相似图形综合复习导学案

合集下载

九年级数学上册3.3相似图形导学案(新版)湘教版

九年级数学上册3.3相似图形导学案(新版)湘教版

3.3 相似图形1.了解相似三角形、相似多边形的概念和性质.2.会用相似多边形的性质解决简单的几何问题.阅读教材P73-75,弄清楚相似图形的概念,能正确判断两个图形是否相似;自学反馈学生独立完成后集体订正①把图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形和得到的.③从放大镜里看到的三角板和原来的三角板相似吗?④哈哈镜中人的形象与本人相似吗?⑤全等三角形相似吗?⑥生活中哪些地方会见到相似图形?⑦如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的,请分别求出这两个四边形的对应边的长度,并分别量出这两个四边形各个内角的度数,然后与你的同伴议一议:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?要说明两个相似多边形,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成比例;但要说明不相似,则只要否定其中一个条件即可.活动1 小组讨论例1 下列各图中哪组图形是相似图形( C )观察图形,要从本质入手,如C,将小图的位置稍加旋转就可以发现它们是相似图形.例2两个相似的五边形,一个各边长分别为1,2,3,4,5,另一个最大边长为10,求后一个五边形的最短边的长.分析:根据相似多边形的对应边的比相等可得.解:两个相似的五边形,最长的边是5,另一个最大边长为10,则相似比是5∶10=1∶2,根据相似五边形的对应边的比相等,因而设后一个五边形的最短边的长为x,则1∶x=1∶2.解得x=2,后一个五边形的最短边的长为2.活动2 跟踪训练(独立完成后展示学习成果)1.将一个直角三角形扩大3倍,得到的三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能2.已知△ABC∽△DEF,若∠A=60°,∠B=70°,则∠E的度数为( )A.50°B.60° C.70°D.80°3.如图,△ADE∽△ABC,若AD=2,BD=3,则△ADE与△ABC的相似比是( )A.2:3 B.2:5 C.1:2 D.3:24. 如果△ABC∽△A′B′C′,BC=1,B′C′=2,则△ABC与△A′B′C′的相似比为_______.5. 若△ABC∽△A′B′C′,且∠A=50°,∠B=45°,则∠C′= °.6. 一个四边形的各边之比为2:3:5:6,和它相似的另一个四边形的最大边为15cm,则它的最小边长为cm.7. 如图,BD与CE相交于点A,已知,AB=6,AC=4,AD=3,且△ABC与△ADE相似,求AE的长.8. 根据图中所示,这两个菱形相似吗?说说你的理由.活动3 课堂小结本节课学习的数学知识:形状相同的图形是相似图形;两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.本节学习的数学方法:观察类比法.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈①形状相同的图形②放大 缩小③相似④不相似⑤相似⑥略⑦对应角相等,对应边成比例【合作探究】活动2 跟踪训练1. A2. C3. B4. 1:25. 856.57. ∵△ABC ∽△ADE ,∴AEAC AD AB =.∴AE 436=.∴AE=2. 8. 不相似.理由:∵菱形的四条边都相等,∴这两个菱形对应边成比例, ∵第一个菱形的内角分别为45°,135°,45°,135°,第二个菱形的内角分别为60°,120°,60°,120°,它们不对应相等, ∴这两个菱形不相似.。

第四章 图形的位似 复习课导学案

第四章  图形的位似  复习课导学案

图3EDCB A 丹东市第二十四中学 第四章 图形的相似 复习课导学案主备:曹玉辉 副备:李春贺 孙芬 审核: 2014-9-18 一、学习准备:相似图形的性质及判定;位似图形的性质。

二、复习目标 1、 通过阅读材料,熟记相似图形、位似图形的性质及相似三角形判定;2、 通过标杆题组的学习,能够利用相似图形的性质解决简单问题并会作位似图形。

三、复习提示:考点1、线段的比、成比例线段:(1) 叫做这两条线段的比; (2)四条线段a 、b 、c 、d ,如果 那么这四条线段叫做成比例线段。

记作 或 ,其中 叫做比例内项, 叫做比例外项。

考点2、比例的基本性质:(字母表示) 基本性质: ;合分比性质: ;等比性质: 。

例:已知x +2y 3y =53,则xy= . 考点3、相似三角形的概念、性质(1) 的三角形叫做相似三角形; (2)相似三角形的性质:① ; ② ; ③ ; ④ 。

例:如图3,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°,DE//BC. 则∠AED 的度数是 。

考点4、两个三角形相似的条件(1) ;(2) ;(3) ;例:如图在△ABC 中D 是AB 边上一点,连接CD , 要使△ADC 与△ABC 相似,应添加的条件是考点5、位似图形(1)如果两个图形 ,那么这两个图形叫做位似图形;(2)位似图形的性质① ; ② ;CB ③ 。

例:如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的 比值是 .【例题精讲】例题1. 已知a 2=b 3=c 4,且a ,b ,c 都是正数,则a +3b -2c2a +b= .例题2.( 西双版纳州)已知△ABC ∽△C B A ''',且ABC S ∆∶C B A S ''''∆=16∶9,若AB =2,则B A ''= .例题3 .如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )例4.如图10,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)ABC四、学习小结:五、能力提升:(一)填空题1.如图2所示,在△ABC 中,DE∥BC,若13AD AB =,DE=2,则BC 的长为________. 2.如图3所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作DE⊥BC 交AB 于E ,若ED=1,BD=2,则DC 的长为________.图3O ABCD E B ′′E ′3.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为___________米.二、选择题4.(2012·聊城)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论中不正确的是( )A .BC =2DEB .△ADE ∽△ABC C .AD AE =AB ACD .S △ABC =3S △ADE5.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若AO ∶OC =OB ∶OD ,则下列结论中一定正确的是( ) A .①与②相似 B .①与③相似 C .①与④相似 D .②与④相似六、能力提升:6.如图所示,在6×8的网格图中,每个小正方形的边长均为1.点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A′B′C ′,使△A′B′C ′和△ABC 位似,且位似比为1∶2.(2)连接(1)中的AA ′,求四边形AA′C′C 的周长(结果保留根号).布置作业: 【评价反思】自我 评价 反思学习态度 A B C D 学习效果 A B C D 合作情况 ABCD尚需改进第1题 第2题 2米第3题9.6米。

相似图形导学案(教师版)

相似图形导学案(教师版)

第三章 相似图形第一节 线段的比(一) ◆导学目标1、了解线段的比、成比例线段的概念,会判断已知线段是否成比例。

2、掌握比例的基本性质。

3、通过画图、推理等方法,加强探索和合情推理。

◆课前预习预习课本P76~P78。

完成下列各题:1、在Rt △ABC 中,︒=∠90C ,︒=∠30A ,则A C ︰AB= ,AC ︰BC= 。

2、已知M 是线段AB 延长线上一点,且AM :BM =5:2则AB :BM 为( ) A.3:2 B .2:3 C .3:5 D .5:23、两条线段长度的比与所采用的长度单位有没有关系?4、什么是两条线段的比?比值有单位吗?5、什么是成比例线段(简称:比例线段)?比例的基本性质是什么?6、请提出预习过程中不能理解的问题?◆课堂导学若选用同一个长度单位量得两条线段AB 、CD 的长度分别为m 、n ,那么就说这两条线段的比AB ︰CD=m ︰n ,或写成nmCD AB =。

AB 、CD 分别叫做这个线段比的前项和后项。

(注意:两条线段的比不仅单位要统一、而且要有顺序)。

若把n m 表示为比值k ,那么k CDAB=,或CD k AB ∙= 例1:在某县比例尺为1︰400 000的地图上,量得甲、乙两地的距离是4cm 出甲乙两地的实际距离。

分析:比例尺=图上距离︰实际距离四条线段d c b a ,,,中,如果a 与b 的比等于c 与d 的比,即a:b=c:d,或dc b a =,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段。

这四条线段是有顺序的,其中a 和d 叫做比例外项,b 与c 叫做比例内项。

如果比例内项是相等的线段,即cbb a =,那么b 叫做a 和c 的比例中项。

比例的基本性质: 如果dcb a =,则有bc ad =。

即比例的外项之积等于比例的内项之积。

如果bc ad =(d c b a ,,,都不等于0),那么dcb a =他的比例式)。

图形的相似期中复习导学案1

图形的相似期中复习导学案1

2012-2013学年度第二学期八年级数学期中复习学案(1)第十章 图形的相似编写:罗俊 审阅:张元国 2013-4-18班级 学号 姓名一、知识回顾 1.位似与位似作图 2.平行投影3.物高与影长的关系4.中心投影5.视点、视线、盲区二、例题讲解例1. 如图,△ABC 的三个顶点坐标分别为A (-2,4)、B (-3,1)、C (-1,1),以坐标原点O 为位似中心,相似比为2,在第二象限内将△ABC 放大,放大后得到△A′B′C′. (1)画出放大后的△A′B′C′,并写出点A′、B′、C′的坐标.(点A 、B 、C 的对应点为A′、B′、C′)(2)在(1)中,若M (a ,b )为线段AB 上任一点,写出变化后点M 的对应点M ′的坐标. (3)求△A′B′C′的面积.例2.乐乐想利用影长测量学校旗杆AB 的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD 处,另一部分在某一建筑的墙上CD 处,分别测得其长度为9.6米和2米,求旗杆AB 的高度.例3.电线杆上有一盏路灯O ,电线杆与三个等高的标杆整齐划一地排在马路的一侧,AB 、CD 、EF是三个标杆,相邻两个标杆之间的距离都是2米.已知AB 、CD 在灯光下的影长分别(如图)BM=1.6m,DN=0.6m.(1)请画出路灯O 的位置和标杆EF 在路灯下的影子; (2)求标杆EF 的影长.例4.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点 )20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?三、课堂练习 1.在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图所示.在射击时小明有轻微抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为 ( ) A .3米 B .0.3米 C .0.03米 D .0.2米2.如图是小孔成像原理的图,据图中所标注尺寸,这支蜡烛在暗盒中所成的像CD 的长为 ( )A.61 cmB.31 cmC.21cm D.1 cm第1题图 第2题图 第3题图3. 如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,对应边CD=3,C ′D ′=2.若位似中心P 点到点A的距离为6,则P 到A ′的距离为__________.4. 在同一时刻,如果高为1m 的标杆的影长为0.5m ,那么影长为20m 的旗杆的高是__________.5. 如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(4,0),则E 点的坐标为____________.6. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的2倍,那么点B ′的坐标是第5题图 第6题图 第7题图7. 亮亮和颖颖两人用下面方法测量楼高:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距CD=1.25m ,颖颖与楼之间的距离DN=30m (C ,D ,N 在一条直线上),颖颖的身高BD=1.6m ,亮亮蹲地观测时眼睛到地面的距离AC=0.8m .你能根据以上测量数据帮助他们求出住宅楼的高度吗?。

北师大版九年级数学上册《图形的相似》导学案:成比例线段

北师大版九年级数学上册《图形的相似》导学案:成比例线段

北师大版九年级数学上册《图形的相似》导学案1. 成比例线段(第一课时)【学习目标】1.了解线段的比概念;2.会求两条线段的比,应用线段的比解决实际问题.【知识梳理】1.如果选用 量得两条线段AB,CD 的长度分别是m ,n ,那么这两条线段的比就是它们 ,即 或写成 .2.四条线段a,b,c,d 中如果 ,即 ,那么这四条线段a,b,c,d 叫做 ,简称 .3.比例的基本性质:如果dc b a ,那么 ;如果ad=bc (a,b,c,d 都不等于0),那么 .【典型例题】知识点一:两条线段的比1.一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是 .2.已知A 、B 两地的实际距离是60km,画在地图上其距离A ’B ’是6cm ,求这幅地图的比例尺 .知识点二:成比例线段3.已知线段a=1cm ,b=2.4cm ,c=2cm ,d=4.8cm ,这四条线段是成比例线段吗?知识点三:比例基本性质4.若x 是3、4、9的第四比例项,则x = .5.已知线段a =4cm ,b =9cm ,线段c 是a 、b 的比例中项,则线段c 的长为 .6.已知a=3,b=6,c=9(1)若a,b,c,x 是成比例线段,求x (2)若a,x,b,c 是成比例线段,求x【巩固训练】1.已知:线段a=7cm ,b=2cm ,则= .2.如果线段a=2cm ,b=8cm ,c=4cm ,那么a 、b 、c 的第四比例项d 为 .3.已知线段b 是a,c 的比例中项,a=9cm,c=25cm,则b 等于 cm.4.把mn=pq (m,n,p,q 都不等于0)写成比例式,写错的是( )a bA. B. C. D. 5.若(m+n):n=3:2,则m:n 的值是( )A.3:2B.2:3C.1:2D.5:26.已知点C 是直线AB 上的一点,且AB ∶BC=1∶2,那么AC ∶BC 等于 .7.若a ∶b=2∶3,且a+b=10,则 a-2b 的值是( )A.-10 B-8 C.4 D.68.如图,△ABC 中, ,且DE=10,BC=15,AG=4,求AH .9.如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且. ①求AD 的长;②求证:m q p n =p n m q =q n m p =m p n q=8题图 AG DE AH BC =9题图北师大版九年级数学上册《图形的相似》导学案1.成比例线段(第二课时)【学习目标】1.知道成比例线段的两个基本性质及其简单应用;2.运用比例的基本性质解决有关问题.【知识梳理】阅读课本87页——90页内容,完成下列问题:1.如图,已知d c b a ==3,则b b a +=d d c +吗?2.如果d c b a ==k (k 为常数),那么d d c b b a +=+成立吗?为什么?3.如果d c b a =,那么d d c b b a -=-成立吗?为什么?4.性质一:如果dc b a =,那么 . 5.性质二:如果d c b a ==…=n m =k (b+d+…+n ≠0),那么 = = .你能写出推理过程吗?【典型例题】知识点一:合比性质1.已知a:b=3:2,且a-b=10,则a+b = .2.若3,则=xy ; =y x 2 ;=-y y x 2 . 知识点二:等比性质 3.已知:d c b a ==fe =5(b+d+f ≠0) (1)fd be c a +-+- (2)f b e a 55--【巩固训练】1.填空(1)若x y = 25 则=xy ;=-y y x ; =+y y x 2 .(2)已知23=a b 则=+b a b ;=-b a b 2 . 2.已知345c b a ==,则=+--+cb ac b a 32 . 3.已知a 、b 、c 是△ABC 的三边,且a+b+c=60cm ,a:b:c=3:4:5,求△ABC 的面积。

2022年初中数学《相似图形》导学案(推荐)

2022年初中数学《相似图形》导学案(推荐)

第二十七章相似第1课时相似图形一、新课导入情景:依次展示每组图片,供学生欣赏.问题:每组图片中的两张图片有何关系?由此导入新课.〔1〕结合具体实例认识相似图形, 理解相似图形的概念, 会判断两个图形是否相似.〔2〕知道成比例线段,会求线段的比,知道相似多边形的对应角相等,对应边的比相等.3.学习重、难点重点:图形相似及相似多边形的性质.难点:线段成比例的意义.二、分层学习〔1〕自学内容:教材P24~P25思考.〔2〕自学时间:5分钟.〔3〕学习方法:结合实际谈谈自己对相似图形的理解,并完成自学参考提纲.〔4〕自学参考提纲:①形状相同的图形叫做相似图形.两个图形相似, 其中一个图形可以看作由另一个图形放大或缩小得到.举例说明〔可以是书上的图片〕.②用一个放大镜观察一个图形,通过放大镜看到的图形与原图形相似.(填“相似〞或“不相似〞)③全等的两个图形是相似的.(填“相似〞或“不相似〞)④如果两个图形相似, 那么它们的形状相同, 而与它们的大小无关.⑤同一个人在平面镜中的像与哈哈镜中的像相似吗?为什么?不相似.哈哈镜中的像的形状发生了变化.2.自学:学生参考自学指导进行自学.〔1〕师助生:①明了学情:通过实例明了学生对相似图形的理解情况.②差异指导:对分不清相似图形的学生进行指导.〔2〕生助生:小组内相互交流、研讨.〔1〕相似图形的概念及实例.〔2〕练习:①如图1,放大镜里看到的三角尺和原来的三角尺相似吗?答案:相似.②如图2,图形a~f中,哪些图形是与图形〔1〕或〔2〕或〔3〕相似的?答案:与图形〔1〕相似的有ac;与图形〔2〕相似的有d;与图形〔3〕相似的有g.〔1〕自学内容:教材P26方框中的内容.〔2〕自学时间:5分钟.〔3〕自学方法:完成自学参考提纲.〔4〕自学参考提纲:①对于四条线段a,b, c, d, 如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d(或ad=bc) , 那么这四条线段叫做成比例线段, 简称成比例.②什么是比例尺?③如果线段a,b,c,d满足a∶b=c∶d,a=3,b=4,d=8,那么c=6.④一张桌面的长a=1.25 m,宽b=0.75 m,那么长与宽的比是多少?〔5∶3〕a.如果a=125 cm,b=75 cm,那么长与宽的比是多少?〔5∶3〕b.如果a=1250 mm,b=750 mm,那么长与宽的比是多少?〔5∶3〕⑤在比例尺是1∶10000000的地图上,量得甲乙两地的距离是30 cm,求两地的实际距离.30×10000000=300000000〔cm〕=3000(km).即两地的实际距离为3000 km.⑥a b a c b ckc b a+++===,求k的值.∵a+b=kc,a+c=kb,b+c=ka,a+b+a+c+b+c=k(a+b+c),即2〔a+b+c〕=k(a+b+c),∴k=2.2.自学:学生参考自学指导进行自学.〔1〕师助生:①明了学情:了解学生怎样理解线段成比例.②差异指导:根据学情进行指导.〔2〕生助生:小组间相互交流、研讨.4.强化:线段的比与成比例线段及等比式的处理.三、评价1.学生学习的自我评价:这节课你有什么收获?有哪些缺乏?2.教师对学生的评价:〔1〕表现性评价:从学生答复以下问题,课堂的注意力等方面进行评价.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕.本课时作为“图形的相似〞的起始课,先通过大量的实例、图片来激发学生的学习兴趣,发动学生去发现、去参与寻找相似图形,给学生提供展示自我的时间和时机.学生通过画图、动手操作等实践活动加强对相似图形的理解,并能熟练判断图形的相似.一、根底稳固〔70分〕1.(10分)以下说法正确的选项是〔D〕2.(10分) 线段a,b,c,d满足ab=cd,把它改写成比例式,错误的选项是〔B〕A.a cd b= B.a cb d= C.d ba c= D.a dc b=3.(10分) 以下列图形中不一定是相似图形的是〔C〕4.(10分)a,b,c,d是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,那么d=4cm.5.(10分)如图,放大镜里看到的的角与原来的角的关系是相等.6.(20分)观察以下列图形,指出哪些是相似图形,用“线〞将相似的图形连接起来.二、综合应用〔20分〕7.(10分)以下各组中的四条线段成比例的是〔C〕23 B.a=4,b=6,c=5,d=105,c=23,d=15 D.a=2,b=3,c=4,d=18.(10分) A 、B 两地的实际距离为2500 m ,在一张地图上的距离是5 cm ,那么这张地图的比例尺是1∶50000. 三、拓展延伸〔10分〕 9.(10分)234x y z ==,求2x y z -的值. 解:22132124x y x y z z z -=-=-⨯=-. 5.3.1 平行线的性质 一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P 18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a ∥b,再画一条截线c 与直线a 、b 相交〔如图1所示〕. ②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕. 〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

相似三角形复习导学案

相似三角形复习导学案

相似三角形复习导学案一、学习目标1、掌握相似三角形的定义、性质和判定定理。

2、能够熟练运用相似三角形的性质和判定解决相关问题。

3、通过复习,提高对图形的观察、分析和推理能力。

二、知识梳理1、相似三角形的定义三角分别相等,三边成比例的两个三角形叫做相似三角形。

2、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。

(2)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比。

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

3、相似三角形的判定定理(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

三、典型例题例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以 AD/AB = AE/AC因为 AB = AD + BD = 3 + 2 = 5所以 3/5 = 4/(4 + CE)15 = 20 + 3CE3CE =-5CE =-5/3(舍去)所以 CE 的长为 20/3。

例 2:如图,在△ABC 中,∠A = 90°,AB = 8,AC = 6,点 D在 AB 上,且 AD = 4,DE⊥BC 于点 E,求 DE 的长。

解:因为∠A = 90°,AB = 8,AC = 6,所以 BC =√(AB²+ AC²) =√(8²+ 6²) = 10因为∠B =∠B,∠A =∠BED = 90°所以△BDE∽△BAC所以 DE/AC = BD/BC因为 BD = AB AD = 8 4 = 4所以 DE/6 = 4/10DE = 24四、巩固练习1、如图,在△ABC 中,D、E 分别是 AB、AC 边上的点,且DE∥BC,若 AD = 2,BD = 4,AE = 3,则 EC 的长为()A 6B 9C 12D 152、已知△ABC∽△A'B'C',相似比为 3:4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 103、如图,在△ABC 中,D 是 AB 上一点,且∠ACD =∠B,若AD = 1,AC = 2,AB = 4,则 CD 的长为()A 1B √2C 2D 2√2五、拓展提高1、如图,在矩形 ABCD 中,AB = 6,BC = 8,点 E 是 BC 边上一点,连接 AE,将△ABE 沿 AE 折叠,点 B 恰好落在对角线 AC 上的点 F 处,求 CE 的长。

九年级数学下册 27.1 图形的相似 精品导学案1 新人教版

九年级数学下册 27.1 图形的相似 精品导学案1 新人教版

图形的相似课题:27.1 图形的相似(1)学习目标:1、知识和技能:通过对事物的图形的观察、思考和分析,认识理解相似。

2、过程和方法:经历动手操作的活动过程,增强学生的观察、动手能力。

3、情感、态度、价值观:体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识。

学习重点:认识图形的相似,形成图形相似的概念学习难点:相似图形的认识导学方法:自主探索法课时:1课时导学过程:一、课前预习预习课本内容,完成《导学案》的教材导读和自主测评。

二、课堂导学1.导入请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?给我们什么样的印象呢?2.出示任务,自主学习相似图形的概念:观察:请同学们观察教材P34图27.1-1想想:用同一张底片洗出不同尺寸的照片;大小不同的两个足球;一辆汽车和它的模型,它们给我们什么印象?观察:教材P34图27.1-2,每组中的两个图形的大小之间有什么联系?3.合作探究两个相似图形之间的关系人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么?三、展示反馈归纳:把形状相同的图形说成是相似图形.归纳:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.四、学习小结1、相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形)。

2、相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形。

3、两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形。

五、达标检测1.教材P35的练习.2.《导学案》基础反思和展题设计.课后作业:1. 课本习题.2.《导学案》难点探究和能力提升.板书设计:1、相似图形的概念2、两个相似图形之间的关系课后反思:通过本节课的学习,教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

九年级数学《图形的相似》导学案

九年级数学《图形的相似》导学案

九年级数学《图形的相似》导学案学习目标1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.学习重点:相似图形的概念。

自主学习一、课前准备(预习教材P24~ P25练习,找出疑惑之处)细读课本,试解答P25练习.二、新课导学※互动探究探究任务一:观察图片,体会相似图形【问题1】请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?归纳:叫做相似图形。

两个图形相似,其中一个图形可以看作是另一个图形放大或缩小得到。

思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?右图呢?通过观察思考,我的结论是。

学习评价※自我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?课后作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.2、下列图形中,不是相似图形的是( )A. B. C. D.3、下列各组多边形每一组中各取两个大小不同的多边形,一定相似的是(只填序号).①三角形;②等边三角形;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦梯形;⑧直角三角形.4、观察下列每组图形,相似图形是()5.在下面的图形中,形状相似的一组是( )A B C D(1) (b)(a)(2)(d) (e)(c)(f)6、手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是()A B C D。

图形相似复习课教案

图形相似复习课教案

图形相似复习课教案一、教学目标1. 回顾和巩固图形相似的概念和性质。

2. 提高学生解决实际问题的能力,运用图形相似的性质进行计算和证明。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 图形相似的定义和性质2. 相似图形的对应边和对应角的关系3. 相似图形的面积和周长的计算4. 实际问题中应用图形相似的性质5. 图形相似的证明方法三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和推理,探索图形相似的性质。

2. 利用多媒体课件和实物模型,帮助学生直观地理解图形相似的概念和性质。

3. 组织小组讨论和合作交流,促进学生之间的互动和思考。

四、教学步骤1. 复习导入:通过提问和复习已学过的图形相似的概念和性质,激发学生的记忆和兴趣。

2. 探究活动:引导学生观察和分析一些实际问题,运用图形相似的性质进行解决,巩固和应用知识。

3. 证明练习:给出一些图形相似的证明题目,要求学生运用所学的证明方法进行解答,培养学生的逻辑思维能力。

4. 总结归纳:通过学生的小组讨论和总结,归纳出图形相似的主要性质和应用方法。

5. 课后作业:布置一些有关图形相似的练习题,巩固所学知识,提高学生的解题能力。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况,评估学生对图形相似概念和性质的理解程度。

2. 练习解答:评估学生在练习题中的解答情况,检查学生对图形相似性质的应用能力。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作交流和思考问题的能力。

4. 课后作业:通过学生完成的课后作业,评估学生对图形相似知识的掌握程度和解题技巧。

六、教学资源1. 教材或教学指导书:提供图形相似的相关理论知识。

2. 多媒体课件:通过动画和图片展示图形相似的性质和实例。

3. 实物模型:使用几何模型或纸牌等物品,帮助学生直观理解图形相似。

4. 练习题库:提供一系列图形相似的练习题,包括不同难度层次的问题。

导学案相似图形复习

导学案相似图形复习

课题:相似图形复习 制作: 郑士杰 审核:陈培领 总第 40 课 【预习案】 [学习目标]1复习线段的比、成比例线段,相似三角形的定义、性质、判定及应用。

2通过复习,学生能熟练地应用成比例线段的性质,会利用相似三角形的性质、判定解决实际问题。

3体会数学知识在生活中的应用,培养学生数学思维水平。

[学习重点]1.主要概念:线段的比、成比例线段、黄金分割、相似三角形、相似多边形、相似比;2.利用数的比引申到三角形、多边形,进行特殊与一般的某些关系的比较。

[学习难点]成比例线段的性质的应用;利用相似三角形的性质、判定解决实际问题。

[自我感知] 一.知识网络:二、知识回顾:1.线段比:在 下,两条线段长度的比叫做:2.(1)基本性质:如果a cb d=,那么_________;若bc ad =d c b a ,,,(都不等于0),那么_________. (2)合比性质:如果__________________,那么 . (3)等比性质:如果__________________,那么ban d b m c a =++++++ .( )(4).黄金分割:如果点C 把线段AB 分成AC 和BC ,且_________,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比值为 _________(约等于0.618)叫做_________.一条线段有_________个黄金点.3.相似多边形:各角对应_________、各边对应成_________的两个多边形叫做相似多边形,其中对应边的比叫做_________.4.相似多边形的性质:对应_________相等,对应_________成比例.5.相似三角形:三角对应_________、三边对应成_________的两个三角形叫做相似三角形.6.相似三角形的判定:123性质 对应角相等,对应边成比例 1.两角对应相等; 2.两边对应成比例,且夹角相等; 3.三边对应成比例. 位似成比例的线段 比例的性质 图形相似 三角形相似应用 黄金分割判定7.相似三角形的性质:若两个三角形相似,则(1)对应角相等,_________成比例;(2)的比都等于_________;(3)周长的比等于_________;(4)面积的比等于相似比的_________;8.位似图形:两个图形不仅是相似图形,而其每组对应顶点所在的直线都经过同那么这样的两个图形叫做_________,这个点叫做_________,这时的相似比又称为位似比.位似图形上任意一对对应点到位似中心的距离之比等于位似比.利用位似变换可以轻易地将图形放大或缩小.【探究案】探究一如图,已知△ADF∽△ABC,AD=6cm,DB=3cm,BC=9.9cm,∠A=70°,∠B=50°。

第27章《相似》复习课导学案

第27章《相似》复习课导学案

第二十七章复习课
1.知道相似三角形、相似多边形、位似的概念及其性质,并能够根据相似三角形的性质、位似的性质解决有关问题.
2.知道相似三角形的各种判定方法,能熟练选择合适的判定方法证明三角形相似.
3.会根据相似三角形的性质来测量物体的高度、河的宽度等.
4.重点:相似三角形的性质和判定方法;相似多边形性质的应用;位似图形的坐标变化规律以及根据位似的性质作出一个图形的位似图形.
◆体系构建
请你完善本章知识网络图.
◆核心梳理
1. 形状相同的两个图形是相似图形,两个三角形全等时,这两个三角形也相似,相似比为1.
,那么这四条线段成比例.
2.四条线段a、b、c、d,如果a∶b=c∶d。

初三数学相似图形导学案

初三数学相似图形导学案

初三数学相像图形导教学设计【】初三数学相像图形导教学设计学习本文能够经过相关比率尺的计算,让学生懂得数学在现实生活中的作用,从而增强学生学习数学的信心。

授课重点:会求两条线段的比。

授课难点:会求两条线段的比,注意线段长度的单位要一致。

授课课时:一课时教具准备:幻灯片授课方案:一、创立问题情况,引入新课第四章研究的就是相像图形以及与之相关的问题。

从两个大小不相同的正方形来看,它们之因此大小不相同,是因为它们的边长的长度不相同,因此相像图形与对应线段的长度相关。

因此,我们研究相像图形要从线段的比开始学习。

下面,就让大家一起走进第四章:相像图形的第一节:线段的比。

二、新课讲解1、两条线段的比的看法:有两个喇叭,甲喇叭高16 分米,乙喇叭高75 厘米,哪个喇叭高?生:甲喇叭。

师:确定吗? 难道 75 还比 16 小吗 ?生: 16 分米和 75 厘米的单位不一致,要化为同一长度单位才能进行比较。

师:对。

这两个喇叭的高就是两条线段,在它们长度单位不一致的时候是不能够比较第1页/共5页进行比较大小。

不难看出要比较两条线段的大小,实际上是比较这两条线段什么的大小 ?(长度 )由比较两条线段的大小就是比较两条线段长度的大小。

大家能猜想两条线段的比吗?生:两条线段的比就是两条线段长度的比。

有两条线段AB 和 CD ,AB=6 厘米, CD=5 厘米,线段 AB 、CD 的比方何表示?单位是什么 ?表示为: AB:CD=6:5 或一个长为 30 厘米,宽为 21 厘米的长方形,你能表示出这个长方形的长与宽的比吗 ? 那么,应怎样定义两条线段的比呢?(定义由幻灯片 6显现 )那我们在求两条线段的比的时候应注意什么问题呢 ?注意:长度单位要一致。

线段 a 的长度为 3 厘米,线段 b 的长度为 6 米,因此两线段 a、 b 的比为 3:6=1:2 ,对吗 ?为什么 ?不对。

因为 a、b 的长度单位不一致。

因此,我们在求两条线段的比的时候必然要注意它们的长度单位可否一致。

《相似图形》导学案3

《相似图形》导学案3

§23.2相似图形(1)学习目标:1.通过生活实例,欣赏认识图形的相似,会识别相似图形,培养他们的认真细致的观察能力。

2.通过系列活动,使学生能在网格图中画出相似图形,培养他们的动手能力3.通过本节课的学习,培养学生独立思考,合作交流的学习习惯。

重点:认识图形的相似,能识别出相似的图形。

难点:能在网格图中画出对应的相似图形导学过程:一、情境导入:观察下面的几组图片,说一说它们 相同, 不同.你在生活中也遇到过这样的图形吗?,请举例说明..(1)(2)(3)结论:形状相同、大小不一定相同.二、探索新知:1.阅读课本,回答下列问题(1)同一张底片洗出的不同尺寸的照片中,人物的形状改变了吗?(2)两个足球的形状相同吗?它们的大小呢?(3)两个正方体物体的形状相同吗? (4)复印前后纸上对应图形之间分别有什么关系?(5)每一对图形有什么特点呢?相似图形的定义是2.在下图中找一找,找出形状相同的图形: (1)(1)(2)(3)(4)(5)(7)(8)(9)(10)(12)(13)(14)(6)(11)(16)(15)(2)3.画一画,画相似图形:左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,和你的伙伴交流一下,看谁的方法又快又好.三、巩固训练:1.下列几组图形中相似的有 .2.A、放大镜下的图像与原来的图形相似吗?放大镜下的角放大了吗?B、你看过哈哈镜吗?哈哈镜中的形象与你本人相似吗?3.下面给出的图形中,不是相似的图形的是()A.刚买的一双手套的左右两只 B.仅仅宽度不同的两快长方形木板C.一对羽毛球球拍 D.复印出来的两个“春”字4.下面两个图形一定是相似图形的一组式()①两个边长不等的正方形;②两个大小不等的等腰直角三角形③两个边长相等的菱形;④两个圆;⑤两个等腰三角形。

5)你看到过你在水中的倒影吗?倒影中的形象与你本人相似吗?6、在平面直角坐标系中,将下列各点连结起来(-2,2),(2,2),(2,-2),(-2,-2)(1)你能得到一个什么图形?(2)请你再画一个与该图形相似的图形。

3.3相似图形导学案

3.3相似图形导学案

中洲中学“四段六步”教学模式导学案年级:九科目:数学备课组:数学组主备人:殷猛时间:10月21日课题:第1课时一自主预习10’(一)预明习确引目导标1.理解并掌握两个图形相似的概念.2.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等。

3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。

(二)自组主内预交习流(8’)[活动]观察图片,体会相似图形1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?2 、小组讨论、交流.得到相似图形的概念.什么是相似图形?[归纳]相似图形的概念:[总结]:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”。

二合作探究10' (三)分合配作任探务究(10’)1、(1) 图(1)中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?相似三角形的概念:(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?相似多边形的概念:2、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3.【结论】:(1)相似多边形的特征:相似多边形的对应角______,对应边的_______.反之,如果两个多边形的对应角______,对应边的_______,那么这两个多边形_______.几何语言:在⊿ABC和⊿A1B1C1中若111;;CCBBAA∠=∠∠=∠∠=∠.111111CAACCBBCBAAB==则⊿ABC和⊿A1B1C1相似(2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.三展示提升15’(四)展拓示展质提疑升(15’)1、下列每组图中的两个图形是相似图形的是()A B C D2、下列命题中正确的有( )个.如果两个三角形相似,且相似比为1,那么这两个三角形全等.如果两个三角形都与第三个三角形相似,那么这两个三角形相似.如果两个三角形全等,那么这两个三角形一定相似如果两个三角形相似,那么这两个三角形全等.3、如图,四边形EFGH相似于四边形ABCD,求∠A、∠C、∠H以及x,y,z的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生:日期: 年月日教学课题图形的相似综合复习—导学案教学目标考点分析1、掌握比例的基本性质,黄金分割的定义,相似三角形的定义、判定及性质;2、掌握相似多边形的定义和性质,位似图形的定义和性质。

重点难点重点:比例的基本性质,黄金分割的定义,相似三角形的定义、判定及性质;难点:相似三角形的判定及性质,相似多边形的定义和性质,位似图形的定义和性质及应用。

教学方法讲练结合法、启发式教学教学过程一、考点讲解:1.线段的比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的比一样,两条线段的比a:b中,a叫做比的前项,b叫做比的后项.注意:(1)针对两条线段,(2)两条线段的长度单位相同,但与所采用的单位无关;(3)其比值为一个不带单位的正数.2.线段成比例的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例线段,简称比例线段。

线段a、d叫做比例外项,线段b、c叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.3.比例的性质要注意灵活地运用比例线段的多种不同的变化形式,即由a c=b d推出b d=a c等,但无论怎样变化,它们都保持ad=bc的基本性质不变.4.黄金分割:在线段AB上有一点C,若AC:AB=BC:AC,则C点就是AB的黄金分割点.AC与AB的比叫做黄金比。

二、梳理知识1.线段的比的定义在同一单位长度下,两条线段的比叫做这两条线段的比.2.比例线段的定义在四条线段中,如果其中两条线段的等于另外两条线段的,那么这四条线段叫做成比例线段,简称.在ab=cd中,a、d叫做比例的,b、c叫做比例的,称d为a、b、c的.3.比例的性质(1)比例的基本性质:如果a∶b=c∶d,那么.特别地,若a∶b=b∶c,即,则b叫a,c的比例中项.(2)合(分)比性质:若dcba=,则.(3)等比性质:若nmfedcba==== ,且,则.4.黄金分割点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割.其中点C叫做线段AB的,AC与AB的比叫做.考点2:相似三角形的性质和判定一、考点讲解:1.相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形的对应边的比叫做相似比.2.相似三角形的性质:①相似三角形的对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比.④相似三角形面积的比等于相似比的平方.3.相似三角形的判定:①两角对应相等的两个三角形相似.②两边对应成比例,且夹角相等的两个三角形相似.③三边对应成比例的两个三角形相似.④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.注意:①直角三角形被斜边上的高分成的两个三角形和原三角形相似.②在运用三角形相似的性质和判定时,要找对对应角、对应边,相等的角所对的边是对应边.4.相似多边形定义:对应角相等,对应边成比例的两个多边形叫做相似多边形.5.相似多边形的性质:(1)相似多边形的周长的比等于相似比;(2)相似多边形的面积的比等于相似比的平方。

二、梳理知识1.三角形相似的判定方法:(1) ,两三角形相似.(2) ,两三角形相似.(3) ,两三角形相似.(4) ,两直角三角形相似.2.相似三角形与相似多边形的性质(1)相似三角形的性质①相似三角形的三边,三角.②相似三角形的,与都等于相似比.③相似三角形周长之比等于,相似三角形面积之比等于.(2)相似多边形的性质①相似多边形的对应边,对应角.②相似多边形的对角线之比、周长之比都等于.③相似多边形面积之比等于.复习题一:一、选择题1.已知:线段a=5cm,b=2cm,则ab=()A.14B.4 C.52D.252.把mn=pq(mn≠0)写成比例式,写错的是()A.m qp n=B.p nm q=C.q nm p=D.m pn q=3.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗村的高度是()A.12m B.11m C.10m D.9m4.下列说法正确的是()A.矩形都是相似图形;B.菱形都是相似图形C.各边对应成比例的多边形是相似多边形;D.等边三角形都是相似三角形5.两个等腰直角三角形斜边的比是1:2,那么它们对应的面积比是()A.1:2B.1:2 B.1:4 D.1:16.如图1,由下列条件不能判定△ABC与△ADE相似的是()A.AE ACAD AB=B.∠B=∠ADE C.AE DEAC BC=D.∠C=∠AED(1)(2) (3)7.要做甲、乙两个形状相同(相似)的三角形框架,•已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()种A.1 B.2 C.3 D.48.如图2,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是()A.83B.23C.43D.539.若3a ba b b c a c==+++=k,则k的值为()A.12B.1 C.-1 D.12或-110.如图3,若∠1=∠2=∠3,则图中相似的三角形有()A.1对B.2对C.3对D.4对二、填空题11.若235a b c==(abc≠0),则a b ca b c++-+=_________.12.把长度为20cm的线段进行黄金分割,则较短线段的长是________cm.13.△ABC的三条边之比为2:5:6,与其相似的另一个△A•′B•′C•′最大边长为15cm,则另两边长的和为_______.14.两个相似三角形的一对对应边长分别为20cm,25cm,它们的周长差为63cm,则这两个三角形的周长分别是________.15.如图4,点D是Rt△ABC的斜边AB上一点,DE⊥BC于E,DF⊥AC于F,若AF=•15,BE=10,则四边形DECF的面积是__________.(4) (5) (6)16.如图5,BD平分∠ABC,且AB=4,BC=6,则当BD=_______时,△ABD∽△DBC.17.已知a、b、c为△ABC的三条边,且a:b:c=2:3:4,则△ABC•各边上的高之比为______.18.在梯形ABCD中,AB∥CD,AB=60,CD=15,E、F分别为AD、BC上一点,且EF∥AB,•若梯形DEFC∽梯形EABF,那么EF=_________.三、解答题19.如图6,△ABC中,AG DEAH BC,且DE=12,BC=15,GH=4,求AH.20.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标作为点A,再在河的这一边选点B和点C,使AB⊥BC,然后再选点E,使EC⊥BC,确定BC与AE的交点为D,•如图,测得BD=120米,DC=60米,EC=50米,你能求出两岸之间AB的大致距离吗?21.如图,在ABCD中,AE:EB=2:3.(1)求△AEF和△CDF的周长比;(2)若S△AEF=8cm2,求S△CDF.22.△ABC是一个锐角三角形的余料,边BC=120mm,高AD=80mm,•要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,•这个正方形零件的边长是多少?23.以长为2的线段为边作正方形ABCD,取AB的中点P,连结PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示.(1)求AM、DM的长;(2)求证:AM2=AD·DM.24.如图,点C、D在线段AB上,且△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系式时,△ACP∽△PDB.(2)当△PDB∽△ACP时,试求∠APB的度数.25.如图15-12,△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,•CE•⊥BD,E为垂足,连结AE.(1)写出图中所有相等的线段,并加以证明.(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.(3)求△BEC与△BEA的面积比.复习题二:一、填空题1、已知△ABC与△A'B'C'中,AB=6,BC=8,A'C'=4.5,B'C'=4,要使△ABC∽△A'B'C',则必有A'B'= 。

2、地图上两地间距离为5cm,表示实际距离100km,则地图的比例尺为。

3、三角形中两边中点的连线段与第三边之比为 。

4、如图1,两个多边形若相似,则x 只能取 。

5、如图2,△ABC 中,DC//EH//FI//BC ,则图中相似三角形有 对。

6、两个相似三角形的边长之比为m ,面积之比为5,则m/5= .7、某人身高1.7米,某一时刻影长2.04米,同时一棵树影长为10.2米,则此树高 米。

8、如图3,小李在打网球时,使球恰好能打过网,而且落在离网6米的位置(BO 长),若小李击球的高度2米(CD ),网高0.8米,则击球处离网距离 米。

二、选择题 11、下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似,其中正确有 ( ) A 、2个 B 、3个 C 、4个 D 、1个13、如图6、线段AB 上有三点C 、D 、E ,AB=8,AD=7,CD=4,AE=1,则比值不为1/2的线段比为( ) A 、AE :EC B 、EC :CD C 、CD :AB D 、CE :CB 15、△ ABC 中,DE//BC ,交AB 、AC 于D 、E ,AD=6,AE=4,BD=5,则EC 长为 ( )A 、3/10B 、3C 、3/22D 、2/720、如图11, ABCD 中,E 为BC 中点,F 为BE 中点,AE 、DF 交于H ,过H 的直线垂直于AD ,交于AD 、BC 于M 、N ,则NH :MH 的值为 ( )A 、2/1B 、3/1C 、4/1D 、5/1 三、解答题24、如图,D 为Rt △ABC 的斜边BC 中点,E 为AB 的中点,F为AE 的中点,FM ⊥BC,FN ⊥AD,垂足分别为M 、N ,试确定FM 是FN 的几倍,并说明你写结论的正确性。

相关文档
最新文档