信号与线性系统分析 公式大表 总复习 最全免费版
《信号与线性系统分析》重要公式
《信号与线性系统分析》重要公式信号与线性系统分析是电子信息专业重要的基础课程之一,具有重要的理论和实际应用价值。
随着信息技术的快速发展,信号与线性系统的研究在通信、图像处理、音频处理、控制系统等各个领域都扮演着重要的角色。
本文将介绍信号与线性系统分析中的一些重要公式,帮助读者更好地理解和应用信号与线性系统分析。
1.线性系统的定义:-叠加定理:线性系统对两个输入信号的线性组合作用后的响应等于对每个输入信号分别进行线性系统的响应再进行线性组合,即y(t)=a1*x1(t)+a2*x2(t)=>H[a1*x1(t)+a2*x2(t)]=a1*H[x1(t)]+a2*H[x2 (t)]-时间因果性:线性系统的输出,必须要随着输入的改变而改变,即输出仅依赖于当前和过去的输入值,而与未来的输入无关。
-线性系统的时不变性:线性系统的性质和特性在不同时刻都是不变的,即系统的输出只依赖于当前的输入和系统的当前状态。
-线性系统的稳定性:当输入系统后,输出会逐渐趋于有限值的性质。
2.常见信号的基本性质:-单位冲激函数δ(t):在t=0时刻取值为无穷大,其他时刻取值为0,可以表示信号的零值以外的非零值。
-单位阶跃函数u(t):在t=0时刻取值为0,t>0取值为1,可以表示信号的跃迁性质。
-正弦信号:具有周期性的函数,可表示信号的频率和相位。
-矩形信号:具有有限宽度和平坦的值,可表示信号的持续时间。
3.傅里叶级数与傅里叶变换:-傅里叶级数:将周期性信号分解为一系列正弦和余弦函数,以求得信号频谱的方法。
-傅里叶变换:将非周期性信号分解为连续频谱的方法,常用于信号的频谱分析和滤波等应用。
-时域与频域的转换关系:傅里叶变换可以将信号从时域转换到频域,反之,傅里叶逆变换可以将信号从频域转换到时域。
4.系统的频率响应:- 时域脉冲响应h(t)与频域频率响应H(f)的关系:频域频率响应等于时域脉冲响应与复指数e^(-j2πft)的卷积。
(完整版),信号与系统-公式总结,推荐文档
an (s p1)(s p2 )(s pn ) (s p1) (s p2 )
(s pn )
k i (s pi )F (s) |s pi
(i 1, 2,n)
变变变变变变变变变变
et ut 1
s α
z变变变变变变变
z
z
a
a n u( n) anu(n
1)
za za
⑵留数法
留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留数的运算,即
an
1
, a 1
n0
1 a
第二章 傅立叶变换
1 正变换: F () f (t)e jtdt
2 傅立叶变换的性质 性质 ※时移
※时频展缩
※※频移
逆变换: f (t) 1 F ()e jtd
2
时域
f (t t0 )
f (at) a 0 f (at b) a 0
f (t)e j0t
信号
名称
f (t)
波形图
F () F () e j()
频谱图
※※ 矩形
脉冲 E[u(t ) u(t )]
E
Sa(
)
2
冲激
脉冲
E (t)
E
※※
直流
E
函数
2 E ()
※ 冲激 序列
T 1 (t )
1 1 ( )
1
2 T1
第三章 拉普拉斯变换
1 定义
双边拉普拉斯变换 F (s) f (t)estdt
z
z i0 z pi
根据收敛域给出反变换
N
A: if z R ,则 f (n) 为因果序列(右边序列),即 f (n) Ai pinu(n) i 1
总复习(信号与线性系统必过知识点)
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)
2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0
信号与系统公式大全
信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。
在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。
同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。
如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。
考研信号与系统公式分类与汇总(最实用版)
S域 微分 时域 积分 S域 积分
tf (t) (−t)n f (t) ↔ − F ′(s) d n F (s) ds n
∫t f (x)dx ↔ F (s) + f (−1) (0− )
−∞
s
s
∫ f (t) ↔
∞
F (η)dη
t
s
频移
尺度 变换 反转 时域 卷积
时域 差分
Z域 微分 部分 求和 Z域 积分
频域 卷积 时域 差分 频域 微分 时域 累加
∫ f1 (k )
f 2 (k )
↔
1 2π
2π F1(e jψ )F2 (e j(ψ −θ ) )dψ
f (k) − f (k −1) ↔ (1− e jθ )F (e jθ )
kf (k) ↔ j dF (e jθ ) dθ
∑ ∑ ∞ f (k)
k =−∞
af1 (k) + bf 2 (k) ↔ aF1 (z) + bF2 (z)
时移
f (t ± t0 ) ↔ e±st0 F (s)
时移
f (k ± m) ↔ z ±m F (z) (双边)
离散傅里叶变换
∞
∑ F (e jθ ) = f (k)e− jθk k =−∞
∫ f (k) = 1 F (e jθ )e jθkdθ
连续傅里叶变换
∫ F ( jω) = ∞ f (t)e − jωt dt −∞
∫ f (t) = 1 ∞ F ( jω)e jωt dω 2π −∞
线性 时移
af1(t) + bf2 (t) ↔ aF1( jω) + bF2 ( jω) f (t ± t0 ) ↔ e± jωt0 F ( jω)
《信号与线性系统》总复习(信息)#优选.
信号与线性系统总复习信号分析一、 信号的时域分析 1、 常见信号①单位冲激函数:)(t δ 定义:抽样性:②单位阶跃函数:)(t ε 定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e tεα-)(t f )(k f ⎩⎨⎧=01)(t ε0<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(⑤门函数:)(t G τ ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω ⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ2、 信号的运算:3、 信号的变换: 移位:反折: 展缩: 倍乘:4、 卷积: 连续:离散:性质:(1)延时特性:连续:)()()(212211t t t f t t f t t f --=-*- 离散:112212()()()f k k f k k f k k k -*-=--(2)微积分特性:)(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k f i f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121)()(21t f t f ±)()(21t f t f •t t df )(121()[()]tdf t f d dt ττ-∞=*⎰)()(21t f t f *二、 信号的频域分析(傅立叶变换分析法) 1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔③延时:0)()(0tj e j F t t f ωω±↔±④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数;若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔; )()()(ωωj F j dtt f d nnn ↔ ⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⎰∞∞--=dte tf j F t j ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)(⑨频域微分:ωωd j dF t f jt )()()(↔-;nn nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔* )()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔)]()([cos 000ωωδωωδπω++-↔t)]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t fTn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞=4、 周期信号的频谱①性质:离散性,谐波性,收敛性 ②级数展开:∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n t jn n e c Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f T a Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;信号时域特性和频域特性关系:时域 频域 周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 取样定理 ①频带有限信号 ②满足关系:m s f f 2≥三、 信号的复频域分析(拉普拉斯变换分析法) 1、 定义:⎰∞-=)()(dte tf s F st⎰∞+∞-=j j st dse s F jt f σσπ)(21)(2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F et f ts -↔④尺度变换:)(1)(asF a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t)()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π3、 常见信号的拉氏变换1)(↔t δ,st 1)(↔ε,a s t e t-↔1)(εα,1!+↔n nsn t ,22sin ωωω+↔s t ,22cos ωω+↔s st4、 反变换(1).部分分式展开法n n s s k s s k s s k s F -++-+-= 2211)()()()(2121t e k e k e k t f t s n t s t s n ε+++=(2).留数法∑==ni i s t f 1Re )(①单根is 处的留数 Re [()()]i stii s s s F s e s s ==- ②p 重根i s 处的留数111Re [()()](1)!i p st pi i s s p d s F s e s s p s-=-=--四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kz K F Z F )()( 2、 性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序: 单边z 变换∑-=--↔+1)()()(n k k nn z k f zz F z n k f)()()(z F z n k n k f n-↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n-↔-③ 尺度变换:)()(az F k f a k ↔ ④z 域微分特性:)()(z F dzdz k kf -↔ ⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π⑥ 初、终值定理:)(lim )0(z F f z ∞→= 3、 常见序列的Z 变换1)(↔k δ ,1)(-↔z zk ε ,γγ-↔z zk,2)1(-↔z zk4、 反Z 变换 (1) 长除法 (2) 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)()()()()(22110k B B B k B k f kn n k k εγγγδ++++= (3) 留数法1()Re nii f k s ==∑①单根iz 处的留数 1Re [()()]i k ii z z s F z z z z -==- ②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析 1、 描述:(1) 连续系统--微分方程(2) 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n nn +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续: 离散:(1) 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件决定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec e c t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 nλλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n n c c c r c c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ(2) 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析1、频域系统函数2、系统特性011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnnij A AA)(11=-)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =幅频特性: 相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:变为代数方程,其过程为:①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k kk k k k kk -=--'--↔------)0()0()0()()1(21------++'+=k k k k r r s r s s P是与初始条件有关的关于s 的k 次多项式②)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l ll l l l ll -=--'--↔------0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+----- )()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++-- )()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=-- 01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=-- )()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+=可求得全响应:2、电路S 域模型等效法3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。
信号与线性系统分析_公式全总结
信号与线性系统分析_公式全总结信号与线性系统分析公式大总结第一章1冲激函数的各种性质2系统线性时不变性的判断线性可分解性零状态线性零输入线性时不变性P19,例1.4.1/P35,1.10连续系统的时域分析1卷积积分卷积积分定义卷积积分的性质见P1常用卷积结果2单位冲激响应和单位阶跃响应P70,例2.4.2,2.4.3/P79,2.172.22,30离散系统的时域分析1卷积和单位序列卷积和定义卷积和的性质常用卷积和结果2单位冲激响应和单位阶跃响应P107,例3.3.3/P113,3.12,18,21连续系统的频域分析1周期信号的傅立叶级数(a)(b)(c)2周期信号的频谱单边谱单边幅度谱单边相位谱双边谱双边幅度谱双边相位谱3周期信号的傅立叶变换4周期信号作用于系统5傅立叶变换的定义能量等式:6傅立叶变换的性质反转对称性尺度变换时移频移时域卷积频域卷积时微频微7常用傅立叶变换对8傅立叶逆变换求的傅立叶变换9频域分析(1)频域分析(2)(傅立叶变换应用于滤波、调制与解调系统的分析)如f(t)y(t)s(t)10取样定理时域取样定理:P146,例4.5.2,4.5.3/例4.5.5,4.5.7(4.5.11)/P173,例4.8.1,4.8.4/P202,4.13,17,18,20,21,34,35,45连续系统的S域分析1单边拉普拉斯变换定义2单边拉普拉斯变换性质尺度变换时移频移时微时域卷积s域微分3常用拉普拉斯变换对拉普拉斯逆变换(部分分式法,公式略)s域分析(1)微分方程的求解a求零状态响应,零输入响应,全响应。
b求单位冲激响应,单位阶跃响应。
(2)系统函数(S域分析)(3)s域框图P215,例 5.1.3,5.2.2,5.2.3,5.2.4,5.2.5,5.2.8,5.2.11,5.3.3-5.3.6,5.3.9,5.4.1,5.4.3-5.4.8/P263,5.3,4,8,11,12,14,15,17,18,19,20,22,23,24,25,28离散系统的Z域分析Z变换定义Z变换性质移位双边单边k域乘k域卷积z域微分k域反转常用Z变换对4逆Z变换(部分分式法,公式略)5Z域分析(1)差分方程的求解a求零状态响应,零输入响应,全响应。
信号与系统重点概念公式总结
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
《信号与线性系统分析》重要公式汇总
信号与线性系统重要公式第一章:信号与系统1.1单位阶跃函数ε(t) 单位冲激函数δ(t )1.2冲激函数的性质:'''''()()()()()(0)()()()(0)()()(0)()(0)()()()(0)()()(1)(0)n n n f t t f t f t t dt f f t t f t f t f t t dt f f t t dt fδδδδδδδδ∞-∞∞-∞∞-∞===-=-=-⎰⎰⎰1111111'''11111''11()()()()()()()()()()()()()()()()()()f t t t f t t t f t t t dt f t t t dt f t f t t t f t t t f t t t f t t t dt f t δδδδδδδδ∞∞-∞-∞∞-∞-=--=-=-=----=-⎰⎰⎰''()()()1()()11()()11()()n n n at t a at t a aat t a a δδδδδδ===()()()()()()()()n n n n t t n t t n δδδδ-=-=-为偶数为奇数1.3线形系统的性质:齐次性 可加性[()]()T af af ∙=∙ 1212[()()][()][()]T f f T f T f ∙+∙=∙+∙11221122[()()][()][()]T a f a f a T f a T f ∙+∙=∙+∙零输入响应,零状态响应,全响应()[{(0)},{0}]x y T x ∙= ()[{0},{()f y T f ∙=∙ ()()()x f y y y ∙=∙+∙第二章 连续系统的时域分析法全解=齐次解(自由响应)()h y t +特解(强迫响应)()p y t 全响应=零输入响应()x y t +零状态响应()f y t()()()h p y t y t y t =+= ()()x f y t y t +零输入响应是指激励为零,仅由系统的初始状态所引起的响应,用 ()x y t 表示。
信号与线性系统分析总结
•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[
《信号与线性系统分析》重要公式汇总
《信号与线性系统分析》重要公式汇总信号与线性系统分析是电子信息工程及相关学科中的重要课程,对于学习者来说,熟悉和掌握相关公式是非常重要的。
下面是《信号与线性系统分析》中一些重要的公式汇总。
一、信号的基本概念与性质:1.单位冲激函数:δ(t)2.单位阶跃函数:u(t)3.奇偶性质:f(-t)=-f(t),f(t)是偶函数;f(-t)=f(t),f(t)是奇函数4.时域的线性性质:y(t)=a1f1(t)+a2f2(t)5.周期函数的性质:f(t+T)=f(t),T为周期6. 时域尺度变换:y(at) = f(bt)7.时域平移变换:y(t-t0)=f(t)8.频域的线性性质:y(t)=a1f1(t)+a2f2(t)9. 延迟性质:F(s) = e^(-st0)F(s)10. 尺度变换:F(as) = (1/a)F(s/a)11.卷积定理:F[f*g]=F[f]×F[g]12.等式性质:F[e^(-at)f(t)] = F[s + a]二、线性时不变系统与系统概念:1.连续时间系统输出的表达:y(t)=∫[h(t-τ)x(τ)]dτ2.离散时间系统输出的表达:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)3.时不变系统输出与输入的傅里叶变换关系:Y(s)=H(s)X(s)4.线性系统的性质:系统的输出是输入的线性组合;系统对信号的平移不敏感;系统对信号幅度的线性变化三、连续时间系统的传递函数与频率响应:1.传递函数的定义:H(s)=Y(s)/X(s)2.传递函数与输出信号的拉氏变换关系:Y(s)=H(s)X(s)3.传递函数与等效电路:H(s)=Y(s)/X(s)=R(s)/S(s)4.系统的无穷大增益:,H(jω),→∞5.零极点:分子多项式中令H(s)=0的根和分母多项式中令H(s)=∞的根6.频率响应:H(jω)=,H(jω),e^(jθ),θ为相位四、离散时间系统的传递函数与频率响应:1.离散时间线性时不变系统的传递函数:H(z)=Y(z)/X(z)2.离散时间线性时不变系统的单位脉冲响应:h[n]=Z[x[n]]3.离散时间线性时不变系统的输出:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)4.离散时间线性时不变系统的传递函数与频率响应的关系:H(z)=X(z)e(z)/Y(z)5.频率响应:H(e^(jω))=,H(e^(jω)),e^(jθ),θ为相位五、线性系统的稳定性与有限长度冲激响应(LTI)系统:1.有限长度冲激响应(LTI)系统的定义:输出的响应是输入信号与冲激响应的线性组合2.LTI系统的单位脉冲响应:h[n]={1,n=0;0,n≠0}3.稳定性的定义:输入有界时,输出也有界4.必要稳定性条件:系统的传递函数的所有极点都在单位圆内以上是《信号与线性系统分析》中的一些重要公式的汇总。
信号与系统公式大全
1 f (k ) = 2π
jθ
)e jθk dθ
af1 (t ) + bf 2 (t ) ↔ aF1 ( jω ) + bF2 ( jω ) f (t ± t 0 ) ↔ e ± jωt0 F ( jω )
af1 (k ) + bf 2 (k ) ↔ aF1 (e jθ ) + bF2 (e jθ ) f (k ± m) ↔ e± jθm F (e jθ ) e ± jkθ 0 f (k ) ↔ F (e j (θ θ 0 ) ) f ( k / n) f ( n ) (k ) = ↔ F (e jnθ ) 0 f ( − k ) ↔ F ( e − jθ ) f1 (k ) * f 2 (k ) ↔ F1 (e jθ ) F2 (e jθ ) f1 (k ) f 2 (k ) ↔ 1 2π
a k sin( βk )ε (k )
az sin β z 2 − 2az cos β + a 2
sgn(t )
1
β3
1 2β 3
[ βt − sin( βt )]ε (t )
a k cosh( βk )ε (k )
a k sinh( βk )ε (k )
az sinh β z 2 − 2az cosh β + a 2
∞ f (t ) ↔ F (η )dη s t
∫
f (k ) ↔ zm k+m
F (η )
f (0) = lim F ( z ) , f (1) = lim [ zF ( z ) − zf (0)]
z →∞
F ( jt ) ↔ 2πf (−ω )
∞
f (0 + ) = lim sF ( s ), F ( s ) 为真分式
信号与系统-公式总结
4复频域微分
5复频域积分
※6时域卷积
※4. 拉普拉斯反变换 ⑴部分分式展开法
复频域,
⑵留数法 留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留 数的运算,即
其中 (为一阶极点) 或 (为阶极点)
第四章 Z变换
1. Z变换定义
正变换: 双边:
单边:
2. Z变换收敛域ROC:满足的所有z值
★ ROC内不包含任何极点(以极点为边界); ★ 右边序列的ROC为 的圆外; ★ 左边序列的ROC为 的圆内; ★ 双边序列的ROC为 的圆环。 ★ 有限长序列的ROC为整个 z 平面 (可能除去z = 0 和z = );
冲激 脉冲
※※
直流 函数 ※ 冲激 序列
第三章 拉普拉斯变换
1 定义 双边拉普拉斯变换 单边拉普拉斯变换 单边变换收敛条件:
拉普拉斯反变换 称为收敛域。
2 常见函数的拉普拉斯变换
公式序号
原函数,
※1
※2
※※3
像函数
频谱图
※※4 ※5 ※6
3 拉普拉斯的基本性质
性质
时域
※※1时间平 移
※2频率频移
※3时域微分
1 差分方程的一般形式
前向差分: 后向差分: 2 卷积法 (1)零输入响应 :激励时初始状态引起的响应 Step1 特征方程,特征根; Step2 解形式或 ;
Step3 初始条件代入,确定系统; (12)零状态响应 :初始状态为零时外加激励引起的响应 方法1:时域分析法 方法2:变换域分析法
Step1: 差分方程两边Z变换(注意初始状态为零); 左移位性质
第六章 第七章 第八章 连续系统时域、频域和复频 域分析
1 线性和非线性、时变和非时变系统判别 (1)线性和非线性 先线性运算,再经系统=先经系统,再线性运算
信号与线性系统总复习免费版
一、证明解答下面各题 1 :已知系统冲激响应
a1 s a0 ( 1)
n
h(t)=u(t)-u(t-1), 在零状态下输入信
3t
其中:
N ( s)
D ( s)
m
s
an
1 s
(t
n)e
号
b1 s b0
n 0
,求: ( 1) 系统输出 y(t)=?并画出 y(t)的波形。 L[y(t)]=? f(t)的傅立叶变换
j t
f2 ( ) d
0
dt
j t
阶跃与冲激的关系:
d ( t) (t) dt
t
f ( t)
1 2
F(j
)e
d
2 、 性质: 设
( )d f (t)
f 1 ( t)
F ( j )
F1 ( j
) ; f 2( t)
F2 ( j
) ;
(t)
③斜变函数:
R( t )
t ( t)
①线性:
斜变与阶跃的关系:
(t ) dR ( t ) dt
(0 )
①
dt
k
s R(s ) s r(0 ) s r (0 )
k
k 1
k 2
r
( k 1)
(0 ) s R(s) Pk(s)
k
1 A
P k ( s)
s
k 1
r( 0 )
s
k 2
r (0 )
r
(k 1)
(0 )
( A ij ) nn 件有关的关于 s 的 k 次多项式
是与初 始条
b. 零状态响应
H ( p) p h( t )
1)
信号与系统课程公式总结
1 t sin(βt )ε (t ) 2β
s
(s + β )
2 2 2
(ln a ) k ε (k ) k!
1
az
1 ( 2k )!
cosh
1 z
∞
∑ Fn e jnΩt
n = −∞
z →∞
帕斯 瓦尔
E=
∫−∞
∞
| f (t ) | 2 dt =
1 2π
∫−∞
∞
| F ( jω ) | 2 d ω
终值
f (∞) = lim sF ( s), s = 0 在收敛域内
s →0
终值
f (∞) = lim( z − 1) F ( z ) (右边信号)
z →1
帕斯 瓦尔
∞
k = −∞
∑ | f (k ) |2 = 2π ∫2π | F (e jθ ) |2 dθ
d n F ( jω ) dω
n
S域 微分
tf (t ) ( −t ) n f (t ) ↔ − F ′( s )
d n F (s) ds n
Z域 微分
kf (k ) ↔ − z
dF ( z ) dz
频域 微分
kf (k ) ↔ j
dF (e jθ ) dθ
时域 积分
∫−∞ f ( x)dx, f (−∞) = 0 ↔
连续傅里叶变换
F ( jω ) =
(单边 ) 连续拉普拉斯变换 连续拉普拉斯变换( 单边)
(单边 ) 离散 Z 变换 变换( 单边)
∞
离散傅里叶变换
∞
∫
∞
f (t )e − jωt dt F ( jω ) e
jωt
1 f (t ) = 2π
信号与系统公式总结
信号与系统公式总结信号与系统是电子信息类专业中非常重要的一门课程,它是基于数学和工程学原理的理论与实践的结合。
信号与系统公式总结作为这门课程的核心内容,在学习和应用中起着重要的作用。
下面将对信号与系统中的常用公式进行总结,以供参考。
一、信号及其表示公式1. 常数信号: x(t) = A (常数值 A)2. 常函数信号: x(t) = A, t∈[t1, t2],否则 x(t)=0,其中 t1<t<t23. 正弦信号: x(t) = A*sin(ωt+θ),其中A为振幅,ω为角频率,θ为初相位4. 余弦信号: x(t) = A*cos(ωt+θ),其中A为振幅,ω为角频率,θ为初相位5. 单位阶跃信号: u(t) = 1,t≥0,否则 u(t) = 06. 单位冲激信号: δ(t) = 0,t≠0,否则δ(t) = ∞二、信号运算公式1. 平移公式: y(t) = x(t-T) (平移单位为 T,右移 T 为正,左移 T 为负)2. 缩放公式: y(t) = A*x(a*t) (缩放比例为 a,若 a>1,信号变化幅度增大;若0<a<1,信号变化幅度减小)3. 均值公式: RMS = sqrt((1/T)*∫(x(t)^2)dt) (T为时间区间,x(t)为信号函数)4. 线性运算公式: y(t) = a*x(t) + b*y(t) (y(t)表示输出信号,x(t)表示输入信号,a和b为常数)5. 卷积公式: y(t) = ∫[x(τ)*h(t-τ)]dτ (卷积公式是时间域中输入信号和系统响应的乘积积分,表示系统的输出)三、系统性质与稳定性公式1. 线性性质: L(a*x1(t)+b*x2(t)) = a*L(x1(t)) + b*L(x2(t)) (x1(t)和x2(t)为输入信号,a和b为常数,L()表示对信号进行线性处理)2. 时不变性质: 若输入信号延时 T 后输出信号也延时 T,即 y(t) = L{x(t)},则 y(t-T) = L{x(t-T)}3. 稳定性性质: 若输入信号 x(t) 有界,输出信号 y(t) 也有界,则系统是稳定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与线性系统分析 公式大表 总复习 最全免费版 【最全免费版,求评论】第一章1 冲激函数的各种性质()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()''''''''00''00000'100100123100000t t t t t t dt t t t t t t t t at t at t t t t t dt t t dt f t t f t f t t f t f t t t t dt t t t t dt t f t t t f t t t f t εδδδεδδεεδδδδδδδϕδϕϕδϕδδδδδϕδϕϕδϕδδδ∞-∞∞-∞∞-∞∞-∞∞-∞<⎧=⎨>⎩=≠⎧⎪⎨=⎪⎩→→→=-=-=-==-==--=-=--=-⎰⎰⎰⎰⎰定义与关系性质()()()()()()()()()()()()()()()()()()()()()()()()()()''00000111122121211111212123t t f t t t f t t t f t t f t f t t t f t t f t t f t t f t f t t t t f t f t f t f t f t f t δδδδδ---=---*=*-=--*-=**--*=*=*卷积2 系统线性时不变性的判断 线性 可分解性()()()zi zs y t y t y t =+零状态线性()()()()()()11221122zs zs zs f t y t a f t a f t a y t a y t →+→+则 零输入线性(){}()(){}(){}()()11221122000zizi zi x y t a x a x a y t a y t →+→+则 时不变性 ()()()()00zs zs f t y t f t t y t t →-→-则P19,例1.4.1/P35,1.10第一章 连续系统的时域分析 1 卷积积分卷积积分定义 ()()()()1212f t f t f f t d τττ∞-∞*=-⎰卷积积分的性质见P1常用卷积结果()()()()()()()()()at at at at btatbtt t t t e t e t te t e e e t e t t b aεεεεεεεεε-------*=*=-*=-2 单位冲激响应()h t 和单位阶跃响应()g t()()()()()()()()zs f t t zs f t t h t y t g t y t δε====P70,例2.4.2,2.4.3/P79,2.17 2.22,30第二章 离散系统的时域分析 1 卷积和单位序列 ()()()1k k k δεε=-- 卷积和定义()()()()1212i f k f k f i f k i ∞=-∞*=-∑卷积和的性质()()()()()()()()()()()1111221212f k k f k f k k k f k k f k k f k k f k f k k k k δδδ*=*-=--*-=**--常用卷积和结果()()()()()()()()()()()1111k k k k k k k k k k k a k a k k a k ba a kb k k b aεεεεεεεεε++*=+*=+-*=-2 单位冲激响应()h k 和单位阶跃响应()g k()()()()()()()()zs f k k zs f k k h k y k g k y k δε====P107,例3.3.3/P113,3.12,18,21第三章 连续系统的频域分析 1 周期信号的傅立叶级数(a) ()()()()()011cos sin 22cos 0,1,2sin 1,2,n n n n n T n T a f t a n t b n ta f t n t dt n Tb f t n t dt n T∞∞==<><>=+Ω+Ω=Ω==Ω=∑∑⎰⎰(b)()()01cos 2arctan n n n n n n n A f t A n t A b a ϕϕ∞==+Ω+=⎛⎫=-⎪⎝⎭∑(c) ()()112jn tnn jn t n T n n n n f t F eF f t e dtT F A F n n ϕΩ=-∞-Ω<>===∑⎰是的偶函数是的奇函数2 周期信号的频谱 单边谱 单边幅度谱n A ω单边相位谱 nϕω双边谱 双边幅度谱 n F ω双边相位谱 nϕω3 周期信号的傅立叶变换()()()()()02T nn T n f t F n f t F jn n πδωδω∞=-∞∞=-∞↔-Ω↔ΩΩ-Ω∑∑()01n n F F j Tωω=Ω=4 周期信号()f t 作用于系统 ()()()()000j t j t f t e H j y t H j e ωωωω=→→=()()()()jn tjn t n n n n f t F eH j y t F H jn e ω∞∞ΩΩ=-∞=-∞=→→=Ω∑∑5 傅立叶变换的定义()()()()()()()()01212j t j t t F j f t e dt f t F j e d F j f t dt f t F j d ωωωωωωπωωωπ--∞∞-∞∞=-∞∞=-∞====⎰⎰⎰⎰能量等式:()()2212f t dt F j d ωωπ∞∞-∞-∞=⎰⎰6 傅立叶变换的性质 反转()()f t F j ω-↔-对称性()()2F jt f πω↔-尺度变换()1,0f at a F j a a ω⎛⎫≠↔ ⎪⎝⎭时移()()00j t f t t eF j ωω±±↔()1,0b j af at b a e F j a a ωω-⎛⎫-≠↔ ⎪⎝⎭频移()()00j t f t e F j ωωω±↔⎡⎤⎣⎦时域卷积()()()()1212f t f t F j F j ωω*↔⋅频域卷积()()()()121212f t f t F j F j ωωπ⋅↔* 时微()()()()nn ft j F j ωω↔频微()()()()nn jt f t F j ω-↔7 常用傅立叶变换对 ()2g t Sa τωττ⎛⎫↔ ⎪⎝⎭()()2Sa t g πω↔()1t e t j αεαω-↔+()()()()()()()1121nn t t j t j δπδωεπδωωδω↔↔↔+↔()()()()()000000002cos sin j t e t t jjωπδωωωπδωωπδωωππωδωωδωω±↔↔-++↔--+()()()()()()()()()()()()0000001c o s 2s i n 2f t t F j F j jf t t F j F j ωωωωωωωωωω⎡⎤↔++-⎣⎦⎡⎤↔+--⎣⎦8 傅立叶逆变换()F j ω求的逆变换()f t(1) 求()F jt 的傅立叶变换()g ω (2) ()()12f t g t π=- 9 频域分析(1)()()()()000jt j t f t e H j y t H j e ωωωω=→→=频域分析(2)(傅立叶变换应用于滤波、调制与解调系统的分析) 如 y(t)s(t)10 取样定理时域取样定理:2s m f f ≥P146,例4.5.2,4.5.3 /例4.5.5,4.5.7(4.5.11)/P173,例4.8.1,4.8.4/P202,4.13,17,18,20,21,34,35,45第四章 连续系统的S 域分析 1 单边拉普拉斯变换定义()()0st F s f t e dt -∞-=⎰2 单边拉普拉斯变换性质尺度变换()1,0s f at a F a a ⎛⎫>↔⎪⎝⎭时移()()()()()0000,01,00st b s af t t t t t e F s s f at b at b a b e F a a εε---->↔⎛⎫-->≥↔ ⎪⎝⎭频移 ()()a s t a e f t F s s -↔- 时微()()()/0f t sF s f -↔- 时域卷积 ()()()()1212f t f t F s F s *↔⋅ s 域微分()()()()nn t f t F s -↔3 常用拉普拉斯变换对()()0011s t j t e t s s e t s j βεεβ±↔-↔()()()()()11nn t t s t sδδε↔↔↔()()22221sin cos 11!T Ts n n t s st s t e n t t sβββββδε-+↔+↔+↔-↔ 4 拉普拉斯逆变换(部分分式法,公式略) 5 s 域分析(1)微分方程的求解a 求零状态响应,零输入响应,全响应。
b 求单位冲激响应,单位阶跃响应。
(2) 系统函数(S 域分析)()()()()()()()()()()()1zs zi zs zi Y s F s H s G s H s sY s Y s Y s Y s F s H s ===+=+(3) s 域框图P215,例5.1.3,5.2.2,5.2.3,5.2.4,5.2.5,5.2.8,5.2.11,5.3.3-5.3.6,5.3.9, 5.4.1,5.4.3-5.4.8/P263,5.3,4,8,11,12,14,15,17,18,19,20,22,23,24,25,28 第五章 离散系统的Z 域分析 1 Z 变换定义()()kk F z f k z∞-=-∞=∑2 Z 变换性质移位 双边 ()()m f k m z F z ±±↔单边()()()111f k z F z f --↔+-k 域乘k a()k z a f k F a ⎛⎫↔ ⎪⎝⎭k 域卷积 ()()()()1212f k f k F z F z *↔⋅ z 域微分 ()()mm d k f k z F z dz ⎡⎤↔-⎢⎥⎣⎦k 域反转()()1f k F z --↔3 常用Z 变换对()()()()()()()2,,11,11,11,1,k j k j k za k z az a zk z z zk k z z ze k z z ek z za k z a z aββεεεεδε±±↔>-↔>-↔>-↔>-↔---↔<-全平面4 逆Z 变换(部分分式法,公式略)5 Z 域分析(1)差分方程的求解a 求零状态响应,零输入响应,全响应。