传感器原理与应用-第6章-压电式传感器

合集下载

传感器原理及其应用(第二版)部分习题答案

传感器原理及其应用(第二版)部分习题答案

24.875
精品
第1章 传感器的一般特性
4、何为传感器的静态特性?静态特性的主要技术指标有 哪些? 答:传感器的静态特性是在稳态信号作用下的输入输出 特性。 衡量静态特性的重要指标有灵敏度、线性度、迟滞、重 复性、稳定性等。
精品
第1章 传感器的一般特性
5、何为传感器的动态特性?动态特性的主要技术指标有 哪些? 答:传感器的动态特性是传感器在被测量随时间变化的 条件下输入输出关系。动态特性有分为瞬态响应和频率 响应。
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: U 0 U 2 Z Z 1 2 Z Z 2 1 U 2 Z Z 0 0 Z Z 0 Z Z 0 U 2 2 Z Z 0 2 4 2 1 8 0 5 . 3 5 - 0 . 1 1 7 V
精品
第1章 传感器的一般特性
3、对某传感器进行特性测定所得到的一组输入—输出数 据如下:
输入x:0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 输出y;2.2 4.8 7.6 9.9 12.6 15.2 17.8 20.1 22.1 试计算该传感器的非线性度和灵敏度。
精品
第1章 传感器的一般特性
当衔铁移动Δδ时,单端式传感器的灵敏度△L/△δ为:
k L L 0 0 5 0 4 .5 1 1 0 0 2 3 m H 1 0 .8H /m 3 3 .9 1 2 H /m
若做成差动结构形式,根据差动的变隙式的灵敏度公式 有:
k 差 动 L 2 L 0 0 2 0 5 .5 4 1 0 1 0 2 m 3 H 2 1 .6H /m 6 7 .8 2 4 H /m
故将其做成差动结构后,灵敏精品度将提高一倍。

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

传感器原理及应用-第6章 - 压电式传感器剖析

传感器原理及应用-第6章 - 压电式传感器剖析

二、压电效应的基本原理
常见的压电材料可分为两类: 压电单晶体和多晶体压电陶瓷。
压电单晶体: 石英(包括天然石英和人造石 英)、水溶性压电晶体(包括酒石酸钾 钠、酒石酸乙烯二铵、酒石酸二钾、 硫酸锤等)。
多晶体压电陶瓷: 钛酸钡压电陶瓷、锆钛酸铅系 压电陶瓷、铌酸盐系压电陶瓷和铌 镁酸铅压电陶瓷等。
天然石英
若在同一切片上,沿机械轴y方向施加应 力,则仍在与x轴垂直的平面上产生电荷为
O
y
q12
d12
a b
Fy
x
b
z
d11
a b
FyxΒιβλιοθήκη yd11 = -d12 ,石英晶体轴对称条件。
产生电荷q11和q12的符号,决定于受压力
c a
还是受拉力。
§6.1 压电效应
二、压电效应的基本原理 4、石英晶体压电效应特点
Fx- -
++
- P1 +
P3 - + x
-
P2
+
- - ++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
在x轴的正向出现正电荷,在y、 z方向不出现电荷。
Fx<0 y
Fx- -
+ + Fx
- P1 +
P3 + -
x
-
P2
+
--
++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
压电陶瓷是人工制造的多晶体 压电材料。

传感器技术-第6讲-压电磁敏传感器PPT

传感器技术-第6讲-压电磁敏传感器PPT

2.霍尔元件基本结构
霍尔元件的外形结构图,它由霍尔片、 4根引线和壳体组成,激励电极通常用红色 线,而霍尔电极通常用绿色或黄色线表示。
图3 霍尔元件
3.霍尔元件基本特性
(1)输入电阻和输出电阻
霍尔元件激励电极之间电阻为输入电 阻,霍尔电极输出电势对于电路外部来说 相当于一个电压源,其电源内阻即为输出 电阻。
(c)
P
i
H-
N 电流
图8 磁敏二极管的工作原理示意图
结论:随着磁场大小和方向的变化,可产生 正负输出电压的变化、特别是在较弱的磁场 作用下,可获得较大输出电压。若r区和r区 之外的复合能力之差越大,那么磁敏二极管 的灵敏度就越高。
磁敏二极管反向偏置时,则在 r区仅流 过很微小的电流,显得几乎与磁场无关。因 而二极管两端电压不会因受到磁场作用而有 任何改变。
6.1.3 压电式传感器的应用
1 压电式测力传感器
组成:
主要由石英晶片、绝缘套、电极、上 盖和基座等组成。
2、原理
传感器的上盖为传力元件,当受到外 力作用时,它将产生弹性形变,将力传递 到石英晶片上,利用石英晶片的压电效应 实现力—电转换。绝缘套用于绝缘和定位。
它的测力范围是0~50N,最小分辨率 为0.01N,绝缘阻抗为 2 1014 ,固有频 率为50~60kHz。非线性误差小于±1%。 整个该传感器重为10g,可用于机床动态 切削力的测量。
ΔU/V
2.0
1.6 1.2
3.霍尔式接近开关
利用霍尔效应可以制成开关型传感器。 广泛应用于测转速、制作接近开关等。霍 尔式接近开关主要由霍尔元件、放大电路、 整形电路、输出驱动及稳压电路5部分组成。
由工作特性曲线可见,工作时具有一定的 磁滞特性,可以使开关更可靠工作。图中

传感器原理及工程应用习题参考答案

传感器原理及工程应用习题参考答案

《传感器原理及工程应用》习题答案王丽香第1章 传感与检测技术的理论基础(P26)1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差 %==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。

解:当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。

则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。

然后重新计算平均值和标准偏差。

当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。

则 20 2.370.01610.0382()d i G mm v σ=⨯=>,所以其他14个测量值中没有坏值。

计算算术平均值的标准偏差200.0043()mm σσ=== 20330.00430.013()d mm σ=⨯=所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±=1-14交流电路的电抗数值方程为CL X ωω1-= 当角频率Hz 51=ω,测得电抗1X 为Ω8.0; 当角频率Hz 22=ω,测得电抗2X 为Ω2.0; 当角频率Hz 13=ω,测得电抗3X 为Ω-3.0。

压 电 式 传 感 器

压 电 式 传 感 器
• 串 联 时 , 输 出 总 电 荷 q′ 等 于 单 片 上 的 电 荷 , 输 出 电 压 为 单 片 电 压 的 2 倍 , 总 电 容 应 为单 片 的 1/2。 即
上一页 下一页 返回
6.2压电式传感 器的等效电路和测量 电路
• 由此可见,并连接法虽然输出电荷大,但由于本身电 容 亦 大 , 故 时 间 常 数 大 , 只 适 宜 测量 慢 变 化 信 号 , 并 以 电荷作为输出的情况。串联接法输出电压高,本身电 容 小 , 适 宜 于 以 电压 输 出 的 信 号 和 测 量 电 路 输 入 阻 抗 很 高的情况。
• 电 荷 放 大 器 是 一 个 有 反 馈 电 容 C f 的 高 增 益 运算 放 大 器 。 当 放 大 器 开 环 增 益 A 和 输 入 电 阻 R i 、反 馈 电 阻 R f ( 用 于 防 止 放 大 器 直 流 饱 和 ) 相 当 大时 , 放 大 器 的 输 出 电 压 U o 正 比 于 输 入 电 荷 q , 即当 A 足 够 大 时 , 则 有
下一页 返回
6.1压 电 式 传 感 器 的 工 作 原 理
• 6.1.2 压电材料
• 自然界中的大多数晶体具有压电效应,但压电效应十 分 明 显 的 不 多 。 天 然 形 成 的 石 英 晶体 、 人 工 制 造 的 压 电 陶瓷、锆钛酸铅、钛酸钡等材料是压电效应性能优良 的压电材料。
• 具有压电效应的物质很多,可分为三大类:一是压电 晶 体 ( 单 晶 ) , 它 包 括 压 电 石 英 晶体 和 其 他 单 晶 ; 二 是 压电陶瓷(多晶半导瓷);三是新型压电材料,其中 有 压 电 半 导 体 和 有机 高 分 子 压 电 材 料 两 种 。
• 介 电 常 数 ——— 一 定 形 状 和 尺 寸 的 压 电 元 件 , 固 有 电 容 与 介 电 常 数 有 关 , 而 固 有 频 率 又影 响 着 压 电 传 感 器 的 下 限。

第六章压电传感器

第六章压电传感器

F Poling axis
应力(106 Pa)
20mm Open circuit Voltage F
Q=kF U=Q/C
19
苏州大学城市轨道交通学院
压电材料的应用 高压打火
压电体
20
苏州大学城市轨道交通学院
压电材料的应用 原子力显微镜中的应用 用作微小位移调节探针
high-voltage amplifier
31
苏州大学城市轨道交通学院
压电传感器的信号调节
电荷放大器(一般情况)
-k
ui 等效电路
Cf
C
Q
uo
Q uo = C + Cf + Cf k
qc + qcf = Q
uo = -kui
32
Cui + Cf(ui - uo )= Q
-Cuo /k + Cf(-uo /k - uo )= Q
苏州大学城市轨道交通学院
压电传感器的信号调节
Q uo = C + Cf + Cf k
选用高增益的运放: 电荷放大器的输出电压
K
Q uo = Cf
只与反馈电容的大小、压电体产生的电荷量有关, 而与压电体的电容、电缆的对地电容等无关。
33
苏州大学城市轨道交通学院
压电振动传感器 压电振动传感器
34
苏州大学城市轨道交通学院
37
苏州大学城市轨道交通学院
Typical Frequency Response Curve
low frequency limit determjned by RC roll-off characteristics
Usable Range

第6章 压电式传感器习题

第6章 压电式传感器习题

第6章压电式传感器习题第6章压电式传感器1、为什么压电式传感器不能用于静态测量,只能用于动态测量中?而且是频率越高越好?2、什么是压电效应?试比较石英晶体和压电陶瓷的压电效应3、设计压电式传感器检测电路的基本考虑点是什么,为什么?4、有一压电晶体,其面积为20mm2,厚度为10mm,当受到压力P=10MPa作用时,求产生的电荷量及输出电压:(1)零度X切的纵向石英晶体;(2)利用纵向效应的BaTiO3。

解:由题意知,压电晶体受力为F=PS=10×106×20×10-6=200(N)(1)0°X切割石英晶体,εr=4.5,d11=2.31×10-12C/N 等效电容36120101010205.41085.8---?????==d S C r aεε=7.97×10-14(F)受力F产生电荷Q=d11F=2.31×10-12×200=462×10-2(C)=462pC输出电压()V C Q U a a3141210796.51097.710462?=??==--(2)利用纵向效应的BaTiO3,εr=1900,d33=191×10-12C/N 等效电容361201010102019001085.8---?????==d SC r aεε=33.6×10-12(F)=33.6(pF)受力F产生电荷Q=d33F=191×10-12×200=38200×10-12(C)=3.82×10-8C输出电压()V C Q U a a312810137.1106.331082.3?=??==--5、某压电晶体的电容为1000pF,k q=2.5C/cm,电缆电容C C =3000pF,示波器的输入阻抗为1MΩ和并联电容为50pF,求:(1)压电晶体的电压灵敏度足K u;(2)测量系统的高频响应;(3)如系统允许的测量幅值误差为5%,可测最低频率是多少?(4)如频率为10Hz,允许误差为5%,用并联连接方式,电容值是多大?解:(1)cm V pF cm C C K K a q u/105.21000/5.2/9?===(2)高频(ω→∞)时,其响应i c a q i c a m am u C C C k C C C d F U K++=++==33()cm/V.F cm/C.8121017610503000100052?=?++=-(3)系统的谐振频率()i c a n C C C R++==11τω()()s rad2471050300010001011126=?++?=-由()()2/1/n n am im U U Kωωωωω+==,得()%51/1/2-≤-+=n nωωωωγ(取等号计算)()()[]22/19025.0n nωωωω+=()29025.09025.0nωω+=解出(ω/ωn)2=9.2564→ω/ωn=3.0424ω=3.0424ωn=3.0424×247=751.5(rad/s)f=ω/2π=751.5/2π=119.6(Hz)(4)由上面知,当γ≤5%时,ω/ωn=3.0424当使用频率f=10Hz时,即ω=2πf=2π×10=20π(rad/s)时ωn=ω/3.0424=20π/3.0424=20.65(rad/s)又由ωn=1/RC,则C=1/ωn R=1/(20.65×1×106)=4.84×10-8(F)=4.84?104pF 6、分析压电加速度传感器的频率响应特性。

传感器技术与应用第2版-部分习题答案

传感器技术与应用第2版-部分习题答案

第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

人们根据传感器的静特性来选择合适的传感器。

9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。

,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。

微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。

17.答:⑴20。

C时,0~100ppm对应得电阻变化为250~350 kΩ。

V0在48.78~67.63mV之间变化。

⑵如果R2=10 MΩ,R3=250 kΩ,20。

C时,V0在0~18.85mV之间变化。

30。

C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。

⑶20。

C时,V0为0~18.85mV,30。

C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。

但相对(2)得情况来说有很大的改善。

18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。

11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。

因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。

第6章压电式传感器原理及其应用

第6章压电式传感器原理及其应用
第6章 压电式传感器原理及其应用 章
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示

《传感器技术》教学课件第6章

《传感器技术》教学课件第6章

沿电轴方向施加作用力Fx时,在与电轴x垂直的平面上将产生电
荷, 其大小为
qx d11Fx
(6-2)
式中, d11为x方向受力的压电系数。
14
若在同一切片上,沿机械轴y方向施加作用力Fy,则电荷仍 在与x轴垂直的平面上产生,其大小为
qy
d12
a b
Fy
(6-3)
式中:d12——y轴方向受力的压电系数,根据石英晶体的对称性, 有d12=-d11;
在自然界中大多数晶体都具有压电效应,但压 电效应十分微弱。随着对材料的深入研究,发现石 英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压 电材料。
7
表6-1 常用压电材料的性能参数
8
6.1.1 压电晶体
以石英晶体为例,它是单晶体中具有代表性同时也是应用 最广泛的一种压电晶体,化学式为SiO2。图6-2(a)表示了天 然结构的石英晶体外形是一个正六面体。
16
石英晶体具有压电效应与内部分子结构有关。图6-3 是一个单元组体中构成石英晶体的硅离子和氧离子,将 硅离子和氧离子在垂直于晶体z轴的xy平面上进行投影, 等效为一个正六边形排列。
当石英晶体未受外力作用时,正、负离子正好分布 在正六边形的顶角上,形成三个互成120°夹角的电偶
极矩P1、P2、P3。 如图6-4(a)所示。
29
压电材料的压电特性可以用压电方程表示,其矩阵形式是: 定义压电系数矩阵D为:
30
压电系数矩阵D是正确选择压电元件、受力状态、变形方 式、能量转换率以及晶片几何切型的重要依据。石英晶体压电 系数矩阵可表示为
式中独立的压电系数是d11和d14;压电系数矩阵可表示为:
其中独立的压电系数是d33、d31和d15三个。

第6章 压电式传感器

第6章 压电式传感器


应力与电荷密度

力与应力:用F表示力,用T表示应力,即 单位面积上的力:
F T A

电荷与电荷密度:用Q表示电荷,用 表示 电荷密度,即单位面积上的电荷:
Q A

压电效应可以用下面的方程描述:
σ = dT
• 该方程称为压电方程,它描述了压电传感器输 出(电荷密度)与输入(应力)之间的静态关 系 • d相当于灵敏度
A( )

d R 1 [ R(Ca Cc Ci )]
2

d R 1 ( )
2
可得实际增益与理想增益之比:
A( ) k ( ) * 2 A ( ) 1 ( )
k ( )

1 ( )
2
• 当 1 ,即输入信号频率较大, k ( ) 1 , 此时,实际增益趋近于理想增益 • 因此,压电式传感器的高频特性较好,这是压电 式传感器的优点
S = dt E

d t 称为逆压电常数矩阵
二、压电方程和压电常数矩阵

压电效应可用压电方程来定量描述,如下:
σ = dT • d称为压电常数矩阵
• 不同的压电材料具有不同的压电常数矩阵 • 相同的压电材料,如果加工方式不同,也会有 不同的压电常数矩阵

应力:如图所示,一 共有6个方向 • T1 , T2 , T3 :分别表 示沿x,y,z方向上的 应力(拉力为正, 压力为负) • T4 , T5 , T6:分别表 示绕x,y,z方向上的 切应力(右旋为正, 左旋为负)
T

三个端面的面积:
• A1 , A2 , A3 :分别表 示与x,y,z垂直的端 面面积


T1 T 因此有: 2 1 d11 d12 d13 ... d16 T3 d d d ... d 2 21 22 23 26 T4 3 d31 d32 d33 ... d36 T 5 T6 写为向量-矩阵形式的压电方程为:

压电式传感器原理与应用

压电式传感器原理与应用

压电式传感器原理与应用压电式传感器是一种利用压电效应进行测量的传感器。

压电效应是指在压力作用下,一些晶体会产生电荷分布的改变,从而产生电势差。

压电式传感器利用这种原理,将压力或力的变化转化为电信号输出,从而实现对压力或力的测量。

1.传感器中的压电材料受到外力作用产生变形,从而引起内部电荷分布的改变。

2.内部电荷分布的改变使得传感器的两个电极上产生电势差。

3.传感器将电势差转化为与外力大小成正比的电信号输出。

1.工业自动化:压电式传感器可以用于测量各种物体的压力,如流体管道中的压力、机械设备的挤压力等,从而实现对工业过程的自动控制。

2.汽车工业:压电式传感器可以用于测量汽车发动机的油压、气压等参数,从而实现对发动机的控制和保护。

3.医疗器械:压电式传感器可以用于测量人体体内的压力,如心脏的血压、呼吸的压力等,从而实现对人体生理状态的监测。

4.空气质量监测:压电式传感器可以用于测量空气中的压力、气体浓度等参数,从而实现对空气质量的监测。

5.智能手机:压电式传感器可以用于智能手机屏幕上的触摸功能,可以感知用户的触摸力度和位置,从而实现对屏幕的操作。

1.灵敏度高:压电材料对压力或力的变化非常敏感,可以实现对微小压力的测量。

2.响应速度快:压电材料的压电效应响应速度非常快,可以实现对快速变化的压力的测量。

3.耐用性好:由于压电材料的特殊性质,压电式传感器具有较好的耐用性,可以经受较大的压力和力的作用。

4.体积小:压电材料的尺寸可以做得非常小,因此压电式传感器可以设计成小型化的产品。

5.易于集成:压电材料和传感器电路可以进行集成设计,从而降低了传感器的制造成本,提高了其可靠性。

总之,压电式传感器是一种利用压电效应进行测量的传感器,在工业、汽车、医疗、环境监测等领域有着广泛的应用。

它具有高灵敏度、快速响应、良好的耐用性、小体积和易集成等优点,可以满足各种应用场景的需求。

传感器(电子教案)第6章

传感器(电子教案)第6章
6.6.1非线性
压电传感器的幅值线性度是指被测物理量(如力、压力、 加速度等)的增加,其灵敏度的变化程度。
6.6.2横向灵敏度
压电加速度传感器的横向灵敏度是指当加速度传感器 感受到与其主轴向(轴向灵敏度方向)垂直的单位加速度 振动时的灵敏度,一般用它与主轴向灵敏度的百分比 来表示,称为横向灵敏度比。
返回
上页
下页
图库
6.1 压电效应
压电式传感器大都是利用压电材料的压电效应制 成的。在电声和超声工程中也有利用逆压电效应 制作的传感器。压电转换元件受力变形的状态可 分为图6-1所示的几种基本形式。
但由于压电晶体的各向异性,并不是所有的压电 晶体都能在这几种变形状态下产生压电效应。例 如石英晶体就没有体积变形压电效应。但它具有 良好的厚度变形和长度变形压电效应。
第6章 压电式传感器
压电式传感器是一种有源的双向机电 传感器。它的工作原理是基于压电材 料的压电效应。石英晶体的压电效应 早在1680年即已发现,1948年制作出 第一个石英传感器。
返回
下页
图库
第6章 压电式传感器
6.1压电效应 6.2压电材料 6.3等效电路 6.4测量电路 6.5压电式传感器的应用举例 6.6影响压电式传感器精度的因素分析 本章要点
电压放大器的作用是将压电式传感器的高输 出阻抗经放大器变换为低阻抗输出,并将微 弱的电压信号进行适当放大.因此也把这种 测量电路称为阻抗变换器。图6-9是电压放大 器的简化电路图。
返回
上页
下页
图库
6.4 测量电路
6.4.2电荷放大器
由于电压放大器使所配接的压电式传感器的 电压灵敏度将随电缆分布电容及传感器自身 电容的变化而变化,而且电缆的更换得引起 重新标定的麻烦,为此又发展了便于远距离 测量的电荷放大器,目前它巳被公认是一种 较好的冲击测量放大器。

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。

当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。

这种现象称为逆压电tt效应,或称电致伸缩。

6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。

答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。

压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。

此外,还在光电、微声和激光等器件方面都有重要应用。

不足之处是质地脆、抗机械和热冲击性差。

压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。

新型压电材料:既具有压电特性又具有半导体特性。

因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。

6-3 试述石英晶片切型()的含意。

yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。

答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。

传感器原理与应用习题第6章压电式传感器

传感器原理与应用习题第6章压电式传感器

《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。

当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。

这种现象称为逆压电效应,或称电致伸缩。

6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。

答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。

压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。

此外,还在光电、微声和激光等器件方面都有重要应用。

不足之处是质地脆、抗机械和热冲击性差。

压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。

新型压电材料:既具有压电特性又具有半导体特性。

因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。

6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。

6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。

答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。

压电传感器(第六章)

压电传感器(第六章)

电路并联
电路串联
C 2C,Q ' 2Q,U ' U C ' C ,U ' 2U ,Q ' Q
2
U’
+++++++++++ +
____________ _
___________
+++++++++++
+ _
U’
+++++++++++ + ___________ _ ++ + + + + + + + + + + _ ____________ +
第六章 压电传感器
主要内容
1.压电效应 2.压电材料 3.压电元件结构 4.等效电路与测量电路 5.压电传感器的应用
1
概述
压电式传感器是一种典型的自发电型传感 器,以电介质的压电效应为基础,外力作用 下在电介质表面产生电荷,从而实现非电量 测量。 压电式传感器可以对各种动态力、机械 冲击和振动进行测量,在声学、医学、力学、 导航方面都得到广泛的应用。
25
聚偏氟乙烯压电材料
聚 偏 氟 乙 烯 压 电 效 应
26
高分子压电材料制作的压电薄膜和电缆
27
可用于波形分析及报警的高分子压电踏脚板
28
压电式脚踏报警器
29
6.3 压电元件结构形式
单片压电元件产生的电荷量甚微,为了提高压电传 感器的输出灵敏度, 在实际应用中常采用两片(或两 片以上)同型号的压电元件粘结在一起。 由于压电材 料的电荷是有极性的,因此接法也有两种。

第6章压电式传感器课件

第6章压电式传感器课件
②逆压电效应 在这些电介质的极化方向上施加 电场,它们也会产生变形,电场去掉后,变形随之消 失,这种现象称逆压电效应,或电致伸缩效应。
6.1.1 压电效应
1.石英晶体的压电效应 石英晶体是最常用的压电晶
体 之 一 。 其 化 学 成 分 为 SiO2 , 是 单晶体结构。它理想的几何形状 为正六面体晶柱,实际上两端为 晶锥形状。通过上下晶锥顶点的z 轴称为光轴,在此方向不产生压 电效应。
为了使压电陶瓷具有压电效 应,就必须在一定温度下对其进 行极化处理,即给压电陶瓷加外 电场,使电畴规则排列,从而具 备压电性能。
6.1.1 压电效应
外加电场的方向即是压电陶瓷的极化方向,通 常取沿z轴方向。左图为施加外电场时的情形。外加 电场去掉后,电畴极化方向基本保持原极化方向,如 右图所示。因此,压电陶瓷的极化强度不恢复为零, 而是存在着很强的剩余极化强度。
6.1.2 压电材料
(4)温度性能 要求压电材料具有较高的居里 点,以便获得较宽的工作温度范围,这是因为居 里点是压电材料开始失去压电效应的温度。
(5)长期稳定性 要求压电材料的压电特性不 随时间蜕变。
6.1.2 压电材料
1.压电晶体 由晶体学可知,无对称中心的晶体通常具有压
电效应,具有压电效应的单晶体统称为压电晶体。 石英晶体是最典型而常用的压电晶体,其特点是
P ql
式中,q为电荷量;l为正负电荷 间的距离。
6.1.1 压电效应
当石英晶体沿x轴方向被压缩时,沿y方向产生 拉伸变形,使正负离子的相对位置改变。P1、P2、P3 的矢量和不再为零,在x轴方向的分量小于零,因而 在x轴正方向的晶体表面上产生负电荷,在相对表面 上产生正电荷。
然而,电偶极矩的矢量和在 y轴和z轴的分量还是零,所以在 垂直于y轴和z轴的晶体表面上不 会出现电荷,d21=d31=0。

第六章 压电式传感器

第六章 压电式传感器
U im d 33 FmR
1 CR
2
i
d 33 Fm C

2
arctan RC
当R无限大时 电压幅值比:
U im Um
Um
RC
1 1 RC
CR 2 1
U im 1 2 Um 1 1 i arctan 1 2
第六章:压电式传感器
主讲人:贾鹤萍
压电式传感器是一种自发电式传感器。它以某些 电介质的压电效应为基础,在外力作用下,在电介质 表面产生电荷,从而实现非电量电测的目的。
压电传感元件是力敏感元件,它可以测量最终能 变换为力的那些非电物理量,例如动态力、动态压力 、振动加速度等,但不能用于静态参数的测量。 压电式传感器具有体积小、质量轻、频响高、信 噪比大等特点。由于它没有运动部件,因此结构坚固 、可靠性、稳定性高。
1、工作原理--压电效应
图6-1 压电转换元件受力变形的几种基本形式
返回
1、工作原理--压电效应 压电传感器中的压电元件材料一般有三类: 压电晶体(如上述的石英晶体); 经过极化处理的压电陶瓷; 高分子压电材料。
1、工作原理----石英晶体 天然结构的石英晶体呈六角形晶柱,
Z轴为光轴,是晶体的对称轴,光线沿Z轴通过晶体 不产生双折射现象。
q1 q11 q12 q13 q14 q15 q16
q1 d111 d12 2 d13 3 d14 4 d15 5 d16 6 q2 d211 d22 2 d23 3 d24 4 d25 5 d26 6 q3 d311 d32 2 d33 3 d34 4 d35 5 d36 6 [D] 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+
+ Fx +
+
+
Fx>0 y
-
+
P1
P3
P2
-
+
在x轴的正向出现负电荷,在y、z 方向依然不出现电荷。
- Fx -x -
-
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
Fy Fy
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
若从晶体上沿y方向切下一块晶片,当沿 电轴x方向施加应力时,晶片将产生厚度变形,
第六章 压电式传感器
压电加速度计
压电陶瓷超声换能器
压电陶瓷位移器
压电秤重浮游计
压电警号
第六章 压电式传感器
§6.1 压电效应 §6.2 压电材料 §6.3 压电式传感器等效电路 §6.4 压电式传感器测量电路 §6.5 压电式传感器应用
§6.1 压电效应
一、压电效应的基本概念 F
1、正压电效应
极 化 处 理 后 压 电 陶 瓷 才 具方有向压 电特性。
(a)
极化处理前
(a)
极化处理后
(b)
§6.1 压电效应
Fx- -
++
- P1 +
P3 - + x
-
P2
+
- - ++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
在x轴的正向出现正电荷,在y、 z方向不出现电荷。
Fx<0 y
Fx- -
+ + Fx
- P1 +
P3 + x -
-
P2
+
--
++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
第六章 压电式传感器
被测非电量 压电 电压值 测量 U、I 效应 电荷值 电路
压电式传感器的定义 利用压电材料的压电效应,实现机械能与电能相互转换的
传感器。 压电式传感器的感测量
动态力、机械冲击和振动,在声学、医学、力学、导航方 面应用广泛。 压电式传感器的种类
根据工作原理:正压电效应型和逆压电效应型。
O
y
并发生极化现象。在晶体线性弹性范围内,极
x
化强度与应力成正比。
在垂直于x轴晶面上产生的电荷量为
b
z
q11d11Fx
x
y
d11—压电系数。下标的意义为产生电荷的 面的轴向及施加作用力的轴向;a、b、c—石
英晶片的长度、厚度和宽度。
c a
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
沿光轴(Z轴)方向的作用力不产生压电效应。 压电式传感器主要是利用纵向压电效应。
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
+
y + x -
-
+
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
Fx=0 y -+
+ P1 P3 - x
P2 -+
Fx<0 y
应力
机 械
应变 能
压电元件
电 电荷 能 电场
§6.1 压电效应
一、压电效应的基本概念 3、压电效应的特点
(2)具有瞬时性 当力的方向改变时,电荷 的极性随之改变,输出电压的 频率与动态力的频率相同。
(3)具有不稳定性 当动态力变为静态力时, 电荷将由于表面漏电而很快泄 漏、消失。
§6.1 压电效应
压电陶瓷
§6.1 压电效应
二、压电效应的基本原理 1、石英晶体压电效应
天然石英晶体,结构形状为 一个六角形晶柱,两端为一对称 的棱锥。
在晶体学中,用三根互相垂 直的轴建立描述晶体结构形状的 坐标系。
纵轴Z称为光轴,通过六棱 线而垂直于光铀的X铀称为电轴, 与 X-X 轴 和 Z-Z 轴 垂 直 的 Y-Y 轴 (垂直于六棱柱体的棱面)称为机 械轴。ຫໍສະໝຸດ 某些物质沿某一方向受到外力作用
++++++ ------
时,会产生变形,同时内部产生极化现象,
F
在这种材料的两个表面产生符号相反的电
荷,当外力去掉后,又重新恢复到不带电
F=0
的状态,这种现象称为压电效应。
当作用力方向改变时,电荷极性也 随之改变。
这种机械能转化为电能的现象称为 “正压电效应”或“顺压电效应”。
二、压电效应的基本原理
常见的压电材料可分为两类: 压电单晶体和多晶体压电陶瓷。
压电单晶体: 石英(包括天然石英和人造石 英)、水溶性压电晶体(包括酒石酸钾 钠、酒石酸乙烯二铵、酒石酸二钾、 硫酸锤等)。
多晶体压电陶瓷: 钛酸钡压电陶瓷、锆钛酸铅系 压电陶瓷、铌酸盐系压电陶瓷和铌 镁酸铅压电陶瓷等。
天然石英
F
------ ++++++
F
§6.1 压电效应
一、压电效应的基本概念
2、逆压电效应
当在某些物质的极化方向上施加电场,这些材料在某一方向上 产生机械变形或机械压力;当外加电场撤去时,这些变形或应力也 随之消失。
这种电能转化为机械能的现象称为“逆压电效应”或“电致伸 缩效应”。
3、压电效应的特点
(1)压电效应具有可逆性
§6.1 压电效应
二、压电效应的基本原理 1、石英晶体压电效应
如果从石英晶体中切下一个平行六面体并使其 晶面分别平行于Z-Z、Y-Y、X-X轴线。晶片在正常 情况下呈现电性。
纵向压电效应:沿电轴(X轴)方向的作用力产 生的压电效应。
横向压电效应:沿机械轴(Y轴)方向的作用力 产生的压电效应
切向压电效应:沿相对两棱加力时产生的压电 效应。
若在同一切片上,沿机械轴y方向施加应 力,则仍在与x轴垂直的平面上产生电荷为
O
y
q 12
d 12
a b
Fy
x
b
z
d 11
a b
Fy
x
y
d11 = -d12 ,石英晶体轴对称条件。
产生电荷q11和q12的符号,决定于受压力
c a
还是受拉力。
§6.1 压电效应
二、压电效应的基本原理 4、石英晶体压电效应特点
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
压电陶瓷是人工制造的多晶体 压电材料。
材料内部的晶粒有许多自发极 化的电畴,有一定的极化方向,从 而存在电场。
在无外电场作用时,电畴在晶
体中杂乱分布,各自的极化效应被
相互抵消,压电陶瓷内极化强度为
零。
电场 方向
因此,原始的压电陶瓷呈中性,
不具有压电性质。
(a)
极化处理前
(a)
极化处理后
(b)
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
在陶瓷上施加外电场时,电畴 的极化方向发生转动,趋向于按外 电场方向的排列,从而使材料得到 极化。外电场强度大到使材料的极 化达到饱和的程度,即所有电畴极 化方向都整齐地与外电场方向一致 时,当外电场去掉后,电畴的极化 方向基本不变化,即剩余极化强度 很大,这时材料才具有压电特性电。场
相关文档
最新文档