三年级上-奥数-简单数列求和

合集下载

三年级奥数全册教材

三年级奥数全册教材
能刚好配对,还留下一个数,要弄清这个数是几;有时,一串数虽然个数是双数,但为了计
算简便,往往把其中两个或者几个数放在一旁,将其余数配对,使每对中两数的和恰好是整
十或整百数。
第二讲 加减法中的简便运算
【技巧归纳】
★ 同级运算,括号外面是减号的,添上或去掉括号,括号里的加减号要改变:加号要变成
减号、减号要变成加号;
解 11+12+13+14+15+16+17+18+19 =(11+19)+(12+18)+(13+17)+(14+16)+15 =30×4+15 =135 例【3】 计算:101+102+103+104+105+106+107+108+109+110
分析 此题中每个数里都包含了一个 100,可以把这 10 个 100 分离出来,转化为例 【1】
1
南头镇文艺培训中心——博艺教育 三年级奥数教材
=10×4+5+10 =55 例【2】 计算:11+12+13+14+15+16+17+18+19 分析 将 11 与 19、12 与 18、13 与 17、14 与 16 配成 4 对,再加 15。
11 12 13 14 15 16 17 18 19
★ 当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号,可省略;
★ 常用的简便运算方法:
加法:(1)交换律:A+B=B+A ;
(2)结合律:(A+B)+C=A+(B+C)
减法:(1)A-B-C=A-(B+C)
(2)A-B+C=A-(B-C)
【课堂演练】
【例 1】运用加法中的凑整,计算:
2、99999×7+11111×37
【经典例题 4】计算:125×56

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

三年级奥数--简单数列求和

三年级奥数--简单数列求和

Yi03010第十讲简单数列求和⑴1+5+9+13+…+2001⑵4000-(50+48+46+ (2)⑶(1000+995+990+...+5)+(4+8+12+ (996)⑷2+10+6+15+10+20+…+398+505⑸2002-1+2-3+4-5+…+1948-1949⑹1+2-3+4+5-6+7+8-9+…+97+98-99例2学校举行数学竞赛,规定前15名可以获奖。

比赛结果第一名1人,第二名并列2人,第三名并列3人……第十五名并列15人。

用最简便方法计算出得奖的一共有多少人?例3在1949,1950,1951…1997,1998这五十个正整数中,所有双数之和比所有单数之和大多少?例4在1~200这二百个数中能被9整除的数的和是多少?例539个连续单数的和是1989,其中最大的一个单数是多少?例6有一列数:1,1993,1992,1,1991,1990,1……从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数的和是多少?1.计算题⑴1001+1002+1003+…+9999⑵199+193+187+181+…+103⑶5000-(1+2+3+ (68)⑷(101+103+105+...+457)-(97+99+101+ (439)⑸1000-1001+1002-1003+…+2000-2001+20022.星际影院的第一放映厅有15排座位,后一排比前一排多2个座位,最后一排有56个座位,这个剧院一共有多少个座位?3.霄霄从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写1116个毛笔字,霄霄每天比前一天多写几个大字?。

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案————————————————————————————————作者:————————————————————————————————日期:计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(完整)三年级奥数等差数列求和习题及答案

(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

高斯小学奥数含答案三年级(上)第21讲等差数列求和

高斯小学奥数含答案三年级(上)第21讲等差数列求和

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -对于一个等差数列而言,除了它的首项、公差、项数和末项很重要之外,数列中所有数之和也是非常重要的.在进行等差数列求和时,最常用的方法就是分组法.以123456789++++++++为例:把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项()19+,而且共有项数()9那么多对,所以所有数之和等于:首项末项项数因为我们把原来的等差数列写了2遍,所以所有数之和就等于原来等差数列之和的2倍,于是可以+ + + + + + + + 1 23456789+ + + + + + + + 987654321+先把数列正着写一遍:再把数列反着写一遍:第二十一讲等差数列求和得到等差数列求和公式:2和首项末项项数- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1计算下列各题:(1)36912151821242730+++++++++;(2)4137332925211713951++++++++++.分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:61116212631364146++++++++.例题2计算下列各题:(1)511177783+++++L ;(2)827772127.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100928412L.例题3计算下列各题:(1)10121824共项+++L 14444444244444443;(2)131********共项+++L 1444444442444444443.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习3计算:12101316共项+++L 14444444244444443.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007.小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007.请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?作业1.计算:.2.计算:.3.计算:.31581114L 144424443共项111825102++++L 7067646158555249+++++++课堂内外高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich ).弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.高斯的故事4.一个等差数列的首项是21,从第二项起每一项都比前一项大2,它的前20项之和是多少?5.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉.馋嘴猴前9周一共吃了多少根香蕉?第二十一讲等差数列求和1.例题 1答案:(1)165;(2)231详解:(1)()36912151821242730330102165+++++++++=+锤=.(2)()4137332925211713951411112231++++++++++=+锤=.2.例题 2答案:(1)616;(2)712 详解:(1)先求项数=()8356114-?=,再求和:()583142616原式=+锤=.(2)先求项数=()8275116-?=,827162712原式.3.例题 3答案:(1)390;(2)2041详解:(1)先求末项=()12101666+-?,()1218661266102390原式=+++=+锤=L .(2)先求末项=()1931316121--?,()1931871211931211322041原式=+++=+锤=L .4.例题 4答案:(1)8天;(2)204页详解:先求项数,即多少天=()3615318-?=天,()151********2204++鬃?=+锤=,即共有204页.5.例题 5 答案:360颗详解:利用中间数×项数,共有1524360?颗.6.例题 6 答案:63详解:123621953++++=L ,123632016++++=L ,则多加的数为2007195354-=,则漏加的数为201620079-=,则被重复计算和漏掉的两数之和为54963+=.7.练习 1 答案:234简答:()6111621263136414664692234++++++++=+锤=.8.练习 2 答案:672简答:先求项数=()100128112-?=,10012122672原式.9.练习 3 答案:318简答:先求末项=()10121343+-?,()121013161043122318+++=+锤=L 14444444244444443共项.10.练习 4答案:3600米简答:先求项数,有()6002005019-?=天,()200250600200600923600++鬃?=+锤=,即共游了3600米.11.作业 1答案:476简答:首项为70,末项为49,项数为8.(7049)82476原式.12.作业 2答案:791简答:项数为(10211)7114,和为(10211)142791.13.作业 3答案:1550简答:末项为530395,和为(595)3121550.14.作业 4答案:800简答:公差为2,第20项为2119259,和为(2159)202800.15.作业 5答案:162根简答:前9项的中间项是第5项.所以前9项和为189162.。

小学奥数-简单数列求和

小学奥数-简单数列求和
例2 判断下面的数列中哪些是等差数列?
0 1 1,3,5,7,10,
13,16
0 4 1,2,7,11,
16,……
标题
11,12,13,14, 0 2
15……
1,5,9,13,17, 0 3
21,23
练一练
2.判断下列数列中哪些是等差数列。
0,2,6,12,20, 30,42
6,12,18,24, 30,36,42
算 :

7+7× 2+7× 3+……+7× 50 0
(解



=7×
1+2+3+……+500
) )

=7× [ 1+500 × 500÷ 2]
=876750
小课堂
○○○○ ○○○○○ ○○○○○○
…………………
○○○
○○○
共 10 层
话说唐僧师徒四人还在去西天取经的路 上。一天猪八戒又
偷懒了。孙悟空为了教训一下猪八戒, 变出许多金箍棒压在猪八戒身上。猪八 戒直嚷:“猴哥,你饶了我吧,下次我 再也不敢了。”孙悟空笑着说:“只要 你算出压在你身上的金箍棒一共有多少 根,我就放了你。”这下猪八戒可傻眼 了:他最怕做算术题了。压在猪八戒身 上的金箍棒如图所示,你能帮帮猪八戒 吗?
思考:高斯是怎么算出来的呢?
公式推导
我们先来看看当时的高斯是怎么回答的。 高斯说:“老师, 1加 至 100 可以排两行,第一行顺 着排,第二行倒过来排。”我们来看一下
1 + 2 + 3 + 4 + 5 +……+ 97 + 98 + 99 + 100 100 + 99 + 98 + 97 + 96 +……+ 4 + 3 + 2 + 1

2019年奥数小学三年级精讲与测试第3讲简单数列求和

2019年奥数小学三年级精讲与测试第3讲简单数列求和

2019年奥数小学三年级精讲与测试第3讲简单数列求和知识点、重点、难点当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列.其中固定的差用d表示,和用S表示,项数用n表示,其中第n项用a n表示.等差数列有以下几个通项公式:S=(a1+a n)×n÷2,n=(a n-a1)÷d+1(当a1<a n),a n=a1+(n-1)×d.例题精讲例1 1+2+3+4+5+6+7+8+9解原式=(1+9)×9÷2=10×9÷2=45例2 (1)1+5+9+13+…+解项数=(+1)÷4+1=501S=(1+)×501÷2=1001×501=501501(2)4000-(50+48+46+ (2)解原式=4000-(50+2)×25÷2=4000-26×25=3350例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?解 (1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25 例 4 在1~200这二百个数中能被9整除的数的和是多少?分析:在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198.解项数=(198-9)÷2+1=22.S=(9+198)×22÷2==207×22÷2=2277.例 5 39个连续单数的和是1989,其中最大的一个单数是多少?分析:39个连续单数之和为1989,所以中间一个数是这39个数的平均数,然后再找出其中最大的一个单数.解 1989÷39=51,51+19×2=89.例 6 有一列数:1,1993,1992,1,1991,1990,1,...,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数多的和是多少?分析:仔细观察这一数列,如果把1拿出,正好成为一个等差数列:1993,1992,1991,1990,...,在原数列中三个数一组出现一个1.1993÷3=664...1,可分为664组一个1,即665个1,其余是1993到666,共664×2=1328个数.解 1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.水平测试 3A 卷一、填空题1.1+2+3+4+5+6+7=________2.2+4+6++8+10=_________3.1+3+5+7+9+11+13+15+17=__________4.25+27+29+31+33=________5.+++++=________6.15+20+25+30+35+40=_________7.11-12+13-14+15-16+17-18+19=_________8.(+++...+3+1)-(++1998+...+4+2)=_________9.27+31+35+39+43+47=_________10.121+134+127+130+133+136+139=_________11.101+103+105+...+139=_________二、解答题12.计算:10+13+16+19+...+295+298.13.求200以内的双数之和.14.等差数列7、10、13...的第20项数是几?15.肖肖从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写了1116个毛笔字,肖肖每天比前一天多写了几个毛笔字?B 卷一、填空题1.57+67+77+...+217+227=________2.11+12-13-14+15+16-17-18+...+31+32-33-34+35+36=_______3.1+3++5+7+...+151+153+155=_________4.96+97+98+...+293+294+295=________5.从37到111的所有单数之和是________6.所有三位数的和为_________7.1+4+7+10+...+292+295+298=_________8.1+2+3+...+59+60+59+...+3+2+1=________二、解答题9.计算:(2+4+6+...+100)-(1+2+3+...+50).10.把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有多少个?11.小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?12.小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?13.求100以内所有7的倍数之和.C 卷一、填空题1.25个连续的正整数之和是750,则第13个数是_______,第一个数是_______2.一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试_______次.3.若在第2题中只要找出8把锁所对应的钥匙,那么至多需要试______次4.1+4+5+8+9+12+...+48+49+52=________5.321+320+319+...+124+123+124+...+319+320+321=________6.所有三位数中被26除余5的数之和是________7.学校礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有______个座位.8.1+3+7+13+15+19+25+27+31+...+121+123+127=________二、解答题9.小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同.第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?10.求两位数中所有含有数字5的数之和.11.如图,每个最小的等边三角形的面积是1平方厘米,边长是一根火柴棒,问最大的三角形的面积是多少平方厘米?整个图形由几根火柴棒摆成?12.有10个盒子,44只乒乓球.把这44只乒乓球放到盒子中,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?13.已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,...,这个数列的第40项是哪个数字?前36项之和是多少?简单数列求和答案:A 卷1.28 原式=(1+7)×7÷2=282.30 原式=(2+10)×5÷2=303.81 原式=(1+17)×9÷2=814.145 原式=(25+33)×5÷2=1455.12042 原式=(+)×6÷2=120426.165 原式=(15+40)×6÷2=1657.15 原式=11+(13-12)+(15-14)+(17-16)+(19-18)=15.8.1002 原式=(-)+(-)+...+(3-2)+1=10021001对9.222 原式=(27+47)×6÷2=22210.910 原式=(121+139)×7÷2=91011.2400 原式=(101+139)×[(139-101)÷2+1]÷2=240012.14938 原式=(10+298)×[(298-10)÷3+1]÷2=308×(96+1)÷2=154×97=1493813.200以内所有双数之和等于10100 2+4+6+...+198+200=(2+200)×100÷2=1010014.64 a n=a1+(n-1)×d=7+(20-1)×3=6415.最后一天写了1116×2÷31-6=66(个),(66-6)÷(31-1)=2(个)B 卷1.2556 由于共有(227-57)÷10+1=18项,原式=(57+227)×18÷2=25562.47 原式=(36-34)+(35-33)+(32-30)+(31-29)+...+(16-14)+(15-13)+11+12=24+23=47. 其中每个括号内两项之差为2,所以除11,12外所有和等于项数,即36-13+1=24.3.6084 原式=(1+155)×78÷2=6084,其中项数78=(155-1)÷2+1.4.39100.项数为(295-96)÷1+1=200,原式=(96+295)×200÷2=39100.5.2812.项数为(111-37)÷2+1=38,原式=(37+111)×38÷2=2812.6.494550 100+101+102+103+...+999=(100+999)×900÷2=4945507.14950.项数为(298-1)÷3+1=100,原式=(1+298)×100÷2=14950.8.3600. 原式=(1+59)×59÷2×2+60=3600.9.原式=(2-1)+(4-2)+(6-3)+...+(100-50)=1+2+3+...+50=(1+50)×50÷2=1275.10.36个 1+2+3+4+5+6+7+8=(1+8)×8÷2=36(个).11.550页. 先求小红看了几天,(70-30)÷4+1=11(天).再求这本书的总页数,(30+70)×11÷2=550(页).12.当他18岁时,他共存了1330元.(30+10×(18-5)+30)×(18-5+1)÷2=(30+130+30)×(14÷2)=190×7=1330(元).13.100以内所有7的倍数之和为735.7+14+21+...+98=7×(1+14)×14÷2=735.C 卷1.30,18第13项是中间项,对等差数列中间项等于数列平均数,即750÷25=30;第一个数为30-(13-1)×1=182.464第一把最多试30次,第二把锁最多试29次,...第29把最多试2次,所以共30+29+...+2=(30+2)×29÷2=464(次)3.212第一把锁最多试了30次,第二把锁最多试29次,...第八把最多试23次,所以最多须试30+29+...+23=(30+23)×8÷2=212(次).4.689原式=(1+5+9+...+49)+(4+8+12+...+52)=(1+49)×((49-1)÷4+1)÷2+4×(1+2+...+13)=50×13÷2+4×(1+13)×13÷2=325+364=689.5.88233.原式=(321+124)×((321-124)+1)÷2×2+123=445×198+123=88233.6.19285.原式=26×4+5+26×5+5+...+26×38+5=26×(4+5+...+38)+5×(38-4+1)=19285.7.1320.最后一排座位数为15+2×(30-1)=73,由(15+73)×30÷2=1320(个).8.2101.原式=(1+13+25+...+121)+(3+15+27+...+123)+(7+19+31+...+127)=(1+121)×11÷2+(3+123)×11÷2+(7+127)×11÷2=2101.9.全书共有820页,小华每天比前一天多看4页.(3+79)×20÷2=820(页),(79-3)÷(20-1)=4(页).10.两位数中所有含数字5的数之和为985.(15+25+...+95)+(50+51+...59)-55=(15+95)×9÷2+(50+59)×10÷2-55=495+545-55=985.11.45平方厘米,45根.每层小三角形个数分别是1.3.5.7.9.所以面积是(1+9)×9÷2=45(平方厘米).每层火柴棒根数分别是3.6.9.12.15,所以总根数是(3+15)×5÷2=45(根).12.不能.每个盒子中的乒乓球个数都不相同,所以球的个数有1+2+...+10=55(个).44个乒乓球是不能这样放的.13.这个数列第40项的数字是3,前36项之和为156.由于这个数列每5个重复一次,而40÷5=8,所以第40项就等于前5项中最后一项,即数字为3.由于36÷5=7...1,所以前36之和为(2+7+5+5+3)×7+2=156.附送:A 3 A 1 O A 2 A 4 A 5A 7 A 6 A 8 A 9 A 10 A 11 A 122019年奥数试卷五年级图形的计算及答案班级_____姓名_____得分_____一、填空题。

奥数专题之数列求和1

奥数专题之数列求和1

奥数专题之数列求和1时间: 2009年05月06日作者:佚名来源:网络8021人正在讨论相关问题例1 求100以内所有的奇数的和。

(形成性练习)求100以内所有的偶数的和。

例2 计算:1+2+3-4+5+6+7-8+9……+25+26+27-28=(形成性练习)计算:19+20+21+…+83+84=例3 小明家的闹钟几点钟就敲几下,而且每半点也敲一下。

请问,这只闹钟一昼夜共敲了多少下?(形成性练习)有一列数:19,22,25,28……请问这列数的前99个数的总和是多少?例4 从99开始,每隔三个数写出一个数来:99,103,107……求1999是这数中的第几个数?(形成性练习)求100以内所有3的倍数的和。

例5 把1—91这91个数分成七组,使每组各数的和都相等,这个和是多少?(形成性练习)有8个小朋友聚会,每两人都握手一次,一共要握手多少次?例6 一把钥匙只能开一把锁。

现在有10把锁和可以打开它们的10把钥匙,但全部放乱了。

请问,最多要试多少次可以打开所有的锁?(最多试多少次可以找出打开锁的钥匙?)(形成性练习)木材收购站有一堆圆木,它的每一层都比它的下一层少一根。

小敏数一数,它的最下一层是26根,一共18层。

你知道这堆木材一共有多少根吗?练习题1、求1+2+3+4+……+35+36=2、求2+4+6+……86+88=3、求1+2-3+4+5-6+……+58+59-60=4、求1-2+3-4+5-……+2001-2002+2003=5、31+32+33+……98+99=6、21+22+23+……+99+100=7、在所有的两位数中,十位上比个位上的数字大的数,一共有多少?8、从17开始每隔两个数写出一个数来,便可以得到17,20,23,26……请问:第662个数是多少?9、一个正六边形苗圃,里面均匀地栽着一些小树苗,它的最外面一圈共栽了90棵树苗,而且每个角落上都栽有一棵。

求这个苗圃共栽了多少棵树苗?10、从甲城到乙城的铁路线上,有七个途中停车站(不包括甲乙两站)。

奥数数列求和

奥数数列求和

五年级奥数专题数列求和【同学们一定都很熟悉德国著名学家高斯的故事,他幼年时,就能快速计算出1+2+3+4+5+...+99+100的结果,令老师和同学大吃一惊。

这种按顺序排列的数就叫做数列。

现在让我们来一起学习吧】例1:你能计算出1+2+3+4+...+ 99 + 100的结果吗?【举一反三】:你知道23+ 24+ 25 +...+ 65 + 66 + 67的和是多少吗?例2:计算:1 +3+5+7+...+ 97+99【举一反三】计算:2+8+11+...+101例3:求50以内所有被5除余1的自然数的和。

【举一反三】:求100以内所有被4除余2的自然数的和。

例4:明明寒假在家读《草房子》,他第一天读了20页,由于故事情节精彩,他决定从第二天起,每天都要比前一天多读3页,最后一天读了35页正好把书读完。

这本书共有多少页?【举一反三】:王师傅做一批零件,第一天做了20个,为了提前完成任务,他以后每天都比前一天多做2个,最后一天做了48个,正好做完。

这批零件共有多少个?例5:星星电影院1号厅共有630个座位。

已知第一排有18个座位,最后一排有52个座位,而且相邻两排相差的座位数相等。

相邻的两排相差多少个座位?【举一反三】:新星幼儿园的304个小朋友围成若干个圈( 一圈套一圈)做游戏。

已知内圈有24人,外圈有52人,而且相邻两圈相差的人数相等。

相邻的两圈相差多少人?《巩固练习》【限时15分钟,是时候展现你们真正的技术了】1.计算:1+2+3+4+..+99+100+99+...+4+3+2+12.计算:1+2-3+4+5-6+7+8-9+..+58+59-603.求从16开始,连续99个自然数的和。

4.胡阿姨读一本名著,她第一天读了30页,从第二天起,每天都比前一天多读5页,最后一天读了50页,恰好读完。

这本书共有多少页?5.崇川学校的36名学生在儿童节表演了精彩的舞蹈。

其中有个造型是扇形,最内层有1人,最外层有8人,而且相邻两层相差的人数相等。

三年级上奥数精品讲义等差数列求和

三年级上奥数精品讲义等差数列求和

高斯的烦恼(等差数列求和)知识图谱高斯的烦恼知识精讲一.等差数列求和1.等差数列求和公式:()2=+⨯÷和首项末项项数.2.等差数列项数为奇数时,可以利用中间数来求和.公式为:=⨯和中间数项数.三点剖析本讲主要培养学生的运算能力,其次培养学习的实践应用能力.本讲内容是在等差数列的基础计算上,继续学习等差数列的求和.从“凑整思想”中总结出基本求和公式,并且学习了对于奇数列利用中间数来求和的方法.课堂引入例题1、高斯在上小学时,一天老师布置了一道数学题:计算1234599100+++++++……的和是多少?老师觉得这题还是比较难的,正想坐下休息一会.但是没想到,高斯很快就把写有答案的石板交上来了,上面正写着正确答案——5050.老师不相信,让高斯回去再算,高斯却说:“1和100凑成101,2和99凑成101,________和________凑成________,……这样的数一共有________组,所以它们的和就是____________(列算式).”优秀的你能帮高斯填一下吗?例题2、 根据课堂引入中的方法,求1234564849++++++++…….基本求和公式例题1、 计算:7067646158555249+++++++.例题2、 计算:111825102+++⋅⋅⋅+=_________.今天我们要来来讲一讲高斯的故事.高斯?不就是先生您吗?您要讲您的什么故事呀?当然不是啦,此高斯非彼高斯.应该是说德国的数学家高斯吧?高斯真的很聪明哦~同为高斯,我是没有数学家高斯那么优秀了!但是大家还有机会哦~等差数列求和公式还记得吗?这个数列有多少项呢?例题3、 计算:从1开始的100个连续奇数的和是________.例题4、 柯小南为了减肥,计划每天做仰卧起坐,第一天她做了5个,以后每一天都比前一天多做2个,最后一天做了95个.那么柯小南一共做了多少天的仰卧起坐?共做了多少个仰卧起坐?例题5、 柯小南从27起写了26个连续奇数,唐小虎从26起写了26个连续自然数,然后他们分别将自己写的26个数求和,那么这两个和的差是多少呢?随练1、 计算:________.随练2、 计算:9083763427+++⋅⋅⋅⋅⋅⋅++=________.随练3、 唐小虎为了减肥开始长跑,他第一天跑了600米,以后每天他都比前一天多跑40米,那么前30天里他一共跑了多少米?利用中间数求和例题1、 一个等差数列共13项,那么这个等差数列的中间数是第________项.例题2、 一个等差数列共5项,和等于100,那么这个等差数列的中间项是第________项,这个数是________.例题3、 若9个连续偶数的和是2016,那这些数中,最小的是________.例题4、 7层书架,共777本,每下面一层比上面多7本,最上面一层有多少本书?1317212529333741+++++++=公式我都记住了,这题太简单!中间数的项数跟什么有关呢?已知和,反求中间项,我该用什么方法好呢?例题5、 一个等差数列的第1项是18,前5项的和为160,那么这个等差数列的第8项是________.随练1、 一个等差数列共15项,那么这个等差数列的中间数是第________项. 随练2、 9个连续奇数之和为171,其中最大的奇数是________.易错纠改例题1、 有这样的一道题目:若9个连续奇数的和是2025,那这些数中,最大的是________.看完他们的对话,你能写出正确的计算过程吗?拓展1、 计算:32343638404244464850+++++++++=__________.2、 计算:131925......6773+++++=__________.3、 371115......++++,等差数列共12项,那么这12项的和是__________.4、 雁雁很喜欢吃鸡蛋,她每天吃的鸡蛋数成等差数列,已知她第4天吃了10个鸡蛋,那么雁雁前7天共吃了__________个鸡蛋.5、 一个等差数列的第1项是8,前9项的和为180,那么这个等差数列的第12项是__________.6、 计算:从1开始的100个连续偶数的和是________.7、 9个连续偶数之和为144,其中最大的偶数是__________.8、 暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米.请问:小高这些天里一共游了多少米?9、 分析并口述题目的做题思路及方法.小明把一些珠子放在桌子上的15个盒子里.已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子.请问:这15个盒子中一共有多少颗珠子?这个是求末项的,上节课学过,我可以做哦~但是哪里好像有些不一样呢……求最小的数,也就是求末项呗!题目中给出了项数、和,求末项还需要首项,末项不知道,不能求呀……但是项数是奇数呀,这就够了!有和、项数就行了.对,还得有公差!都有都有,可以解决问题了!。

三年级数列求和先配对奥数题

三年级数列求和先配对奥数题

三年级数列求和先配对奥数题
以下是一个适合三年级学生的数列求和先配对的奥数题:
题目:有一个数列,它的前几个数是这样的:1、2、3、4、5、6、5、4、3、2、1。

从第一个数开始,依次取两个数相加,直到最后两个数相加为止,求所有和的总和。

解析:观察数列,我们可以看到这是一个对称的数列,中间的数是最大的数6。

因此,我们可以将数列分为两部分:前半部分和后半部分。

每一对相加的两个数,一个是前半部分的数,一个是后半部分的数。

由于数列是对称的,每一对的和都是相同的。

解答:我们可以将数列分成以下几组配对的数:(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),(5,1),(4,2),(3,3),(2,4),(1,5)。

每一对的和分别是6、6、6、6、6、12、6、6、6、6、6。

因此,所有和的总和是6×10+12=72。

类似的题目可以帮助学生锻炼数列求和和观察数列规律的能力,同时也可以培养学生的逻辑思维和数学思维能力。

三年级奥数(40讲):三年级奥数答案

三年级奥数(40讲):三年级奥数答案

第1讲寻找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,( 15 ),( 18 )(2)1,2,4,7,11,( 16),( 22)(3)2,6,18,54,( 162 ),( 486 )练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【答案】(1)12,14(2)26,37(3)512,2048(4)625,3125(5)6,1【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,( 6 ),( 2 )(2)21,4,18,5,15,6,( 12 ),( 7 )练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【答案】(1)8,1(2)81,2(3)9,6(4)7,9(5)41,122【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,( 128)41+3×3×3×3 (2)252,124,60,28,( 6 )减4除2 (3)1,2,5,13,34,(89)34×3-13 (4)1,4,9,16,25,36,(49) 7×7练习3:按规律填数。

三年级奥数详解答案-第六讲-简单数列的规律

三年级奥数详解答案-第六讲-简单数列的规律

第六讲找简单数列的规律日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项。

如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。

研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律.例1观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20。

②19,17,15,13,(),9,7。

③1,3,9,27,(),243。

④64,32,16,8,(),2。

⑤1,1,2,3,5,8,(),21,34…⑥1,3,4,7,11,18,(),47…⑦1,3,6,10,(),21,28,36,()。

⑧1,2,6,24,120,(),5040。

⑨1,1,3,7,13,(),31。

⑩1,3,7,15,31,(),127,255。

(11)1,4,9,16,25,(),49,64。

(12)0,3,8,15,24,(),48,63。

(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,()。

分析与解答①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14.②同①考虑,可以看出,每相邻两项的差是一定值2。

奥数小学三年级精讲与测试第3讲简单数列求和

奥数小学三年级精讲与测试第3讲简单数列求和

第3讲简单数列求和知识点、重点、难点当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列.其中固定的差用d表示,和用S表示,项数用n表示,其中第n项用a n表示.等差数列有以下几个通项公式:S=(a1+a n)×n÷2,n=(a n-a1)÷d+1(当a1<a n),a n=a1+(n-1)×d.例题精讲例1 1+2+3+4+5+6+7+8+9解原式=(1+9)×9÷2=10×9÷2=45例2 (1)1+5+9+13+…+2001解项数=(2001+1)÷4+1=501S=(1+2001)×501÷2=1001×501=501501(2)4000-(50+48+46+ (2)解原式=4000-(50+2)×25÷2=4000-26×25=3350例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?解 (1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25例 4 在1~200这二百个数中能被9整除的数的和是多少?分析:在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198.解项数=(198-9)÷2+1=22.S=(9+198)×22÷2==207×22÷2=2277.例 5 39个连续单数的和是1989,其中最大的一个单数是多少?分析:39个连续单数之和为1989,所以中间一个数是这39个数的平均数,然后再找出其中最大的一个单数.解 1989÷39=51,51+19×2=89.例 6 有一列数:1,1993,1992,1,1991,1990,1,...,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数多的和是多少?分析:仔细观察这一数列,如果把1拿出,正好成为一个等差数列:1993,1992,1991,1990,...,在原数列中三个数一组出现一个1.1993÷3=664...1,可分为664组一个1,即665个1,其余是1993到666,共664×2=1328个数.解 1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.水平测试 3A 卷一、填空题1.1+2+3+4+5+6+7=________2.2+4+6++8+10=_________3.1+3+5+7+9+11+13+15+17=__________4.25+27+29+31+33=________5.2002+2004+2006+2008+2010+2012=________6.15+20+25+30+35+40=_________7.11-12+13-14+15-16+17-18+19=_________8.(2003+2001+1999+...+3+1)-(2002+2000+1998+...+4+2)=_________9.27+31+35+39+43+47=_________10.121+134+127+130+133+136+139=_________11.101+103+105+...+139=_________二、解答题12.计算:10+13+16+19+...+295+298.13.求200以内的双数之和.14.等差数列7、10、13...的第20项数是几?15.肖肖从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写了1116个毛笔字,肖肖每天比前一天多写了几个毛笔字?B 卷一、填空题1.57+67+77+...+217+227=________2.11+12-13-14+15+16-17-18+...+31+32-33-34+35+36=_______3.1+3++5+7+...+151+153+155=_________4.96+97+98+...+293+294+295=________5.从37到111的所有单数之和是________6.所有三位数的和为_________7.1+4+7+10+...+292+295+298=_________8.1+2+3+...+59+60+59+...+3+2+1=________二、解答题9.计算:(2+4+6+...+100)-(1+2+3+...+50).10.把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有多少个?11.小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?12.小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?13.求100以内所有7的倍数之和.C 卷一、填空题1.25个连续的正整数之和是750,则第13个数是_______,第一个数是_______2.一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试_______次.3.若在第2题中只要找出8把锁所对应的钥匙,那么至多需要试______次4.1+4+5+8+9+12+...+48+49+52=________5.321+320+319+...+124+123+124+...+319+320+321=________6.所有三位数中被26除余5的数之和是________7.学校礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有______个座位.8.1+3+7+13+15+19+25+27+31+...+121+123+127=________二、解答题9.小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同.第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?10.求两位数中所有含有数字5的数之和.11.如图,每个最小的等边三角形的面积是1平方厘米,边长是一根火柴棒,问最大的三角形的面积是多少平方厘米?整个图形由几根火柴棒摆成?12.有10个盒子,44只乒乓球.把这44只乒乓球放到盒子中,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?13.已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,...,这个数列的第40项是哪个数字?前36项之和是多少?简单数列求和答案:A 卷1.28 原式=(1+7)×7÷2=282.30 原式=(2+10)×5÷2=303.81 原式=(1+17)×9÷2=814.145 原式=(25+33)×5÷2=1455.12042 原式=(2002+2012)×6÷2=120426.165 原式=(15+40)×6÷2=1657.15 原式=11+(13-12)+(15-14)+(17-16)+(19-18)=15.8.1002 原式=(2003-2002)+(2001-2000)+...+(3-2)+1=10021001对9.222 原式=(27+47)×6÷2=22210.910 原式=(121+139)×7÷2=91011.2400 原式=(101+139)×[(139-101)÷2+1]÷2=240012.14938 原式=(10+298)×[(298-10)÷3+1]÷2=308×(96+1)÷2=154×97=1493813.200以内所有双数之和等于10100 2+4+6+...+198+200=(2+200)×100÷2=1010014.64 a n=a1+(n-1)×d=7+(20-1)×3=6415.最后一天写了1116×2÷31-6=66(个),(66-6)÷(31-1)=2(个)B 卷1.2556 由于共有(227-57)÷10+1=18项,原式=(57+227)×18÷2=25562.47 原式=(36-34)+(35-33)+(32-30)+(31-29)+...+(16-14)+(15-13)+11+12=24+23=47. 其中每个括号内两项之差为2,所以除11,12外所有和等于项数,即36-13+1=24.3.6084 原式=(1+155)×78÷2=6084,其中项数78=(155-1)÷2+1.4.39100.项数为(295-96)÷1+1=200,原式=(96+295)×200÷2=39100.5.2812.项数为(111-37)÷2+1=38,原式=(37+111)×38÷2=2812.6.494550 100+101+102+103+...+999=(100+999)×900÷2=4945507.14950.项数为(298-1)÷3+1=100,原式=(1+298)×100÷2=14950.8.3600. 原式=(1+59)×59÷2×2+60=3600.9.原式=(2-1)+(4-2)+(6-3)+...+(100-50)=1+2+3+...+50=(1+50)×50÷2=1275.10.36个 1+2+3+4+5+6+7+8=(1+8)×8÷2=36(个).11.550页. 先求小红看了几天,(70-30)÷4+1=11(天).再求这本书的总页数,(30+70)×11÷2=550(页).12.当他18岁时,他共存了1330元.(30+10×(18-5)+30)×(18-5+1)÷2=(30+130+30)×(14÷2)=190×7=1330(元).13.100以内所有7的倍数之和为735.7+14+21+...+98=7×(1+14)×14÷2=735.C 卷1.30,18第13项是中间项,对等差数列中间项等于数列平均数,即750÷25=30;第一个数为30-(13-1)×1=182.464第一把最多试30次,第二把锁最多试29次,...第29把最多试2次,所以共30+29+...+2=(30+2)×29÷2=464(次)3.212第一把锁最多试了30次,第二把锁最多试29次,...第八把最多试23次,所以最多须试30+29+...+23=(30+23)×8÷2=212(次).4.689原式=(1+5+9+...+49)+(4+8+12+...+52)=(1+49)×((49-1)÷4+1)÷2+4×(1+2+...+13)=50×13÷2+4×(1+13)×13÷2=325+364=689.5.88233.原式=(321+124)×((321-124)+1)÷2×2+123=445×198+123=88233.6.19285.原式=26×4+5+26×5+5+...+26×38+5=26×(4+5+...+38)+5×(38-4+1)=19285.7.1320.最后一排座位数为15+2×(30-1)=73,由(15+73)×30÷2=1320(个).8.2101.原式=(1+13+25+...+121)+(3+15+27+...+123)+(7+19+31+...+127)=(1+121)×11÷2+(3+123)×11÷2+(7+127)×11÷2=2101.9.全书共有820页,小华每天比前一天多看4页.(3+79)×20÷2=820(页),(79-3)÷(20-1)=4(页).10.两位数中所有含数字5的数之和为985.(15+25+...+95)+(50+51+...59)-55=(15+95)×9÷2+(50+59)×10÷2-55=495+545-55=985.11.45平方厘米,45根.每层小三角形个数分别是1.3.5.7.9.所以面积是(1+9)×9÷2=45(平方厘米).每层火柴棒根数分别是3.6.9.12.15,所以总根数是(3+15)×5÷2=45(根).12.不能.每个盒子中的乒乓球个数都不相同,所以球的个数有1+2+...+10=55(个).44个乒乓球是不能这样放的.13.这个数列第40项的数字是3,前36项之和为156.由于这个数列每5个重复一次,而40÷5=8,所以第40项就等于前5项中最后一项,即数字为3.由于36÷5=7...1,所以前36之和为(2+7+5+5+3)×7+2=156.。

小学三年级奥数教程讲义

小学三年级奥数教程讲义

小学三年级奥数教程讲义Newly compiled on November 23, 2020小学三年级奥数教程学校:________________________班次:__________________________姓名:_________________________目录◆第一讲加减法的巧算(一)◆第二讲加减法的巧算(二)◆第三讲乘法的巧算◆第四讲配对求和◆第五讲找简单的数列规律◆第六讲图形的排列规律◆第七讲数图形◆第八讲分类枚举◆第九讲填符号组算式◆第十讲填数游戏◆第十一讲算式谜(一)◆第十二讲算式谜(二)◆第十三讲火柴棒游戏(一)◆第十四讲火柴棒游戏(二)◆第十五讲从数量的变化中找规律◆第十六讲数阵中的规律◆第十七讲时间与日期◆第十八讲推理◆第十九讲循环◆第二十讲最大和最小◆第二十一讲最短路线◆第二十二讲图形的分与合◆第二十三讲格点与面积◆第二十四讲一笔画◆第二十五讲移多补少与求平均数◆第二十六讲上楼梯与植树◆第二十七讲简单的倍数问题◆第二十八讲年龄问题◆第二十九讲鸡兔同笼问题◆第三十讲盈亏问题◆第三十一讲还原问题◆第三十二讲周长的计算◆第三十三讲等量代换◆第三十四讲一题多解◆第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

小学奥数-(数列求和)PPT

小学奥数-(数列求和)PPT
contents
目录
01
教学课件概述
教学课件是根据教学大纲和教学目标,针对特定教学内容制作的多媒体教学资源。
定义
旨在辅助教师进行教学,提高教学效果,增强学生的学习兴趣和参与度。
目的
定义与目的
演示型课件
交互型课件
游戏型课件
仿真型课件
课件类型及特点
01
02
03
04
以幻灯片、动画等形式展示教学内容,适用于课堂演示和讲解。
数列求和
小学奥数全能解法及训练
解法精讲
精讲1
(1)1、2、3、4、5、6
(2)2、4、6、8、10、12
(3)5、10、15、20、25、30
数列
首项
末项
项数
a1
an
n
精讲2
(1)1、2、3、4、5、6
(2)2、4、6、8、10、12
(3)5、10、15、20、25、30
1
2
5
公差
等差数列
d
精讲3
数列:1、3、5、7、9、11……
首项+公差×(2-1)
第3项: 5=1+2 ×2
第4项: 7=1+2 ×3
第2项: 3=1+2
首项+公差×(3-1)
首项+公差×(4-1)
an=a1+(n-1)×d
精讲4
数列:6 、10 、14 、18 、22 、26 30 、34 、38
将多张图片进行排版和组合,形成具有逻辑关系和视觉冲击力的图表或画廊效果。
图片排版与组合
图片编辑与美化方法
选用通用的音频视频格式,确保课件能够在不同设备和平台上正常播放。

三年级奥数数表规律(A级)

三年级奥数数表规律(A级)

一、数列的定义按一定次序排列的一列数就叫做数列;数列中每个数都叫做这个数列的项,其中的第一个数称为这个数列的第1项,第2个数称为第2项,第n 个数称为第n 项。

根据数列中项的个数分类,把项数有限的数列(即有有穷多个项的数列)称为有穷数列;把项数无限的数列(即有无穷多个数的数列)称为无穷数列。

研究数列的目的是为了发现其中的内在规律,以作为解决问题的依据。

【诀窍】1,比较简单的数列,一般从相邻两数的和差积商中找规律,稍复杂的数列,要全方位入手,把数列合理地拆分成为几部分,分别考察,还要把每个数与项数之间联系起来考虑。

2,图形中的数在图形中所处的位置,往往与它们之间的变化规律有关,需要仔细进行分析,才能找到规律;3,由若干数组组成的数列,要分别找出数组中各位商数的规律,然后再按题目要求求解。

【注意】通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.二、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;知识框架数表规律和 :一个数列的前n 项的和,常用n S 来表示 .三、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲一、简单数列规律【例1】例1 下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字.【巩固】用数字摆成下面的三角形,请你仔细观察后回答下面的问题:①这个三角阵的排列有何规律?②根据找出的规律写出三角阵的第6行、第7行。

小学奥数知识点:数列求和

小学奥数知识点:数列求和

小学奥数知识点:数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;小学奥数经典题1.两辆汽车从A,B两地同时出发相向而行,客车行完全程要8小时,货车行完全程要10小时,两车相遇后又各自往前驶去,已知出发5小时后两车相距50千米,问A,B两地相距多少千米?2.有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?3.工程队挖一条水渠,第一天挖了全长的多28米,第二天挖了全长的少20米,这时剩下22米没挖完.这条水渠全长多少米?4.如图,一个边长为40厘米的正方形ABCD的场地,蚂蚁和蜗牛同时从A 点出发,蚂蚁以5厘米/分钟的速度沿线路A→B→C→D行走,蜗牛以2厘米/分钟的速度沿线路A→D行走.出发18分钟时,蚂蚁走到E点,蜗牛走到F点,求三角形AEF的面积是多少平方厘米?5.运来一批水果.第一天卖出总数的15%,第二天卖出160千克,剩下的与卖出的重量的比是1:3.这批水果共有多少千克?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单数列求和
当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列。

其中固定的差用d 表示,和用S 表示,项数用n 表示,其中第n 项用n a 表示。

等差数列有以下几个通项公式:
S=(n a a +1)× n ÷ 2
n=(1a a n -)÷d+1(当 1a < n a ),
)1(1-+=n a a n ×d
例1 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
例2 (1)1 + 5 + 9 + 13 +…+ 2001 =
(2)4000 -( 50 + 48 + 46 +…+ 2)=
例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?
例4 在1 ~ 200这二百个数中能被9整除的数的和是多少?
例5 39个连续单数的和是1989,其中最大的一个单数是多少?
例6 有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第一个到第1993个数这些数的和是多少?
1、25个连续的正整数之和是750,则第13个数是,第一个数是。

2、一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试次。

3、若在第二题中只要找出8把锁对应的钥匙,那么至多需要试次。

4、1 + 4 + 5 + 8 + 9 + 12 + ··· + 48 + 49 + 52 = 。

5、321 + 320 + 319 +···+ 124 + 123 + 124 +···+ 319 + 320 + 321 =
6、所有三位数中被26除余5的数之和是多少?
7、学习礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有多少个座位?
8、1 + 3 + 7 + 13 + 15 + 19 + 25 + 27 + 31 +···+ 121 + 123 + 127 =
9、小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同。

第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?
10、求两位数中所有含有数字5的数之和。

11、有10 个盒子,44只乒乓球。

把这44只乒乓球放到盒子里,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?
12、已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,···,这个数列的第40 项是哪个数字?前36项之和是多少?
1、1 + 2 + 3 + 4 + 5 + 6 + 7 =
2、2 + 4 + 6 + 8 + 10 =
3、1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 =
4、25 + 27 + 29 + 31 + 33 =
5、2002 + 2004 + 2006 + 2008 + 2010 + 2012 =
6、15 + 20 + 25 + 30 + 35 + 40 =
7、11 - 12 + 13 - 14 + 15 - 16 + 17 - 18 + 19 =
8、(2003 + 2001 + 1999 +···+ 3 + 1 )-(2002 + 2000 + 1998 +···+ 4 + 2 )=
9、27 + 31 + 35 + 39 + 43 + 47 =
10、121 + 124 + 127 + 130 + 133 + 136 + 139 =
11、101 + 103 + 105 +···+ 139 =
12、计算:10 + 13 + 16 + 19 +···+ 295 + 298 =
13、求200以内的双数之和。

14、等差数列7、10、13、···的第20项数是几?
15、霄霄从7月1日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写1116个毛笔字,霄霄每天比前一天多写几个大字?
1、57 + 67 + 77 +···+ 217 + 227 =
2、11 + 12 - 13 - 14 + 15 + 16 - 17 - 18 +···+ 31 + 32 - 33 - 34 + 35 + 36 =
3、1 + 3 + 5 + 7 +···+ 151 + 153 + 155 =
4、96 + 97 + 98 +···+ 293 + 294 + 295 =
5、从37到111的所有单数之和是多少?
6、所有三位数的和为多少?
7、1 + 4 + 7 + 10 +···+ 292 + 295 + 298 =
8、1 + 2 + 3 +···+ 59 + 60 + 59 +···+ 3 + 2 + 1 =
9、( 2 + 4 + 6 +···+ 100 )-( 1 + 2 + 3 +···+ 50 )=
10、把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不相同的话,这堆苹果至少应该有多少个?
11、小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?
12、小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?
13、求100以内所有7的倍数之和。

学习顾问签字:学科负责人签字:。

相关文档
最新文档