轴对称镜面对称练习

合集下载

北师大版七年级数学下册同步练习附答案5.1 轴对称现象

北师大版七年级数学下册同步练习附答案5.1  轴对称现象

5.1 轴对称现象一.选择题(共1小题)1.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()(第1题图)A.1次B.2次C.3次D.4次二.填空题(共6小题)2.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.(第2题图)3.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.(第3题图)4.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点.(P1至P4点)(第4题图)5.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.(第5题图)6.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是(填出所有符合要求的小正方形的标号)(第6题图)7.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.(第7题图)三.解答题(共5小题)8.对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).(第8题图)9.已知:如图所示,在四边形ABCD中,AD=BC,∠DAB=∠CBA.(1)试判断AB与CD的位置关系,并说明理由;(2)四边形ABCD是轴对称图形吗?试说明理由.(第9题图)10.如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC是轴对称图形吗?并说明你的理由.(第10题图)11.△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=10﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DEF成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.12.如图,表示把长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.(第12题图)参考答案一.1.D二.2.(,)3.4 4.P25.3 6.2,3,4,5,7 7.D,4三.8.解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.从角看:筝形只有一组对角相等;从对角线看:有且只有一条对角线被另一条对角线垂直平分.判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.证明:按照题意,画出图形1.(第8题答图)∵AC垂直平分BD,∴AB=AD,CB=CD.又∵AB=,BC=,AO≠CO,∴AB≠BC,∴由筝形定义得,四边形ABCD是筝形.应用:筝形面积为对角线乘积的一半;∵S筝形ABCD=S△ABD+S△CBD=BD•AO+BD•CO=BD(AO+CO)=BD•AC,∴筝形面积为对角线乘积的一半.9.解:(1)AB∥CD.理由如下:在△ABD和△BAC中.∴△ABD≌△BAC(SAS).∴∠OAB=∠OBA,BD=AC.∴OA=OB.∴AC﹣OA=BD﹣OB.∴OD=OC.∴∠ODC=∠OCD.∵∠ODC+∠OCD+∠COD=180°,∠OAB+∠OBA+∠AOB=180°,∴2∠ODC+∠COD=180°.2∠OBA+∠AOB=180°.又∠COD=∠AOB,∴∠CDO=∠OBA.∴AB∥CD.(2)四边形ABCD是轴对称图形.理由如下:延长AD、BC交于点P,∵∠DAB=∠CBA,∴AP=BP.∴点P在AB的垂直平分线上.又OA=OB,∴点O在AB的垂直平分线上.∴OP垂直平分线段AB,∴点A与点B关于直线OP对称①.∵AB∥DC,∴∠PDC=∠PAB∠PCD=∠PBA.∴∠PDC=∠PCD.∴DP=CP,∴点P在DC的垂直平分线上.又OD=OC,∴点O在DC的垂直平分线上.∴OP垂直平分线段DC.∴点C与点D关于直线OP对称②.所以,综上①②所述,四边形ABCD是轴对称图形.(第9题答图)10.解:△ABC是轴对称图形.∵∠BCD=20°,∴∠B=90°﹣∠BCD=70°,∴∠ACB=∠B=70°,∴△ABC是等腰三角形,∴△ABC是轴对称图形.11.解:(1)△ABC的周长=AB+BC+AC=2a2﹣a﹣7+10﹣a2+a=a2+3.(2)当a=2.5时,AB=2a2﹣a﹣7=2×6.25﹣2.5﹣7=3,BC=10﹣a2=10﹣6.25=3.75,AC=a=2.5,∵3+2.5>3.75,∴当a=2.5时,三角形存在,周长=a2+3=6.25+3=9.25;当a=3时,AB=2a2﹣a﹣7=2×9﹣3﹣7=8,BC=10﹣a2=10﹣9=1,AC=a=3,∵3+1<8.∴当a=3时,三角形不存在.(3)∵△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,∴EF=BC,DF=AC,∴10﹣a2=4﹣b2,即a2﹣b2=6;a=3﹣b,即a+b=3、把a+b=3代入a2﹣b2=6,得3(a﹣b)=6∴a﹣b=2.12.解:五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.。

八年级数学上册第2章镜子中的轴对称(青岛版)

八年级数学上册第2章镜子中的轴对称(青岛版)

图 3 图 2 图1镜子中的轴对称“以铜为镜,可以正衣冠”,人们每天都要照镜子.其实镜子的作用不只这些,镜子里蕴含的轴对称知识还可以帮助我们解决问题.例1 如图1,是一辆汽车车牌号码在水中的倒影,则这辆车的牌号是( )A .MT7936B .MT7639C .WT7636D .WT7936分析:水中的倒影与实际的车牌号成轴对称,但两组数据的方向是一致的,所以在水中的倒影下边划一条直线作为对称轴,就很容易求得该车的实际车牌号.解:选A.点评:解答本题的关键是对“在水中倒影”理解,确定对称轴的位置,画出倒影的轴对称图形;也可以抓住一个关键数字或字母,根据其倒影中的写法及位置加以判断选择.例2 如图2,你能根据镜子中的像说出小明左右腿的前后位置吗?分析:要说出小明两腿的前后位置,只需对左、右两面镜中两腿位置及镜面成像规律加以判断.解:正面看小明:左侧是小明的右半部分,右侧是小明的左侧部分;左面镜中的小明:与实际站着的小明成轴对称,故手前伸为小明的左侧,可见其左腿在前、右腿在后.从右面镜中也可判断出相同的结论:左腿在前、右腿在后.点评:本题考察轴对称的知识;成轴对称的两个图形中,对称部分离对称轴近则同近,远则同远.正面看小明,观察者的左侧,对小明而言却在右侧.而镜中小明的体位和观察者的视角部位相同:同左或同右.例3 如图3,分别说出两个孩子各是几号队员?分析:镜中的像与实际两个孩子关于镜面成轴对称,故号码也一样关于镜面对称.解:左边的孩子:镜中的号码是“51”,根据左右互换,数字翻折知,应为“12”;同理,右边孩子的号码应为“21”.故左边的队员为12号,右边的队员为21号.C A B ' A ' C ' B M O N 图4 点评:我们可以实地操作检验,在操作时,可以多做一些数字、字母、实物,在“玩”中体会它们的变化,从而有更深刻的理解.例4 一面镜子竖直悬挂在墙上,人眼位置如图4,有三个物体A 、B 、C 放在镜子前面,人眼能从镜子里看见哪几个物体?分析:物体在镜子里所成的像就是物体关于镜面的对称点,人眼从镜子里所能看见的物体必须在人眼的视线范围内.解:分别作A 、B 、C 三点关于直线MN 的对称点A '、B '、C '.因为C '不在∠MON 内,A '、B '在∠MON 内.故人能从镜子里看见A 、B 两物体.点评:轴对称的性质在实际中的应用,关键是理解实际应用问题的理论依据,建立相应的数学模型,再利用数学知识解决.。

初中数学八年级上册轴对称练习题含答案

初中数学八年级上册轴对称练习题含答案

初中数学八年级上册轴对称练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,球沿图中箭头方向击出后碰到桌子的边缘会反弹,其中∠1叫做入射角,∠2叫做反射线,如果每次的入射角总是等于反射角,那么球最后将落入桌子四个顶角处的球袋中的()A.A号袋B.B号袋C.C号袋D.D号袋2. 下面4个图案,其中是轴对称图形的有()A.4个B.3个C.2个D.1个3. 小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是( )A. B. C. D.4. 下列图案不是轴对称图形的是( )A. B.C. D.5. 从镜子中看到钟的时间是8点25分,正确的时间应是()A.3点45分B.3点35分C.3点30分D.3点25分6. 如图,已知∠AOB=30∘,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接OP1,OP2,P1P2,设P1P2交OA于点M,交OB于点N,连接PM,PN.若PM=1,PN=2,MN=3,则OP1的长为()A.4B.5C.6D.77. 一辆汽车车牌如图所示,则在正面看它在马路上水中的倒影为()A.B.C.D.8. 到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点9. 如图,在△ABC 中,∠B =70∘,DE 是AC 的垂直平分线,且∠BAD:∠BAC =1:3,则∠C 的度数为( )A.48∘B.3307º C.46∘D.44∘10. 如图,△ABC 与△A′B′C′关于直线L 成轴对称,则下列结论中错误的是( )A.AB =A′B′B.∠B =∠B′C.AB // A′C′D.直线L 垂直平分线段AA′11. 在平面直角坐标系xOy 中,已知点A(0, 8),点B(6, 8),若点P 同时满足下列条件:①点P 到A ,B 两点的距离相等;②点P 到∠xOy 的两边距离相等.则点P 的坐标为________.12. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =3.1cm ,CD=2.3cm.则四边形ABCD的周长为________.13. 证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等..已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平分线上的一点,∴ ________=________(________).同理可得,PB=________.∴ ________=________(等量代换).∴ ________(到一条线段两个端点距离相等的点,在这条线段的________)∴AB、BC、AC的垂直平分线相交于点P,且________.14. 如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为________度.15. 如图,已知CD垂直平分AB.若AC=4, AD=5,则四边形ADBC的周长是________.AB的长为半径作弧,两弧相16. 如图,已知线段AB,分别以点A和点B为圆心,大于12交于C,D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=________.17. 如图,中,AB的垂直平分线交AC于点M,若,,,则的周长为________cm.18. 如图,在△ABC中,AB=AC, DE是AB的垂直平分线,△BCE的周长为24, BC=10则AB的长为________19. 如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点________.(P1至P4点)20. 如图,在▱ABCD中,按如下顺序作图:①以点A为圆心,AD长为半径画弧,交AB于点F;DF长为半径画弧,两弧交于点G;②分别以点D,点F为圆心,大于12③连接DF,作射线AG,交DC于点E.则四边形ADEF是________形;若AD=5,DF=6,则AE=________.21. 如图,已知:△ABC中,试说明:(1)用尺规作图作出边AB、BC的垂直平分线并相交于点P(要求:不写作法,保留作图痕迹)(2)求证:P在AC的垂直平分线上.22. 如图,在△ABC中,AB>AC.(1)用尺规作图法在AB上找一点P,使得PB=PC.(保留作图痕迹,不用写作法);(2)在(1)的条件下,连结PC,若AB=6,AC=4,求△APC的周长.23. 如图是由三个相同的小正方形组成的图形,请你用三种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.24. 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入哪一个球袋?说明理由.25. 如图,△ABC中,∠BAC=110∘,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.26. 如图,P为∠AOB内的一点,分别作出点P关于OA、OB的对称点P1、P2,连结P1、P2,交OA于M,交OB于N,若P1P2=13cm,求△MNP的周长?27. 如图,已知△ABC≅△DEF,且A,B,D,E四点在同一直线上,(1)如图1,请你用无刻度的直尺作出线段BE的垂直平分线;(2)如图2,请你用无刻度的直尺作出线段AD的垂直平分线.28. 如图,下面是一些交通标志,你能从中获得哪些信息?29. 已知:直线a1,a2垂直相交于O,于两直线外一点P,求作点P关于直线a1的对称点P′,点P关于直线a2的对称点P″,试证明:OP′=OP″.30. 两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.31. 已知:如图,在Rt△ABC中,∠C=90∘,∠B=30∘,AD平分∠BAC交BC于点D.(1)求证:点D在AB的垂直平分线上;(2)若CD=2,求BC的长.32. 如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,求△ADC的周长.33. 如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30∘,求∠MAN的度数;(3)若∠MON=45∘,BM=3,BC=12,求MN的长度.34. 如图,△ABC的周长为20cm,AC的垂直平分线DE交BC于D,E为垂足,若AE= 4cm,△ABD的周长为________cm.35. 指出下列图形中的轴对称图形,并找出它们的对称轴.36. 如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.37. 如图,已知:在△ABC中,AB,BC边上的垂直平分线相交于点P,求证:点P在AC的垂直平分线上.38. 如图所示,已知AB=AC,DB=DC,E是AD延长线上的一点,问:BE与CE相等吗?请说明理由.39. 搜集各国的国旗标志,举出5个以上具有轴对称图形的标志,并画出它们所有的对称轴.40. 指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.参考答案与试题解析初中数学八年级上册轴对称练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】生活中的轴对称现象【解析】根据图形画出图示可直接得到答案.【解答】解:如图所示:球最后将落入桌子四个顶角处的球袋中的C号袋中,故选:C.2.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,观察可知前三个是轴对称图形,第四个不是轴对称图形.故选B.3.【答案】D【考点】镜面对称【解析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左右翻折,即可得到原图象,实际时间为8点的时针关于过12时,6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,而D更接近8点.【答案】A【考点】轴对称图形【解析】此题暂无解析【解答】解:由题A是中心对称图形不是轴对称图形,BCD是轴对称图形.故选A.5.【答案】B【考点】镜面对称【解析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻8点25分与3点35分成轴对称,所以此时实际时刻为3点35分.故选B.6.【答案】【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片与A显示的图片成轴对称,所以在正面看它在马路上水中的倒影为A显示的图片.故选A.8.【答案】D【考点】根据:垂直平分线上任意一点,到线段两端点的距离相等.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【解答】到线段两个端点距离相等的点在该线段的垂直平分线上,由此可得出要到三角形三个顶点的距离相等的交点是三条边的垂直平分线的交点.故选:D9.【答案】D【考点】线段垂直平分线的性质【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70∘⇒∠BAD=180∘−∠B−∠BAD,由此可求得角度数.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x−x=2x,根据题意得:180∘−(x+70∘)=2x+2x,解得x=22∘,∴∠C=∠DAC=22∘×2=44∘.故选:D.10.【答案】C【考点】线段的垂直平分线的性质定理的逆定理轴对称的性质线段垂直平分线的性质【解析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(3,3)【考点】线段垂直平分线的定义角平分线的定义【解析】性质解答即可.【解答】解:∵点A(0, 8),点B(6, 8),点P到A,B两点的距离相等,∴点P在线段AB的垂直平分线x=3上.∵点P到∠xOy的两边距离相等,∴点P在∠xOy的平分线上,∴点P的坐标为(3, 3).故答案为:(3,3).12.【答案】10.8cm【考点】轴对称的性质【解析】根据轴对称图形的性质得出AB=BC=3.1cm,CD=AD=2.3cm,进而求出即可.【解答】解:∵四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=3.1cm,CD=2.3cm,∴AB=BC=3.1cm,CD=AD=2.3cm,则四边形ABCD的周长为:3.1+3.1+2.3+2.3=10.8(cm).故答案为:10.8cm.13.【答案】解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据线段垂直平分线的性质定理和逆定理即可解答本题.解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.【答案】100【考点】轴对称的性质【解析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30∘,∴∠B=180∘−∠A−∠C=180∘−50∘−30∘=100∘.故答案为:100.15.【答案】18【考点】线段垂直平分线的性质【解析】此题主要考查线段的垂直平分线的性质.【解答】解:∵CD垂直平分AB,若AC=4,AD=5,∴AC=BC=4,AD=BD=5,∴四边形ADBC的周长为AD+AC+BD+BC=18.故答案为:18.16.【答案】5线段垂直平分线的性质作线段的垂直平分线【解析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意得,直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为:5.17.【答案】12【考点】线段垂直平分线的性质【解析】根据线段垂直平分线的性质可得BM=AM=4cm,然后可得△MBC的周长.【解答】:AB的垂直平分线交AC于点M,BM=AM=4cmCM=3cm,BC=5cm∴△MBC的周长为:4+3+5=12(cm)故答案为:12.18.【答案】14【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据“线段垂直平分线的性质定理”即可得到AE=EE,由于△BCE的周长为24,利用线段的等量代换即可得到|AC+BC的值;已知BC的长度,即可得到AC的长度,由于AB=AC,则问题得解.【解答】∼DE是AB的垂直平分线,AE=EE.△BCE的周长为24,BC+BE+CE=BC+AE+CE=BC+AC=24BC=10AC=14.AB=ACAB=1A【答案】P2【考点】生活中的轴对称现象【解析】认真读题,作出点A关于P1P2所在直线的对称点A′,连接A′B与P1P2的交点即为应瞄准的点.【解答】如图,应瞄准球台边上的点P2.20.【答案】菱,8【考点】作线段的垂直平分线菱形的判定与性质【解析】此题暂无解析【解答】解:由①可知,AD=AF,由②可知,GD=GF,所以AE为线段DF的垂直平分线,则DE=EF,设AE与DF交于点O,∵ DE//AF,∴ ∠DEA=∠FAE.在△DOE和△FOA中,{∠DEA=∠FAE,DO=OF,∠DOE=∠FOA,∴ △DOE≅△FOA,∴ DE=AF,∴ 四边形ADEF是菱形;∵ AD=5,DF=6,∴ DO=3,∴ AO=√AD2−DO2=4,∴ AE=8.故答案为:菱;8.三、解答题(本题共计 20 小题,每题 10 分,共计200分)(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.【考点】线段的垂直平分线的性质定理的逆定理作线段的垂直平分线线段垂直平分线的性质【解析】(1)根据垂直平分线的作法得出即可;(2)可用作圆的方法作出线段AB、BC的垂直平分线;因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA=PB=PC 即可.【解答】(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.22.【答案】(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.【考点】作线段的垂直平分线线段垂直平分线的性质【解析】【解答】解:(1)答案如图所示.(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.23.【答案】解:如图所示.【考点】轴对称图形【解析】根据轴对称图形的概念,先确定出不同情况的对称轴,然后补全小正方形即可.【解答】解:如图所示.24.【答案】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.【考点】生活中的轴对称现象【解析】由已知条件,按照反射的原理画图即可得出结论.【解答】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.25.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).【考点】线段垂直平分线的性质【解析】(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA= FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC−∠EAD−∠FAC=110∘−(∠B+∠C)求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+ DF=BC,即可得出答案.【解答】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).26.【答案】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.【考点】轴对称的性质【解析】根据轴对称的性质可得PM=P1M,PN=P2N,从而求出△MNP的周长等于P1P2,从而得解.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.27.【答案】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.【考点】作线段的垂直平分线【解析】此题暂无解析【解答】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.28.【答案】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.【考点】生活中的轴对称现象【解析】根据图形中的几个交通标志的轴对称性可以作出判断,答案不唯一.【解答】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.29.【答案】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.【考点】轴对称的性质【解析】作出图形,连接PP′、PP″、OP,根据轴对称的性质可得OP′=OP,OP″=OP,然后证明即可.【解答】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.30.【答案】解:它们的对称轴均为经过两圆圆心的一条直线.【考点】轴对称图形【解析】根据每个圆都是轴对称图形,且对称轴是经过圆心的直线,则两个不是同心圆的圆组成的图形的对称轴是经过两个圆的圆心的直线.【解答】解:它们的对称轴均为经过两圆圆心的一条直线.31.【答案】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.【考点】线段的垂直平分线的性质定理的逆定理含30度角的直角三角形线段垂直平分线的性质【解析】无无【解答】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.32.【答案】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.【考点】线段垂直平分线的性质【解析】由DE是BC的垂直平分线,即可求得BD=CD与BC的值,又由△ABC的周长为25,即可求得AB+AC的值,继而求得△ADC的周长.【解答】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.33.【答案】∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.【考点】线段垂直平分线的性质【解析】(1)根据线段的垂直平分线的性质得到MA=MB,NA=NC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算;(3)根据(2)的解法得到∠MAN=90∘,根据勾股定理列式计算即可.∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.34.【答案】12【考点】线段垂直平分线的性质【解析】此题主要考查了线段的垂直平分线定理,三角形的周长公式,整体代入,解本题的关键是求出AB+BC的值.【解答】解:∵ DE是AC的垂直平分线,∴ AD=CD,AC=2AE,∵ AE=4cm,∴ AC=8cm,∴ △ABC的周长为20cm,∴ AB+BC+AC=20,∴ AB+BC=20−AC=12cm,∴ △ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=12cm,故答案为:12.35.解:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:36.【答案】解:.(答案不唯一).【考点】轴对称图形【解析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).37.【答案】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.【考点】线段垂直平分线的性质【解析】因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA是否等于PC即可.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.38.【答案】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.【考点】轴对称的性质【解析】根据垂直平分线的定义可分别判定:点A在线段BC的垂直平分线上,D点也在线段BC 的垂直平分线上,所以可推出AD是线段BC的垂直平分线.从而求得BE=EC.【解答】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.39.【答案】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.40.【答案】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,即可作出判断.【解答】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:。

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2 画轴对称图形

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2   画轴对称图形

初中数学人教版八年级上册实用资料13.2画轴对称图形基础巩固1.(知识点2)将平面直角坐标系中的某个图形各个点的横坐标都乘-1,纵坐标不变,所得图形与原图形的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.重合2.(题型二)如图13-2-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在的直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()图13-2-1A.点AB.点BC.点CD.点D3.(知识点2)点A(-3,2)关于x轴的对称点A′的坐标为.4.(题型一)如图13-2-2,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品.图13-2-2 图13-2-35.(易错点1)图13-2-3是李华在镜中看到身后墙上的钟表,你认为实际时间是.6.(题型一)如图13-2-4,在正方形方格中,阴影部分是涂黑的7个小正方形所形成的图案.将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.图13-2-47.(题型一)如图13-2-5的3×3网格都是由9个相同的小正方形组成,每个网格图中都有3个小正方形已涂上阴影,请在剩下的6个空白小正方形中,按下列要求涂上阴影:选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形(给出三种方法)(1)(2)(3)图13-2-58.(题型一)如图13-2-6,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位长度,再向下平移5个单位长度,画出平移后得到的线段A2C2,并以它为一条边作一个格点三角形A2B2C2,使A2B2=C2B2.图13-2-69.(题型二)如图13-2-7,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).写出点D,C,B关于y轴的对称点F,G,H的坐标,并在图13-2-7中作出点F,G,H.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说明它具有怎样的性质,像我们熟知的什么图形.图13-2-710.(题型二)图13-2-8中的“鱼”是将坐标分别为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.(1)利用轴对称变换,画出原图案关于x轴的对称图形,形成美丽的“双鱼座”;(2)求两个图案的公共部分的面积(直接写结果).图13-2-8能力提升11.(题型四)如图13-2-9,将长方形纸片首先沿虚线AB按箭头方向对折,接着将对折后的纸片沿虚线CD按箭头方向对折,然后剪下一个小三角形,最后将纸片打开,则打开后的图形是()图13-2-912.(题型三)如图13-2-10,在平面直角坐标系中,线段OA与线段OA′关于直线l:y=x对称.已知点A的坐标为(2,1),则点A′的坐标为.图13-2-1013.(题型一)如图13-2-11,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出(所给的六个格纸未必全用).图13-2-1114.(题型三)如图13-2-12,在平面直角坐标系中,△ABO的顶点坐标分别为O(0,0),A (2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(2a>m>a).直线l∥y轴,交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的代数式表示).(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明理由,若能,请你说出一种平移方案(平移的长度用m,a表示).图13-2-12答案基础巩固1. C 解析:将各个点的横坐标都乘-1,纵坐标不变,即各个点的横坐标变成它的相反数,纵坐标不变,所以所得图形与原图形关于y轴对称.故选C.2. B 解析:如图D13-2-1,以B为原点建立平面直角坐标系,此时存在两个点A,C关于y轴对称.故选B.图D13-2-13.(-3,-2)4. 书解析:如图D13-2-2,这个单词所指的物品是书.图D13-2-25. 7:45 解析:由镜面对称性可知,实际时间应该是7:45.6. 3 解析:在1,2或3处(如图D13-2-3)涂黑都可得到一个轴对称图形,故涂法有3种.图D13-2-37. 解:如图D13-2-4.图D13-2-48. 解:(1)如图D13-2-5,△A1B1C1即为所求.图D13-2-5(2)如图D13-2-5,△A2B2C2即为所求.(答案不唯一)9. 解:由题意,得F(-2,-3),G(-4,0),H(-2,4).如图D13-2-6,这个图形关于y轴对称,是我们熟知的轴对称图形.图D13-2-610. 解:(1)如图D13-2-7.(2)两个图案的公共部分的面积为1/2×3×2×2+1/2×2×2=6+2=8.图D13-2-7能力提升11. D 解析:∵第三个图形中剪去的是三角形,∴将第三个图形展开,可得A项不符合题意.再展开可知三角形的短边正对着,且在内侧,∴B,C项不符合题意.故选D.12.(1,2)解析:图D13-2-8如图D13-2-8,过点A作AC⊥x轴于点C,过点A′作A′C′⊥y轴于点C′,连接AA′,交直线l于点D.∵线段OA与线段OA′关于直线l:y=x对称,∴△ODA′≌△ODA,∠C′OD=∠COD,∴∠A′OD=∠AOD,A′O=AO.∴∠A′OC′=∠AOC.在△AC O和△A′C′O中,∠AOC=∠A′OC′,∠ACO=∠A′C′O=90°,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵点A 的坐标为(2,1),∴点A′的坐标为(1,2).13解:与△ABC成轴对称且以格点为顶点的三角形如图D13-2-9.图D13-2-9`14. 解:(1)∵线段EF与CD关于y轴对称,线段EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).设CD与直线l之间的距离为x.∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-x.又∵x=m-a,∴点M的横坐标为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能重合.理由如下:由(1)知EM=2a-m-(-m)=2a=OA,EF=a+1-1=a=OB.∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:先将△ABO向上平移(a+1)个单位长度,再向左平移m 个单位长度,即可重合.。

专题12 轴对称30大高频考点(期末真题精选)(原卷版)

专题12 轴对称30大高频考点(期末真题精选)(原卷版)

专题12 轴对称30大高频考点一.生活中轴对称1.如图,桌球的桌面上有M,N两个球,若要将M球射向桌面的一边,反弹一次后击中N球,则A,B,C,D,4个点中,可以反弹击中N球的是点.2.数的运算中含有一些有趣的对称形式,如12×231=132×21,按照此等式的形式填空:12×462=×;×891=×81.二.轴对称图形的辨析3.在“线段、角、直角三角形、等边三角形”这四个图形中,对称轴最多的图形是.4.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.5.线段是轴对称图形,它的对称轴是;角是轴对称图形,它的对称轴是.三.镜面对称6.有两面可绕一立轴转动的立式镜,我站在这两面镜手前的一个点上,这个点位于镜面夹角的角平分面上.若两镜面的夹角为50°,我将可以看到自己的镜像数为()A.10B.8C.6D.4四.剪纸类7.将一个正方形纸片对折后对折再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.8.如图,从△ABC的纸片中剪去△CED,得到四边形ABDE.若∠1+∠2=230°,则∠C=()A.230°B.130°C.50°D.110°五.设计轴对称图案9.如图是5个小正方形纸片拼成的图形,现将其中一个小正方形纸片平移,使它与原图中剩下的小正方形纸片有一条或两条边重合后拼成一个轴对称图形,在拼出的所有不同位置的轴对称图形中,全等的图形共有()A.0对B.1对C.2对D.3对六.轴对称的性质10.如图,点P为∠AOB内部任意一点,点P与点P1关于OA对称,点P与点P2关于OB对称,OP=4,∠AOB=45°,则△OP1P2的面积为.11.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为(用含n的式子表示).七.:轴对称与最值12.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE=120°,则DE的最大值是.13.如图,点C,D在AB的同侧,AC=5,AB=10√2,BD=10,点M为AB的中点,若∠CMD=120°,则CD的最大值是.14.如图,△ABC中,∠B=45°,∠C=75°,AB=4,D为BC上一动点,过D作DE⊥AC于点E,作DF⊥AB于点F,连接EF,则EF的最小值为.15.如图,在锐角△ABC中,∠A=30°,BC=3,S△ABC=8,点P是边BC上的一动点,点P关于直线AB,AC的对称点分别是M,N,连接MN,则MN的最小值为.八.作图:轴对称的变换16.如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC 关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.17.如图,在平面直角坐标系的网格中,其最小正方形的边长为1个单位长度,△ABC的顶点都在格点上.(1)作出△ABC关于x轴对称的图形△A'B'C',并写出△A'B'C'三个顶点的坐标;(2)判断△A'B'C'的形状,并简单加以说明.九.角平分线的性质18.如图,已知△ABC的周长是18,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3,则△ABC的面积是.19.如图,OP平分∠MON,P A⊥ON于点A,P A=3,点Q是射线OM上一个动点,若PQ=m,则m的取值范围是.20.如图,△ABC的三边AB、BC、CA长分别是30、40、50,∠ABC和∠ACB的角平分线交于O,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5十.角平分的性质与面积21.如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB =20,则△AOB的面积是.22.如图,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.23.已知点O是△ABC的三个内角平分线的交点,若△ABC的周长为24cm,面积为36cm2,则点O 到AB的距离为cm.十一.角平分线的判定24.如图,O是△ABC内一点,且O到三边AB,BC,CA的距离相等(即OF=OD=OE),若∠BAC=80°,则∠BOC()A.110°B.120°C.130°D.140°25.东湖高新区为打造成“向往之城”,正建设一批精品口袋公园.如图所示,△ABC是一个正在修建的口袋公园.要在公园里修建一座凉亭H,使该凉亭到公路AB、AC的距离相等,且使得S△ABH =S△BCH,则凉亭H是()A.∠BAC的角平分线与AC边上中线的交点B.∠BAC的角平分线与AB边上中线的交点C.∠ABC的角平分线与AC边上中线的交点D.∠ABC的角平分线与BC边上中线的交点十二.垂直平分线的性质26.如右图:AB比AC长3cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14cm,则AB=cm.27.如图,在△ABC中,AB、AC的中垂线GF、DE分别交BC于点F、E,连接AE、AF,∠B+∠C=50°,那么∠F AE的度数是()A.80°B.70°C.60°D.50°十三.垂直平分线的判定28.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.十四.角平分线与垂直平分线的融合29.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.十五.等腰三角形的性质30.如图,△ABC中,∠CAB=∠CBA=48°,点O为△ABC内一点,∠OAB=12°,∠OBC=18°,则∠ACO+∠AOB=()A.190°B.195°C.200°D.210°31.求证:等腰三角形两底角的平分线相等.32.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.十六.等腰三角形的判定33.如图,已知△ABC,CD平分它的外角∠BCE,AB∥CD,证明:△ABC为等腰三角形.34.如图,在△ABC中,∠A=60°.BE,CF交于点P,且分别平分∠ABC,∠ACB.(1)求∠BPC的度数;(2)连接EF,求证:△EFP是等腰三角形.十七.格点等腰三角形35.如图,在正方形网格中,网格线的交点称为格点;已知A,B是两格点,若C点也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.36.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN=4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.十八.图形的存在性之等腰37.如图,在△ABC中,∠B=25°,∠A=100°,点P在△ABC的三边上运动,当△P AC成为等腰三角形时,其顶角的度数是.38.在△ABC中,∠A=40°,当∠C=时,△ABC为等腰三角形.39.如图,等边△ABC的边长为12cm,M,N两点分别从点A,B同时出发,沿△ABC的边顺时针运动,点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N两点同时停止运动,则当M,N运动时间t=s时,△AMN为等腰三角形.十九.等腰三角形的性质与判定综合40.如图,点D在等边△ABC的外部,连接AD、CD,AD=CD,过点D作DE∥AB交AC于点F,交BC于点E.(1)判断△CEF的形状,并说明理由;(2)连接BD,若BC=10,CF=4,求DE的长.41.在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.二十.等边三角形的性质42.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.二十一.等边三角性的判定43.如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.二十二.等边三角性的判定与性质的综合运用44.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.45.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.二十三.含30°角的直角三角形46.如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.(说明:此题的证明过程需要批注理由)二十四.直角三角形斜中线的运用47.【教材呈现】如图是华师版九年级上册数学教材第103﹣104页的部分内容.如图24.2.1,画Rt△ABC,并画出斜边AB上的中线CD,量一量,看看CD与AB有什么关系.相信你与你的同伴一定会发现,CD恰好是AB的一半.下面让我们用演绎推理证明这一猜想.已知:如图24.2.2,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,求证:CD=12AB.定理证明:请根据教材图24.2.2的提示,结合图①完成直角三角形的性质:“直角三角形斜边上的中线等于斜边的一半”的证明.定理应用:(1)如图②,在△ABC中,AD⊥BC,垂足为点D(点D在BC上),CE是AB边上的中线,DG垂直平分CE.求证:∠B=2∠BCE;(2)在(1)条件下,若BF⊥AC于点F,连接DE、EF、FD.当△DEF是等边三角形,且BD =3时,△DEF的周长为.48.如图,Rt△ABC中,∠CAB=90°,∠ACB=30°,D是AB上一点(不与A、B重合),DE⊥BC于E,若P是CD的中点,请判断△P AE的形状,并说明理由.二十五.新定义49.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=√3,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP 进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP=√2,求△PDC 的面积.二十六.尺规作图50.如图,在△ABC中,∠C=90°.(1)过点B作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.51.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部,请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)二十七.规律类52.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若操作2022次,得到小正方形的个数是()A.6065B.6066C.6067D.606853.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E;…按此做法继续下去,则第2022个三角形中以A2022为顶点的内角度数是()A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75° 二十八.坐标中的轴对称54.已知点M (a ,﹣3),点N (﹣2,b )关于y 轴对称,则(a +b )2022的值( )A .﹣3B .﹣1C .1D .355.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (3,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.二十九.三线合一的妙用56.如图,△ABC 中,AB =AC ,AD 是∠BAC 的角平分线交BC 于点D ,DE ⊥AC 于点E ,CF ⊥AB 于点F ,DE =3,则CF 的长为( )A .4B .6C .9D .1257.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:∠BAD=∠CAD;(2)求证:BE=CE.三十.角平分与平行、垂直的巧妙融合58.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为.59.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=5,ED=9,求EB+DC=.60.如图,已知S△ABC=24m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC m2.。

第十三章_第一节轴对称同步练习

第十三章_第一节轴对称同步练习

第十三章第一节轴对称同步练习1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列汉字是轴对称图形的是( )A. B. C. D.2. 用刻度尺测量得出下图()是等腰三角形.A. B. C. D.3. 下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4. 下列国旗图案是轴对称图形但不是中心对称图形的有()A.B.C.D.5. 在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6. 如图所示,小华运动衣上的实际号码是()A.901B.109C.601D.1067. 将写有字“B”的字条正对镜面,则镜中出现的会是()A.BB.C.D.8. 如图,在四边形中,,、相交于点,点、分别是、的中点,若,那么等于().A. B. C. D.9. 分别以直线l为对称轴,所作轴对称图形错误的是()A. B.C. D.10. 已知∠AOB=30∘,P为OB上一点且OP=10,若以点P为圆心,为半径的圆与OA 相切,则r为()C.10D.5A.5√3B.5√3311. 如图,P是∠AOB内任意一点,OP=6cm,M,N分别是射线OA和射线OB上的动点,△PMN周长的最小值是6cm,则∠AOB的度数是()A.25∘B.30∘C.35∘D.40∘12. 如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,AB的垂直平分线DE交BC 的延长线于点E,则CE的长为()A.3 2B.76C.256D.213. 如图所示,点D在BC上,DE⊥AB,DF⊥AC,且DE=DF,线段AD是△ABC中()A.BC边上的高B.BC边的垂直平分线C.BC边上的中线D.∠BAC的平分线14. 如图,0是Rt△ABC的角平分线的交点,∠ACB=90∘,OD//AC,AC=5,BC= 12,AB=13,则OD的值为()A.2B.3C.1D.415. 如图,在△ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,下列结论:①∠FCD=45∘;②AE=EC;③S△ABF:S△AFC=BD:CD;④若BF=2EC,则△FDC的周长等于AB的长.其中正确的是()A.①②B.①③C.①④D.①③④16. 观察下图中各组图形,其中成轴对称的为________(只写序号1,2等).17. 轴对称图形:________有一条对称轴,________有两条对称轴,________有四条对称轴,________有无数条对称轴.(各填上一个图形即可)18. 用任意两个全等的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形.其中一定能够拼成的图形是________(只填题号)19. 小芳在梳妆镜中发现,放在梳妆镜台桌面上的手机中的时间如图所示,则这时的实际时间应该是________.20. 如图,已知,点P在OA上,且,点P关于直线OB的对称点是Q,则________.21. 如图,线段AB,CD关于直线EF对称,则AC⊥________,BD⊥________,AO=________,BO′=________.22. 如图,已知点A、B直线MN同侧两点,点A’、A关于直线MN对称.连接A’B交直线MN于点P,连接AP.若A’B=5cm,则AP+BP的长为________23. 如图,在Rt△ABC中,∠C=90∘,∠B=30∘,BC=3,AB的垂直平分线分别交AB于点E,交BC于点D,连接AD,则DE的长为________.24. 如图,在菱形ABCD中,分别以点B和点C为圆心,BA长为半径在BC的上方和下方画弧,两弧分别交于点M,N,直线MN分别交BC,BD,BA于点E,F,G,若BG=5,GA=1,则点F到AB的距离是________.25. 如图,在距离树AB3m远处立一根2m长的杆子CD,站在离杆子1m远EF处的人刚好越过杆顶C看到树顶A,这个人高EF=1.5m,求树的高.26. 如图中,哪一条是轴对称图形?哪一些不是轴对称图形?如果是轴对称图形,请画出对称轴.27. 轴对称图形与中心对称图形的区别与联系:中心对称与中心对称图形的区别与联系:28. 如图,已知AC与EH交于点B,BF与AG交于点D,则图中同位角和对顶角各有几对,并具体写出各对同位角和对顶角.29. 如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN−AB的延长线于点N,PM⊥AC于点M.求证BN=CM.30. 如图,在Rt△ABC中,∠ACB=90∘,AC=BC,D是BC的中点,CE⊥AD,垂足为E,BF//AC交CE的延长线于点F.求证:AB垂直平分DF.31. 如图所示,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BA.求证:AC⊥CD参考答案与试题解析第十三章第一节轴对称同步练习一、选择题(本题共计 15 小题,每题 3 分,共计45分)1.【答案】C【考点】生活中的轴对称现象【解析】此题暂无解析【解答】解:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.A、我,不是轴对称图形,故该选项错误;B、爱,不是轴对称图形,故该选项错误;C、中,是轴对称图形,故该选项正确;D、国,不是轴对称图形,故该选项错误.故选C.2.【答案】B【考点】生活中的轴对称现象【解析】根据测量判断各个选项中的三角形的是否有两边相等,即可作出判断.【解答】解:A、是不等边三角形,故错误;B、是等腰三角形,正确;C、是不等边三角形,故错误;D、是不等边三角形,故错误.故选B.3.【答案】C【考点】生活中的轴对称现象【解析】根据等边三角形,正方形,角,圆的轴对称性,即可作出判断.【解答】解:A、等边三角形的对称轴是各边的中垂线,有3条,故正确;B、正方形对称轴是边的中垂线与经过相对顶点的直线,共有4条,故选项正确;C、角的对称轴是角的平分线所在的直线,只有一条,故错误;D、圆的对称轴是经过圆心的直线,有无数条,故正确.故选C.4.【答案】A【考点】多边形内角与外角中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】轴对称与中心对称图形的识别中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答6.【答案】B【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右和上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得:小华运动衣上的实际号码是109.故选B.7.【答案】B【考点】镜面对称【解析】镜子中看到的字母与实际字母是关于镜面成垂直的线对称.【解答】解:镜中出现的会是两个圆圈向左,故选B.8.【答案】B【考点】直角三角形斜边上的中线线段垂直平分线的定义【解析】如图,连接AH,CH,根据直角三角形斜边上的中线性质可得AH=12BDCH=12BD,即AH=CH,再根据垂直平分线的逆定理可得GH是AC的垂直平分线,得到|ΔGEH为直角三角形,然后根据直角三角形两个锐角互余即可得解.【解答】如图,连接AH,CH,∠BCD=∠BAD=90∘,H是BD的中点,AH=12BD,CH=12BD,AH=CH:G是AC的中点,..GH是,AC的垂直平分线,2HGE=90∘ΔGH=∠BEC=80∘∴∵ GHE=90∘−∠GEH=90∘−80∘=10∘.故选B.9.【答案】C【考点】轴对称的性质【解析】沿直线对折,直线两旁的部分能完全重合即可.【解答】解:根据轴对称的定义可得C选项中的图形沿l对折不能重合. 故选C.10.【答案】D【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】轴对称的性质【解析】此题暂无解析【解答】解:分别作点P关于OA,OB的对称点D,C,连接CD,分别交OA,OB于点M,N,连接OC,OD,CD,PC,PD,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD=6,∠AOB=1∠COD,2∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60∘,∴∠AOB=30∘.故选B.12.【答案】B【考点】勾股定理线段垂直平分线的性质【解析】此题暂无解析【解答】解:设CE=x,连接AE,如图所示,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,,解得x=76∴CE=7.6故选B.13.【答案】D【考点】线段垂直平分线的性质【解析】根据线段垂直平分线性质得出AB=AC,根据等腰三角形的性质得出即可.【解答】解:∵AD是边BC的垂直平分线,∴AB=AC.∴AD是∠BAC的角平分线.故选D.14.【答案】A【考点】线段垂直平分线的性质【解析】作OE⊥AC于E,OF⊥AB于F,根据勾股定理求出AB的长,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【解答】解:如图,作OE⊥AC于E,OF⊥AB于F,在Rt△ABC中,AC=5,BC=12,AB=13,∵O是Rt△ABC的角平分线的交点,OD // AC,∴OD⊥BC于D,又OE⊥AC,OF⊥AB.∴OD=OE=OF.∴12×AC×BC=12×AC×OE+12×BC×OD+12×AB×OF,解得,OD=2,故选A.15.【答案】D【考点】全等三角形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴ ③正确;∵∠ABC=45∘,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90∘,∴△BDF≅△ADC,∴FD=CD,∴∠FCD=∠CFD=45∘,∴ ①正确;若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴ ④正确.故选D.二、填空题(本题共计 9 小题,每题 3 分,共计27分)16.【答案】①②④【考点】生活中的轴对称现象【解析】认真观察所给的图形,按照直线两旁的部分是否能够互相重合来判断是否符合要求.【解答】解:3中的伞把不对称,故填①②④故填①②④17.【答案】角,矩形,正方形,圆【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:轴对称图形角有一条对称轴,矩形有两条对称轴,正方形有四条对称轴,圆有无数条对称轴.故答案是:角,矩形,正方形,圆.18.【答案】①②⑤【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:把全等三角形的一直角边重合,两直角一上一下,则组成平行四边形;都在一侧,则组成等腰三角形;斜边对齐,互余的两角对齐,即组成矩形;因不是特殊的直角三角形,组不成正方形,则一定能够拼成的图形是①②⑤.故答案为:①②⑤.19.【答案】12:05【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,因此15:02的真实图象应该是12:05.故答案为:12:05.20.【答案】2【考点】线段垂直平分线的定义【解析】此题暂无解析如解图,连接OQ,点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∠POB=∠QOB=30∘OP=OQ∠PQQ=2∠POB=60∘,…△POQ为等边三角形,PQ=PO=221.【答案】EF,EF,OC,DO′【考点】轴对称的性质关于x轴、y轴对称的点的坐标轴对称中的坐标变化坐标与图形变化-对称【解析】解:线段AB,CD关于直线EF对称,则AC⊥EF,BD⊥EF,AO=CO,BO′=DO′.故答案为EF,EF,CODO′.【解答】解:线段AB,CD关于直线EF对称,则AC⊥EF,BD⊥EF,AO=CO,BO′=DO′.故答案为EF,EF,CODO′.22.【答案】5cm【考点】线段垂直平分线的性质轴对称的性质轴对称——最短路线问题【解析】点A′、A关于直线MN对称,点P在对称轴MN上,AP.AP关于直线MN对称,AP=APAP+BP=A+PB=A′B=5cm【解答】此题暂无解答23.1【考点】含30度角的直角三角形线段垂直平分线的性质【解析】根据线段垂直平分线的性质得出AD=BD,求出∠CAD=30∘,根据含30∘角的直角三角形的性质得出AD=2CD,求出AD即可.【解答】解:∵边AB的垂直平分线DE交AB于点E,交BC于点D,∴AD=BD,∠B=∠DAB.∵∠B=30∘,∠C=90∘,∴∠CAB=60∘,∠DAB=∠B=30∘,∴∠CAD=60∘−30∘=30∘,∴AD=2CD=2DE=BD.∵BC=3,∴CD+BD=DE+2DE=3DE=3,∴DE=1.故答案为:1.24.【答案】32【考点】菱形的性质勾股定理作图—基本作图三角形的面积作线段的垂直平分线【解析】首先由作图知:MN是线段BC的垂直平分线,进而求出BE=12BC=3,在Rt△GBE中,由勾股定理求出GE,然后过点F作FH⊥AB,证出HF=FE,由S△BGF=12BG⋅HF=1 2GF⋅BE,S△BFE=12BE⋅FE=12FE⋅BE,得出BGBE=GFFG,代入数值计算即可.【解答】解:由作图知:MN是线段BC的垂直平分线,∴ BE=CE=12BC.∵ 四边形ABCD是菱形,AB=BG+GA=5+1=6,∴ BC=AB=6,∴ BE=12BC=3,∠ABD=∠CBD.在Rt△GBE中,GE=√BG2−BE2=√52−32=4.过点F作FH⊥AB,如图所示:∵ ∠ABD=∠CBD,∴ HF=FE,∵S△BGF=12BG⋅HF=12GF⋅BE,S△BFE=12BE⋅FE=12FE⋅BE,∴BGBE =GFFE,∴53=4−FEFE,∴ FE=32,∴ HF=32,即点F到AB的距离为32.故答案为:32.三、解答题(本题共计 7 小题,每题 10 分,共计70分)25.【答案】3.5m【考点】解直角三角形的应用-仰角俯角问题解直角三角形的应用-坡度坡角问题轴对称图形【解析】此题暂无解析此题暂无解答26.【答案】长方形是轴对称图形,其余不是【考点】轴对称图形利用轴对称设计图案中心对称图形【解析】如果一个图形沿着某条直线对折后两部分完全重合,这样的图形就是轴对称图形,这条直线就是对称轴.【解答】第一幅图,是个矩形,它是轴对称图形,有两条对称轴,均为边的垂直平分线:第二幅图,是个普通三角形,找不到对称轴,故其不是轴对称图形;第三幅图,是个平行四边形,找不到对称轴,故其不是轴对称图形.27.【答案】【考点】中心对称轴对称的性质规律型:点的坐标【解析】此题暂无解析【解答】略28.【答案】解:同位角有7对,分别是∠A与∠HBC,∠A与∠FBC,∠A与∠GDB,∠FBC与∠FDG,∠FBH 与∠FDG,∠ABD与∠ADF,∠EBD与∠ADF.对顶角有4对,分别是∠EBC与∠ABH,∠ABE与∠HBC,∠ADB与∠FDG,∠ADF与∠GDB.轴对称的性质【解析】此题暂无解析【解答】解:同位角有7对,分别是∠A 与∠HBC,∠A 与∠FBC ,∠A 与∠GDB,∠FBC 与∠FDG,∠FBH 与∠FDG,∠ABD 与∠ADF,∠EBD 与∠ADF.对顶角有4对,分别是∠EBC 与∠ABH,∠ABE 与∠HBC ,∠ADB 与∠FDG,∠ADF 与∠GDB . 29.【答案】证明:如图,连接PB ,PC .∵ AP 是∠BAC 的平分线,PN ⊥AB ,PM ⊥AC ,∴ PM =PN,∠PMC =∠PNB =90∘,∵ 点P 在BC 的垂直平分线上,∴ PC =PB在Rt △PMC 和Rt △PNB 中,{PM =PN PC =PB,, ∴ Rt △PMC ≅Rt △PNB (HL )∴ BN =CM【考点】全等三角形的性质与判定三角形内角和定理线段垂直平分线的性质角平分线的定义【解析】此题暂无解析【解答】证明:如图,连接PB ,PC .∵ AP 是∠BAC 的平分线,PN ⊥AB ,PM ⊥AC ,∴ PM =PN,∠PMC =∠PNB =90∘,∵ 点P 在BC 的垂直平分线上,∴ PC =PB在Rt △PMC 和Rt △PNB 中,{PM =PN PC =PB,, ∴ Rt △PMC ≅Rt △PNB (HL )∴ BN =CM30.【答案】证明:∵∠ACB=90∘且AC=BC∴∠CAB=∠CAB=45∘又∵BF//AC∴∠ABF=45∘∴∠CBF=90∘又∵∠DCE+∠ACE=∠CAE+∠ACE=90∘∴∠GAD=∠BCF∴在Rt△ACD与Rt△CBF中:{∠ACD=∠CBF ∠CAD=∠BCF AC=BC∴Rt△ACD≅Rt△CBF(ASA)∴BF=CD又∵BD=CD∴BF=BD又∵∠DBA=∠FBA∴BA⊥DF且平分DF∴AB垂直平分DF【考点】线段的垂直平分线的性质定理的逆定理全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答31.【答案】先根据勾股定理求得AC的长,再根据勾股定理的逆定理即可作出判断.【考点】勾股定理勾股定理的逆定理作线段的垂直平分线【解析】试题分析:∵ AB=1,BC=2,AB⊥BC AC=√AB2+BC2=√5CD=2,AD=3(√5)2+22=32,即AC2+BC2=AD2△ACD为直角三角形AC⊥CD【解答】此题暂无解答。

江苏省2023年中考备考数学一轮复习 轴对称图形 练习题

江苏省2023年中考备考数学一轮复习 轴对称图形 练习题

江苏省2023年中考备考数学一轮复习 轴对称图形 练习题一、单选题1.(2022·江苏盐城·统考一模)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .2.(2022·江苏南通·统考中考真题)下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是( )A .B .C .D .3.(2022·江苏连云港·统考中考真题)下列图案中,是轴对称图形的是( )A .B .C .D . 4.(2022·江苏无锡·模拟预测)如图,在ABC 中,70B ∠=︒,沿图中虚线EF 翻折,使得点B 落在AC 上的点D 处,则12∠+∠等于( )A .160°B .150°C .140°D .110°5.(2022·江苏常州·统考一模)如图,已知四边形ABCD 的对角互补,且BAC DAC ∠=∠,15AB =,12AD =.过顶点C 作CE AB ⊥于E ,则AE BE的值为( )A B .9 C .6 D .7.26.(2022·江苏盐城·统考二模)如图,AB CD ∥,AE 平分CAB ∠.下列说法错误的是( )A .13∠=∠B .12∠=∠C .3=4∠∠D .45∠=∠7.(2022·江苏连云港·统考一模)如图,点F 在正五边形ABCDE 的内部,ABF △为等边三角形,则AFC ∠等于( )A .108︒B .120︒C .126︒D .132︒8.(2022·江苏宿迁·统考中考真题)若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A .8cmB .13cmC .8cm 或13cmD .11cm 或13cm9.(2022·江苏淮安·统考中考真题)如图,在ABC 中,AB AC =,BAC ∠的平分线交BC 于点D ,E 为AC 的中点,若10AB =,则DE 的长是( )A .8B .6C .5D .410.(2022·江苏宿迁·统考二模)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且ABC 是等腰三角形,那么点C 的个数为( ).A .1B .2C .3D .4二、填空题11.(2022·江苏镇江·统考中考真题)如图,有一张平行四边形纸片ABCD ,5AB =,7AD =,将这张纸片折叠,使得点B 落在边AD 上,点B 的对应点为点B ',折痕为EF ,若点E 在边AB 上,则DB '长的最小值等于_________.12.(2022·江苏宿迁·统考二模)如图,在△ABC 中,△B =30°,△C =50°,通过观察尺规作图的痕迹,△DAE 的度数是 _____.13.(2022·江苏盐城·统考三模)根据光学中平面镜光线反射原理,入射光线、反射光线与平面镜所夹的角相等.如图,,αβ是两面互相平行的平面镜,一束光线m 通过镜面α反射后的光线为n ,再通过镜面β反射后的光线为k .光线m 与镜面α的夹角的度数为x ︒,光线n 与光线k 的夹角的度数为y ︒.则x 与y 之间的数量关系是______.14.(2022·江苏南通·统考模拟预测)如图,在Rt△ABC 中,△ACB=90°,EF 垂直平分AB ,AC=3,BC=4,则AE+CE 的最小值是________.15.(2022·江苏南通·统考二模)如图,在ABC 中,按以下步骤作图:△以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于点D ,E ;△分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在ABC ∠的内部交于点F ; △作射线BF ,交AC 于点G .如果6AB =,9BC =,ABG 的面积为9,则ABC 的面积为______.16.(2022·江苏无锡·统考一模)如图,在△ABC 中,边AB 的垂直平分线分别交AB 、BC 于点E ,D ,30B ∠=︒,50C ∠=︒,则△DAC 的度数是______.17.(2022·江苏苏州·统考中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.18.(2022·江苏南京·统考一模)如图,ABC 中,2,AB AC P ==是BC 上任意一点,PE AB ⊥于点,E PF AC ⊥于点F ,若1ABC S =△,则PE PF +=________.19.(2022·江苏南通·统考一模)如图,△ABC 中,AB=BC ,△ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若△BAE=25°,则△ACF=__________度.20.(2022·江苏镇江·统考二模)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠=__.21.(2022·江苏常州·统考二模)如图,在△ABC 中,AB =AC ,△BAC =100°,BD 平分△ABC ,且BD =AB ,连接AD 、DC .则△BDC 的度数为__________°.三、解答题22.(2022·江苏扬州·统考中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积.23.(2022·江苏常州·模拟预测)如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.△求EDG ∠的度数(用含α的式子表示);△请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.24.(2022·江苏宿迁·统考三模)如图,在ABC 中,42B ∠=︒,50C ∠=︒,通过尺规作图,得到直线DE 和射线AF ,仔细观察作图痕迹,完成下列问题:(1)直线DE 是线段AB 的________线,射线AF 是EAC ∠的________线;(2)求EAF ∠的度数.25.(2022·江苏常州·统考二模)如图,在四边形ABCD 中,AB CD ∥,B D ∠=∠,连接AC .(1)求证:AB CD =:(2)用直尺和圆规作图:过点C 作AB 的垂线,垂足为E (不写作法,保留作图痕迹),若四边形ABCD 的面积是20,5AB =,求CE 的长.26.(2022·江苏南通·统考一模)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.27.(2022·江苏徐州·一模)如图,长方形ABCD 中,AB >AD ,把长方形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)图中有 个等腰三角形;(请直接填空,不需要证明)(2)求证:△ADE △△CED ;(3)请证明点F 在线段AC 的垂直平分线上.28.(2022·江苏苏州·统考一模)我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,△ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,△ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,△ACB=△DCE=90°(0<△BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.参考答案:1.A【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不符合题意;C .不是轴对称图形,故本选项不符合题意;D .不是轴对称图形,故本选项不符合题意.故选A .【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.2.D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3.A【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.C【分析】由70B ∠=︒得110BEF BFE ∠+∠=︒,再根据翻折知BEF DEF ∠=∠,BFE DFE ∠=∠,即可求出12∠+∠的值.【详解】解:70B ∠=︒,110BEF BFE∴∠+∠=︒,翻折,BEF DEF∴∠=∠,BFE DFE∠=∠,2()2110220BED BFD BEF BFE∴∠+∠=∠+∠=⨯︒=︒,121802220140∴∠+∠=︒⨯-︒=︒,故选:C.【点睛】本题考查了翻折的性质以及三角形内角和定理,熟练运用翻折的性质是解题的关键.5.B【分析】要求AEBE的值,主要求出AE和BE的长即可,注意到AC是角平分线,于是作CF△AD交AD的延长线于点F,可以证得两对全等三角形,结合已知数据可以求得AE和BE的长,从而解决问题.【详解】解:作CF△AD交AD的延长线于点F,则△CFD=90°,△CE△AB,△△CEB=90°,△△CFD=△CEB=90°,△△BAC=△DAC,△AC平分△BAD,△CE=CF,△四边形ABCD对角互补,△△ABC+△ADC=180°,又△△CDF+△ADC=180°,△△CBE=△CDF,在△CBE和△CDF中,CEB CFDCBE CDFCE CF,△△CBE△△CDF(AAS),△BE =DF ,在△AEC 和△AFC 中,AECAFC EACFAC AC AC ,△△AEC △△AFC (AAS ),△AE =AF ,设BE =a ,则DF =a ,△AB =15,AD =12,△12+2a =15,得 1.5a =,△AE =12+a =13.5,BE =a =1.5, △13.591.5AE BE ==, 故选B .【点睛】本题考查全等三角形的判定与性质、角平分线的性质,解答本题的关键是巧妙构造全等三角形进而得出等量关系.6.D【分析】利用平行线的性质、角平分线的性质以及对顶角相等知识对选项进行逐一判断即可.【详解】解:A .AB CD ∥,1=3∴∠∠(两直线平行,同位角相等),选项正确,不符合题意. B .AE 平分CAB ∠,1=2∴∠∠(角平分线的性质),选项正确,不符合题意.C .根据对顶角相等可知3=4∠∠,选项正确,不符合题意.D .根据题干信息无法判断45∠=∠,选项错误,符合题意.故选:D【点睛】本题主要考查了平行线的性质、角平分线的性质以及对顶角相等知识,熟知相关性质是解决本题的关键.7.C【分析】根据多边形内角和公式可求出△ABC 的度数,根据正五边形的性质可得AB =BC ,根据等边三角形的性质可得△ABF =△AFB =60°,AB =BF ,可得BF =BC ,根据角的和差关系可得出△FBC 的度数,根据等腰三角形的性质可求出△BFC 的度数,根据角的和差关系即可得答案.【详解】△ABCDE 是正五边形,△△ABC =(52)1805-⨯︒=108°,AB =BC ,△ABF △为等边三角形,△△ABF =△AFB =60°,AB =BF ,△BF =BC ,△FBC =△ABC -△ABF =48°,△△BFC =1(180)2FBC ︒-∠=66°, △AFC ∠=△AFB +△BFC =126°,故选:C .【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键.8.D【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时,△3+3>5,△3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm ),当5是腰时,△3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm ),则三角形的周长为11cm 或13cm .故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.C【分析】利用等腰三角形三线合一以及直角三角形斜边上的中线进行求解即可.【详解】△10AB AC ==,AD 平分BAC ∠,△AD BC ⊥,△90ADC ∠=︒,△E 为AC 的中点, △152DE AC ==,故选C .【点睛】本题考查等腰三角形的性质和直角三角形斜边上的中线.熟练掌握等腰三角形三线合一和直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数.【详解】解:如下图:当AB 为腰时,分别以A 、B 点为顶点,以AB 为半径作圆,可找出格点C 的个数有2个;当AB 为底时,作AB 的垂直平分线,可找出格点C 的个数有1个,所以点C 的个数为:2+1=3.故选:C .【点睛】本题考查了等腰三角形的判定,能分以AB 为底和以AB 为腰两种情况,并画出图形是解题关键. 11.2【分析】根据题意,EB EB '=,当E 点与A 点重合时,符合题意,据此即可求解.【详解】解:△将这张纸片折叠,使得点B 落在边AD 上,点B 的对应点为点B ',△EB EB '=,而B E AE AB ''≥+,当E 点与A 点重合时,5EB AB AB ''===,此时DB '的长最小,△752DB AD AB AD AB ''=-=-=-=.故答案为:2.【点睛】本题考查了折叠的性质,理解当E 点与A 点重合时DB '的长最小是解题的关键.12.35°【分析】由线段垂直平分线的性质和等腰三角形的性质求得△BAD =30°,结合三角形内角和定理求出△CAD ,根据角平分线的定义即可求出△DAE 的度数.【详解】解:△DF 垂直平分线段AB ,△DA =DB ,△△BAD =△B =30°,△△B =30°,△C =50°,△△BAC =180°-△B -△C =180°-30°-50°=100°,△△CAD =△BAC -△BAD =100°-30°=70°,△AE 平分△CAD ,△△DAE =12△CAD =12×70°=35°, 故答案为:35°.【点睛】本题考查作图-基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法.13.2180x y +=【分析】根据平面镜光线反射原理和平行线性质即可求得.【详解】解:△入射光线、反射光线与平面镜所夹的角相等,△反射后的光线n 与镜面α夹角度数为x ︒,△,αβ是两面互相平行的平面镜,△反射后的光线n 与镜面β夹角度数也为x ︒,又由入射光线、反射光线与平面镜所夹的角相等,△反射后的光线k 与镜面β的夹角度数也为x ︒,180x x y ∴︒+︒+︒=︒ ,2180x y ∴+= .故答案为:2180x y +=.【点睛】本题考查了平面镜光线反射原理和平行线性质,掌握反射光线与平面镜所夹的角相等以及两直线平行内错角相等是解题的关键.14.4【分析】由题意可知当点E 为BC 与EF 的交点时,AE+CE 最小,根据垂直平分线的性质得到AE=BE ,可得AE+CE 的最小值为BC .【详解】解:△EF 垂直平分AB ,△A ,B 关于EF 对称,AE=BE ,当点E 为BC 与EF 的交点时,AE+CE 最小,此时,AE+CE=BE+CE=BC=4,故答案为:4.【点睛】本题考查了垂直平分线的性质,解此题的关键是找出符合题意的点E的位置.15.45 2【分析】过G作GH△BC于H,GM△AB于M,由作图步骤可知BG为△ABC的角平分线,可得GM=GH ,然后再结合已知条件和三角形的面积比求得求出S△BCG解答即可.【详解】解:过G作GH△BC于H,GM△AB于M,由作图作法可知:BG为△ABC的角平分线△GM=GH△162921932ABGBCG BCGAB GMS ABS BC SBC GH⋅=====⋅,272BCGS=∴△S△ABC=S△ABG+S△BCG=2745 922 +=故答案为452.【点睛】本题考查了角平分线性质和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.16.70︒【分析】先由线段垂直平分线的性质及30B ∠=︒求出30BAD ∠=︒,再由三角形内角和定理得到100BAC ∠=︒,再根据DAC BAC BAD ∠=∠-∠即可求解.【详解】解:DE 是线段AB 的垂直平分线,30B ∠=︒,DB DA ∴=,30BAD B ∴∠=∠=︒,50C ∠=︒,180100BAC B C ∴∠=︒-∠-∠=︒,70DAC BAC BAD ∴∠=∠-∠=︒,故答案为:70︒.【点评】本题考查的是线段垂直平分线的性质及三角形内角和定理,解题的关键是熟知线段垂直平分线的性质.17.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.18.1【分析】将ABC 的面积拆成两个三角形面积之和,即可间接求出PE PF +的值.【详解】解:连接AP ,如下图:PE AB ⊥于点,E PF AC ⊥于点F ,1ABC APC APB S S S =+= 1122APC APB S S AC PF AB PE +=⋅+⋅ 2AB AC ==,1APC APB S S PF PE +=+=,1PE PF ∴+=,故答案是:1.【点睛】本题考查了等腰三角形的性质,利用面积法解决两边之和问题,解题的关键是:将ABC 的面积拆成两个三角形面积之和来解答.19.70【分析】先利用HL 证明△ABE△△CBF ,可证△BCF=△BAE=25°,即可求出△ACF=45°+25°=70°.【详解】△△ABC=90°,AB=AC ,△△CBF=180°-△ABC=90°,△ACB=45°,在Rt△ABE 和Rt△CBF 中,AB CB AE CF=⎧⎨=⎩, △Rt△ABE△Rt△CBF(HL),△△BCF=△BAE=25°,△△ACF=△ACB+△BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.20.30°##30度【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出多边形的边数,再根据正多边形的中心角的概念求出△AOD 的度数,再由正多边形的半径OA =OD ,根据等腰三角形的性质求解即可.【详解】多边形的每个外角相等,且其和为360︒,据此可得多边形的边数为:360940, △△AOD =3×3609︒=120°, △OA =OD ,△△OAD=△ODA=1801202︒-︒=30°,故答案为:30°.【点睛】本题考查了正多边形的外角,正多边形的中心角,等边对等角等知识,熟练掌握相关知识是解题的关键.21.130【分析】延长AD到点E,使得AE=BC,证得DBC△△CAE,设△CDE=△CED=α,表示出△BDC=△ACE=100°+α,然后根据三角形的内角和定理求得已知角即可.【详解】解:△AB=AC,△BAC=100°,△△ABC=△ACB=40°,△BD平分△ABC,△△ABD=△DBC=20°,△BD=AB,△△ADB=△DAB=80°,△△CAD=20°,△△CAD=△DBC,延长AD到点E,使得AE=BC,△BD=AB=AC,△CAD=△DBC=20°,△△DBC△△CAE,△CD=CE,△BDC=△ACE,△△CDE=△CED=α,△△ADB=80°,△△BDE=100°,△△BDC=△ACE=100°+α,△20°+100°+α+α=180°,△α=30°,△△BDC =130°.故答案为:130.【点睛】本题考查了等腰三角形的判定和性质、全等三角形的判定等知识,解题的关键是根据题意结合等腰三角形的性质得到各个角之间的关系.22.(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;【详解】(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△BAE DCG AB CD ABE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩ △()ABE CDG ASA ∆≅∆,△BE DG AEB CGD =∠=∠,,△BE DG ∥.(2)如图,作EQ BC ⊥,△ABCD 的周长为56,△28AB BC +=,△BE 平分ABC ∠,△6EQ EF ==, △()1138422ABC ABE EBC S S S EF AB EQ BC AB BC ∆∆∆=+=⋅+⋅=+=. 【点睛】本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.23.(1)补图见解析;(2)△90EDG α∠=︒-;△以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) △根据轴对称的性质解答即可;△根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)△△ADF α∠=,△180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,△DF DE ⊥,△90EDF ∠=︒,△1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,△以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,△D 是AB 的中点,△AD BD =,△GD BD =,△AD GD =,△90,GDE EDA DE DE α∠=∠=︒-=,△GDE ADE ≌,△,EGD EAD AE GE ∠=∠=,△90EAD B ∠=︒+∠,△90EGD B ∠=︒+∠,△9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒,△以线段,,GE GF EF 为边的三角形是直角三角形,△以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.24.(1)线段垂直平分;角平分(2)23°【分析】(1)根据作图痕迹判断即可;(2)根据角平分线的性质、线段垂直平分线的性质进行求解即可;【详解】(1)解:根据作图痕迹可知,直线DE 是线段AB 的线段垂直平分线;射线AF 是EAC ∠的角平分线;(2)△DE 垂直平分AB△AE BE =△42BAE B ∠=∠=︒△50C ∠=︒△180180504828BAC B C ∠=︒-∠-∠=︒-︒=-︒︒△884246EAC BAC BAE ∠=∠-∠=︒-︒=︒△AF 平分EAC ∠ △11462322EAF EAC ∠=∠=⨯︒=︒ 【点睛】本题主要考查线段垂直平分线的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.25.(1)见解析(2)图见解析,4【分析】(1)运用已知条件,证得ABC 和CDA 全等即可证得AB CD =.(2)运用尺规作图的方法,过点C 作AB 的垂线.由(1)中结论ABC CDA △△≌,得到1102ABC ABCDS S ==四边形△,再运用三角形面积公式,求得CE 的长. (1)证明:△AB CD ∥,△BAC DCA ∠=∠,在ABC 和CDA 中,B D BAC DCA AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CDA △△≌(AAS )△AB CD =.(2)解:作图如下,△ABC CDA △△≌, △12ABC ABCD S S =四边形△.△四边形ABCD 的面积是20,△10ABC S =△, △1102AB CE ⋅=, △5AB =,△4CE =.【点睛】本题考查了全等三角形的判定与性质,以及尺规作图法,证明ABC CDA △△≌是解题的关键.26.(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出△ADE ,再利用平行线的性质求出△ ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠. DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.27.(1)2(2)证明见解析(3)证明见解析【分析】(1)由题意知CE =BC =AD ,△EAC =△BAC =△DCA ,有△ACF 为等腰三角形;在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩,知ADE CED △△≌,有△DEA =△EDC ,有△DEF 为等腰三角形; (2)在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩,可得ADE CED △△≌; (3)由于ADE CED △△≌,DEA EDC ∠=∠,DEF EDF ∠=∠,有EF DF =,AE CD =,故AE EF CD DF -=-,FA FC =进而可得出结果.(1)解:有△ACF 和△DEF 共2个等腰三角形证明如下:由折叠的性质可知CE =BC =AD ,△EAC =△BAC△AB CD△△EAC =△DCA△△ACF 为等腰三角形;在ADE 和CED △中△AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩△()ADE CED SSS ≌△△△△DEA =△EDC△△DEF 为等腰三角形;故答案为:2.(2)证明:△四边形ABCD 是长方形△AD CE =,AE CD =由折叠的性质可得:BC CE =,AB AE =△AD CE =,AE CD =在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩△()ADE CED SSS △△≌.(3)证明:由(1)得ADE CED △△≌△DEA EDC ∠=∠,即DEF EDF ∠=∠△EF DF =又△AE CD =△AE EF CD DF -=-△FA FC =△点F 在线段AC 的垂直平分线上.【点睛】本题考查了几何图形折叠的性质,矩形,等腰三角形的判定与性质,三角形全等,垂直平分线等知识.解题的关键在于灵活运用知识.28.(1)见解析;(2)见解析;(3)42000元.【分析】(1)如图1,作ABC ∆的中线AE ,AEC ∆与ABE ∆的面积相等(作中线BF 也可以); (2)如图2,过点E 作EH GA ⊥交GA 的延长线于H .证明()AHE ACB AAS ∆≅∆,推出EH BC =可得结论; (3)首先,过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆≅∆,得AM BN =,则22100ACD BCE m S S ∆∆==;其次,过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆≅∆,得到AN CD =,再证()ACN CBE SAS ∆≅∆,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积得12BCE S BE CF ∆=⋅,求出70()CF m =,即可求解. (1)如图1中,作ABC ∆的中线AE ,AEC ∆与ABE ∆的面积相等(作中线BF 也可以);(2)证明:如图,过点E 作EH GA ⊥交GA 的延长线于H ;四边形ABDE ,四边形ACFG 都是正方形,AE AB ∴=,AC AG =,90EAB CAG HAC ∠=∠=∠=︒,EAH BAC ∴∠=∠,90H ACB ∠=∠=︒,()AHE ACB AAS ∴∆≅∆,EH BC ∴=,12ABC S AC BC ∆=⋅⋅,12EAG S AG EH ∆=⋅⋅, ABC EAG S S ∆∆∴=,ABC ∴∆与AEG ∆为偏等积三角形;(3)首先,过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图所示,则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ∠=∠,ACM BCN ∠=∠,AC BC =,()ACM BCN AAS ∴∆≅∆,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, 22100ACD BCE S S m ∆∆∴==,其次,如图,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD ∠=∠,AGN DGC ∠=∠,AG DG =,()AGN DGC AAS ∴∆≅∆,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE =,CAN BCE ∠=∠,AC CB =,()ACN CBE SAS ∴∆≅∆,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥,12BCE S BE CF ∆=⋅,2100BCE ACD S S ∆∆==, CF ∴=22210070()60BCE S m BE ∆⨯==, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是三角形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆≅∆和ACN CBE ∆≅∆是解题的关键,属于中考常考题型.。

第12章《轴对称》好题集(08):12.1 轴对称

第12章《轴对称》好题集(08):12.1 轴对称

第12章《轴对称》好题集(08):12.1 轴对称第12章《轴对称》好题集(08):12.1轴对称第12章《轴对称》好题集(08):12.1轴对称菁优网第12章《轴对称》好题集(08):12.1轴对称填空题211.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.212.在一张卡片上写有一个汉字,将卡片垂直于水平镜面放置在镜子前方时,镜子显示的像如图所示,则卡片上的汉字是_________.213.小明从镜子里看见镜子对面的钟表里的时间就是2点30分后,实际时间为_________点_________分后.214.小明照镜子时看到对面墙上挂的电子表在镜子里显示的时间是215.例如图就是某小车车牌号在水中的倒影,则这辆车的车牌号就是_________,实际是_________.216.在一张纸上写下着一串数,在镜子中成如图所示的形状,则纸上写下的数为_________.217.下图是在镜子中看到的一个号码,它的实际号码是_________.218.小明从镜子中看见身后墙上贴有一串数字,这串成数字实际必须就是_________.若某一串数字在水中的倒影就是例如图,则这串成数字就是_________.219.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________220.张同学就是一个nba爱好者,周末的一天他在家里做作业,一次他走跌看见墙上镜面里的钟如图所示,那他过_________分钟可以回去看看9:30的一场火箭vs骑士.2021-2021菁优网菁优网222.观察上图中的图片,请说出图中小亮衣服上的数字是:_________.答疑题223.(2021?益阳)如图,平面上的四边形abcd是一只“风筝”的骨架,其中ab=ad,cb=cd.(1)九年级王云同学观察了这个“风筝”的骨架后,他认为四边形abcd的两条对角线ac⊥bd,垂足为e,并且be=ed,你同意王云同学的判断吗?_________;(2)设立对角线ac=a,bd=b,用含a,b的式子则表示四边形abcd的面积为_________224.(2021?岳阳)如图,已知de垂直平分ab,分别交ab、bc于d、e两点,ae平分∠bac,∠b=30°,be=4,则ac=_________.225.例如图,△abc中,∠bac=110°,ab的垂直平分线交bc于点d,ac的垂直平分线交bc于点e,bc=10cm.(1)则△ade的周长为_________cm;(2)则∠dae的度数为_________度.2021-2021菁优网菁优网227.如图,在△abc中,bc边上的垂直平分线de交bc于点d,交ac于点e,△abc的周长为18厘米,△abe的周长为10厘米,则bd的长为_________厘米.228.例如图,在△abc中,∠abc=2∠c.ac的垂直平分线分别交bc,ac于点d,e,则ab_________cd.229.如图,在△abc中,dm、en分别垂直平分ac和bc,交ab于m、n,(1)若△cmn的周长为18cm,则ab=_________cm.(2)若∠mcn=48°,则∠acb=_________度.230.如图所示:△abc的周长为24cm,ab=10cm,边ab的垂直平分线de交bc边于点e,像距为d,△aec的周长为_________cm.231.如图,在△abc中,∠c=90,de是ab的垂直平分线,∠cae=∠b+30°,则∠aeb的度数为_________度.232.如图所示,在△abc中,de就是边ab的垂直平分线,交ab于e,交ac于d,相连接bd.(1)若∠abc=∠c,∠a=50°,则∠dbc的度数为_________度.(2)若ab=ac,且△bcd的周长为18cm,△abc的周长为30cm,则be的短为_________cm.2021-2021菁优网菁优网233.已知,如图,在△abc中,ab<ac,bc边上的垂直平分线de交bc于点d,交ac于点e,ac=8,△abe的周长为14,则ab的长为_________.234.未知:例如图,在△abc中,ed垂直平分ab,∠ebc=24°,∠c=72°,则∠a=_________度.235.在△abc中,ab=ac,ab的垂直平分线交ab于n,交bc的延长线于m,∠a=40度.(1)则∠m的度数为_________度;(2)若将∠a的度数改为80°,其余条件不变,则∠m=_________度;(3)你发现了怎样的规律试证明;(4)将(1)中的∠a改成钝角,(3)中的规律仍设立吗若不设立,应当怎样修正?236.如图,在△abc中,∠c=90°点d在bc上,de垂直平分ab,且de=dc,则∠b=_________度.237.例如图,在△abc中,ab=ac,∠a=30°,de垂直平分ac于e,相连接cd,则∠dcb=_________度.2021-2021菁优网。

二年级数学轴对称镜面对称练习

二年级数学轴对称镜面对称练习

二年级数学轴对称镜面对称练习轴对称镜面对称练习城阳二小苑克绿 E E E E 镜子里看到的:应该是:E E E E 镜子里看到的时间: 4:00 镜子里看到的时间: 实际的时间: 4:00 8:00 9:00 2:00 6:00 根据镜子里的钟面,说一说实际的时间。

12:00 根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

4:50 根据镜子里的钟面,说一说实际的时间。

4:30 根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

根据镜子里的钟面,说一说实际的时间。

8:15 画轴对称图形:请画出另一半。

画轴对称图形:请画出另一半。

画轴对称图形:请画出另一半。

画轴对称图形:请画出另一半。

画轴对称图形:请画出另一半。

下列图形有几条对称轴?请你画一画。

长方形有两条对称轴下列图形有几条对称轴?请你画一画。

长方形有4条对称轴下列图形有几条对称轴?请你画一画。

圆形有无数条对称轴画出下面图形的对称轴. 画出下面图形的对称轴. 画出下面图形的对称轴. 8 8 9:00 实际的时间:8 根据镜子里的钟面,说一说实际的时间。

9:00 实际的时间:8 8 根据镜子里的钟面,说一说实际的时间。

9:00 实际的时间:8 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

8 实际时间: 根据镜子里的钟面,说一说实际的时间。

生活中的轴对称试题总集含答案

生活中的轴对称试题总集含答案

第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18 C.26 D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直ACB图2图1 l O D CBABCAB .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm . 18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC , △A 1B 1C 1(1)分别画出与△ABC 关于x 轴、y 轴对称的图形和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.ADEF BC DEC BAO ABCDE 23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.的长.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC . 29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC的道理.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD . 答案: 一、 选择题: 1 2 3 4 5 6 7 8 9 10 ACCBCBCABA 二、填空题:11.MN ,AB 12.6 13.120 14.20 15.080,050或065,065 16.15 17.6 18.030 19.上,5 20.3 三、解答题 略第七章:生活中的轴对称一、中考要求:1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念. 2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.3.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴.5.欣赏现实中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值.6.结合现实生活中的典型实例了解并欣赏物体的镜面对称.二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 轴对称图形2~6%2 轴对称的应用2~5%(二)中考热点:将图形的折叠问题,照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是2006年的热点题型之一。

轴对称图形及性质专项练习30题(有答案)ok

轴对称图形及性质专项练习30题(有答案)ok
24.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1、点P2、点O正好在同一条直线上,请求出∠AOB的大小.
25.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
26.如图,△ABC和△A′B′C′关于直线m对称.
轴对称图形及性质专项练习30题(有答案)
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A.
1
B.
2
C.
3
D.
4
2.如本题图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )
A.
B.
C.
D.
3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )
∴对称轴的条数为2的图形的个数是3;
故选:C
2.解:根据轴对称图形的概念可得:A、B和C选项中的图案是轴对称图形,D选项中的图案不是轴对称图形,
故选D
3.解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,
所以此时实际时刻为10:51.
故选C
4.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.
A.
2种
B.
3种
C.
4种
D.
5种
13.下列说法错误的是( )
A.
线段是轴对称图形,它的对称轴是线段的垂直平分线

轴对称典型例题总结(实用!!)

轴对称典型例题总结(实用!!)

轴对称典例总结知识点一轴对称及相关概念题型1 轴对称图形的判断例1 判断下列图形是不是轴对称图形。

例2 在图中,从几何图形的性质考虑,哪一个与其它三个不同?请指出这个图形,并简述你的理由。

A B.C.D.题型2 找轴对称图形的对称轴例3 如图,判断下列图形是否为轴对称图形,若是,说出有几条对称轴。

题型3 判断两个图形是否成轴对称例4 下列各选项中,右边图形与左边图形成轴对称的是()DCBA例5 如图,若⊿ABC 和⊿A ˊB ˊC ˊ沿着直线l 对折后能够完全重合,我们说这两个图形关于这条直线对此,也就是说这两个三角形成________,直线l 叫做它们的_______,点B 和点B ˊ叫做_______,AC=_______,∠A=________。

lB 'C'A 'CBA例6.下列图形中,有且只有三条对称轴的是( )A .B .C .D .知识点二 线段的垂直平分线线段垂直平分线上的点到线段两端点的距离相等; 题型1 线段垂直平分线的性质例7 如图,有一块三角形田地,AB=AC=10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,请你替测量人员计算BC 的长。

例8 如图,在△ABC 中,∠BAC=120°,若DE ,FG 分别垂直平分AB ,AC ,△AEF 的周长为10cm ,求∠EAF 的度数及BC 的长。

CFEBGDA题型2 线段垂直平分线的判定例9 如图,△ABC 的边AB 、BC 垂直平分线PM 、PN 交于点P 。

求证:P 在AC 的垂直平分线上。

例10 如图,在△ABC 中,D 是BC 边上的一点,AD 平分∠BAC ,且DE ⊥AB 于E ,DF ⊥AC 于F ,连接EF 交AD 于点G 。

求证:AD 垂直平分EF 。

题型3 利用线段垂直平分线的性质作图例11 如图,A ,B 表示公路同侧的两个城镇,l 表示笔直的公路,现要在公路旁建一信号站,使信号站与两个城镇的距离相等,信号站应建在什么地方?例12 某地有两所大学和两条相交叉的公路,如图,点M ,N 表示大学,AO ,BO 表示公路,现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

【小学】人教版四年级数学下册《 7.1轴对称》同步测试题有答案

【小学】人教版四年级数学下册《 7.1轴对称》同步测试题有答案

人教版小学四年级数学下册《第7章轴对称》同步测试题一.选择题(共6小题)1.小明从镜子里看到镜子对面的电子钟的像如图所示,实际时间是()A.21:00B.10:21C.10:51D.12:012.如图将一张正方形纸对折后,按上面虚线剪开,展开后是()字。

A.十B.干C.王3.如图的图形中,有()个沿着虚线对折两边能完全重合.A.1B.2C.34.该图是由三个面积相等的小正方形组成的图形,如果再补画一个小正方形,使补画后的图形成为轴对称图形,一共有()种不同的补画方法.A.2B.3C.4D.55.小兰把一张纸对折,然后沿折痕边任意剪出一个图形,此图形是()现象.A.平移B.轴对称C.旋转6.从镜子里看的样子是()A.B.C.二.填空题(共6小题)7.轴对称图形对应的两个对称点到对称轴的距离.8.假如一个图形对折后左右能,我们就把它叫做图形.9.假如一个图形对折后左右能,我们就把它叫做图形.轴对称图形对折后都有一条折痕,折痕所在的这条直线,我们就叫做这个轴对称图形的.10.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是.11.如图的钟面从镜子里看到的,实际钟面的时刻是5:2021 .12.一只钟的对面有一面镜子,镜子里的钟表如下图,那么钟面上正确的时间是几时几分?.三.判断题(共5小题)13.正方形、圆形、平行四边形都是轴对称图形..(判断对错)14.两个图形不能完全重合,这两个图形就是轴对称图形..(判断对错)15.从镜子中看到左图的样子是这样的..(判断对错)16.等腰三角形一定是轴对称图形,直角三角形一定不是轴对称图形.(判断对错)17.点A到对称轴的距离是4小格,它的对称点点A′到对称轴的距离也是4小格.(判断对错)四.操作题(共2小题)18.如图的图案各是从哪张纸上剪下来的?连一连.19.如图所示的两个图形都是由正方形组成的,请你在两个图上分别添上1个正方形,使它们都成为轴对称图形.五.解答题(共6小题)2021图,上面的图形各是从下面哪张纸中剪下来的,请连一连.21.画出下边图形在镜子中的图形.22.车站有一个时钟,小明到车站时从镜子中看到钟面的指针如图,你认为小明进车站时的实际时刻是.23.下面是在镜子中看到的算式,你能将原来的算式写出来吗?24.下面的时刻都是从镜子里看到的,请写出正确的时刻.25.图1是明明从镜子里看到的时刻,请在图2中画出真正的时刻.参考答案与试题解析一.选择题(共6小题)1.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻应该与12:01成轴对称,所以此时实际时刻为10:51,故选:C.【点评】本题考查镜面对称的原理与性质.解决此类题应认真观察,注意技巧.2.【分析】根据轴对称图形的性质,各对称点到对称轴的距离相等,各对称点的连线垂直于对称轴。

八年级数学竞赛题:轴对称

八年级数学竞赛题:轴对称

八年级数学竞赛题:轴对称美丽的枫叶,高山的倒影,雄伟的建筑,我们生活在二个充满对称的世界之中.从人体到植物的花果树叶,从艺术家的创造到日常生活中的图案设计,轴对称是现实世界中广泛存在的一种现象.正如20世纪著名数学家赫尔曼⋅外尔所说:“对称是一种思想,通过它,人们毕生追求并创造次序、美丽和完善.”依据定义、动手操作,这是识别轴对称图形的基本方法,对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等,这是轴对称图形的基本性质,也是作图的依据.平面镜成像、光的反射、“斯诺克”台球.图形的折叠、镶边与剪纸、进行图案设计、解最值问题等,常用轴对称概念性质来探讨.线段、角、等腰三角形是最简单的轴对称图形,作出它们的对称轴并利用相关性质是解几何问题的常用技巧.熟悉下列基本图形、基本结论:例1 (1)一个数字在镜子里看是“1208”,则这个数字实际是____________.(2)如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),如果∠D=120°.则∠B=____________.例2 将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平得到的图形是().例3 在平面直角坐标系中,直线1过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0)、B(-1,0)、C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线1的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0)其中a>0,点P关于y轴的对称点是点P1,点P1关于直线1的对称点是点P2,求P P2的长.例4 如图,一个台球桌是直角三角形的,如果从斜边上某点朝着垂直于斜边的方向击出台球,那么球在其他两个直角边上反弹后,又能回到斜边上,请证明:台球滚过的距离长与击球点的位置无关(台球反射时服从入射角等于反射角的规律).例5如图,已知平面直角坐标系中,A、B两点的坐标分别为A(2,-3)、B(4,-1).(1)若P(x,0)是x轴上的一个动点,当△P AB的周长最短时,求x值;(2)若C(a,0),D(n+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,求a的值;(3)设M、N分别为x轴、y轴上的动点,问:是否存在这样的点M(m,0)和(0,n),使四边形ABMN的周长最短?若存在,求出m、n的值;若不存在,请说明理由.1.(1)如图,镜子中号码的实际号码是____________.(2)从汽车的后视镜中看见某车车牌的后5位号码是.该车牌的后5位号码实际是____________.2.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A’处,且点A’在△ABC外部,则阴影部分的周长为______________cm.3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D’、C’的位置,若∠EFB=65°,则∠AED’=_________________.4.如图,在△ABC中,AB=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是________________.5.如图,△ABC与△A’B’C’关于直线l对称,且∠A=78°,∠C’=48°,则∠B的度数是().A.48°B.54°C.74°D.78°6.中央电视台“开心辞典”栏目有这么一道题,小兰从镜子中看到挂在她背后墙上的四个时钟如图所示,其中时间最接近四点钟的是().77.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其中余小正方形中任选一个也涂上阴影,使得整个涂影部分组成的图形成轴对称图形,那么符合条件的小正方形共有().A.1个B.2个C.3个D.4个8.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按如图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是().A.1号袋B.2号袋C.3号袋D.4号袋9.如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(2)、(3)中画出两种不同的拼法.10.台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.如图①是一个台球桌,目标球F与本球E之间有一个G球阻挡..(1)击球者想通过击打E球先撞击球台的AB边,经过一次反弹后再撞击F球.他应将E 球打到AB边上的哪一点?请在图①中用尺规作出这一点H,并作出E球的运动路线(不写画法,保留作图痕迹);(2)如图②,现以D为原点,建立直角坐标系,记A(0,4),C(8,0),E(4,3),F (7,1),求E球按刚才方式运行到F球的路线长度(忽略球的大小).11.如图,设l1和l2是镜面平行且镜面相对的两面镜子,把一个小球放在l1和l2之间,小球在镜l1中的像为A’ ,A’在镜l2中l2的像为A”,若l1、l2的距离为7,则AA"=___________.12.如图,在直角坐标系中,x轴上的动点M(x,0)到定点P(5,5)、Q(2,1)的距离分别为MP、MQ,那么当MP+MQ取最小值时,点M的坐标是___________ .13.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________________.14.如图,直线l1与l2相交,α=60°,点P在角α内(不在l1、l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……如此继续,得到一系列的点P1,P2,…P n,若P n与P重合,则n的最小值是().A.5 B.6 C.7 D.815.将一个正方形纸片依次按图(1)、图(2)方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所看到的图案是().16.在直角坐标系中,已知两点A(-8,3),B(-4,5)以及动点C(0,2),D(m,0),则当四边形ABCD的周长最小时;比值mn为().A.23-B.-2 C.32-D.-317.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3;求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于叠的方程模型,求出x的值.18.如图,在∠POQ内部有M点和N点,同时能使∠MOP=∠NOQ,这时在直线OP上再取A点,使从A点到M点及N点的距离和为最小;在直线OQ上也取B点,使从B点到M 点和N点的距离和也最小.证明:AM+AN=BM+BN.19.如图,矩形台球桌ABCD上有两个球P、Q,求作一击球路线,使P球顺次撞击球桌四边后再撞到Q球(球撞击桌边的入射角等手反射角).20.如图①,凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(1)在图③正方形ABCD内画一个半等角点P,且满足αβ≠.(2)在图④四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写画法).(3)若四边形ABCD有两个半等角点P1、P2(如图②),证明线段P1P2上任一点也是它的半等角点.。

【小学】人教版四年级数学下册《 7.1轴对称》同步检测题有答案

【小学】人教版四年级数学下册《 7.1轴对称》同步检测题有答案

人教版小学四年级数学下册《第7章轴对称》同步检测题一.选择题(共6小题)1.从镜子中看到图中的样子是()A.B.C.2.如图的图案是从()卡纸上剪下来的.A.B.C.3.一个轴对称图形,对称轴两边()A.形状相同但面积不同B.形状不同但面积相同C.形状和面积都完全相同D.以上说法都不对4.下面图形中,()对称轴最少.A.正方形B.长方形C.等边三角形D.圆5.下列图案中,是轴对称图形的是()A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(1)(4)6.小红在镜子里看到墙上的挂钟如图所示,请问第()个时间最接近8:00.A.B.C.D.二.填空题(共6小题)7.轴对称图形的两对应个点到对称轴的距离.8.如果把一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是图形.9.在日常生活中对称的例子很多,如:、、.10.小强下午放学回家,在镜子中看到钟面上的时间是3:00,实际时间是.11.镜子中的钟面时间是9:30,正确的时间应该是.12.晚上,笑笑在照镜子,看到镜子中钟面上的时间是4时,实际时间是.三.判断题(共5小题)13.通过一个圆的圆心的直线是这个圆的对称轴..(判断对错)14.一个图形对折后折痕两边的部分能够完全重合,这条折痕所在的直线就是这个图形的对称轴(判断对错)15.钟表上3时整,在镜子中看到的是9时..(判断对错)16.沿虚线对折后能完全重合.(判断对错)17.人体是对称的..(判断对错)四.操作题(共2小题)18.下面的交通标志哪些是轴对称图形?画“〇”19.把一张纸沿虚线对折后剪去两个小三角形,展开后得到第二行的哪个图形?把它圈起来。

五.解答题(共6小题)2021图的图案是从哪张纸上剪下来的?请你连一连.21.如图,平行四边形的ABCD的点D贴着一面镜子,现在请你把镜子里的平行四边形用铅笔和三角板画出来.22.请圈出在镜子里看到的图象.23.星期日,菲菲到蓝猫家去玩,玩着玩着,想知道现在的时间,刚抬起头,从镜子中看见了挂钟显示的是6:30,聪明的菲菲眼珠一转,就知道了真实的时间.同学们,你们知道吗?24.图一是镜子中看到的时间,请你在图二中画出实际的时间.25.下面各图是镜中的时刻,请在正确的时刻下面画“√”.参考答案与试题解析一.选择题(共6小题)1.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右顺序颠倒,且关于镜面对称;据此解答即可.【解答】解:从镜子中看到图中的样子是;故选:C.【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.2.【分析】根据轴对称图形的特点,沿对称轴将图形对折,对称轴两边的图形完全重合.由此可知,是从图B卡纸上剪下来的.据此解答.【解答】解:是从卡纸上剪下来的.故选:B.【点评】此题考查的目的是理解掌握轴对称的特征及应用.3.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:由轴对称图形的意义可知:一个轴对称图形,对称轴两边形状和面积都完全相同.故选:C.【点评】此题考查了轴对称图形的特点,应注意基础知识的积累.4.【分析】依据轴对称图形的定义即可作答.【解答】解:据轴对称图形的特点和定义可知:正方形有四条对称轴,长方形有两条对称轴,等边三角形有三条对称轴,圆形有无数条对称轴,所以说长方形的对称轴最少.答:在这几种图形中,长方形的对称轴最少.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数.5.【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【解答】解:根据轴对称图形的意义可知,(1)、(3)、(4)是轴对称图形,只有(2)不是轴对称图形;故选:B.【点评】此题考查了轴对称图形的判断方法.6.【分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称,我们画出这几个钟面所表示的时刻,即可得知第几个时间最接近8:00.【解答】解:如图,图A与8:00相差5分,图B与8:00相差30分,图C和图D与8:00相差3小时45分,最接近8:00的时图A.故选:A.【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.二.填空题(共6小题)7.【分析】根据轴对称图形的特点,即轴对称图形是指一个图形沿一条直线折叠后直线两旁的部分能够完全重合,这条直线就是这个轴对称图形的对称轴.轴对称图形中,对称点到对称轴的距离相等,由此可填空.【解答】解:由轴对称图形的特点可知,轴对称图形中,相应的对称点到对称轴的距离相等.故答案为:相等.【点评】此题主要考查轴对称图形的特点.8.【分析】根据轴对称图形的概念:可知把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.解答即可.【解答】解:如果把一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是轴对称图形.故答案为:轴对称.【点评】掌握轴对称图形的概念是解答此题的关键.9.【分析】如果一个图形沿一条直线对折后两部分能够完全重合,这样的图形叫做轴对称图形,这条直线就叫做对称轴,据此判断即可.【解答】根据轴对称的定义可知:长方形、等腰梯形、等边三角形是轴对称图形.故答案为:长方形、等腰梯形、等边三角形.【点评】此题主要考查了轴对称的实际应用.10.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右相反,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为9:00.故答案为:9:00.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右顺序颠倒,且关于镜面对称.【解答】解:如图,镜子中的钟面时间是9:30,正确的时间应该是2:30;故答案为:2:30【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.12.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析并作答.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为:8:00.故答案为:8:00.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.判断题(共5小题)13.【分析】根据轴对称图形的定义知:把一个圆形纸无论怎么对折,两部分都能完全重合,所以圆是轴对称图形,因为任何一条直径所在的直线,把圆平分成两个半圆,所以任何一条直径所在的直线都是圆的对称轴,解答即可.【解答】解:直径所在的直线是这个圆的对称轴,所以“通过一个圆的圆心的直线是这个圆的对称轴”的说法是正确.故答案为:√.【点评】此题考查了查轴对称图形的意义,圆是轴对称图形,圆有无数条对称轴.14.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:由轴对称图形的意义可知:一个图形对折后折痕两边的部分能够完全重合,这条折痕所在的直线就是这个图形的对称轴.故答案为:√.【点评】此题考查了轴对称图形的特点,应注意基础知识的积累.15.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:钟表上3时整,在镜子中看到的是9时,所以本题说法正确;故答案为:√.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.16.【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.观察可知沿虚线对折后能完全重合.【解答】解:沿虚线对折后能完全重合.原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形的意义.17.【分析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,解答判断即可.【解答】解:人体是对称的;所以“人体是对称的”的说法是正确的.故答案为:√.【点评】本题考查轴对称图形的定义的灵活应用.四.操作题(共2小题)18.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.【解答】解:如图:【点评】解答此题的主要依据是:轴对称图形的概念及特征.19.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可。

小学生数学习题练习认识数学中的轴对称与镜面对称

小学生数学习题练习认识数学中的轴对称与镜面对称

小学生数学习题练习认识数学中的轴对称与镜面对称几何学是数学中的一个重要分支,其在小学数学教学中起着重要的作用。

学习认识数学中的轴对称与镜面对称是培养学生几何思维和创造力的关键一步。

本文将围绕这一话题展开,介绍什么是轴对称和镜面对称,并提供一些小学生数学习题,帮助学生巩固和加深对轴对称和镜面对称的理解。

1. 轴对称轴对称是几何学中的一个重要概念。

简单来说,轴对称是指平面图形关于某一条直线对称。

这条直线被称为轴线,轴线两侧的图形是对称的,即对应点关于轴线对称。

轴对称的图形可以看作是两部分完全一致的图形拼接而成。

那么,我们来看一个具体的例子。

请观察下图中的图形,判断它们是否是关于某一条直线轴对称的。

[插入图片示例,如图1]图1中的图形是一个等边三角形。

我们可以尝试找一条直线,使得三角形的左半部分关于这条直线对称。

仔细观察,我们会发现,这条直线可以通过连接三角形的顶点和底边中点而得到。

换言之,等边三角形是关于连接顶点和底边中点的直线轴对称的。

通过这个例子,我们可以看到轴对称的特点:轴对称的图形可以通过折叠或翻转来使得两侧完全重叠。

这种对称性不仅存在于几何图形中,也存在于我们日常生活中的许多物体中。

为了帮助小学生更好地理解轴对称的概念,我们可以给他们一些练习题。

例如:【练习题1】下图中的图形是否关于某一条直线轴对称?如果是,请画出轴线;如果不是,请说明原因。

[插入图片示例,如图2]通过练习题的形式,我们可以引导学生仔细观察图形,理解轴对称的概念,并进行判断。

这样的练习有助于培养学生的空间想象和观察能力,对认识数学中的轴对称有很大帮助。

2. 镜面对称镜面对称是另一种常见的对称性形式。

简单来说,镜面对称是指平面图形关于某一条直线对称。

与轴对称不同的是,镜面对称是通过镜面来实现的,我们可以将图形放在镜子前后观察到一样的图形。

为了更好地理解镜面对称,我们再来看一个例子。

请观察下图中的图形,并判断它们是否是关于某一条直线镜面对称的。

镜像与对称性学习幼儿园大班数学试题

镜像与对称性学习幼儿园大班数学试题

镜像与对称性学习幼儿园大班数学试题数学是幼儿园教育中非常重要的一环,针对大班幼儿的学习需求,镜像与对称性是一个重要的概念。

通过学习镜像和对称性,幼儿可以培养空间想象力和观察力,提高解决问题的能力。

下面是一些适合大班幼儿学习的数学试题。

一、镜像练习1. 请画出下面各个图形的镜像图形:(1) △ABC(2) ○A(3) □D2. 按照指示画出图形的镜像图形:(1) 在图形的上方画一个镜子,然后画出镜像图形。

(2) 把图形水平翻转,画出镜像图形。

(3) 把图形垂直翻转,画出镜像图形。

3. 请找出下面各个图形的镜像轴:(1) △ABC(2) ○D(3) □E二、对称性练习1. 请判断下面各个图形是否具有对称性:(1) △ABC(2) ○A(3) □D2. 请完成下面各个图形的对称图形:(1) 把图形按照红线折叠,完成对称图形。

(2) 把图形按照绿线折叠,完成对称图形。

3. 请找出下面各个图形的对称轴:(1) △ABC(2) ○D(3) □E三、综合练习1. 请根据提示,完成下面的图形:在△ABC的一条边上,找到一个点D,使得△ABD能够通过镜像得到△ABC。

2. 请完成下面的图形,并画出图形的对称轴:(1) 根据△ABC的三个顶点,画出△ABC的对称图形△A'B'C'。

(2) 根据○O的圆心,画出○O的对称图形○O'。

3. 请根据提示,完成下面的图形并画出镜像图形:(1) 画出一个直角三角形,其中一个直角边在水平方向。

(2) 画出一个矩形,其中一边垂直放置。

通过以上的试题练习,幼儿可以加深对镜像和对称性概念的理解,提高观察和思考问题的能力。

教师在布置题目时,可以根据幼儿的学习进度和实际情况进行调整,逐步引导幼儿发现、理解和应用镜像和对称性。

同时,教师应注意鼓励幼儿主动思考,并及时给予肯定和积极的反馈,激发幼儿的学习兴趣。

总结:镜像与对称性是幼儿园数学教育中重要的概念。

通过对镜像和对称性的学习,幼儿可以培养空间想象力和观察力,提高解决问题的能力。

最新镜子中的轴对称

最新镜子中的轴对称

图3图2图1镜子中的轴对称“以铜为镜,可以正衣冠”,人们每天都要照镜子.其实镜子的作用不只这些,镜子里蕴含的轴对称知识还可以帮助我们解决问题.例1 如图1,是一辆汽车车牌号码在水中的倒影,则这辆车的牌号是( )A.MT7936B.MT7639C.WT7636D.WT7936分析:水中的倒影与实际的车牌号成轴对称,但两组数据的方向是一致的,所以在水中的倒影下边划一条直线作为对称轴,就很容易求得该车的实际车牌号.解:选A.点评:解答本题的关键是对“在水中倒影”理解,确定对称轴的位置,画出倒影的轴对称图形;也可以抓住一个关键数字或字母,根据其倒影中的写法及位置加以判断选择.例2 如图2,你能根据镜子中的像说出小明左右腿的前后位置吗?分析:要说出小明两腿的前后位置,只需对左、右两面镜中两腿位置及镜面成像规律加以判断.解:正面看小明:左侧是小明的右半部分,右侧是小明的左侧部分;左面镜中的小明:与实际站着的小明成轴对称,故手前伸为小明的左侧,可见其左腿在前、右腿在后.从右面镜中也可判断出相同的结论:左腿在前、右腿在后. 点评:本题考察轴对称的知识;成轴对称的两个图形中,对称部分离对称轴近则同近,远则同远.正面看小明,观察者的左侧,对小明而言却在右侧.而镜中小明的体位和观察者的视角部位相同:同左或同右.例3 如图3,分别说出两个孩子各是几号队员?分析:镜中的像与实际两个孩子关于镜面成轴对称,故号码也一样关于镜面对称.解:左边的孩子:镜中的号码是“51”,根据左右互换,数字翻折知,应为“12”;同理,右边孩子的号码应C A B ' A ' C ' B M ON 图4 为“21”.故左边的队员为12号,右边的队员为21号.点评:我们可以实地操作检验,在操作时,可以多做一些数字、字母、实物,在“玩”中体会它们的变化,从而有更深刻的理解.例4 一面镜子竖直悬挂在墙上,人眼位置如图4,有三个物体A 、B 、C 放在镜子前面,人眼能从镜子里看见哪几个物体?分析:物体在镜子里所成的像就是物体关于镜面的对称点,人眼从镜子里所能看见的物体必须在人眼的视线范围内.解:分别作A 、B 、C 三点关于直线MN 的对称点A '、B '、C '.因为C '不在∠MON 内,A '、B '在∠MON 内.故人能从镜子里看见A 、B 两物体. 点评:轴对称的性质在实际中的应用,关键是理解实际应用问题的理论依据,建立相应的数学模型,再利用数学知识解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
4:50
4:30
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
圆形有无数条对称轴
画出下面图形的对称轴.
画出下面图形的对称轴.
画出下面图形的对称轴.
8
8
根据镜子里的钟面,说一说实际的时间。
8
实际的时间:9:00
根据镜子里的钟面,说一说实际的时间。
8
8
实际的时间:9:00
根据镜子里的钟面,说一说实际的时间。
8
实际的时间:9:00根据镜子里 Nhomakorabea钟面,说一说实际的时间。
8
实际时间:
轴对称镜面对称练习
镜子里看到的:
E
应该是:
E
E
E
E
E
E E
镜子里看到的时间:
4:00
镜子里看到的时间:
实际的时间:
4:00
8:00
9:00
2:00
根据镜子里的钟面,说一说实际的时间。
6:00
根据镜子里的钟面,说一说实际的时间。
12:00
根据镜子里的钟面,说一说实际的时间。
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8
实际时间:
根据镜子里的钟面,说一说实际的时间。
8:15
画轴对称图形:请画出另一半。
画轴对称图形:请画出另一半。
画轴对称图形:请画出另一半。
画轴对称图形:请画出另一半。
画轴对称图形:请画出另一半。
下列图形有几条对称轴?请你画一画。
长方形有两条对称轴
下列图形有几条对称轴?请你画一画。
长方形有4条对称轴
下列图形有几条对称轴?请你画一画。
相关文档
最新文档