工程力学公式大全

合集下载

工程力学公式整理

工程力学公式整理

工程力学公式整理工程力学(Engineering Mechanics)是一门研究力学原理在工程中的应用的学科。

它主要研究物体在受力作用下的运动和变形规律。

在工程学中,力学公式是进行分析和计算的基础。

下面是一些常见的工程力学公式整理。

1.力的合成与分解公式:力的合成公式:F = √(F₁² + F₂² + 2F₁F₂cosθ)力的分解公式:F₁ = Fcosθ, F₂ = Fsinθ其中,F为施于物体的合力,F₁、F₂为分解后的力,θ为施力与横坐标方向的夹角。

2.矩形截面惯性矩和抗弯应力公式:惯性矩公式:I=(b*h³)/12抗弯应力公式:σ=(M*y)/I其中,b和h分别为矩形截面的宽度和高度,I为截面的惯性矩,M 为弯矩,y为截面内其中一点的纵坐标。

3.应力和变形的关系公式:胡克定律公式:σ=Ee弹性模量公式:E=(F/A)/(ΔL/L₀)其中,σ为应力,E为弹性模量,F为受力,A为受力面积,ΔL为长度变化量,L₀为初始长度。

4.摩擦力公式:滑动摩擦力公式:F=μN滚动摩擦力公式:F=RμN其中,F为摩擦力,μ为摩擦系数,N为垂直于接触面的力,R为滚动半径。

5.动量和能量守恒公式:动量守恒公式:m₁v₁+m₂v₂=m₁v₁'+m₂v₂'动能公式:K = (1/2)mv²其中,m为物体的质量,v为物体的速度,v'为受撞物体的速度。

6.应力和应变的关系公式:杨氏模量公式:E=(σ/ε)横向收缩率公式:μ=-(ε₁/ε₂)泊松比公式:μ=-(ε₁/ε₂)其中,E为杨氏模量,σ为应力,ε为应变,μ为泊松比,ε₁为纵向应变,ε₂为横向应变。

这些力学公式是工程力学中常用的基本公式,用于解决各种工程问题。

通过运用这些公式,我们可以计算结构的受力情况、变形情况,进行力学分析和设计,保证工程的稳定性和安全性。

当然,工程力学的应用还远不止于此,还包括静力学、动力学、流体力学等等。

工程力学公式

工程力学公式

轴向拉伸与压缩正应力ζ=F N/A正应变ε=Δl/l (无量纲)l/EA EA为抗拉(压)刚度胡克定律Δl=FNζ=Eε E为弹性模量泊松比ν=【ε’/ε】横向比纵向刚度条件:Δl=Fl/EA <=[Δl] 或δ<=[δ]N先计算每段的轴力,每段的Δl加起来即为总的Δl注意节点是位移 P151拉压超静定:1按照约束的性质画出杆件或节点的受力图2根据静力平衡列出所有独立的方程3画出杆件或杆系节点的变形-位移图4根据变形几何关系图建立变形几何关系方程,建立补充方程5将胡可定律带入变形几何方程,/得到解题需要的补充方程6独立方程与补充方程联立,求的所有的约束力剪切1剪切胡克定律η=GγG~MPa为剪切弹性模量,γ为切应变(无量纲)2 G=E/2(1+ν)ν泊松比3剪切与挤压实例校核铆钉的剪切强度单剪(两层板)η=Fs/As =F/A F为一个方向的拉力双剪(三层板)η=Fs/As =F/nA n整块板上所有的铆钉校核铆钉的挤压强度挤压ζc=Fc/Acζc=Fc/nAc=F/ntd n为对称轴一侧的铆钉数校核板(主板、盖板)的抗拉强度ζ=F/A=F/t(b-nd)<<[ζ] n 为危险截面上的铆钉数1外力偶矩:T=9550 N k / n ( N k~kw,n~r/min)2扭矩Mn = T (Mn~N*m) 判断方向,右手螺旋定则,向外为正,内为负3扭矩图4切应变、剪切角γ= θ*ρ(θ为单位扭转角)5切应力:ηρ=G*γρ=Gρθ扭转角公式:dψ=Mdx/GIp6θ=Mn/G*Ip 刚度校核公式Ip~mm4 极惯性矩, 与截面形状有关,GIp 抗扭刚度,θ~rad/m7ηmax=Mn/Wp=Mnρ/Ip 强度校核公式Wp~mm3抗扭截面模量,与截面形状有关8 Ip 和Wp 的计算:实心圆截面: Wp = ПD3/16 Ip = ПD4/32空心圆截面:Wp = ПD3(1-α4)/16 Ip = ПD4(1-α4)/32薄壁圆截面:Wp = 2Пr02t r=D/2=D/2 Ip = 2Пr3t9 扭转角θ= Mn*l/G*Ip (l为杆长)θ~rad/m10 自由扭转截面周边的切应力方向与周边平行,角点出切应力为0ηmax=Mn/αhb2 长边中点处θ=Mn/βGhb3 b为短边,h为长边,αβ为相关系数无论是扭转强度,还是扭转刚度,圆形截面比正方形截面要好。

工程力学常用公式

工程力学常用公式

工程力学常用公式3、伸长率:* 1。

%断面收缩率: 字100%5、扭转切应力表达式:^,最大切应力:maxTP RW p , d 44I P ”(1),W P d'(1 4),强度校核: 16max TmaxW P[]6、单位扭转角:d—,刚度校核:maxTmax[], 长度为1dx Gl pGI P的一段轴两截面之间的相对扭转角證,扭转外力偶的计算公式: Me 9549P(KWLn(r/m in )8平面应力状态下斜截面应力的一般公式:最大切应力max -'' - ( x y )22,最大正应力方位2 Y 21、轴向拉压杆件截面正应力 牛,强度校核max2、轴向拉压杆件变形IFi Ni l i 4、胡克定律: E ,泊松比:,剪切胡克定律:G7、薄壁圆管的扭转切应力:T 2 R 29、 x yx ycos22 2 xsin 2-sin 2 x cos2平面应力状态三个主应力:II「( x 2y)2X, ''' 01、100%tan2 0 2xx y10、第三和第四强度理论: r3 X 24 2, r4211、平面弯曲杆件正应力:M ,截面上下对称时,MW Z矩形的惯性矩表达式:I Z兽圆形的惯性矩表达式:I ZV(1 644)矩形的抗扭截面系数:W Z £圆形的抗扭截面系数:W Z 4)13、平面弯曲杆件横截面上的最大切应力:F s S max* zmaxbi z14、平面弯曲杆件的强度校核:(1)弯曲正应力tmax [t ], cmaxc](2)弯曲切应力max [](3)第三类危险点:第三和第四强度理论 16、( 1)轴向载荷与横向载荷联合作用强度: ()FN M maxmax (min 丿15、平面弯曲杆件刚度校核:叠加法 严 [f], max [](2)偏心拉伸(偏心压缩):max ( min)A(3)弯扭变形杆件的强度计算:工程力学常用公式伸长率: F N ; A ;FA ;泊松比E 2(1 ),l bI 0l 0100%,断面收缩率:A o A b A 02、扭转: { M }N gm9549 {P}kW ,{ n} r/ min,W p max TW p,3、4、ddxTGIP,TloGI P弯曲:MdxEl应力状态:MET Z,MyIT,maxMy maxIlMW zd 2wdx2MEIM , xdx)dx CxEIx sin2i2cos 2;x y )22tg2 o拉压强度条件:max(F N)[\ 八/max L扭转强度条件:max(T)[]W p扭转刚度条件:(T)max []GI P梁的弯曲强度条件M maxmaxW.梁弯曲的刚度条件:V V max[]-欧拉公式:F c r -2EIl2,2Ecr 2柔度:-惯性半径:max(min][],maxi x y2max,max . [](丿max [],I zi'■ A。

工程力学常用公式

工程力学常用公式

公式:1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []PT W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=+''2x y σσσ+='''0σ=最大切应力max '''2σστ-=±=最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N ZF M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N ZF F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==≤4[]r Z σσ==≤。

工程力学公式总结

工程力学公式总结

工程力学公式总结工程力学是一门研究力的作用和分析物体行为的学科。

在工程领域中,掌握力学公式是非常重要的,它能够帮助工程师们预测和解决各种问题。

本文将对一些常用的工程力学公式进行总结。

I. 静力学公式1. 牛顿第一定律:物体的速度保持恒定,除非受到外力的作用。

这个公式可以用来解释一些静力学问题,比如一个静止的物体如果没有受到外力的作用,将保持静止。

2. 牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。

F = ma这个公式是力学中最重要的公式之一,能够解释物体运动的原因。

它表明,当作用力增加时,物体的加速度也会增加;而物体的质量越大,加速度越小。

3. 牛顿第三定律:对于每一个作用力,都存在一个等大、方向相反的反作用力。

这个公式可以解释为什么两个物体之间的力是相互作用的。

例如,当一个物体推另一个物体时,另一个物体也会推回来。

II. 动力学公式1. 动量定理:物体所受的总冲量等于物体的动量变化率。

FΔt = Δmv这个公式可以解释为什么用力撞击物体会改变物体的速度。

它表明,当物体受到一个力的作用时,物体的动量会发生变化。

2. 动能定理:物体的动能变化等于物体所受的净外力沿位移方向所做的功。

ΔKE = W这个公式可以解释为什么物体受到加速度时会增加它的动能。

它表示,当物体受到外力的作用并移动时,物体的动能将发生变化。

III. 应力与变形公式1. 应力应变关系:应力与应变成正比。

σ = Eε这个公式描述了材料受到应力时的变形情况。

E是材料的弹性模量,σ是应力,ε是应变。

2. 杨氏模量:刚度的度量。

E = σ/ε这个公式描述了材料在受到应力时的应变情况。

杨氏模量越大,材料越坚硬。

IV. 力矩与力的关系1. 力矩公式:力矩等于力与力臂的乘积。

M = Fd这个公式用来计算物体受到力的转动效应。

力矩等于力乘以力臂的长度。

2. 力的平衡公式:力的矢量和为零。

ΣF = 0这个公式用来解决物体处于平衡状态下的力的平衡问题。

土木工程公式大全

土木工程公式大全

土木工程公式大全一、静力学基本公式。

1. 力的合成与分解(平行四边形法则)- 对于两个力F_1和F_2,其合力F的大小为:F =√(F_1)^2+F_{2^2+2F_1F_2cosθ},其中θ为F_1与F_2的夹角。

- 力的分解:如果将力F沿直角坐标轴x、y方向分解,则F_x=Fcosα,F_y = Fsinα,α为F与x轴的夹角。

2. 力矩公式。

- 对于平面力系,力F对某点O的力矩M_O = Fd,其中d为力臂,即从点O 到力F作用线的垂直距离。

3. 力的平移定理。

- 作用于刚体上的力F,可以平移到刚体上的任意一点O,但必须同时附加一个力偶,其力偶矩等于原力F对平移点O的力矩。

二、材料力学公式。

1. 轴向拉压。

- 轴向应力σ=(F_N)/(A),其中F_N为轴力,A为横截面面积。

- 轴向变形Δ L=(F_NL)/(EA),其中L为杆件长度,E为弹性模量。

2. 剪切应力与变形。

- 剪切应力τ=(F_Q)/(A),其中F_Q为剪力,A为剪切面面积。

- 剪切胡克定律τ = Gγ,其中G为剪切模量,γ为剪应变。

3. 梁的弯曲。

- 弯矩M与剪力F_Q的关系:(dM)/(dx)=F_Q- 正应力公式(纯弯曲)σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z 为截面对z轴的惯性矩。

- 梁的挠曲线近似微分方程EIfrac{d^2y}{dx^2} = M(x),其中EI为梁的抗弯刚度,y为梁的挠度。

三、结构力学公式。

1. 静定结构的内力计算。

- 对于简支梁在集中力P作用下(作用点距A端a,梁长L),A端支座反力R_A=(Pb)/(L),B端支座反力R_B=(Pa)/(L),其中b = L - a。

- 对于静定桁架,节点法:∑ F_x = 0,∑ F_y=0(对于平面桁架每个节点的平衡方程)。

2. 超静定结构。

- 力法基本方程δ_ijX_j+Δ_iP=0(i = 1,2,·s,n),其中δ_ij为柔度系数,X_j为多余未知力,Δ_iP为基本结构在荷载作用下沿X_i方向的位移。

工程力学公式大全-精选.pdf

工程力学公式大全-精选.pdf

wmax l
[ w] , l
max
[]
16、( 1)轴向载荷与横向载荷联合作用强度:
max ( min )
FN
M ห้องสมุดไป่ตู้ax
A WZ
( 2)偏心拉伸 (偏心压缩 ): max ( min ) FN F A WZ
( 3)弯扭变形杆件的强度计算:
r3
1 M 2 T2
1
M y2
M
2 z
T2
[]
WZ
WZ
r4
1 M 2 0.75T 2
6
32
13、 平面弯曲杆件横截面上的最大切应力:
max
FS S * zmax
K FS
bI Z
A
14、 平面弯曲杆件的强度校核: ( 1)弯曲正应力 t max [ t ] , cmax [ c ]
( 2)弯曲切应力 max [ ] ( 3)第三类危险点:第三和第四强度理论
15、 平面弯曲杆件刚度校核:叠加法
R
, IP
I
IP
WP
d4 (1
32
4) ,
WP
d3 (1
4 ) ,强度校核: max Tmax [ ]
16
WP
6、单位扭转角:
d dx
T
,刚度校核: max
GI P
T max
GI P
[ ] ,长度为 l 的一段轴两截
面之间的相对扭转角
Tl
,扭转外力偶的计算公式:
GI P
Me 9549 p( KW ) n( r /min)
tan 2 0
10、 第三和第四强度理论: 11、 平面弯曲杆件正应力:
r3
2 4 2 , r4

工程力学公式大全

工程力学公式大全

工程力学公式:1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []PT W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x y σσσ+='''0σ=最大切应力max '''2σστ-=±=最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N ZF F A W δσσ=± (3)弯扭变形杆件的强度计算: 22222311[]r y z ZZ M T M M T W W σσ=+=++≤222224110.750.75[]r y z Z Z M T M M T W W σσ=+=++≤。

工程力学公式总概括

工程力学公式总概括

工程力学公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x y σσσ+='''0σ= 最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=-- 10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==4[]r Z σσ==≤简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。

工程力学公式大全

工程力学公式大全

工程力学公式胡克定律:- E ■:,泊松比:;'--:;,剪切胡克定律:.=G最大切应力.max 二 £ 二■- C x^ ")22,最大正应力方位tan2〉°二10、第三和第四强度理论:;「r3二■2' 4 ■2,二r4=;42,3.1、 轴向拉压杆件截面正应力 c=F N,强度校核 A二max -[二]2、轴向拉压杆件变形,計八詈. L 一 I伸长率: -- I 100%断面收缩率:A A 、A100%扭转切应力表达式:,最大切应力:-max R = — , I pII P " W P二 d 4(1_G 432二d 34W p(1 -〉),强度校核:max16Tmaxk 二【]d 甲 T单位扭转角:,刚度校核:^maxmaxdx Gl PGl P乞口],长度为I 的一段轴两截面之间的相对扭转角IL ,扭转外力偶的计算公式: GIMe 二 9549P (KW)n(r/m in)薄壁圆管的扭转切应力:•-22 兀 R0§8、 平面应力状态下斜截面应力的一般公式: CL =cr +cr cr -<yxyx ycos2: - x sin2:,sin 2: x cos2-29、平面应力状态三个主应力:CT +CF 丄__y ■1 a -cr cc(x2丫,匚''CF一(X2CTy )2,二'''=02x14、平面弯曲杆件的强度校核:(1 )弯曲正应力二tmax乞[G],二cmax乞[二c](2 )弯曲切应力gax乞[J(3 )第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法W p aX- [W],二max -[二](2 )偏心拉伸(偏心压缩):二max (二min)=旦,二匸一A W z(3)弯扭变形杆件的强度计算:1 .M2 T2M y2 Mz2T2逬二]W Z W Z 1 y表1杆件基本变形部分主要公式基本变形应力公式变形公成轴向拉压F N= ----AA/ =EA扭转Tn^甲=TlJ max —GIP弯曲0 —Mlmax -—-..i I El.11、平面弯曲杆件正应力: —My,截面上下对称时,IZMCT = ----------W Z矩形的惯性矩表达式: bh3——圆形的惯性矩表达式:124I z (1)矩形的抗扭截面系数:bh?叫盲,圆形的抗扭截面系数:3WZ 甘一4)13、平面弯曲杆件横截面上的最大切应力:FSS * zmaxmaxbi z= K F SAmax16、(1 )轴向载荷与横向载荷联合作用强度: faxUmint^ -仏A W Z-r4 W z、nW z「M 2 2 2y M z 0.75T 打二]表3杆在简单载荷作用下的变形简團瓦载荷“2内容 半面应力 状态中任 意斜截面 sin 2a 十 T xy cos 2A上的应力 *而应变 狀态中任 总方向h2的应变 截面儿何性质的转 轴公犬16£7yo=2El+■_L ■卩.4-- --F*] ■ \仁公式2_切 ~2~F0&A =~6D =X6E11G, 3B =TTcos 2a - s sin 2ticos 一 sin 2ft2 2 sin 2a 十世比 cos 2a-cns2n — sin 2n2 { 2--- »JH 2<t + cxjb 2u2谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。

工程力学公式微积分公式高等数学公式汇总

工程力学公式微积分公式高等数学公式汇总

公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:TI ρρτρ=,最大切应力:maxP PT TR I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:maxmax []PT W ττ=≤ 6、单位扭转角:Pd Tdx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x yσσσ+='''0σ=最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=--10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Zd W πα=-13、平面弯曲杆件横截面上的最大切应力:max max *S z SZ F S FK bI Aτ==14、平面弯曲杆件的强度校核:1弯曲正应力max []t t σσ≤,max []c c σσ≤ 2弯曲切应力max []ττ≤3第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w wl l≤,max []θθ≤ 16、1轴向载荷与横向载荷联合作用强度: maxmax min ()N ZF M A W σσ=±2偏心拉伸偏心压缩:max min ()N ZF F A W δσσ=±3弯扭变形杆件的强度计算:有关高等数学计算过程中所涉及到的数学公式集锦错误!未定义书签。

工程力学公式概括

工程力学公式概括

1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []PT W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=+''2x y σσσ+='''0σ= 最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x y τασσ=--10、第三和第四强度理论:3r σ=,4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,ZM W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI Aτ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w w l l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:3[]r Zσσ==≤4[]r Z σσ==≤。

工程力学公式总结

工程力学公式总结

工程力学公式总结工程力学是物理学的一个分支,研究物体在受力作用下的运动、变形和它们之间的关系。

它是工程学科中不可或缺的基础课程,应用广泛,涉及到力学、材料力学、结构力学、固体力学等领域。

在学习工程力学过程中,我们会遇到许多公式,这些公式是我们解决工程力学问题的重要工具。

下面我来总结一些常用的工程力学公式,希望能对大家的学习有所帮助。

1. 牛顿第二定律:F = ma牛顿第二定律描述了物体在外力作用下的加速度与力的关系。

其中,F代表力,m代表物体的质量,a代表物体的加速度。

这个公式在力学问题的求解中经常使用。

2. 力的合成与分解:当一个物体受到多个力的作用时,可以将这些力合成为一个合力。

合力的大小等于各个力的矢量和。

同时,也可以将一个力分解为两个或多个分力,分力的矢量和等于原力。

3. 力矩与力矩平衡条件:力矩是力对物体转动产生的影响。

力矩等于力的大小与力臂的乘积。

力矩的方向符合右手螺旋定则。

力矩平衡条件要求物体受到的所有力矩的矢量和为零,即力矩的代数和为零。

4. 刚体静力平衡条件:刚体静力平衡要求物体受到的所有力的矢量和为零,即力的代数和为零。

这个条件可以用于解决静力学问题,确定物体的受力情况。

5. 牛顿万有引力定律:F = G * (m1 * m2) / r^2牛顿万有引力定律描述了两个物体之间的引力的大小与它们之间的距离和质量有关。

其中,F代表引力,G为引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。

6. 弹性力学公式:弹性力学公式用于描述物体在受力下的弹性变形。

其中,Hooke定律描述了弹性材料的应力与应变之间的关系,即σ = E * ε。

这里,σ代表应力,E为杨氏模量,ε代表应变。

7. 杆件受拉伸或压缩的应力公式:当杆件受拉伸或压缩时,应力的大小与外力、截面积和材料性质有关。

受拉伸时,应力的大小等于外力除以截面积;受压缩时,应力的大小等于外力除以截面积的负值。

8. 曲杆弯曲公式:曲杆弯曲公式描述了杆件在受弯矩作用下的弯曲变形。

工程力学必备公式

工程力学必备公式

工程力学必备公式
工程力学必备公式包括:
1. 轴向拉压杆件截面正应力NFAσ =,强度校核max[ ]σσ≤。

2. 轴向拉压杆件变形Ni iiF llEA∆ =∑。

3. 伸长率:1100%lllδ−=×,断面收缩率:1100%AAAψ−=×。

4. 胡克定律:Eσε=,泊松比:' ευε= −,剪切胡克定律:Gτγ=。

5. 扭转切应力表达式:TIρρτρ=,最大切应力:maxPPTTRIWτ==,
PdIπα−=,PdWπα−=,强度校核:maxmax[ ]τPTWτ=≤。

6. 单位扭转角:PdTdxGIϕθ ==,刚度校核:maxmax[ ]θPTGIθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTlGIϕ=,扭转外力偶的计算公式:( /min)r9549KWpMen=。

7. 薄壁圆管的扭转切应力:20δ2πTRτ=。

8. 平面应力状态下的切应力公式:T1=σtanα,T2=σtanβ,其中α和β分别是与x1和x2轴的夹角。

这些公式在工程力学中经常用到,可以用来解决许多实际问题。

如需获取更多信息,建议查阅工程力学书籍或咨询专业人士。

工程力学公式大全

工程力学公式大全

扬州科技学院工程力学资料工程力学公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P PT TR I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:maxmax []PT W ττ=≤ 6、单位扭转角:Pd Tdx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202TR τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x yσσσ+='''0σ=最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=--10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Z d W πα=-13、平面弯曲杆件横截面上的最大切应力:max max *S z SZ F S FK bI Aτ==14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法max []w wl l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: maxmax min ()N ZF M A W σσ=±(2)偏心拉伸(偏心压缩):max min ()N ZF F A W δσσ=±(3)弯扭变形杆件的强度计算:22222311[]r y z Z M T M M T W W σσ=+=++≤222224110.750.75[]r y z ZZM T M M T W W σσ=+=++≤机械制图方面=>齿轮计算公式1 齿轮模数:m=p/π齿轮模数m=齿距p 除以 3.14测绘时的简易计算m=齿顶圆直径(外径)d 除以(齿数z+2)2 齿轮分度圆直径:d=mz分度圆直径d=模数m 乘以齿数z3 齿轮压力角:标准齿轮的压力角为20度压力角标准为20度其他还有14.5度17.5度15度25度和28度4 齿轮变位系数:用范成法加工齿轮时,刀具中心线不与齿轮的分度圆相切,刀具中心与齿轮的分度圆的距离除以模数所得的商就是齿轮的变位系数。

工程力学公式

工程力学公式

(压)扭转平面弯曲应力xsAx N )(=s Ot rpI T r r t =)(zx I My =s s txy zzy bI QS *=t Q][m ax m axs s ≤=AN ][m ax m axt t ≤=tW T ][m ax m axs s ≤=ZW M ][m ax t t ≤332016D.D R I W p t ≈==π16)1(43απ-==D R I W p t 324dI p π=对于实心圆截面:dO对于空心圆截面:)1(32)(32 4444αππ-=-=D d D I p )(Dd =αdD644dI I y z π==323dW W y z π==)1(3243απ-=DW z ybh123bh I z =62bh W z =Aa I I yC y 2+=平行移軸公式:nn (合力)(合力)P PP c n nQ剪切与挤压的实用计算[]t t ≤=AQ[]jyjyjy jy A F s s ≤=⎪⎪⎩⎪⎪⎨⎧+-=--++=αt αs s t αt αs s s s s αα2cos 2sin 22sin 2cos 22xy y x xy y x y x xy s xt xys y Os αt αα平面内的主应力yx xys s t α--=22tg 0xys xt xy s yO主单元体1s '2s ')2222xyy x y x minmax t s s s s s s +-±+=⎩⎨⎧(或3s t222x y y x minmax t s s t t +-±=⎩⎨⎧'')(045成最大剪应力面与主平面拉压扭转平面弯曲变形Lxx EA x F L L N d )()(⎰=∆ABpABGI Tl =ϕq= f ´y=fEIx M x y )()(=''qyx y∑=∆EALF L N ][m ax m axq q ≤=pGI T []njxs s=:1、容许应力},,2.0{ :2b s jx s s s s =、极限应力)εεμ'=γt =G εs =E Gijij t γ=()[]k j i i Es s μs ε+-=1),,,,(z y x k j i =(广义虎克定律)AP crcr =s 1.临界力和临界应力3.其中:2.压杆的临界应力:—惯性半径。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学公式:
1、轴向拉压杆件截面正应力N F A σ=
,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i
F l l EA ∆=∑
3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A A
ψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ=
5、扭转切应力表达式:T I ρρ
τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3
4(1)16P d W πα=-,强度校核:max max []P
T W ττ=≤ 6、单位扭转角:P d T dx GI ϕθ==,刚度校核:max max []P
T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ϕ=,扭转外力偶的计算公式:()(/min)
9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ=
8、平面应力状态下斜截面应力的一般公式:
cos 2sin 222x y
x y
x ασσσσσατα+-=+-,sin 2cos 22x y
x ασστατα-=+
9、平面应力状态三个主应力
:
'2x y
σσσ+=
,''2
x y σσσ+='''0σ=
最大切应力max '''
2σστ-=±=最大正应力方位02tan 2x x y
τασσ=-- 10、
第三和第四强度理论:3r σ=
4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z
M W σ=
矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:3
4(1)32
Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤
(2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w w l l
≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=
± (2)偏心拉伸(偏心压缩):max min ()N Z
F F A W δσσ=
± (3)弯扭变形杆件的强度计算: 2222231
1[]r y z Z
Z M T M M T W W σσ=+=++≤2222241
10.750.75[]r y z Z Z M T M M T W W σσ=+=++≤。

相关文档
最新文档