果,断定是结论q成立,从而间接地证明了命题p⇒q为真.反证法的应用范围较广,可用于解答方程、不等式、函数、数列、解析几何、三角函数、立体几何等问题,下面举例说明.例1.求证:方程2x=3有且只有一个根.证明:由2x=3,可得x=log23,则方程2x=3有解.下面运用反证法来证明方程2x=3只存在唯一的赵雪岑。
定积分在几何上的应用
2
a
y x2 y 2 2 1 2 b a b
4ab sin tdt ab.
2 0
2019/4/7 第六章 定积分的应用
2
o
图6-2-5
a x
8
2.极坐标情形
设由曲线 ( ) 及射线
d
()
d 、 围成一曲边扇 ( ) 形,求其面积.这里, 在[ , ]上连续,且 ( ) 0 . 1 o 面积元素 dA [ ( )]2 d x 2 图6-2-6
3
a
o
a x
旋转体的体积
V a x a
2 3
图6-2-12
2019/4/7
第六章 定积分的应用
32 3 dx a . 105
16
类似地,如果旋转体是由连续曲线
x ( y ) 、直线 y c 、 y d 及y 轴所围 成的曲边梯形绕y 轴旋转一周而成的立体,
第六章 定积分的应用
1
b
例 1 计算由两条抛物线y 2 x 和 y x 2 所围成的 图形的面积.
解
两曲线的交点
(0,0) (1,1)
选 x 为积分变量 x [0,1]
面积元素 dA ( x x 2 )dx
2 3 x 1 2 A 0 ( x x )dx x . 3 0 3 3
R 2 2
1 2 R x dx R h. 2
23
第六章 定积分的应用
三、平面曲线的弧长
设 A、 B 是曲线弧上的两 个端点,在弧上插入分点
y
M2
M1
A M0
M n1
6.定积分的几何应用
x + dx b
x
小切线段的长 (dx )2 + (dy )2 = 1 + y′ 2 dx
′ 2 dx 弧长 s = 弧长元素 ds = 1 + y 1 + y′ 2 dx . ∫
b a
2 3 例 7 计算曲线 y = x 2 上相应于 x 从 a 到 b 3
的一段弧的长度. 的一段弧的长度
解
∵ y′ = x ,
2 2
的面积.
解 由对称性知总面 积=4倍第一象限 倍第一象限 部分面积
A = 4A1
y= x
ρ 2 = a 2 cos 2θ
1 2 A = 4∫0 a cos2θdθ = a2 . 2
4
π
例 6 求心形线r = a (1 + cos θ )所围平面图形的 面积 (a > 0).
解
dθ
1 2 2 dA= a (1+ cos ) dθ θ 2
2π
的周长. ( 0 ≤ t ≤ 2π) 的周长
s1 = ∫ =∫
0
0
′ 2 dx 1+ y 1 + a 2 cos 2 xdx 1 + a cos xdx ,
2 2
2π
= 2∫
π
0
设椭圆的周长为 s2
s2 =
∫0
π
π
2π
(x ′ )
2
2
+ ( y ′ ) dt ,
2
根据椭圆的对称性知
s2 = 2∫
x = r (θ ) cosθ ∵ y = r (θ ) sinθ
2 2
(α ≤ θ ≤ β )
= r 2 (θ ) + r ′ 2 (θ )dθ , ∴ ds = (dx ) + (dy )
高等数学定积分在物理中的应用
2010.12
D6_all
21
二、典型例题
例1
y
1.已知星形线
x y
a cos3 t (a
a sin 3 t
0)
求 10 它所围成的面积 ;
a
o
ax
20 它的弧长;
30 它绕轴旋转而成的旋转 体体积.
2010.12
D6_all
22
解 10 设面积为 A. 由对称性,有
a
A 4 ydx 0
P y 4x x2 du
1 5
(x2
2x)2
5d x
o dx 2
故所求旋转体体积为
2010.12
V
2 0
15( x 2
2x)2 5d
D6_all
x
16 75
5
du 2dx d x33
a x xdx b x
因此变力F(x) 在区间 上所作的功为
b
W a F (x) dx
2010.12
D6_all
2
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) ,
求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
k m a
x
l 2
a2 a2 x2 0
2k m l 1
l 2
a
4a2 l 2
y a M d Fx d Fay
dF
xdx O x lx
2
利用对称性
棒对质点引力的水平分力 Fx 0 .
故棒对质点的引力大小为
F
2k m
a
利用定积分的几何意义求积分
利用定积分的几何意义求积分定积分是高中数学中的一个重要概念,它可以用来求解曲线下面的面积、体积等问题。
在实际应用中,我们经常需要利用定积分的几何意义来求解积分,下面就来介绍一下如何利用定积分的几何意义求积分。
首先,我们需要了解定积分的几何意义。
定积分的几何意义是曲线下面的面积,也就是说,如果我们要求解一个函数在某个区间内的定积分,就相当于求解这个函数在这个区间内所对应的曲线下面的面积。
接下来,我们以求解函数f(x)在区间[a,b]内的定积分为例来介绍如何利用定积分的几何意义求积分。
首先,我们需要将函数f(x)在区间[a,b]内所对应的曲线画出来,然后将这个区间分成若干个小区间,每个小区间的长度为Δx。
接着,我们在每个小区间内取一个任意点xi,然后将这个点与x轴上的点(a,0)和(b,0)连成一个三角形,这个三角形的面积就是这个小区间内函数f(x)所对应的曲线下面的面积。
将所有小区间内的三角形面积加起来,就可以得到整个区间[a,b]内函数f(x)所对应的曲线下面的面积,也就是定积分的值。
具体来说,如果我们将区间[a,b]分成n个小区间,每个小区间的长度为Δx,那么函数f(x)在第i个小区间内所对应的曲线下面的面积就是Δx*f(xi),将所有小区间内的面积加起来,就可以得到整个区间[a,b]内函数f(x)所对应的曲线下面的面积,也就是定积分的值:∫a^b f(x)dx ≈ ΣΔx*f(xi) (i=1,2,...,n)当n趋近于无穷大时,这个近似值就会趋近于定积分的真实值,也就是说:∫a^b f(x)dx = lim(n→∞) ΣΔx*f(xi) (i=1,2,...,n)这就是利用定积分的几何意义求解积分的方法。
总之,利用定积分的几何意义求解积分是一种非常实用的方法,它可以帮助我们更好地理解定积分的概念和意义,同时也可以应用到实际问题中,解决曲线下面的面积、体积等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理: 任意光滑曲线弧都是可求长的.
17
弧长元素(弧微分): ds (dx) 2 + (d y ) 2 (1)曲线弧:
x j (t ) ( t ) y y (t )
2 2
ds d y
dx
y f ( x)
ds j (t ) + (t ) dt
b
A( x) (2x - x2 )2 ,
Vx (2 x - x 2 )2 dx
0 2
y
(4 x 2 - 4 x3 + x 4 )dx
0
2
y 2 x - x2
O
4 3 1 5 2 4 [ x - x + x ]0 3 5 16 . 15
15
x
2
x
平行截面面积为A(x)的立体体积: V A( x)dx . a 例6 设平面图形 D 由曲线 y=2x-x2 与 x 轴所围, 求 D 分别绕 x 轴和 y 轴旋转而成的旋转体的体积. 解 如图示:
11
三、体积
1.旋转体的体积
考虑由连续曲线yf(x)、直线xa、ab及x轴所围成的曲 边梯形绕x轴旋转一周而成的立体的体积. •旋转体的体积元素 考虑旋转体内点x处垂直于x轴的厚度为dx的切片, 用圆柱体的体积[f(x)]2dx作为切片体积的近似值, 于是体积元素为 dV[f(x)]2dx. •旋转体的体积
旋转椭球体的体积为
2 b V - a y dx - a 2 (a 2 - x 2 )dx a 2 4 b 1 2 3 a 2 [a x - x ]- a ab 2 . 3 3 a a 2 a
13
2.平行截面面积为已知的立体的体积
设立体在x轴上的投影区间为[a, b], 立体内垂直于x轴的 截面面积为A(x).
2
19
b
A( y) (1 + 1 - y )2 - (1 - 1 - y )2
x 1 1- y
4 1 - y ,
Vy 4 1 - y dy
0
3 8 - [(1 - y ) 2 ]1 0 3 8 . 3
16
y
y 1 - ( x - 1) 2
y 2 x - x2
V a [ f ( x)]2 dx .
b
12
b 旋转体的体积: V a [ f ( x)]2 dx .
2 2 y x 例5 计算由椭圆 2 + 2 1 所成的图形绕x轴旋转而成的 a b 旋转体(旋转椭球体)的体积. 解 旋转椭球体可以看作是由半个椭圆 y b a 2 - x 2 及 x a 轴围成的图形绕x轴旋转而成的立体.
b
4
A [ f 上 ( x) - f下 ( x)]dx
a
b
A [j右 ( x) - j左 ( x(y)与 xj右(y) 及上下两条直线 yd与 yc 所围成的平面图形的面积: 面积元素为 dA=[j右(y)-j左(y)]dy, 面积为 A c [j 右 ( y) -j 左 ( y)]dy .
2
A( x ) a f (t ) dt
x
相应于[x, x+dx]的部分面积 -- 面积元素: dA=f(x)dx 关于 x[a, b]累加得整体面积:
A f ( x)dx
a b
元素法: 1. 相应于[x, x+dx]的部分量(元素): dU=f(x)dx
2. 关于 x[a, b]累加得整体量:
第五章
第五节
定积分及其应用
定积分的几何应用举例
主要内容:
一、定积分的元素法; 二、平面图形的面积 ; 三、体积; 四、平面曲线的弧长 .
1
一、 定积分的元素法
设yf(x)0(x[a, b]). 在几何上, 积分上限函数 表示以[a, x]为底的曲边梯形的面积. 微分 dA(x)f(x)dx 表示点 x 处以 dx为宽的小曲边梯形面积的近似值 DAf(x)dx, f(x)dx称为曲边梯形的面 积元素. 以 [a, b] 为底的曲边梯形的面积 A 就是以面积元素 f(x)dx为被积表达式, 以[a, b]为积分区间的定积分.
立体的体积元素为 A(x)dx.
立体的体积为 V b A( x)dx . a
A(x)
14
平行截面面积为A(x)的立体体积: V A( x)dx . a 例6 设平面图形 D 由曲线 y=2x-x2 与 x 轴所围, 求 D 分别绕 x 轴和 y 轴旋转而成的旋转体的体积. 解 如图示:
A ( x - x 2 )dx
0
1
[ 2 3
3 x2
1. - 1 x 3 ]1 3 0 3
6
A [ f 上 ( x) - f下 ( x)]dx
a
b
A [j右 ( x) - j左 ( x)]dx
a
b
例2 计算抛物线y22x与直线yx-4所围成的图形的面积. 解 (1)画图; (2)确定在y轴上的投影区间: [-2, 4]. (3)确定左右曲线:
j 左 ( y) 1 y 2 , j 右 ( y) y + 4 . 2
(4)计算积分
y2 A ( y + 4 - )dy -2 2 [ 1 y 2 + 4 y - 1 y 3 ]4 - 2 18 . 2 6
4
7
三、体积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内一条直线旋转一 周而成的立体. 这直线叫做旋转轴.
弧长:
s
2 2 j (t ) + (t ) d t
o a
1 + f 2 ( x ) d x
xx+dx b x
(2)曲线弧: y f ( x) (a x b)
弧长:
s
b a
18
曲线xj(t)、y(t)(t)的弧长:s
j 2 (t ) + 2 (t ) dt .
d
5
A [ f 上 ( x) - f下 ( x)]dx
a
b
A [j右 ( x) - j左 ( x)]dx
a
b
例1 计算抛物线y2x与yx2所围成的图形的面积. 解 (1)画图; (2)确定在x轴上的投影区间:[0, 1];
(3) 确定上下曲线 : f 上 ( x) x , f 下 ( x) x 2 . (4)计算积分
U f ( x)dx
a
3
b
二、平面图形的面积
1.直角坐标情形
设平面图形由上下两条曲线 yf 上 (x) 与 yf 下 (x) 及左右两条直线 xa与xb所围成. 面积元素为 dA=[f上(x)- f下(x)]dx,
平面图形的面积为 A a [ f上 ( x) - f下 ( x)]dx .
1
y
O
2
x
四、平面曲线的弧长
定义: 若在弧AB 上任意作内接折线, 当折线段的最大
边长→0时, 折线的长度趋向于一个确定的极限, 则称
此极限为曲线弧 AB 的弧长, 即
n
y
M i -1
Mi
s lim M i -1M i 0
i 1
并称此曲线弧为可求长的.
o
A M 0
B Mn
x
例8 求摆线xa(q-sinq), ya(1-cosq)的一拱(0q2 )的 长度. 解 弧长元素为
q ds a 2 (1- cosq ) 2 + a 2 sin 2 q dq 2a sin d q . 2 于是所求弧长为
s 0 2a sin q dq 2 q 2 2a[-2 cos ]0 8a. 2