导数压轴题之隐零点问题专辑含答案纯word版

合集下载

专题22 隐零点问题(解析版)

专题22 隐零点问题(解析版)

专题22隐零点问题在求解函数问题时,很多时候都需要求函数f (x )在区间I 上的零点,但所述情形都难以求出其准确值,导致解题过程将无法继续进行.但可这样尝试求解:先证明函数f (x )在区间I 上存在唯一的零点(例如,函数f (x )在区间I 上是单调函数且在区间I 的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x 0.因为x 0不易求出(当然,有时是可以求出但无需求出),所以把零点x 0叫做隐零点;若x 0容易求出,就叫做显零点,而后解答就可继续进行.实际上,此解法类似于解析几何中“设而不求”的方法.1.设函数f (x )=e x -ax -2.(1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.【解析】(1)当a ≤0时,f (x )的单调递增区间是(-∞,+∞),无单调递减区间;当a >0时,函数f (x )的单调递减区间是(-∞,ln a ),单调递增区间是(ln a ,+∞).(解答过程略)(2)由题设可得(x -k )(e x -1)+x +1>0,即k <x +x +1e x-1(x >0)恒成立.令g (x )=x +1e x -1+x (x >0),得g ′(x )=e x -1-(x +1)e x (e x -1)2+1=e x (e x -x -2)(e x -1)2(x >0).由(1)的结论可知,函数h (x )=e x -x -2(x >0)是增函数.又因为h (1)<0,h (2)>0,所以函数h (x )的唯一零点α∈(1,2)(该零点就是h (x )的隐零点).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0,所以g (x )min =g (α)=α+1e α-1+α.又e α=α+2且α∈(1,2),则g (x )min =g (α)=1+α∈(2,3),所以k 的最大值为2.2.已知函数f (x )=1-ln xx 2.(1)求函数f (x )的零点及单调区间;(2)求证:曲线y =ln xx存在斜率为6的切线,且切点的纵坐标y 0<-1.【解析】(1)函数f (x )的零点为e.函数f (x ),+,e (解答过程略)(2)证明:要证明曲线y =ln xx 存在斜率为6的切线,即证明y ′=1-ln x x 2=6有解,等价于1-ln x -6x 2=0在x >0上有解.构造辅助函数g (x )=1-ln x -6x 2(x >0),g ′(x )=-1x -12x <0,函数g (x )在(0,+∞)上单调递减,且g (1)=-5<0,1+ln 2-32>0,所以∃x 0g (x 0)=0.即证明曲线y =ln xx存在斜率为6的切线.设切点坐标为(x 0,f (x 0)),则f (x 0)=ln x 0x 0=1-6x 20x 0=1x 0-6x 0,x 0令h (x )=1x-6x ,x由h (x )h (x )<1,所以y 0=f (x 0)<-1.3.设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)求证:当a >0时,f (x )≥2a +a ln 2a .【解析】(1)法一:f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-ax,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又因为f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,所以当a >0时,f ′(x )法二:f ′(x )=2e 2x -ax (x >0).令方程f ′(x )=0,得a =2x e 2x (x >0).因为函数g (x )=2x (x >0),h (x )=e 2x (x >0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u (x )=2x e 2x (x >0)也是增函数,其值域是(0,+∞).由此可得,当a ≤0时,f ′(x )无零点;当a >0时,f ′(x )有唯一零点.(2)证明:由(1)可设f ′(x )在(0,+∞)上的唯一零点为x 0.当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,当且仅当x =x 0时,f (x )取得最小值,最小值为f (x 0).因为2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a (当且仅当x 0=12时等号成立).所以当a >0时,f (x )≥2a +a ln 2a .4.已知函数f(x)=xe x -a(x +ln x).(1)讨论f(x)极值点的个数;(2)若x 0是f(x)的一个极小值点,且f(x 0)>0,证明:f(x 0)>2(x 0-x 30).【解析】(1)f′(x)=(x +1)e x -(x +x =x +1xe x -ax,x ∈(0,+∞).①当a≤0时,f′(x)>0,f(x)在(0,+∞)上为增函数,不存在极值点;②当a>0时,令h(x)=xe x -a ,h′(x)=(x +1)e x >0.显然函数h(x)在(0,+∞)上是增函数,又因为当x→0时,h(x)→-a<0,h(a)=a(e a -1)>0,必存在x 0>0,使h(x 0)=0.当x ∈(0,x 0)时,h(x)<0,f′(x)<0,f(x)为减函数;当x ∈(x 0,+∞)时,h(x)>0,f′(x)>0,f(x)为增函数.所以,x =x 0是f(x)的极小值点.综上,当a≤0时,f(x)无极值点,当a>0时,f(x)有一个极值点.(2)证明由(1)得,f′(x 0)=0,即00e xx =a ,f(x 0)=00e xx -a(x 0+ln x 0)=00e xx (1-x 0-ln x 0),因为f(x 0)>0,所以1-x 0-ln x 0>0,令g(x)=1-x -ln x ,g′(x)=-1-1x <0,g(x)在(0,+∞)上是减函数,且g(1)=0,由g(x)>g(1)得x<1,所以x 0∈(0,1),设φ(x)=ln x -x +1,x ∈(0,1),φ′(x)=1x -1=1-x x,当x ∈(0,1)时,φ′(x)>0,所以φ(x)为增函数,φ(x)<φ(1)=0,即φ(x)<0,即ln x<x -1,所以-ln x>1-x ,所以ln(x +1)<x ,所以e x >x +1>0.因为x 0∈(0,1),所以0e x>x 0+1>0,1-x 0-ln x 0>1-x 0+1-x 0>0,相乘得0e x(1-x 0-ln x 0)>(x 0+1)(2-2x 0),所以f(x 0)=00e xx (1-x 0-ln x 0)>2x 0(x 0+1)(1-x 0)=2x 0(1-x 20)=2(x 0-x 30).结论成立.5.已知函数f(x)=-ln x -x 2+x ,g(x)=(x -2)e x -x 2+m(其中e 为自然对数的底数).当x ∈(0,1]时,f(x)>g(x)恒成立,求正整数m 的最大值.【解析】当x ∈(0,1]时,f(x)>g(x),即m<(-x +2)e x -ln x +x.令h(x)=(-x +2)e x -ln x +x ,x ∈(0,1],所以h′(x)=(1-x 当0<x≤1时,1-x≥0,设u(x)=e x -1x ,则u′(x)=e x +1x2>0,所以u(x)在(0,1]上单调递增.因为u(x)在区间(0,1]上的图象是一条不间断的曲线,且=e -2<0,u(1)=e -1>0,所以存在x 0u(x 0)=0,即0e x=1x 0,所以ln x 0=-x 0.当x ∈(0,x 0)时,u(x)<0,h′(x)<0;当x ∈(x 0,1)时,u(x)>0,h′(x)>0.所以函数h(x)在(0,x 0]上单调递减,在[x 0,1)上单调递增,所以h(x)min =h(x 0)=(-x 0+2)0e x-ln x 0+x 0=(-x 0+2)·1x 0+2x 0=-1+2x 0+2x 0.因为y =-1+2x +2x 在x ∈(0,1)上单调递减,又x 0h(x 0)=-1+2x 0+2x 0∈(3,4),所以当m≤3时,不等式m<(-x +2)e x -ln x +x 对任意的x ∈(0,1]恒成立,所以正整数m 的最大值是3.6.已知f(x)=x 2-4x -6ln x.(1)求f(x)在(1,f(1))处的切线方程以及f(x)的单调性;(2)对任意x ∈(1,+∞),有xf′(x)-f(x)>x 2+12恒成立,求k 的最大整数解;(3)令g(x)=f(x)+4x -(a -6)ln x ,若g(x)有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g(x)的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f(x)=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f′(x)=2x -4-6x ,且f′(1)=-8,f(1)=-3,所以切线方程为y =-8x +5.又f′(x)=2x (x +1)(x -3),令f′(x)>0解得x >3,令f′(x)<0解得0<x <3,所以f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf′(x)-f(x)>x 2+12等价于k <x +xln x x -1,记h(x)=x +xln xx -1,则k<h(x)min ,且h′(x)=x -2-ln x (x -1)2,记m(x)=x -2-ln x ,则m′(x)=1-1x >0,所以m(x)为(1,+∞)上的单调递增函数,且m(3)=1-ln 3<0,m(4)=2-ln 4>0,所以存在x 0∈(3,4),使得m(x 0)=0,即x 0-2-ln x 0=0,所以h(x)在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h(x)min =h(x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g(x)=x 2-aln x ,则g′(x)=2x -a x =(2x +a )(2x -a )x ,令g′(x)=0,得x 0=a2,当x g′(x)<0,当x g′(x)>0,所以g(x)而要使g(x)有两个零点,要满足g(x 0)<0,即-alna2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t(t >1),由g(x 1)=g(x 2),可得x 21-aln x 1=x 22-aln x 2,即x 21-aln x 1=t 2x 21-aln tx 1,所以x 21=aln t t 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2aln t t 2-1>8a ,又a >0,t >1,所以只需证(3t +1)2ln t -8t 2+8>0,令h(t)=(3t +1)2ln t -8t 2+8,则h′(t)=(18t +6)ln t -7t +6+1t ,令n(t)=(18t +6)ln t -7t +6+1t ,则n′(t)=18ln t +11+6t -1t 2>0(t >1),故n(t)在(1,+∞)上单调递增,n(t)>n(1)=0,故h(t)在(1,+∞)上单调递增,h(t)>h(1)=0,所以x 1+3x 2>4x 0.7.已知函数()e =-x f x a bx .当1a ≥时,4()ln 5+≥f x x ,求整数b 的最大值.【解析】当1a 时,4ln 5xae bx x -+ ,即4ln 5xe bx x -+ ,因为0x >,所以只需4ln 5x e x b x-- ,令4ln 5()x e x g x x--=,4(1)5g e =-,所以45b e - .21(1)ln 5()x e x x g x x '-+-=,令1()(1)ln 5xF x e x x =-+-,()F x 在(0,)+∞递增但()0F x =无法求解,故引入隐零点:211(1)0,(2)ln 2055F F e =-<=+->,根据零点存在性定理,0(1,2)x ∃∈,使得()00F x =,即()00011ln 05x ex x -+-=.当()00,x x ∈时,()0<F x ,即()0g x '<,()g x 为减函数,当()0,x x ∈+∞时,()0F x >,即()0g x '>,()g x 为增函数,所以()000min004ln 15()x x e x g x g x e x x --===-,故001x b e x -;1x y e x=-在(0,)+∞递增,0(1,2)x ∈,所以0011x e e x ->-,又45b e -所以整数b 的最大值是1.8.已知函数()ln()(0)x a f x e x a a -=-+>.(1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.【解析】(1)证明:∵()ln()(0)x a f x e x a a -=-+>,∴1()x af x ex a-'=-+.∵x a e -在区间(0,)+∞上单调递增,1x a+在区间(0,)+∞上单调递减,∴函数()'f x 在(0,)+∞上单调递增.又1(0)a aaa e f ea ae--'=-=,令()(0)a g a a e a =->,()10ag a e '=-<,则()g a 在(0,)+∞上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+,所以函数()'f x 在(0,)+∞上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得()00010x af x ex a-'=-=+,即001x aex a -=+(*).函数1()x af x e x a-'=-+在(0,)+∞上单调递增.∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.∴()()0min 00()ln x af x f x ex a -==-+.由(*)式得()()min 001()ln f x f x x a x a==-++.∴()001ln 1x a x a-+=+,显然01x a +=是方程的解.又∵1ln y x x =-是单调递减函数,方程()001ln 1x a x a -+=+有且仅有唯一的解01x a +=,把01x a =-代入(*)式,得121a e -=,∴12a =,即所求实数a 的值为12.9.已知函数()xf x xe =,()lng x x x =+.(1)令()()()h x f x eg x =-,求()h x 的最小值;(2)若()()()21f x g x b x -≥-+恒成立,求b 的取值范围.【解析】(1)有题意知,()()ln xh x xe e x x =-+,()0,x ∈+∞,∴()()()1111xx e h x x e e x e x x ⎛⎫⎛⎫'=+-+=+- ⎪ ⎪⎝⎭⎝⎭,∴当()0,1x ∈,()0h x '<,即()h x 在()0,1上单调递减,当()1,x ∈+∞,()0h x '>,即()h x 在()1,+∞上单调递增,故()()10h x h ≥=,∴()h x 的最小值为0;(2)原不等式等价于()()ln 21xxe x x b x -+≥-+,即ln 1x xe x x bx +--≥,在()0,x ∈+∞上恒成立,等价于ln 1x xe x x b x+--≥,在()0,x ∈+∞上恒成立,令()ln 1x xe x x t x x +--=,()0,x ∈+∞,∴()22ln x x e xt x x+'=,令()2ln xx x e x ϕ=+,则()x ϕ为()0,∞+上的增函数,又当0x →时,()x ϕ→-∞,()10e ϕ=>,∴()x ϕ在()0,1存在唯一的零点0x ,即0020e n 0l xx x +=,由01ln 20000001ln 0ln x x x x x e x x e e x x ⎛⎫+=⇔=-= ⎪⎝⎭,又有x y xe =在()0,∞+上单调递增,∴0001lnln x x x ==-,001x e x =,∴()()00000minln 12x x e x x t x t x x +--===⎡⎤⎣⎦,∴2b ≤,∴b 的取值范围是(],2-∞.10.已知函数()()1ln f x a x x x =-+的图象在点()()22,A e f e (e 为自然对数的底数)处的切线斜率为4.(1)求实数a 的值;(2)若m Z ∈,且()()11m x f x -<+对任意1x >恒成立,求m 的最大值.【解析】(1)()()1ln f x a x x x =-+ ,()ln f x x a ∴'=+,函数()()1ln f x a x x x =-+的图象在2x e =处的切线斜率为4,()24f e ∴'=,即2ln 4a e +=,因此,2a =;(2)由(1)知()ln f x x x x =+.()()1m x f x -< 对任意1x >恒成立,()1ln 111f x x x x m x x +++∴<=--对任意1x >恒成立,令()ln 11x x x g x x ++=-,则()()()()()()22ln 21ln 1ln 311x x x x x x x g x x x +--++--==--',令()ln 3u x x x =--,则()11u x x'=-,1x >Q ,()0u x ∴'>,()ln 3u x x x ∴=--在()1,+∞为增函数,()41ln 40u =-< ,()52ln 50u =->,∴存在()04,5x ∈,使()000ln 30u x x x =--=,当()01,x x ∈时,()0g x '<,函数()y g x =单调递减;当()0,x x ∈+∞时,()0g x '>,函数()y g x =单调递增.()()()00000min 003111x x x g x g x x x +-+∴===--,故有01m x <-对1x >恒成立.()04,5x ∈ ,()013,4x ∴-∈,因此,m 的最大值为3.11.已知函数()e ln xa f x x x x=-+.(1)若()f x 在2x =处的切线斜率为12,求实数a 的值;(2)当1e <-a 时,判断()f x 的极值点个数;(3)对任意1ex ≥,有()1f x ≤,求a 的取值范围.【解析】(1)()()()2e 1110x a x f x x x x-'=-+>,()2e 21242a f +'==,解得0a =(2)()()()()221e e 111x x x a x a x f x x x x -+-'=-+=,令()()e 0x x a x x ϕ=+>,当1e <-a 时,()11e e ex x x x x ϕ-<-⋅+=-+.易证:e 1x x ≥+,所以1e x x -≥.所以()0x x x ϕ<-+=.所以()0,1x ∈时,()0f x '>,单调递增,()1,x ∈+∞时,()0f x '<,单调递减,所以1x =是()f x 的唯一极值点,所以()f x 只有一个极值点.(3)任意1e x ≥,()e ln 1xa f x x x x =-+≤可转化为()ln 1e xx x x a -+≤令()()ln 1e x x x x h x -+=,()()()1ln 2e xx x x h x --+'=,令()ln 2x x x ϕ=-+,()1xx x ϕ'-=,令()10x x xϕ-'==,得1x =,()x ϕ在()0,1递增,在()1,+∞单调递减,且()110ϕ=>,()22e4e0ϕ=-<,(e)3e 0ϕ=->,1110e e ϕ⎛⎫=-> ⎪⎝⎭,所以1e x ≥时,()x ϕ在()2e,e 内存在唯一零点0x ,1,1e x ⎡⎫∈⎪⎢⎣⎭时,()0x ϕ>,()0h x '>,()h x 单调递增,()01,x x ∈时,()0x ϕ>,()0h x '<,()h x 单调递减,()0,x x ∈+∞时,()0x ϕ<,()0h x '>,()h x 单调递增,所以()()0min1,e h x h x h ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,12e 1e e h --⎛⎫=- ⎪⎝⎭,因为()000ln 20x x x ϕ=-+=,所以020e x x -=所以()0002200e e e e x x x x h x ---==-=-,因为122e e e ----<-,所以()01e h h x ⎛⎫> ⎪⎝⎭,所以()()20min e h x h x -==-,即2a -≤-.12.已知定义在(1,)+∞上的函数()ln 2,()ln f x x x g x x x x =--=+.(1)求证:()f x 存在唯一的零点,且零点属于(3,4);(2)若k ∈Z,且()(1)g x k x >-对任意的1x >恒成立,求k 的最大值.【解析】(1)()f x 的定义域为()1,+∞,()'1110x f x x x-=-=>,所以()f x 在()1,+∞上递增.()()231ln 30,42ln 4ln ln 40f f e =-<=-=->,所以()f x 存在唯一的零点,且零点属于(3,4).(2)由g (x )>k (x ﹣1)对任意的x >1恒成立,得:k ln 1x x xx +<-,(x >1),令h (x )ln 1x x x x +=-,(x >1),则()()()()'22ln 211f x x x h x x x --==--,设f (x 0)=0,则由(1)得:3<x 0<4,0000ln 20,ln 2x x x x --==-,∴h (x )在(1,x 0)递减,在(x 0,+∞)递增,()h x 在()1,+∞上的极小值也即是最小值为()()()()000000000000021ln 3,4111x x x x x x x x h x x x x x -+-+====∈---,由于k 是整数,所以k 的最大值是3.13.已知函数()ln 2f x x =+,()()212e ln 0x g x a a a=->.(1)设函数()()12h x f x x =+--,求()h x 的最大值;(2)证明:()()f x g x ≤.【解析】(1)因为()()()ln 11h x x x x =+->-,所以()()11111x h x x x x '=-=->-++.当()1,0x ∈-时,()0h x '>;当()0,x ∈+∞时,()0h x '<.所以()h x 在()1,0-上为增函数,在()0,∞+上为减函数,从而()()max 00h x h ==.(2)证明:原不等式等价于()22e ln 2ln0xx a x a a aϕ=---≥,则()222e 2e x xa x a x x xϕ-'=-=,令()22e x a m x x =-,则()224e 0xa m x x '=+>,所以,()x ϕ'在()0,∞+上单调递增.令()22e x t x x a =-,则()00t a =-<,()()222e 2e 10a at a a a a =-=->,所以,存在唯一()00,x a ∈使得()02002e0x t x x a =-=,即()02002e0x ax x ϕ'=-=,当00x x <<时,()0x ϕ'<;当0x x >时,()0x ϕ'>此时()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增,要证()0x ϕ≥,即要证()00x ϕ≥.于是原问题转化为证明不等式组()00202002e 02e ln 2ln 0x x a x x a x a a a ϕ⎧-=⎪⎪⎨⎪=---≥⎪⎩,由0202e 0x a x -=,得020e 2x a x =,代入()02002e ln 2ln xx a x a a aϕ=---.对020e2x a x =两边取对数得00ln ln 22ax x =-,代入()0002ln 2ln 2a x a x a a x a ϕ=---,得()000222a x ax a x ϕ=+-.因为()00022202a x ax a a x ϕ=+-≥=,当且仅当012x =,e a =时,等号成立,所以()()f x g x ≤.14.已知函数()()()23ln R 2x f x a x a x a =+-+∈,在定义域上有两个极值点1212,,x x x x <且.(1)求实数a 的取值范围;(2)求证:()()1250f x f x ++>【解析】(1)()()()(3),0,a f x x a x x '=+-+∈+∞,因为函数()f x 的定义域上有两个极值点1x ,2x ,且12x x <,所以方程()(3)0a f x x a x'=+-+=在(0,)+∞上有两个根1x ,2x ,且12x x <,即2(3)0x a x a +-+=在(0,)+∞上有两个不相等的根1x ,2x ,所以2(3)02Δ(3)400a a a a -⎧->⎪⎪=-->⎨⎪>⎪⎩,解得01a <<,当01a <<时,若10x x <<或2x x >,2(3)0x a x a +-+>,()0f x '>,所以函数()f x 在1(0,)x 和2(x ,)∞+上单调递增,若212,22(3)20,()0x x x x a x a f x '<<+-+<<,所以函数()f x 在1(x ,2)x 上单调递减,故函数()f x 在(0,)+∞上有两个极值点1x ,2x ,且12x x <,所以,实数a 的取值范围是(0,1);(2)证明:由(1)知,1x ,212(0)x x x <<是方程2(3)0x a x a +-+=在(0,)+∞上有两个不等的实根,所以12123x x a x x a +=-⎧⎨=⎩,其中01a <<,故2212121122()()(3)ln (3)ln 22x x f x f x a x a x a x a x +=+-+++-+212121212()(3)()ln 2x x x x a x x a x x +=-+-++2(3)(3)(3)ln 2a a a a a a -=-+--+29ln 222a a a a =-+-,令29()ln 222a g a a a a =-+-,其中01a <<,故g '(a )ln 3a a =-+,令1()()ln 3,()10h a g a a a h a a ''==-+=->,所以函数h (a )在(0,1)上单调递增,由于33(e )2e 0h --=-<,h (1)20=>,所以存在常数3(t e -∈,1),使得()0h t =,即ln 30t t -+=,ln 3t t =-,且当(0,)a t ∈时,()h a ()g a '=0<,所以函数g (a )在(0,)t 上单调递减,当(,1)a t ∈时,()h a ()g a '=0>,所以函数g (a )在(,1)t 上单调递增,所以当01a <<时,222999()()ln 2(3)2222222t t t g a g t t t t t t t t ≥=-+-=--+-=--,又3(,1)t e -∈,2291(1)55222t t t --=-->-,所以g (a )5>-,即g (a )50+>,所以12()()50f x f x ++>.15.已知函数()()2ln 2f x x ax a x =-+-.(a R ∈)(1)讨论()f x 的单调性;(2)若对任意()0,x ∈+∞都有()()21x f x a x x xe x ++-≤-,求实数a 的取值范围.【解析】(1)函数定义域是()0,∞+,由已知()()()()2221211122ax a x x ax f x ax a x x x-+-+-+-'=-+-==,当0a ≤时,()0f x '>恒成立,∴()f x 为递增函数,当0a >时,()0f x '>,10x a ⇒<<,()0f x '<,1x a>所以()f x 在10,a ⎛⎫ ⎪⎝⎭为递增函数,在1,a ⎛⎫+∞ ⎪⎝⎭为递减函数,综上所述,当0a ≤时,∴()f x 为递增函数,当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭为递增函数,在1,a ⎛⎫+∞ ⎪⎝⎭为递减函数.(2)由题意得,对任意()0,x ∈+∞都有()()2e 1x f x a x x x x ++-≤-,即ln 1xx x a xe ++≥恒成立.令()ln 1e x x x g x x ++=,则()()()21ln ex x x x g x x -++'=.令()ln h x x x =+,则()h x 在()0,∞+上单调递增,因为1110e eh ⎛⎫=-< ⎪⎝⎭,()110h =>,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭使得()000ln 0h x x x =+=,当()00,x x ∈时()0h x <,()0g x '>,()g x 单调递增,当()0,x x ∈+∞时()0h x >,()0g x '<,()g x 单调递减.所以()()0000max 0ln 1e x x x g x g x x ++==,由于00ln 0x x +=,可得00ln x x =-.则001e x x =,所以()()0000max 0ln 11e x x x g x g x x ++===,又ln 1xx x a xe ++≥恒成立,所以1a ≥.综上所述实数a 的取值范围为[)1,+∞.16.已知函数()()212x f x xe ax ax a =++∈R(1)讨论()f x 的单调性;(2)若关于x 的不等式()214ln 12f x ax ax x ≥+++在()0,∞+上恒成立,求实数a 的取值范围.【解析】(1)()()(1)x f x e a x '=++①当0a ≥时,0,10x e a x +>+>时,()0,()f x f x '>在(1,)-+∞上单调递增;当10x +<,即1x <-时,()0,()f x f x '<在(,1)-∞-上递减;②当10a e-<<时,令()0f x '>,得ln()x a <-或1x >-,函数递增;令()0f x '<,得ln()1a x -<<-,函数递减③当1a e=-时,()0f x '≥恒成立,函数在R 上递增④当1a e<-时,令()0f x '>,得1x <-或ln()x a >-,函数递增;令()0f x '<,得1ln()x a -<<-,函数递减.(2)不等式21()4ln 12f x ax ax x ≥+++在(0,)+∞上恒成立,即ln 13x xe x ax --≥对任意的,()0x ∈+∞恒成立,ln 13x x a e x+∴≤-对任意的,()0x ∈+∞恒成立记ln 1()x x F x e x +=-,则222ln ln ()x x x x e x F x e x x '+=+=,记2()ln x h x x e x =+,则21()2x x h x xe x e x'=++,易知()0h x '>在(0,)+∞上恒成立,()h x ∴在(0,)+∞上单调递增,且211211110,(1)0e e h e e h e e e -⎛⎫⎛⎫=-=-<=> ⎪ ⎪⎝⎭⎝⎭,∴存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00h x =,且当()00,x x ∈时()0h x <,即()0F x '<,∴函数()F x 在()00,x 上单调递减;当()0,x x ∈+∞时()0h x >,即()0F x '>,故()F x 在()0,x +∞上单调递增,()min 0()F x F x ∴=,即00min 0ln 1()x x F x e x +=-,又()00h x =,故0200ln x x e x =-,即100ln 001ln x x x e e x =⋅,令()x g x xe =()0x x x xe e xe '=+> 在(0,)+∞上恒成立,∴函数()x g x xe =在(0,)+∞上单调递增,且值域为(0,)+∞,0000000min 0000ln 1ln 1111ln ,()1x x x x e x x x F x e x x x x +--+-∴==-===,31a ∴≤.综上,实数a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.17.已知函数()e cos 2x f x a x =+-,()f x '为()f x 的导函数.(1)讨论()f x '在区间(0,)2π内极值点的个数;(2)若[2x π∈-,0]时,()0f x ≥恒成立,求整数a 的最小值.【解析】(1)解:由()e cos 2x f x a x =+-,得()e sin x f x a x '=-,令()e sin x g x a x =-则()e cos x g x a x '=-,(0,)2x π∈ ,e 1x ∴>,0cos 1x <<,当1a ≤时,()0g x '>,()g x 单调递增,即()'f x 在区间(0,2π内无极值点,当1a >时,()e sin x g x a x ''=+,(0,)2x π∈,故()0g x ''>,故()g x '在(0,)2π单调递增,又(0)10g a '=-<,2(e 02g ππ'=>,故存在0(0,)2x π∈,使得0()0g x '=,且0(0,)x x ∈时,()0g x '<,()g x 递减,0(x x ∈,2π时,()0g x '>,()g x 单调递增,故0x x =为()g x 的极小值点,此时()f x '在区间(0,2π内存在1个极小值点,无极大值点;综上:当1a ≤时,()f x '在区间(0,)2π内无极值点,当1a >时,()f x '在区间(0,)2π内存在1个极小值点,无极大值点.(2)解:若[2x π∈-,0]时,()0f x ≥恒成立,则(0)120f a =+-≥,故1a ≥,下面证明1a ≥时,()0f x ≥在[2x π∈-,0]恒成立,[2x π∈- ,0]时,0cos 1x ≤≤,故1a ≥时,()e cos 2e cos 2x x f x a x x =+-≥+-,令()cos 2x h x e x =+--,[2x π∈-,0],故()e sin x h x x '=-令()sin x x e x ϕ=-则()e cos x x x ϕ'=-,()e sin x x x ϕ''=+在区间[2π-,0]单调递增,因为13()e e 0322ππϕ--''-=<-<,(0)10ϕ''=>,所以()x ϕ''在[,0]2π-上存在零点0x ,且02x x π-<<时,()0x ϕ''<;00x x <<时,()0x ϕ''>,故()x ϕ'在0,2x π⎛⎫- ⎪⎝⎭上为减函数,在()0,0x 上为增函数,又2()e 02ππϕ-'-=>,1311(e e 0322ππϕ--'-=-<-<,(0)0ϕ'=,故存在1(2x π∈-,)3π-,使得1()0x ϕ'=,且(2x π∈-,1)x 时,()0x ϕ'>,()h x '递增,1(x x ∈,0)时,()0x ϕ'<,()h x '单调递减,故1x x =时,()h x '取得最大值,且1()()max h x h x '=',1()0x ϕ'= ,∴11cos x e x =,1111()()cos sin 04max h x h x x x x π∴'='=-=+≤,故()h x 单调递减,故[2x π∈-,0]时,()(0)0h x h ≥=即()0f x ≥成立,综上,若[2x π∈-,0]时,()0f x ≥恒成立,则整数a 的最小值1.18.已知函数ln ()e xx ax f x +=,a ∈R .(1)若函数()y f x =在0x x =处取得极值1,其中0ln 2ln 3x <<.证明:1123ln 2ln 3a -<<-;(2)若1()e xf x x ≤-恒成立,求实数a 的取值范围.【解析】(1)证明:()1(ln )xa x ax x f x e +-+'=,因为函数()y f x =在0x x =处取得极值1,()()000001ln 0x a x ax x f x e +-+'∴==,且()0000ln 1x x ax f x e +==,00001ln x a x ax e x ∴+=+=,001x a e x ∴=-,令1()(0)x r x e x x =->,则2'1()0x r x e x=+>,()r x ∴为()0,∞+上的增函数,00ln 2ln 3x <<< ,(ln 2)(ln 3)r a r ∴<<,即1123ln 2ln 3a -<<-.(2)解:不等式1()e x f x x ≤-恒成立,即不等式n e l 1x x x ax --≥恒成立,即ln 1e x x a x x ≤--恒成立.令ln 1()e x x g x x x =--,则222221ln 1ln (e e )x x x x g x x x x -+'=-+=.令2()ln x h x x e x =+,则()21(e )2x h x x x x '=++.0x >,()0h x '∴>.()h x ∴在(0,)+∞上单调递增,且(1)0h e =>,1ln 2042h ⎛⎫=-< ⎪⎝⎭.()h x ∴有唯一零点1x ,且1112x <<.当()10,x x ∈时,()0h x <,()0g x '<,()g x 单调递减;1111ln e 1x a x x x ∴≤--.由()10h x =整理得1111e ln x x x x =-,1112x << ,1ln 0x ->,令e ()(0)x k x x x =>,则方程1111e ln x x x x =-等价于()()11ln k x k x =-,而()(1e )x k x x '=+在(0,)+∞上恒大于零,()k x ∴在(0,)+∞上单调递增,()()11ln k x k x =- ,11ln x x ∴=-,111e x x ∴=,()()111111111ln 1e 111x x x g x x x x x x -∴=--=--=,1a ∴≤.所以实数a 的取值范围为(],1-∞.。

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题任务一、完成下面问题,总结隐零点问题的解题方法。

例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( )A.)(1x f >0,)(2x f >21-B. )(1x f <0,)(2x f <21- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21-例2. [2012全国文21] 设函数2)(--=ax e x f x .(1)求函数)(x f 的单调区间;(2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。

k 的最大值=2任务二、完成下面问题,体验隐零点问题的解题方法的应用。

2.1 [2015北京海淀二模理18] 设函数2ln 1)(xx x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln =存在斜率为6的切线,且切点的纵坐标0y <1-提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)xx y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是0201ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000ln 1616x x y x x x x -===-为减函数,所以00012|231x y y =<=-=-2.2 [2013全国Ⅱ理21] 设函数)ln()(m x e x f x +-=.(Ⅰ)若x =0是)(x f 的极值点,求m >0,并讨论)(x f 的单调性; (Ⅱ)当m ≤2时,求证:)(x f >0.任务三、完成下面问题,体验隐零点问题解题的运用,提高解题能力。

高中数学压轴题系列——导数专题——隐零点问题

高中数学压轴题系列——导数专题——隐零点问题

高中数学压轴题系列——导数专题——隐零点问题1.(2012?新课标)设函数 f (x) =e x﹣ ax﹣2.(Ⅰ)求 f (x)的单一区间;(Ⅱ)若 a=1, k 为整数,且当 x> 0 时,(x﹣k)f ′(x)+x+1>0,求 k 的最大值.解:(I)函数 f( x)=e x﹣ax﹣2 的定义域是 R,f ′(x)=e x﹣a,若a≤0,则 f ′(x)=e x﹣a≥0,因此函数 f(x)=e x﹣ax﹣ 2 在(﹣∞, +∞)上单一递加.若a>0,则当 x∈(﹣∞, lna)时, f ′( x) =e x﹣ a< 0;当 x∈(lna,+∞)时, f ′(x)=e x﹣a>0;因此, f( x)在(﹣∞, lna)单一递减,在( lna ,+∞)上单一递加.(II)因为 a=1,因此,(x﹣k) f ′( x)+x+1=(x﹣k)(e x﹣1)+x+1故当 x> 0 时,(x﹣k) f ′( x)+x+1>0 等价于 k<(x>0)①令 g(x)=,则g′(x)=由( I)知,当 a=1 时,函数 h(x)=e x﹣x﹣2 在( 0,+∞)上单一递加,而 h( 1)< 0, h(2)> 0,因此 h(x) =e x﹣ x﹣ 2 在( 0,+∞)上存在独一的零点,故 g′( x)在( 0,+∞)上存在独一的零点,设此零点为α,则有α∈(1,2)当 x∈(0,α)时, g′(x)< 0;当 x∈(α,+∞)时, g′(x)> 0;因此 g( x)在( 0,+∞)上的最小值为g(α).又由 g′(α)=0,可得 eα=α+2 因此 g(α)=α+1∈(2, 3)因为①式等价于k<g(α),故整数 k 的最大值为 2.2.(2013?新课标Ⅱ)已知函数 f(x)=e x﹣ln( x+m)(Ι)设 x=0 是 f (x)的极值点,求 m,并议论 f( x)的单一性;(Ⅱ)当 m ≤2 时,证明 f (x)> 0.【解答】(Ⅰ)解:∵,x=0 是 f(x)的极值点,∴,解得 m=1.因此函数 f (x)=e x﹣ln(x+1),其定义域为(﹣ 1,+∞).∵.设 g(x)=e x(x+1)﹣ 1,则 g′( x) =e x( x+1)+e x>0,因此 g(x)在(﹣ 1,+∞)上为增函数,又∵ g(0)=0,因此当 x> 0 时, g( x)> 0,即 f ′(x)> 0;当﹣ 1<x<0 时, g(x)< 0, f ′( x)< 0.因此 f( x)在(﹣ 1,0)上为减函数;在( 0,+∞)上为增函数;(Ⅱ)证明:当 m≤ 2, x∈(﹣ m,+∞)时, ln(x+m)≤ ln(x+2),故只要证明当 m=2 时 f( x)> 0.当 m=2 时,函数在(﹣2,+∞)上为增函数,且 f ′(﹣ 1)< 0,f ′(0)> 0.故f (′ x)=0 在(﹣ 2,+∞)上有独一实数根 x0,且 x0∈(﹣ 1,0).当 x∈(﹣ 2, x0)时, f (′x)< 0,当 x∈(x0, +∞)时,f(′x)> 0,进而当 x=x0时, f (x)获得最小值.由 f (′ x0)=0,得00,ln( x +2)=﹣x .故 f(x)≥=>0.综上,当 m ≤2 时, f(x)> 0.3.(2015?新课标Ⅰ)设函数 f (x)=e2x﹣alnx.(Ⅰ)议论 f( x)的导函数 f ′(x)零点的个数;(Ⅱ)证明:当a> 0 时, f (x)≥ 2a+aln.解:(Ⅰ) f(x)=e2x﹣alnx 的定义域为( 0,+∞),∴ f ′( x) =2e2x﹣.当 a≤0 时, f ′(x)> 0 恒建立,故 f ′(x)没有零点,当 a>0 时,∵ y=e2x为单一递加, y=﹣单一递加,∴ f′(x)在(0,+∞)单一递加,又 f ′(a)>0,假定存在 b 知足 0<b<ln 时,且 b<,f ′(b)< 0,故当 a>0 时,导函数 f ′(x)存在独一的零点,(Ⅱ)由(Ⅰ)知,可设导函数 f ′( x)在( 0,+∞)上的独一零点为 x0,当x∈(0,x0)时, f ′(x)< 0,当 x∈( x0+∞)时, f (′x)> 0,故 f(x)在( 0, x0)单一递减,在( x0+∞)单一递加,所欲当 x=x0时, f (x)获得最小值,最小值为f( x0),因为﹣=0,因此 f( x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥ 2a+aln.4.(2016?新课标Ⅱ)(Ⅰ)议论函数f( x) =e x的单一性,并证明当x>0 时,(x﹣ 2)e x+x+2>0;(Ⅱ)证明:当 a∈[ 0,1)时,函数 g( x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数 h(a)的值域.解:(1)证明: f (x) =f' (x)=e x()=,∵当 x∈(﹣∞,﹣ 2)∪(﹣ 2,+∞)时, f'( x)≥ 0∴f (x)在(﹣∞,﹣ 2)和(﹣ 2,+∞)上单一递加,∴ x> 0 时,>f( 0) =﹣ 1即( x﹣2)e x+x+2>0(2)g'(x)===a∈[ 0, 1),由( 1)知,当 x> 0 时, f (x)=的值域为(﹣ 1,+∞),只有一解使得,只要?e t≤0 恒建立,可得﹣ 2<t ≤2,由 x>0,可得 t ∈(0,2]当 x∈(0,t )时, g'(x)< 0, g(x)单一减;当 x∈( t,+∞),g'( x)> 0, g( x)单一增;h(a)===记 k( t )=,在t∈(0,2]时,k'(t)=>0,故 k( t )单一递加,因此h(a) =k(t )∈(,] .5.(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣ xlnx,且 f(x)≥ 0.(1)求 a;(2)证明: f(x)存在独一的极大值点x0,且 e﹣2< f(x0)< 2﹣2.【解答】( 1)解:因为 f(x)=ax2﹣ ax﹣xlnx=x(ax﹣ a﹣ lnx)(x>0),则 f(x)≥ 0 等价于 h( x) =ax﹣a﹣lnx≥ 0,求导可知 h′( x) =a﹣.则当 a≤ 0 时 h′( x)< 0,即 y=h(x)在( 0,+∞)上单一递减,因此当 x0>1 时, h(x0)< h(1) =0,矛盾,故 a>0.因为当 0<x<时h′(x)<0、当x>时h′(x)>0,因此 h(x)min =h(),又因为h(1)=a﹣a﹣ln1=0,因此=1,解得 a=1;另解:因为 f( 1)=0,因此 f (x)≥ 0 等价于 f (x)在 x>0 时的最小值为 f(1),因此等价于 f( x)在 x=1 处是极小值,因此解得 a=1;(2)证明:由( 1)可知 f(x)=x2﹣x﹣xlnx, f ′( x) =2x﹣2﹣lnx ,令 f (′x )=0,可得 2x ﹣2﹣lnx=0,记 t (x )=2x ﹣2﹣lnx ,则 t ′(x )=2﹣ ,令 t (′ x )=0,解得: x= ,因此 t ( x )在区间( 0, )上单一递减,在( ,+∞)上单一递加,因此 t ( x ) min =t ( ) =ln2﹣1< 0,进而 t (x )=0 有解,即 f (′x )=0 存在两根 x 0, x 2, 且不如设 f ′(x )在( 0,x 0)上为正、在( x 0, x 2)上为负、在( x 2, +∞)上为正, 因此 f ( x )必存在独一极大值点 x 0 0 0=0,,且 2x ﹣ 2﹣ lnx因此 f ( x 0) =﹣0﹣ 00 ﹣ 00﹣20﹣,xx lnx =x +2x=x由 x 0 < 可知 f ( x )<( x ﹣)max =﹣+ = ;由 f (′ )< 0 可知 x 0< < ,因此 f (x )在( 0,x 0)上单一递加,在( x 0, )上单一递减,因此 f ( x 0)> f ( )= ;综上所述, f (x )存在独一的极大值点﹣2<f (x 0 ﹣2. x ,且 e )< 2。

导数专题--隐零点问题-2

导数专题--隐零点问题-2

导数专题---<< 隐零点问题>>1. 已知函数f (x) =e x-ln (x+m)()设x=0是f (x)的极值点,求m,并讨论f (x)的单调性;(H)当m W22寸,证明f (x)> 0.2. 设函数f (x) =e x+ax+b在点(0, f (0))处的切线方程为x+y+1=0.(I)求a, b值,并求f (x)的单调区间;(n )证明:当时,f (x)>x2-4.3. 已知函数f (x) =□•;—•;「.:(1)证明:?k€ R,直线y=g (x)都不是曲线y=f (x)的切线;(2)若?x€ [e, e2],使得f (x)宅(x) +成立,求实数k的取值范围.4. 已知函数f( x) =alnx-e x;(1)讨论f (x)的极值点的个数;(2)若a=2,求证:f (x)v 0.5. 已知函数f (x) 二^alnx有极值点,其中e为自然对数的底数.(1) 求a的取值范围;(2 )若a€( 0,],求证:?x€( 0,2],都有f( x)v6. 设函数f (x) =ax2-lnx+1 (a€ R)(1)求函数f (x)的单调区间;(2)若函数g (x) =ax2-e x+3,求证:f (x)> g (x)在(0, +〜上恒成立.7. 已知函数f (x) =xlnx+ax+b在点(1, f (1))处的切线为3x-y-2=0.(1)求函数f (x)的解析式;(2)若k€ Z,且对任意x> 1,都有kv%成立,求k的最大值.【练习】1 .已知函数f( x) = (ae x-a-x) e x(a%, e=2.718…,e为自然对数的底数),若f (x) 丸对于x € R 恒成立.(1)求实数a的值;(2)证明:f (x)存在唯一极大值点2 .已知函数f ( x) =ax+xInx (a€ R)(1)若函数f (x)在区间[e, +s)上为增函数,求a的取值范围;(2)当a=1且k € Z时,不等式k (x - 1 )v f (x)在x €( 1, +^)上恒成立,求k 的最大值.3 .已知函数f ( x) =e x+a- Inx (其中e=2.71828…,是自然对数的底数)(I)当a=0时,求函数a=0的图象在(1, f (1))处的切线方程;(H)求证:当-一一—丄时,f (x)> e+1.e4 .函数f (x) =alnx - x2+x, g (x) = (x - 2) e x- x2+m (其中e=2.71828 ….(1)当aO时,讨论函数f (x)的单调性;(2)当a=- 1, x €( 0, 1]时,f (x)> g (x)恒成立,求正整数m的最大值.5. 已知函数f (x) =axe x—( a+1) ( 2x—1).(1)若a=1,求函数f (x)的图象在点(0, f ( 0))处的切线方程;(2)当x> 0时,函数f (x)为恒成立,求实数a的取值范围.6. 函数f (x) =xe x-ax+b的图象在x=0处的切线方程为:y -x+1 .(1)求a和b的值;(2)若f (x)满足:当x> 0时,f (x)目nx - x+m,求实数m的取值范围.7 .已知函数f ( x) =3e x+x2, g (x) =9x- 1 .(1)求函数0 (x) =xe x+4x - f (x)的单调区间;(2)比较f (x)与g (x)的大小,并加以证明.8 .已知函数f (x) =lnx+a (x - 1) 2( a> 0).(1) 讨论f (x)的单调性;丄(2) 若f (x)在区间(0, 1 )内有唯一的零点X0,证明:已三<运$「9 .已知函数f (x)= … ,其中a为常数.(x+a ) 2(1)若a=0,求函数f (x)的极值;(2)若函数f (乂)在(0,- a)上单调递增,求实数a的取值范围;(3)若a=- 1,设函数f (x)在(0,1) 上的极值点为x o,求证:f (x o)v- 2.10 .已知函数f (x) =lnx - x+1,函数g (x) =ax?e x- 4x,其中a为大于零的常数.(I)求函数f (x)的单调区间;(n)求证:g (x)- 2f (x) 汽(In a - l n2 ).11.已知函数f (x) =x2-( a- 2) x - alnx (a€ R).(I)求函数y=f (x)的单调区间;(n)当a=1 时,证明:对任意的x>0, f (x) +e x>x2+x+2 .12 .已知函数二工-—!:■:.(I)当a=2时,(i)求曲线y=f (x)在点(1, f (1))处的切线方程;(ii)求函数f (x)的单调区间;(n)若1 v a v 2,求证:f (x )<- 1.13.已知函数f (x) = (x- a) Inx+y^x,(其中a€ R)(1)若曲线y=f (x)在点(x o, f (x o))处的切线方程为x, 求a的值;(2)若丄". . .-为自然对数的底数),求证:f (x)> 0.。

导数专题之隐零点问题

导数专题之隐零点问题

导数解答题之隐零点问题一.什么是隐零点问题常规方法求解导数问题的步骤: ①写函数定义域,求导函数;②对导函数变形(通分,分解因式,配方等,变形到容易判断导函数正负为止); ③求导函数的零点,若导函数无零点或零点不在函数定义域内,说明导函数(或局部因式)的符号恒正或恒负;若导函数零点在函数定义域内,则导函数零点把函数定义域分成若干个区间,然后判断在这些若干个区间内导数的正负,可得函数的单调性;④求函数的极值以及区间端点的函数值,最终得最值和函数图像等.从上我们可知,导函数的零点影响着函数的单调区间的划分,也和函数的极值或最值有着直接关系,因此求导函数的零点在导数问题中是一个非常重要的环节,但很多时候我们是可以通过零点存在定理判断其存在,却无法直接求解出来的,像这类问题就称之为隐零点问题.二.隐零点问题的处理方法(设而不求)当导函数存在零点,又无法求解时,可虚设零点0x ,0x 满足等式()00f x '=.做题时只需把0x 看作是已知的一个数即可,其本质与能求出的导函数零点并无差别,只不过一个是显性的,一个是隐性的.隐性的零点用起来可能没有显性的零点方便,但我们可以抓住两点:①0x 的范围②0x 满足等式()00f x '=. 下面举例说明.例1.已知函数2()ln f x ax bx x x =++在()()1,1f 处的切线方程为320x y --=. (1)求实数a 、b 的值;(2)设2()g x x x =-,若Z k ∈,且(2)()()k x f x g x -<-对任意的2x >恒成立,求k 的最大值. 【解析】解:(1)()2ln 1f x ax b x '=+++,故213a b ++=且1a b +=,解得:1a =,0b =; (2)第一步:分离参数,转化为求函数的最值 由(1)得:()()ln 22f x g x x x x k x x -+<=--对任意2x >恒成立,设ln ()(2)2x x xh x x x +=>-,下求()h x 的最小值.第二步:求()h x '并变形,用零点存在性定理判断()h x '存在零点,虚设零点0x242ln ()(2)x x h x x --'=-,令()42ln (2)m x x x x =-->,则22()10x m x x x-'=-=>,故函数()m x 为(2,)+∞上的增函数,()842ln80m =-<,()1062ln100m =->,故()m x 在(8,10)上有唯一零点0x ,使0042ln 0x x --=成立.第三步:0x 参与划分定义域,判断()h x '在各个区间上的正负,得到()h x 的单调性 当02x x <<时,()0m x <,即()0h x '<;0x x <时,()0m x >,即()0h x '>. 故()h x 在0(2,)x 递减,在()0,x +∞递增;第四步:判断函数()h x 的最小值在0x 处取,得到()h x 最小值表达式,用等式0042ln 0x x --=整体代换求出最小值()0h x000min 004(1)2()()22x x x h x h x x -+∴===-,故02x k <,()08,10x ∈,0(4,5)2x ∴∈,Z k ∈,故k 的最大值是4. 解题说明:此题导函数的零点0x 是虚设的,0x 满足①()08,10x ∈②0042ln 0x x --=,用②0042ln 0x x --=代换求出0min 0()()2x h x h x ==,再用①()08,10x ∈估算出()min h x 的范围. 例2.已知函数3()ln (1)f x x a x bx =+-+,()()e ,R x g x x b a b =-∈,且()f x 在点()(),e f e 处的切线方程为11y x e ⎛⎫=+ ⎪⎝⎭. (1)求实数a ,b 的值; (2)求证:()()f x g x ≤. 【解析】(1)解:21()3(1)f x a x b x '=+-+,()()2131f e a e b e∴'=+-+,且()31(1)f e a e be =+-+,又()f x 在点()(),e f e 处的切线方程为11y x e ⎛⎫=+ ⎪⎝⎭,∴切点为(),1e e +,∴23113(1)11(1)1a e b e e a e be e⎧+-+=+⎪⎨⎪+-+=+⎩,解得:1a b ==;(2)证明:由(1)可知()ln f x x x =+,()1x g x xe =-,且()f x 的定义域为(0,)+∞,令()()()ln 1x F x f x g x x x xe =-=+-+,则()()111()111x x x x x F x e xe x e x e x x x +⎛⎫'=+--=-+=+- ⎪⎝⎭,令1()x G x e x =-,可知()G x 在(0,)+∞上为减函数,且11222G ⎛⎫=> ⎪⎝⎭,()110G e =-<,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得0()0G x =,即0010xe x -=.当0(0,)x x ∈时,()0G x >,()0F x ∴'>,则()F x 为增函数; 当()0,x x ∈+∞时,()0G x <,()0F x ∴'<,则()F x 为减函数. 00000()()ln 1x F x F x x x x e ∴≤=+-+,又0010x e x -=,∴001x e x =,即00ln x x =-,0()0F x ∴=,即()0F x ≤,()()f x g x ∴≤.解题说明:此题的导函数的零点0x 也是虚设的,0x 满足①01,12x ⎛⎫∈ ⎪⎝⎭②0010x e x -=,在求()()0max F x F x =时主要就是用②0010xe x -=进行代换运算.例3.已知函数()ln f x a x x =-,R a ∈. (1)讨论()f x 的单调性;(2)若关于x 的不等式()12f x x e≤-恒成立,求a 的取值范围. 解:(1)()()10aa xf x x xx-'=-=>, ①若0a ≤,则()0f x '<,()f x ∴在()0,+∞单调递减;②若0a >,()0,x a ∈时,()0f x '>,()f x 单调递增;(),x a ∈+∞,()0f x '<,()f x 单调递减. (2)方法一(隐零点)不等式()12f x x e ≤-等价于12ln 0a x x x e--+≤在()0,x ∈+∞恒成立.令()12ln g x a x x x e=--+,则()222111a x ax g x x x x --'=-+=-,方程210x ax --=有一负一正两个根,设正根为0x ,即2010x ax --=,001a x x =-. ()00,x x ∈时,()0g x '>,()g x ;()0,x x ∈+∞时,()0g x '<,()g x .()()000max 012ln g x g x a x x x e ∴==--+,又001a x x =-,()000000112ln g x x x x x x e ⎛⎫∴=---+ ⎪⎝⎭因为不等式12ln 0a x x x e --+≤在()0,x ∈+∞恒成立,所以等价于()000000112ln 0g x x x x x x e ⎛⎫=---+≤ ⎪⎝⎭,设()112ln h x x x x x x e ⎛⎫=---+ ⎪⎝⎭,()222211111ln 111ln h x x x x x x x ⎛⎫⎛⎫'=++--+=+ ⎪ ⎪⎝⎭⎝⎭.()0,1x ∈时,()0h x '<,()h x ;()1,x ∈+∞时,()0h x '>,()h x ,又()10h h e e ⎛⎫== ⎪⎝⎭,所以01,x e e ⎡⎤∈⎢⎥⎣⎦,又001a x x=-在01,x e e ⎡⎤∈⎢⎥⎣⎦上单调递增,11,a e e e e ⎡⎤∴∈--⎢⎥⎣⎦.用隐零点表示参数,得到参数与隐零点的函数关系,然后结合隐零点的范围求出参数的范围这是本题解法的基本思路.方法二(内点效应+变换主元)分析:令()12ln g x a x x x e =--+,由()()2212ln 010g x a x x x e x ax g x x ⎧=--+=⎪⎪⎨--⎪'=-=⎪⎩得,112ln 0x x x x x e ⎛⎫---+= ⎪⎝⎭,令()112ln h x x x x x x e ⎛⎫=---+ ⎪⎝⎭,()222211111ln 111ln h x x x x x x x ⎛⎫⎛⎫'=++--+=+ ⎪ ⎪⎝⎭⎝⎭.()0,1x ∈时,()0h x '<,()h x ;()1,x ∈+∞时,()0h x '>,()h x ,又()10h h e e ⎛⎫== ⎪⎝⎭,11x e a e e ⎧=⎪⎪∴⎨⎪=-⎪⎩或1x e a e e =⎧⎪⎨=-⎪⎩.解:不等式()12f x x e ≤-等价于12ln 0a x x x e--+≤在()0,x ∈+∞恒成立,令()12ln g x a x x xe=--+. ①取x e =,则()10g e a e e =-+≤,1a e e ∴≤-;取1x e =,则110g a e e e ⎛⎫=--+≤ ⎪⎝⎭,1a e e ∴≥-.11,a e e ee ⎡⎤∴∈--⎢⎥⎣⎦.②反过来,当11,a e e e e ⎡⎤∈--⎢⎥⎣⎦时,令()12ln F a x a x x e =⋅--+,下证()0,x ∈+∞时()0F a ≤.Ⅰ.若1x =,()220F a e=-<. Ⅱ.若()0,1x ∈,ln 0x <,则()F a ,()1112ln F a F e e x x e e x e ⎛⎫⎛⎫∴≤-=---+ ⎪ ⎪⎝⎭⎝⎭,令()()112ln 01x e x x x e x e τ⎛⎫=---+<< ⎪⎝⎭,()()222111x e x x x e e e x x x τ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭'=-=-, 10,x e ⎛⎫∈ ⎪⎝⎭时,()0x τ'>,()x τ;1,1x e ⎛⎫∈ ⎪⎝⎭时,()0x τ'<,()x τ.()10x e ττ⎛⎫∴≤= ⎪⎝⎭,()0F a ≤.Ⅲ.若()1,x ∈+∞,ln 0x >,则()F a ,()1112ln F a F e e x x e e x e ⎛⎫⎛⎫∴≤-=---+ ⎪ ⎪⎝⎭⎝⎭,令()()112ln 1x e x x x e x e ψ⎛⎫=---+> ⎪⎝⎭,()()222111x e x x e x e e x x x ψ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭'=-=-, ()1,x e ∈时,()0x ψ'>,()x ψ;(),x e ∈+∞时,()0x ψ'<,()x ψ.()()0x e ψψ∴≤=,()0F a ≤.综上,()0,x ∈+∞时()0F a ≤.由①②知11,a e e ee ⎡⎤∈--⎢⎥⎣⎦.最后总结一下隐零点问题的基本解决思路就是:形式上虚设,运算上代换,数值上估算,策略上等价转化,方法上分离参数.练习1.已知函数()ln x f x ae b x =-在点()()1,1f 处的切线方程为()11y e x =-+. (1)求a ,b 的值; (2)求证:()2f x >. 【解析】(1)1a =,1b = (2)()ln x f x e x =-,()()10x f x e x x'=->,易知()f x '且()10f '>,102f ⎛⎫'< ⎪⎝⎭,1,12m ⎛⎫∴∃∈ ⎪⎝⎭,()0f m '=,即1m e m=. 0x m <<时,()0f x '<,()f x ;x m >时,()0f x '>,()f x .()()min 1ln 2m f x f m e m m m∴==-=+> 2.已知函数()ln()x f x e x m =-+.(1)设0x =是()f x 的极值点,求m 的值,并讨论()f x 的单调性; (2)证明:ln(2)0x e x -+>. 【解析】(1)1()x f x e x m'=-+,由题意可得,1(0)10f m '=-=,解可得1m =,1(1)1()11x xe xf x e x x +-'=-=++,令()(1)1x g x e x =+-,则()(2)0x g x x e '=+>,故()g x 在(1,)-+∞上单调递增且(0)0g =.当0x >时,()0g x >即()0f x '>,函数()f x 单调递增; 当10x -<<时,()0g x <即()0f x '<,函数()f x 单调递减. (2)证明:令()ln(2)x h x e x =-+,则1()2x h x e x '=-+在(2,)-+∞上单调递增,因为(1)0h '-<,(0)0h '>,所以()0h x '=在(2,)-+∞存在唯一实数根0x ,且0(1,0)x ∈-, 当0(2,)x x ∈-时,()0h x '<,()h x ;0(x x ∈,)+∞时,()0h x '>,()h x .当0x x =时,函数取得最小值,因为0012xe x =+,即00ln(2)x x =-+,故02000000(1)1()()ln(2)022x x h x h x e x x x x +≥=-+=+=>++,所以ln(2)0x e x -+>. 3.已知函数()1x f x xe ax =--的图像在1x =处的切线方程为(21)y e x b =-+. (1)求实数a ,b 的值; (2)若函数()ln ()f x xg x x-=,求()g x 在(0,)+∞上的最小值. 【解析】(1)因为()(1)xf x e a x +=-',所以()12f e a '=-.于是由题知221e a e -=-,解得1a =.因此()1x f x xe x =--,而()12f e =-,于是2(21)1e e b -=-⋅+,解得1b e =--.(2)l ln 11(0)n 1()x x xe x x g x e x x x x =---=+->-,222ln ln ()x xx x e x g x e x x +'=+=. 记2()ln x h x x e x =+,21()20xxh x x e xe x'=++>,故()h x 在(0,)+∞上单调递增. 又211211110e e h e e e e -⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭,()10h e =>,∴存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得0()0h x =,且0(0,)x x ∈,()0h x <,0,)(x x ∈+∞,()0h x >.()g x ∴在0(0,)x 上单调递减,在0(,)x +∞上单调递增,∴00min 00ln 1()()1xx g x g x e x +==--,又0()0h x =,∴0200ln x x e x =-,∴01ln 001ln x x x e e x =,∴001ln x x =.∴000000min000ln 1ln 111()1110x x x x e x x g x e x x x +--+-=--=-=-=,所以()g x 的最小值为0.4.已知函数()()()ln 1cos 1xf x ae x a =-+--,R a ∈.(1)当1a =时,求()f x 的零点; (2)若()0f x ≥,求a 的取值范围.【解析】(1)由题知:当1a =时,()ln(1)1x f x e x =-+-,1()1x f x e x '=-+,令1()()1x g x f x e x='=-+,所以()21()01x g x e x '=+>+,所以()g x 在(1,)-+∞上单调递增,且()00g =.所以,当(1,0)x ∈-时,()0f x '<,()f x 在(1,0)-上单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 在(0,)+∞上单调递增. 所以()(0)0f x f ≥=,所以()f x 的零点为0x =. (2)必要性探路:取0x =,由()00f ≥得cos(1)0a a --≥,令()()cos 1h a a a =--,因为()()1sin 10h a a '=+-≥,所以()h a在(,1)-∞上单调递增,又()10h =,1a ∴≥,即()01f x a ≥⇒≥. 证明充分性: 当1a ≥,1()1x f x ae x'=-+,21()0(1)xf x ae x ''=+>+,所以()f x '在(1,)-+∞上单调递增,且(0)10f a '=-≥, 11110a f ae a a a a -⎛⎫'-=-≤-= ⎪⎝⎭,(]01,0x ∴∃∈-,使得0()0f x '=,即00101x ae x -=+,00ln(1)ln x x a +=--. 当0(1,)x x ∈-时,设()0f x '<,()f x 在0(0,)x ;当()0,x x ∈+∞时,设()0f x '>,()f x 在()0,x +∞.所以000001()()ln(1)cos(1)ln cos(1)1xf x f x ae x a x a a x ≥=-+--=++--+ 0011ln cos(1)11ln cos(1)01x a a a a x =+++---≥+--≥+. 综上,所求a 的取值范围为1a ≥.5.已知函数()21f x x ax =++,()()ln R g x x a a =-∈.(1)当1a =时,求函数()()()h x f x g x =-的极值;(2)若存在与函数()f x ,()g x 的图像都相切的直线,求实数a 的取值范围. 解:(1)12x =时,()h x 取得极小值11ln 24+,无极大值,过程略.(2)设直线与函数()f x ,()g x 分别相切于点()()11,P x f x ,()()22,Q x g x ,以点P 为切点的切线方程为:()()()111y f x f x x x -='-,即()()()2111112y x ax x a x x -++=+-,化简得()21121y x a x x =+-+,同理以点Q 为切点的切线方程为:221ln 1y x x a x =+--,12212121ln 1x a xx x a ⎧+=⎪∴⎨⎪-+=--⎩,消去1x 得: 222221ln 20424a a x a x x -++--=,设()221ln 2424a a F x x a x x =-++--,则问题转化为:若()F x 存在零点,求a 的范围.首先,x →+∞时,()F x →+∞.下面只需()min 0F x <即可.()()232311210222a x ax F x x x x x x+-'=-++=>,2210x ax +-=存在一正根,不妨设为t ,t 满足2210t at +-=,易知0x t <<时,2210x ax +-<,()0F x '<,()F x ;x t >时,2210x ax +->,()0F x '>,()F x .()()22min 1ln 2424a a F x F t t a t t ∴==-++--,又2210t at +-=,12a t t ∴=-,()()2min12ln 2F x F t t t t t∴==++--.由①知,若01t <≤时,()()min 0F x F t =≤;若1t >时()()min 0F x F t =>. 01t ∴<≤,[)121,a t t∴=-∈-+∞.。

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版本文介绍了导数压轴题中的隐零点问题,共有13道题目。

1.对于已知函数$f(x)=(aex-a-x)ex$,若$f(x)\geq 0$对于$x\in R$恒成立,求实数$a$的值,并证明$f(x)$存在唯一极大值点$x$,且$f(x)<f(x_0)$,其中$x_0$为$f(x)$的零点。

解答:1) 对于$f(x)=ex(aex-a-x)\geq 0$,因为$ex>0$,所以$aex-a-x\geq 0$恒成立,即$a(ex-1)\geq x$恒成立。

当$x=0$时,显然成立。

当$x>0$时,$ex-1>0$,故只需$a\geq 1$。

令$h(x)=aex-a-x$,则$h'(x)=aex-1$,在$(0,+\infty)$恒成立,故$h(x)$在$(0,+\infty)$递减。

又因为$h(0)=0$,故$a\geq1$。

当$x<0$时,$ex-1<0$,故只需$a\leq 1$。

令$g(x)=aex-a-x$,则$g'(x)=aex-1$,在$(-\infty,0)$恒成立,故$g(x)$在$(-\infty,0)$递增。

又因为$g(0)=0$,故$a\leq 1$。

综上,$a=1$。

2) 由(1)得$f(x)=ex(ex-x-1)$,故$f'(x)=ex(2ex-x-2)$。

令$h(x)=2ex-x-2$,则$h'(x)=2ex-1$,所以$h(x)$在$(-\infty,\ln)$单调递减,在$(\ln,+\infty)$单调递增,$h(0)=0$,$h(\ln)=2e^{\ln}-\ln-2=\ln2-10$,故$h(x)$在$(-2,\ln)$有唯一零点$x_0$。

设$x_0$为$f(x)$的零点,则$2ex_0-x_0-2=0$,从而$h(x)$有两个零点$x_0$和$-x_0-2$,所以$f(x)$在$(-\infty,x_0)$单调递增,在$(x_0,+\infty)$单调递减,在$(-2,x_0)$上单调递增,在$(-\infty,-2)$上单调递减,从而$f(x)$存在唯一的极大值点$x_0$。

专题11 导数压轴题之隐零点问题(解析版)

专题11 导数压轴题之隐零点问题(解析版)

导数章节知识全归纳专题11 导数压轴题中有关隐零点问题一.隐零点问题知识方法讲解:1.“隐零点”概念:隐零点主要指在研究导数试题中遇到的对于导函数f ’(x)=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x=x 0,使得f ’(x)=0成立,这样的x 0就称为“隐藏零点”。

2.“隐零点”解决方向:针对隐零点问题通常解决步骤:1.求导判定是否为隐零点问题,2.设x=x 0,使得f ’(x)=0成立,3.得到单调性,并找到最值,将x 0带入f(x),得到f(x 0),4.再将x 0的等式代换,再求解(注意:x 0的取值范围)二.隐零点问题中的典型例题:典例1.已知函数()ln f x x =,()2sin g x x x =-.(1)求()g x 在()0,π的极值;(2)证明:()()()h x f x g x =-在()0,2π有且只有两个零点.解:(1)由()12cos g x x '=-,()0,x π∈, 当03x π<<时,()0g x '<,此时函数()g x 单调递减, 当3x ππ<<时,()0g x '>,此时函数()g x 单调递增,所以,函数()g x 的极小值为33g ππ⎛⎫=- ⎪⎝⎭ (2)证明:()()()ln 2sin h x f x g x x x x =-=-+,其中02x π<<.则()112cos h x x x '=-+,令()12cos 1x x x ϕ=+-,则()212sin x x xϕ'=--. 当()0,x π∈时,()212sin 0x x x ϕ'=--<,则()x ϕ在()0,π上单调递减, 303πϕπ⎛⎫=> ⎪⎝⎭,2102πϕπ⎛⎫=-< ⎪⎝⎭, 所以,存在0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()()000x h x ϕ'==. 当00x x <<时,()0h x '>,此时函数()h x 在()00,x 上单调递增,当0x x π<<时,()0h x '<,此时函数()h x 在()0,x π上单调递减.()()0h x h x ∴=极大值,而ln 0333h πππ⎛⎫=-+> ⎪⎝⎭,()2ln ln 20h e πππππ=-<-=-<,则()003h x h π⎛⎫>> ⎪⎝⎭,又ln 1666h πππ⎛⎫=-+ ⎪⎝⎭, 令()ln 1m x x x =-+,其中01x <<,则()1110x m x x x-'=-=>, 所以,函数()m x 在()0,1上单调递增,则()()10m x m <=,所以,ln 10666h πππ⎛⎫=-+< ⎪⎝⎭.由零点存在定理可知,函数()h x 在()0,π上有两个零点;当[),2x ππ∈时,2sin 0x ≤,()ln 2sin ln h x x x x x x =-+≤-,设ln y x x =-,则1110x y x x-'=-=<对任意的[),2x ππ∈恒成立, 所以,ln ln 0x x ππ-≤-<,所以,函数()h x 在[),2ππ上没有零点,综上所述,函数()()()h x f x g x =-在()0,2π上有且只有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.典例2.已知函数()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行.(1)求k 的值; (2)若()()2cos p x f x x =-,试讨论()p x 在π3π22⎡⎤⎢⎥⎣⎦,上的零点个数.解:(1)()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行, 则有()1πf a '=-,()k f x a x'=-,则(1)ππf k a a k '=-=-⇒= (2)()()2cos πln 2cos 2a p x f x x x ax x ⎛⎫=-=+-- ⎪⎝⎭,π3π,22x ⎡⎤∈⎢⎥⎣⎦, π()2sin p x x a x '=+-,令()()g x p x '=,则2π()2cos g x x x'=-+, 当π3π,22x ⎡⎤∈⎢⎥⎣⎦时,cos 0x ≤且2π0x -<,则2π()2cos 0g x x x '=-+<,则()g x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππ22422g p a a ⎛⎫⎛⎫'==+-=- ⎪ ⎪⎝⎭⎝⎭,3π3π2422233g p a a ⎛⎫⎛⎫'==--=-- ⎪ ⎪⎝⎭⎝⎭, 当4a ≥时,π02p ⎛⎫'≤ ⎪⎝⎭且()()p x g x '=在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≤,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππππππln 2cos πln 0222222a a p ⎛⎫⎛⎫=+--=> ⎪ ⎪⎝⎭⎝⎭,3π3π3π3π3ππln 2cos πln 222222a a p a π⎛⎫⎛⎫=+--=- ⎪ ⎪⎝⎭⎝⎭, 由于4a ≥,则03π2p ⎛⎫< ⎪⎝⎭,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则有一个零点, 当43a ≤-时,3π02p ⎛⎫'≥ ⎪⎝⎭,由于()()=p x g x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≥,()p x在π3π,22⎡⎤⎢⎥⎣⎦单调递增, ππ=πln 022p ⎛⎫> ⎪⎝⎭,则π()02p x p ⎛⎫≥> ⎪⎝⎭,则()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点, 当443a -<<时,π02p ⎛⎫'> ⎪⎝⎭,3π02p ⎛⎫'< ⎪⎝⎭,()p x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则存在0π3π,22x ⎛⎫∈ ⎪⎝⎭使()0p x '=, 当0π,2x x ⎛⎫∈⎪⎝⎭,()0p x '>,()p x 单调递增,当03π,2x x ⎛⎫∈ ⎪⎝⎭,()0p x '<,()p x 单调递减,πππln 022p ⎛⎫=> ⎪⎝⎭,3π3ππln π22p a ⎛⎫=- ⎪⎝⎭, 若3π3π0ln 22p a ⎛⎫>⇒< ⎪⎝⎭,则由0π2p ⎛⎫> ⎪⎝⎭,3π02p ⎛⎫> ⎪⎝⎭及()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,此时43πln 32a -<<, 若3π3π0ln 22p a ⎛⎫≤⇒≥⎪⎝⎭,由0π2p ⎛⎫> ⎪⎝⎭,3π02P ⎛⎫≤ ⎪⎝⎭和()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点,此时3πln 42a ≤<, 综上,当3πln2a <时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,当3πln 2a ≥时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点.【点睛】关键点点睛:本题第二问考查利用导数分析函数的零点个数问题,解答此问题的关键在于多次求导以及分类讨论思想的运用;当原函数()f x 的导函数()f x '无法直接判断出正负时,可先通过将原函数的导函数看作新函数()g x ,利用导数思想先分析()g x '的单调性以及取值正负,由此确定出()g x 的单调性并分析其取值正负,从而()f x '的正负可分析,则根据()f x 的单调性以及取值可讨论零点个数.典例3.已知函数()e sin 1xf x x =+-. (1)判断函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上的零点个数,并说明理由; (2)当[0,)x ∈+∞时,()0f x mx +,求实数m 的取值范围.解:(1)解法一:由题意得,()e cos x f x x '=+, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,易得函数()'f x 单调递增, 而()e 10f ππ--=-<',2e 02f ππ-⎛⎫-=> ⎪⎝⎭', 故()00,,02x f x ππ⎛⎫∃∈--= ⎪⎝'⎭, 当[)0,x x π∈-时,()0f x '<; 当0,2x x π⎛⎫∈- ⎪⎝⎭时,()0f x '>, 而2()e 10,e 202f f ππππ--⎛⎫-=-<-=-< ⎪⎝⎭, ∴函数f (x )在,2ππ⎡⎫--⎪⎢⎣⎭上无零点;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()e cos 0x f x x =+>', ∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增, 而(0)0f =,∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上有1个零点. 综上所述,函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上有1个零点. (2)令()()e sin 1x g x f x mx x mx =+=++-,[0,)x ∈+∞,则()e cos xg x x m =++'. 0(0)e sin 0010g m =++⨯-=,0(0)e cos02g m m =++=+',令()()e cos x h x g x x m +'==+,()e sin xh x x =-' 因为0x =时,0()e sin 010h x =-=>', 当0x >时,e 1x >,sin 1x ≤,()e sin 110xh x x =>-'-=,所以()e sin 0x h x x -'=>在()0,+∞上恒成立, 则h (x )为増函数,即()'g x 为增函数①当20m +,即2m -时,()(0)20g x g m '='+,∴g (x )在[0,)+∞上为增函数,()(0)0g x g ∴=,即()0g x 在[0,)+∞上恒成立;②当m +2<0,即m <-2时,(0)20g m =+<',0(0,)x ∴∃∈+∞,使()00g x '=,当()()00,,0,()x x g x g x ∞∈+>'为增函数;当[)()000,,0,()x x g x g x <'∈为减函数, ()0(0)0g x g ∴<=,与()0g x 在[0,)+∞上恒成立相矛盾,2m ∴<-不成立.综上所述,实数m 的取值范围是[2,)-+∞.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.典例4.设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅰ)证明:当0a >时()22ln f x a a a≥+. 解:(∴)()f x 的定义域为()0+∞,,()2()=20x a f x e x x '->.当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x '在()0+∞,单调递增.又()0f a '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点. (∴)由(∴),可设()f x '在()0+∞,的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,时,()0f x '>. 故()f x 在()00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++≥+. 故当0a >时,2()2ln f x a a a≥+. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.典例5.已知函数()()ln 1x a f x e x x a -=--∈R .(1)若1a =,讨论()f x 的单调性;(2)令()()(1)g x f x a x =--,讨论()g x 的极值点个数.解:(1)若1a =,则()1ln 1x f x e x x -=--,其定义域为()0,∞+,()1ln 1x f x e x -'=--.令()()1ln 1x m x f x e x -'==--,则()11x m x e x -'=-, 易知()m x '在()0,∞+上单调递增,且()10m '=,所以当()0,1x ∈时,()0m x '<,()m x 在()0,1上单调递减, 当()1,x ∈+∞时,()0m x '>,()m x 在()1,+∞上单调递增, 因此()()10m x m ≥=,即()0f x '≥,所以()f x 在()0,∞+上单调递增.(2)由题意知,()()ln 11x a g x e x x a x -=----,则()ln x a g x e x a -'=--,由(1)知,1ln 10x e x ---≥,当1a ≤时,()ln ln 10x a x a g x e x a e x --'=--≥--≥, 所以()g x 在()0,∞+上单调递增,此时()g x 无极值点. 当1a >时,令()()ln x a h x g x e x a -'==--,则()1x a h x ex -'=-,易知()h x '在()0,∞+上单调递增, 又()1110a h e -'=-<,()110h a a'=->, 故存在()01,x a ∈,使得()00010x a h x e x -'=-=, 此时有001x a e x -=,即00ln a x x =+, 当()00,x x ∈时,()0h x '<,()h x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 在()0,x +∞上单调递增,所以()()00000min 01ln 2ln x ah x h x ex a x x x -==--=--. 令()12ln x x x xϕ=--,()1,x a ∈, 易知()x ϕ在()1,a 上单调递减, 所以()0x ϕ<,即()00h x <.因为()0aa eah e e---=>,()23ln 321ln 31ln 32ln 30a h a e a a a a a a =-->+--=+->->,且0013a e x a a -<<<<<,所以存在()10,ax e x -∈,()20,3x x a ∈,满足()()120h x h x ==,所以当()10,x x ∈时,()()0g x h x '=>,()g x 在()10,x 上单调递增, 当()12,x x x ∈时,()()0g x h x '=<,()g x 在()12,x x 上单调递减, 当()2,x x ∈+∞时,()()0g x h x '=>,()g x 在()2,x +∞上单调递增, 所以当1a >时,()g x 存在两个极值点.综上,当1a ≤时,()g x 不存在极值点;当1a >时,()g x 存在两个极值点. 【点睛】关键点点睛:本题第(2)问的关键有:(1)当1a ≤时,合理利用第(1)问中得到的1ln 10x e x ---≥以及不等式的性质得到()0g x '≥;(2)当1a >时,灵活构造函数,并根据等式将a 代换掉,得到()()090min 12ln nh x h x x x x ==--,最后巧妙取点,利用零点存在定理得到()h x 的零点,从而得到结果.变式1.已知函数()()xf x e ax a =-∈R . (1)讨论函数()f x 的单调性;(2)当2a =时,求函数()()cos g x f x x =-在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数. 解:(1)()x f x e ax =-,其定义域为R ,()xf x e a '=-①当0a ≤时,因为()0f x '>,所以()f x 在R 上单调递增, ②当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a < 所以()f x 在(),ln a -∞上单调递减,()ln ,a +∞上单调递增, 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞单调递减,()ln ,a +∞单调递增,(2)已知得()2cos xg x e x x =--,,2x π⎛⎫∈-+∞ ⎪⎝⎭则()sin 2xg x e x '=+-①当,02x π⎛⎫∈- ⎪⎝⎭时,因为()()1(sin 1)0xg x e x '=-+-<所以()g x 在,02π⎛⎫- ⎪⎝⎭单调递减,所以()()00g x g >=, 所以()g x 在,02π⎛⎫- ⎪⎝⎭上无零点;②当0,2x π⎡⎤∈⎢⎥⎣⎦时,因为()g x '单调递增,且(0)10g '=-<,2102g e ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使()00g x '= 当()00,x x ∈时,()0g x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '> 所以()g x 在[)00,x 递减0,2x π⎛⎤⎥⎝⎦递增,且()00g =,所以()00g x <,又因为202g e πππ⎛⎫=-> ⎪⎝⎭所以()002g x g π⎛⎫⋅< ⎪⎝⎭所以()g x 在0,2x π⎛⎫⎪⎝⎭上存在一个零点, 所以()g x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; ③当,2x π⎛⎫∈+∞ ⎪⎝⎭时,2()sin 230x g x e x e π'=+->->,所以()g x 在,2π⎛⎫+∞⎪⎝⎭单调递增 因为02g π⎛⎫>⎪⎝⎭,所以()g x 在,2π⎛⎫+∞ ⎪⎝⎭上无零点;综上所述,()g x 在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数为2个. 【点睛】方法点睛:函数的零点问题常见的解法有:(1)方程法(直接解方程得解);(2)图象法(直接研究函数()f x 的图象得解);(3)方程+图象法(令()0f x =得到()()g x h x =,再研究函数(),()g x h x 图象性质即得解).要根据已知条件灵活选择方法求解.变式2.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减 又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x ∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x ∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.变式3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明 解:(1)由已知得f ′(x )=a (sinx +xcosx ),对于任意的x ∴(0,2π), 有sinx +xcosx >0,当a =0时,f (x )=−32,不合题意; 当a <0时,x ∴(0,2π),f ′(x )<0,从而f (x )在(0, 2π)单调递减, 又函数f (x )=axsinx −32 (a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上的最大值为f (0),不合题意; 当a >0时,x ∴(0,2π),f ′(x )>0,从而f (x )在(0, 2π)单调递增, 又函数f (x )=axsinx −32(a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上上的最大值为f (2π)=2πa −32=32π-,解得a =1,综上所述,得3()sin (),2f x x x a R =-∈; (2)函数f (x )在(0,π)内有且仅有两个零点。

导数的应用隐零点问题

导数的应用隐零点问题

隐零点问题(二次求导、虚设零点)1.已知函数)2ln()(+-=x e x f x,求证:0)(>x f 恒成立. 证明:由题可知,定义域为),2(+∞-,由)2ln()(+-=x e x f x得21)('+-=x e x f x ,设)2(,21)(->+-=x x e x g x, 则0)2(1)('2>++=x e x g x在),2(+∞-上恒成立 则21)(+-=x e x g x在),2(+∞-上为增函数 又02121)0(,011211)1(01>=-=<-=+--=--e g e e g所以)(x g 在),2(+∞-存在唯一的零点,设此零点为0x ,则)0,1(0-∈x . 当),2(0x x -∈时,0)(<x g ,即0)('<x f ,则)(x f 在),2(0x -为减函数当),(0+∞∈x x 时,0)(>x g ,即0)('>x f ,则)(x f 在),(0+∞x 为增函数所以)2ln()()]([00min 0+-==x e x f x f x又由0)(0=x g 得,02100=+-x ex ,即)2ln(00+-=x x ,代入上式得02)1(21)(020000>++=++=x x x x x f ,即0)]([min >x f所以0)(>x f 恒成立2.设函数x x a ax x f ln 2)12(21)(2++-=. (1)当1=a 时,求函数)(x f 的单调区间; (2)若0=a 时,证明:42)(--<x e x f x. 解:(1)有题可知函数)(x f 的定义域为),0(+∞ 当1=a 时, x x x x f ln 2321)(2+-=,则 xx x x x x f )2)(1(23)('--=+-= 令0)('>x f ,得10<<x 或2>x ;令0)('<x f ,得21<<x 所以函数)(x f 的增区间为),2(),1,0(+∞,减区间为)2,1(. (2)当0=a 时,x x x f ln 2)(+-=42)(--<x e x f x 在),0(+∞上恒成立即42ln 2--<+-x e x x x在),0(+∞上恒成立即02ln >--x e x在),0(+∞上恒成立设)0(,2ln )(>--=x x e x g x,则xe x g x1)('-=,则 01)(''2>+=x e x g x 在),0(+∞上恒成立 则)('x g 在),0(+∞上为增函数 有题可知,01)1(',02)21('>-=<-=e g e g所以)('x g 在),0(+∞有唯一零点,设此零点为0x ,则)1,21(0∈x 当),0(0x x ∈时,0)('<x g ,则)(x g 在),0(0x 为减函数 当),(0+∞∈x x 时,0)('>x g ,则)(x g 在),(0+∞x 为增函数 所以2ln )()]([00min 0--==x e x g x g x又由0)('0=x g 得, 01=-x ex ,即00ln x x -=代入上式得 0)1(212ln )]([020000min0>-=-+=--=x x x x x e x g x所以42)(--<x e x f x.3.设函数2)(--=ax e x f x.(1)求函数)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,01)(')(>++-x x f k x ,求k 的最大值.解:(1)有题可知函数)(x f 的定义域为),(+∞-∞,由2)(--=ax e x f x得a e x f x -=)('①当0≤a 时,0)('>x f 在),(+∞-∞上恒成立,此时)(x f 在),(+∞-∞上为增函数, ),(+∞-∞为函数)(x f 单调递增区间;②当0>a 时,令0)('>-=a e x f x 得a x ln >,令0)('<-=a e x f x得a x ln <,此时)(x f 在)ln ,(a -∞上为减函数,在),(ln +∞a 为增函数,)ln ,(a -∞为函数)(x f 单调递减区间, ),(ln +∞a 为函数)(x f 单调递增区间.(2)当1=a 时, 2)(--=x e x f x,1)('-=xe x f01)(')(>++-x x f k x 在),0(+∞上恒成立x e x k x+-+<⇔11在),0(+∞上恒成立 令)0(,11)(>+-+=x x e x x g x ,则原命题等价于min )]([x g k <,2)1()2()('---=x x x e x e e x g 令)0(,2)(>--=x x e x h x,则01)('>-=xe x h 在),0(+∞上恒成立, 则)(x h 在),0(+∞上单调递增.又0)2(,0)1(><h h ,所以)(x h 在),0(+∞存在唯一的零点,设此零点为0x ,则)2,1(0∈x .当),0(0x x ∈时,0)(<x h ,即0)('<x g ,则)(x g 在),0(0x 为减函数当),(0+∞∈x x 时,0)(>x h ,即0)('>x g ,则)(x g 在),(0+∞x 为增函数所以000min 11)()]([0x e x x g x g x +-+==又由0)(0=x h 得, 200+=x ex ,代入上式得)3,2(111)(00000∈+=+-+=x x e x x g x 又)(0x g k <,故整数k 的最大值为2.4.已知函数x m x x f )21(ln )(-+=. (1)讨论函数)(x f 的极值;(2)若对),0(+∞∈∀x ,1)(2-≤mx x f 恒成立,求整数m 的最小值.解:(1)有题可知函数)(x f 的定义域为),0(+∞,由x m x x f )21(ln )(-+=得xx m m x x f 1)21()21(1)('+-=-+=①当021≥-m 即21≤m 时,0)('>x f 在),0(+∞上恒成立,此时,)(x f 在),0(+∞上为增函数,函数)(x f 在),0(+∞上无极值;②当021<-m 即21>m 时,令01)21(>+-x x m 得1210-<<m x , 令01)21(<+-x x m 得121->m x ,此时)(x f 在)121,0(-m 上为增函数,在),121(+∞-m 为减函数, 则)(x f 在121-=m x 取得极大值,为121ln1)121(-+-=-m m f . (2)1)(2-≤mx x f 在),0(+∞上恒成立x x x x m 21ln 2+++≥⇔在),0(+∞上恒成立)0(,21ln )(2>+++=x xx x x x g , 则原命题等价于max )]([x g m ≥,22)2()ln 2)(1()('x x x x x x g +++-=令)0(ln,2)(>+=x x x h ,则021)('>+=x x h 在),0(+∞上恒成立, 则)(x h 在),0(+∞上单调递增.又01)1(,02ln 221)21(>=<-=h h ,所以)(x h 在),0(+∞存在唯一的零点,设此零点为0x ,则)1,21(0∈x .当),0(0x x ∈时,0)(<x h ,即0)('>x g ,则)(x g 在),0(0x 为增函数 当),(0+∞∈x x 时,0)(>x h ,即0)('<x g ,则)(x g 在),(0+∞x 为减函数 所以020000max 21ln )()]([x x x x x g x g +++==又由0)(0=x h 得, 0ln 200=+x x ,代入上式得)1,21(2121ln )(0020000∈=+++=x x x x x x g 又)(0x g m ≥,故整数m 的最小值为1.5.设函数2)1()(x e ax x f x+-=. (1)当1=a 时,求函数)(x f 的极值;(2)证明:当若0>a 时,1)1ln()(2+++-≥x x ax x f . 解:(1)有题可知函数)(x f 的定义域为),(+∞-∞当1=a 时2)1()(x e x x f x+-=,则)2(2)1()('+=+-+=xxxe x x e x e xf 令0)('>x f 得0>x ,令0)('<x f 得0<x所以)(x f 在),0(+∞上为增函数,在)0,(-∞上为减函数所以当0=x 时,)(x f 有极小值,为1)0(-=f ,)(x f 无极大值.(2)1)1ln()(2+++-≥x x ax x f ,即≥+-2)1(x e ax x1)1ln(2+++-x x ax 即--xe ax )1(01)1ln(≥---x ax 设)1(,1)1ln()1()(ax x ax e ax x g x>-----=,则 )11)(1(11)1()('--+-=----+=ax e a ax ax a e ax ae x g x x x 设)1(,11)(a x ax e x h x>--=则0)1()('2>-+=ax a e x h x在),1(+∞a上恒成立所以)(x h 在),1(+∞a上为增函数由题可得01)2(2>-=a e a h ,ax 1→时,-∞→)(x h所以)(x h 在),1(+∞a 存在唯一的零点,设此零点为0x ,则)2,1(0aa x ∈.当),1(0x a x ∈时,0)(<x h ,即0)('<x g ,则)(x g 在),1(0x a为减函数 当),(0+∞∈x x 时,0)(>x h ,即0)('>x g ,则)(x g 在),(0+∞x 为增函数 所以1)1ln()1()()]([0000min 0-----==x ax e ax x g x g x又由0)(0=x h 得,01100=--ax ex ,即)1ln(00--=ax x ,代入上式得1)1ln()1()]([000min 0-----=x ax e ax x g x0111)1(1)1(0000=-=--+--=x x ax ax所以0)(≥x g ,即1)1ln()(2+++-≥x x ax x f .。

导数中的隐零点代换与估计问题(解析版)

导数中的隐零点代换与估计问题(解析版)

导数中的隐零点代换与估计问题隐零点代换证不等式【精选例题】1已知函数f x =e x -a -ln x +x .(1)当a =1时,求曲线f x 在点1,f 1 处的切线方程;(2)当a ≤0时,证明:f x >x +2.【答案】(1)x -y +1=0;(2)证明见解析.【详解】(1)当a =1时,f x =e x -1-ln x +x ,求导得f x =e x -1-1x+1,则f 1 =1,而f 1 =2,则切线方程为y -2=x -1,即x -y +1=0,曲线f x 在点1,f 1 处的切线方程为x -y +1=0.(2)当a ≤0时,令F (x )=f (x )-x -2=e x -a -ln x -2,x >0,求导得F (x )=e x -a-1x =xe x -a -1x,显然函数F (x )在(0,+∞)上单调递增,令g (x )=xe x -a -1,x ≥0,g (x )=(x +1)e x -a >0,即函数g (x )在(0,+∞)上单调递增,而g (0)=-1<0,g (1)=e 1-a -1≥e -1>0,则存在唯一x 0∈(0,1),使得g (x 0)=0,即e x 0-a =1x 0,因此存在唯一x 0∈(0,1),使得F (x 0)=0,当0<x <x 0时,F (x 0)<0,当x >x 0时,F (x 0)>0,因此函数F (x )在(0,x 0)上递减,在(x 0,+∞)上递增,当e x 0-a =1x 0时,x 0-a =-ln x 0,则F (x )≥F (x 0)=e x 0-a -ln x 0-2=1x 0+x 0-a -2>21x 0⋅x 0-a -2=-a ≥0,(当且仅当1x 0=x 0即x 0=1时,取等号,故式子取不到等号)所以当a ≤0时,f x >x +2.2已知函数f x =e x -ax 2-x .(1)当a =12时,求不等式f x -1-1 <1的解集;(2)当a >12时,求证f x 在0,+∞ 上存在极值点x 0,且f x 0 <3-x 02.【答案】(1)1,2 ;(2)证明见解析【详解】(1)a =12时,f x =e x -x 22-x ,f (x )=e x -x -1,令g (x )=f (x ),则g (x )=e x -1,于是x >0时,g (x )>0,g (x )递增,x <0时,g (x )<0,g (x )递减,故g (x )在x =0处取得最小值,即g (x )≥g (0)=e 0-0-1=0,于是g (x )=f (x )≥0,故f (x )在R 上递增,注意到f (0)=1,故f x -1-1 <1⇔f x -1-1 <f (0),结合单调性,于是x -1-1<0,即x -1<1,解得1≤x <2,不等式的解集为1,2 .(2)f x =e x -ax 2-x ,则f x =e x -2ax -1,令g (x )=f (x ),g (x )=e x -2a ,由a >12可知,x >ln2a 时,g (x )>0,g (x )递增,x <ln2a 时,g (x )<0,g (x )递减,g (x )在x =ln2a 处取得最小值,而g (ln2a )=2a -2a ln2a -1=2a 1-ln2a -12a ,又记h (x )=1-ln x -1x (x >1),h(x )=-1x +1x 2=1-x x 2<0,故h (x )在1,+∞ 上单调递减,故h (x )<h (1)=0,于是h (2a )<0,即g (ln2a )=2a ⋅h (2a )<0;g (2a )=e 2a -4a 2-1,令p (x )=e x -x 2-1(x >1),p (x )=e x -2x ,记q (x )=p (x )(x >1),则q (x )=e x -2>e 1-2>0,则q x =p x 在1,+∞ 单增,q x >q 1 =e -2,故p (x )在1,+∞ 上递增,p (x )>p (1)=e -2>0,取x =2a ,则g (2a )=p (2a )>0;记y =ln x -x +1,y =1-xx,于是x >1时,y <0,y 递减,0<x <1时,y >0,y 递增,故y 在x =1处取得最大值,故y =ln x -x +1≤ln1-1+1=0,x =1取得等号,于是ln2a <2a -1<2a . 于是,由g (2a )⋅g (ln2a )<0和零点存在定理可知,∃x 0∈(ln2a ,2a ),使得g (x 0)=f (x 0)=0,且ln2a <x <x 0,f (x )<0,x 0<x <2a ,f (x )>0,所以x 0是极小值点;由f (x 0)=0可得,e x 0-2ax 0-1=0,令j (x )=e x -ax 2-x -3-x 2=e x -ax 2-3+x 2,代入a =e x -12x ,整理j (x )=1-x 2 e x -32,j (x )=(1-x )e x 2,于是x >1时,j (x )<0,j (x )递减,x <1时,j (x )>0,j (x )递增,故j (x )在x =1处取得最大值,故j (x )≤j (1)=e -32<0,取x =x 0,故j (x 0)<0,原命题得证.【跟踪训练】1已知函数f x =ln ax ,a >0.(1)当a =1时,若曲线y =f x 在x =1处的切线方程为y =kx +b ,证明:f x ≤kx +b ;(2)若f x ≤x -1 e x -a ,求a 的取值范围.【详解】解析:(2)记h x =x -1 e x -a -f x =x -1 e x -a -ln x -ln a ,x >0,依题意,h x ≥0恒成立,求导得h x =xe x -a -1x ,x >0,令y =h x =xe x -a -1x ,y =x +1 e x -a +1x2>0,则h x 在0,+∞ 上单调递增,又h 12 =12e 12-a-2<0,h a +1 =a +1 e -1a +1>0,则∃x 0∈12,a +1 ,使得h x 0 =0,即x 0e x 0-a =1x 0成立,则当x ∈0,x 0 ,h x <0,h x 单调递减;当x ∈x 0,+∞ ,h x >0,h x 单调递增,h (x )min =h x 0 =x 0-1 e x 0-a -ln x 0-ln a ,由x 0e x 0-a =1x 0,得e x 0-a =1x 20,a =x 0+2ln x 0,于是得h x 0 =x 0-1x 20-ln x 0-ln x 0+2ln x 0 ,当x ∈1,+∞ 时,令t x =x -1x 2-ln x ,有t x =1-x x +2x 3<0,t x 在1,+∞ 上单调递减,而x +2ln x 在1,+∞ 上单调递增,即有函数y =-ln x +2ln x 在1,+∞ 上单调递减,于是得函数φx =x -1x 2-ln x -ln x +2ln x 在1,+∞ 上单调递减,则当x 0∈1,+∞ 时,h x 0 =φx 0 <φ1 =0,不合题意;当x 0∈12,1且x 0+2ln x 0>0时,由(1)中ln x ≤x -1知,-ln x 0≥1-x 0,有-ln x 0+2ln x 0 ≥1-x 0+2ln x 0 ,从而h x 0 =x 0-1x 20-ln x 0-ln x 0+2ln x 0 ≥x 0-1x 20-ln x 0+1-x 0+2ln x 0 =x 0-1x 20-3ln x 0-x 0+1≥x 0-1x 20-3x 0-1 -x 0+1=1-x 0 2x 0-1 2x 0+1 x 20,由x 0∈12,1 知h x 0 ≥0,因此满足f x ≤x -1 e x -a ,又a =x 0+2ln x 0,y =x +2ln x 在12,1上单调递增,则有a ∈12-2ln2,1,而a >0,所以实数a 的取值范围是0,1 .2已知函数f x =e x -ax-ln x +ln a +1 (a >0)(e 是自然对数的底数).(1)当a =1时,试判断f x 在1,+∞ 上极值点的个数;(2)当a >1e -1时,求证:对任意x >1,f x >1a.【详解】解析:(1)f (x )在1,+∞ 上只有一个极值点,即唯一极小值点;(2)证明:由f(x )=e x -a (x -1)x 2-1x =(x -1)e x -a -xx -1 x2,设h (x )=e x -a -x x -1,则h (x )=e x -a -1-1x -1在1,+∞ 上是增函数,当x →1+时,h (x )→-∞,因为a >1e -1,所以h (a +1)=e -1-1a>0,所以存在x 0∈(1,a +1),使得h (x 0)=e x 0-a-x 0x 0-1=0,当x ∈(1,x 0)时,h (x )<0,则f (x )<0,即f (x )在(1,x 0)上单调递减,当x ∈(x 0,+∞)时,h (x )>0,则f (x )>0,即f (x )在(1,x 0)上单调递增,故x =x 0是函数f x =e x -a x -ln x +ln a +1 (a >0)的极小值点,也是最小值点,则f (x )≥f (x 0)=ex 0-ax 0-ln x 0+ln a +1 ,又因为e x 0-a =x 0x 0-1,所以f (x 0)=1x 0-1-ln x 0+ln a +1 ,即证:对任意x >1,1x 0-1-ln x 0+ln a +1 >1a,即证:对任意x >1,1x 0-1-ln x 0>1a -ln a +1 ,设g (x )=1x -1-ln x ,则g (x )=1x -1-ln x 在1,+∞ 上单调递减,因为x 0∈(1,a +1),所以g (x 0)>g (a +1),故1x 0-1-ln x 0>1a-ln a +1 ,故对任意x >1,f x >1a.3已知函数f (x )=ae x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形面积;(2)若f (x )≥1,求a 的取值范围.【详解】解析:(1)切线方程为y =e -1 x +2,故切线与坐标轴交点坐标分别为(0,2),-2e -1,0,所求三角形面积为12×2×-2e -1 =2e -1.(2)由于f (x )=ae x -1-ln x +ln a ,∴f (x )=ae x -1-1x ,且a >0. 设g (x )=f ′(x ),则g ′(x )=ae x -1+1x2>0,即f ′(x )在(0,+∞)上单调递增,当a =1时,f (1)=0,∴f x min =f 1 =1,∴f x ≥1成立.当a >1时,1a <1,∴f 1a f (1)=a e 1a-1-1 (a -1)<0,∴存在唯一x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,且当x ∈(0,x 0)时f (x )<0,当x ∈(x 0,+∞)时f (x )>0,∴ae x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=ae x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0⋅x 0=2ln a +1, 故f x ≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不是恒成立.综上所述,实数a 的取值范围是[1,+∞).题型二:导数中的隐零点同构求范围问题【精选例题】1已知函数f x =e ax -x (a ∈R ,e 为自然对数的底数),g x =ln x +mx +1.(1)若f x 有两个零点,求实数a 的取值范围;(2)当a =1时,x f x +x ≥g x 对任意的x ∈0,+∞ 恒成立,求实数m 的取值范围.【详解】解析:(1)f x 有两个零点⇔关于x 的方程e ax =x 有两个相异实根,由e ax >0,知x >0∴f x 有两个零点⇔a =ln x x 有两个相异实根.令G x =ln x x ,则G x =1-ln x x 2,由Gx >0得:0<x <e ,由G x <0得:x >e ,∴G x 在0,e 单调递增,在e ,+∞ 单调递减,∴G x max =G e =1e,又∵G 1 =0,∴当0<x <1时,G x <0,当x >1时,G x >0,当x →+∞时,G x →0,∴f x 有两个零点时,实数a 的取值范围为0,1e;(2)当a =1时,f x =e x -x ,∴原命题等价于xe x ≥ln x +mx +1对一切x ∈0,+∞ 恒成立⇔m ≤e x -ln x x -1x 对一切x ∈0,+∞ 恒成立.令F x =e x -ln x x -1xx >0∴m ≤F x min ,F x =e x +ln x x 2=x 2e x+ln xx2,令h x =x 2e x +ln x ,x ∈0,+∞ ,则h x =2xe +x 2e x +1x >0,∴h x 在0,+∞ 上单增,又h 1 =e >0,h 1e=e 1e-2-1<e 0-1=0∴∃x 0∈1e,1 ,使h x 0 =0即x 20e x+ln x 0=0①,当x ∈0,x 0 时,h x <0,当x ∈x 0,+∞ 时,h x >0,即F x 在0,x 0 递减,在x 0,+∞ 递增,∴F x min =F x 0 =e x 0-ln x 0x 0-1x 0,由①知x 20e x=-ln x 0,∴x 0e x 0=-ln x 0x 0=1x 0ln 1x 0=ln 1x 0e ln 1x 0∵函数φx =xe x 在0,+∞ 单调递增,∴x 0=ln 1x 0即x 0=-ln x 0,∴F x min =e -ln x 0--x 0x 0-1x 0=1x 0+1-1x 0=1,∴m ≤1∴实数m 的取值范围为-∞,1 .2已知函数f (x )=−a ln x −e xx+ax ,a ∈R .(1)当a <0,讨论f (x )的单调性;(2)当a =1时,若f (x )+x +1xe x −bx ≥1恒成立,求b 的取值范围.【详解】解析:(2)由题意,当a =1时,不等式f x +x +1xe x -bx ≥1恒成立.即xe x -ln x +1-b x≥1恒成立,即b -1≤e x -ln x x -1x 恒成立.设g x =e x --ln x x -1x .则g x =e x -1-ln x x 2+1x 2=x 2e x +ln x x2.设h x =x 2e x +ln x ,则h x =x 2+2x e x +1x .∵当x >0时,有h x >0.∴h x 在0,+∞ 上单调递增,且h 1 =e >0,h 12 =e 4-ln2<0.∵函数h x 有唯一的零点x 0,且12<x 0<1.∵当x ∈0,x 0 时,h x <0,g x <0,g x 单调递减;当x ∈x 0,+∞ 时,h x >0,gx >0,g x 单调递增.即g x 0 为g x 在定义域内的最小值.∴b -1≤e x 0-ln x 0x 0-1x 0.∵h x 0 =0,得x 0e x=-ln x 0x 0,12<x 0<1.⋯⋯* 令k x =xe x ,12<x <1.∴方程* 等价于k x =k -ln x ,12<x <1.而k x =x +1 e x在0,+∞ 上恒大于零,∴k x 在0,+∞ 上单调递增.故k x =k -ln x 等价于x =-ln x ,12<x <1.设函数m x =x +ln x ,12<x <1.易知m x 单调递增.又m 12 =12-ln2<0,m 1 =1>0,∴x 0是函数的唯一零点. 即ln x 0=-x 0,e x 0=1x 0.故g x 的最小值g x 0 =e x 0-ln x 0x 0-1x 0=1x 0--x 0 x 0-1x 0=1.∴实数b 的取值范围为-∞,2 .【跟踪训练】1已知函数f x =a ln x -1x-2x ,a ∈R .(1)当a =1时,判断f x 的零点个数;(2)若f x +e x +1x+2x ≥e 恒成立,求实数a 的值.【答案】(1)f x 的零点个数为0;(2)a =-e 【详解】(1)当a =1时,f x =ln x -1x -2x x >0 ,则f x =1x +1x 2-2=-2x 2+x +1x2=-2x 2-x -1x 2=-2x +1 x -1 x 2, 当x ∈0,1 ,f x >0,函数f x 在0,1 上单调递增,当x ∈1,+∞ ,f x <0,函数f x 在1,+∞ 上单调递减,所以f x max =f 1 =-1-2=-3<0, 所以f x 的零点个数为0.(2)不等式f x +e x +1x +2x ≥e ,即为e x +a ln x ≥e ,设F x =e x +a ln x ,x ∈0,+∞ ,则F x =e x +ax=xe x+a x, 设g x =xe x +a ,x ∈0,+∞ ,当a ≥0时,g x >0,可得F x >0,则F x 单调递增,此时当x =1,F 1 =e ,而当0<x <1时,F x <e ,故不满足题意; 当a <0时,由g x =x +1 e x >0,g x 单调递增,当x 无限趋近0时,g x 无限趋近于负数a ,当x 无限趋近正无穷大时,g x 无限趋近于正无穷大,故g x =0有唯一的零点x 0,即x 0e x 0+a =0,则e x 0=-ax 0,ln x 0+x 0=ln -a ,当x ∈0,x 0 时,g x <0,可得F x <0,F x 单调递减;当x ∈x 0,+∞ 时,g x >0,可得F x >0,F x 单调递增,所以F x min =F x 0 =e x 0+a ln x 0=-a x 0+a ln -a -x 0 =a ln -a -ax 0-ax 0=a ln -a -a x 0+1x 0,因为x 0>0,可得1x 0+x 0≥2,当且仅当x 0=1时,等号成立,所以a ln -a -a x 0+1x 0≥a ln -a -2a因为F x ≥e 恒成立,即a ln -a -2a ≥e 恒成立,令h a =a ln -a -2a ,a ∈-∞,0 ,可得h a =ln -a +1-2=ln -a -1,当a ∈-∞,-e 时,h a >0,h a 单调递增;当a ∈-e ,0 时,h a <0,h a 单调递减,所以h a ≤h -e =e ,即h a ≤e 又由h a ≥e 恒成立,则h a =a ln -a -2a =e ,所以a =-e.2已知函数f x =e x -ln xx-1.(1)求曲线y =f x 在点1,f 1 处的切线方程;(2)若函数g x =f x -ax有两个零点x 1,x 2(其中x 1<x 2),求实数a 的取值范围.【答案】(1)e -1 x -y =0;(2)1,+∞【详解】(1)由f x =e x -ln x x -1,则f x =e x -1-ln xx 2,所以f 1 =e -1,即切点坐标为1,e -1 ,切线斜率k =f 1 =e -1,故切线方程为y -e -1 =e -1 x -1 ,即e -1 x -y =0.(2)由题意g x =0有两个不等的正根,等价于xe x -ln x -x =a 有两个不等的实根,设h x =xe x -ln x-x (x >0),则h x =x +1e x -1x -1=x +1 e x -1x ,设m x =e x -1x,mx =e x+1x 2>0,则m x 在0,+∞ 为增函数,且m 12=e -2<0,m 1 =e -1>0,所以存在唯一的x 0∈0,+∞ ,使m x 0=e x 0-1x 0=0,得e x 0=1x 0ln x 0=-x 0①,当x ∈0,x 0 时,m x <0,即h x <0,所以h x 在0,x 0 内单调递减;当x ∈x 0,+∞ 时,m x >0,即h x >0,所以h x 在x 0,+∞ 内单调递增;所以h (x ) min =h x 0 =x 0e x 0-ln x 0-x 0,代入①式得h x 0 =x 0×1x 0--x 0 -x 0=1,当x 趋向于0或+∞时,h x 趋向+∞,若函数g x 有两个零点,即函数h x 有两个零点,可得a >1,所以实数a 的取值范围1,+∞ .导数中隐零点的估计值域问题【精选例题】1已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.【详解】解析:(1)a =1.(2)由(1)知f (x )=x 2-x -x ln x ,f (x )=2x -2-ln x .设h (x )=2x -2-ln x ,则h (x )=2-1x.当x ∈0,12时,h (x )<0;当x ∈12,+∞ 时,h(x )>0.所以h (x )在0,12 单调递减,在12,+∞ 单调递增.又h (e -2)>0,h 12 <0,h (1)=0,所以h (x )在0,12 有唯一零点x 0,在12,+∞ 有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因此f (x )=h (x ),所以x =x 0是f (x )的唯一极大值点.由f (x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).由x 0∈(0,1)得,f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f (e -1)≠0得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.2已知函数f (x )=-(a +1)ln x +ax -1x(a ∈R ).(1)求函数f (x )的单调区间;(2)当a =-2时,g (x )=f (x )+(x -2)e x +x +1x,记函数y =g (x )在14,1 上的最大值为m ,证明:-4<m <-3.【解答】解:(1)f (x )=-(a +1)ln x +ax -1x 的定义域为(0,+∞),又f ′(x )=-a +1x +a +1x2=(x -1)(ax -1)x2,①当a ≤0时,ax -1<0,若x ∈(0,1),则f ′(x )>0,若x ∈(1,+∞),则f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;②当a >0时,若1a >1,即0<a <1时,同理可得,f (x )在(0,1),1a ,+∞ 上单调递增,在1,1a 上单调递减;若1a =1,即a =1时,f ′(x )≥0,f (x )在(0,+∞)上单调递增;若0<1a <1,即a >1时,同理可得,f (x )在0,1a ,(1,+∞)上单调递增,在1a ,1上单调递减;综上所述,当a ≤0时,f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞);当0<a <1时,f (x )的单调递增区间为(0,1),1a ,+∞ ;单调递减区间为1a ,1 ;当a =1时,f (x )的单调递增区间为(0,+∞);当a >1时,f (x )的单调递增区间为0,1a,(1,+∞);单调递减区间为1a ,1;(2)证明:当a =-2时,g (x )=f (x )+(x -2)e x +x +1x =ln x -2x -1x +(x -2)e x +x +1x=ln x -x +(x -2)e x ,则g (x )=(x -1)e x -1+1x =(x -1)e x -1x ,当14<x <1时,x -1<0,令h (x )=e x -1x,则h (x )=e x +1x 2>0,所以h (x )在14,1 上单调递增.因为h 12=e 12-2<0,h (1)=e -1>0,所以存在x 0∈12,1,使得h (x 0)=0,即e x 0=1x 0,即ln x 0=-x 0,故当x ∈14,x 0 时,h (x )<0,g (x )>0;当x ∈(x 0,1)时,h (x )>0,g (x )<0;即g (x )在14,x 0上单调递增,在(x 0,1)上单调递减.所以m =g (x )max =g (x 0)=(x 0-2)e x 0-x 0+ln x 0=(x 0-2)1x 0-x 0-x 0=(x 0-2)1x 0-2x 0=1-2x 0+2x 0.令G (x )=1-2x -2x ,x ∈12,1 ,则G(x )=2x 2-2=2(1-x 2)x 2>0,所以G (x )在12,1 上单调递增,所以G (x )>G 12=-4,G (x )<G (1)=-3,所以-4<m <-3.3已知二次函数f (x )=x 2+2x .(1)讨论函数g (x )=f (x )+a ln (x +1)的单调性;(2)设函数h (x )=f (x )-e x ,记x 0为函数h (x )极大值点,求证:14<h (x 0)<2.【解答】解:(1)g (x )=x 2+2x +a ln (x +1)(x >-1),g(x )=2x +2+a x +1=2(x +1)2+a x +1,当a ≥0时,g (x )在(-1,+∞)上恒正;所以,g (x )在(-1,+∞)上单调递增,当a <0时,由g (x )=0得x =-1+-a 2,所以当x ∈-1,-1+-a 2 时,g (x )<0,g (x )单调递减,当x ∈-1+-a 2,+∞ 时,g (x )>0,g (x )单调递增.综上所述,当a ≥0时,g (x )在(-1,+∞)上单调递增;当a <0时,当x ∈-1,-1+-a 2 时,g (x )单调递减;当x ∈-1+-a 2,+∞ 时,g (x )单调递增.(2)证明:h (x )=x 2+2x -e x (x ∈R ),则h (x )=2x +2-e x ,h (x )=2-e x ,令h (x )=0⇒x =ln2,当x ∈(-∞,ln2)时,h (x )>0,h (x )为增函数;当x ∈(ln2,+∞)时,h (x )<0,h (x )为减函数;所以,h (x )在x =ln2处取得极大值2ln2,h (x )一定有2个零点,分别是h (x )的极大值点和极小值点.设x 0是函数h (x )的一个极大值点,则h (x 0)=2x 0+2-e x 0=0,所以,e x 0=2x 0+2,又h 32=5-e 32>0,h (2)=6-e 2<0,所以,x 0∈32,2 ,此时h (x 0)=x 02+2x 0-e x 0=x 02-2x 0∈32,2 ,所以14<h (x 0)<2.【跟踪训练】1(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g x =e x -ax -ax 2(x >0)有最小值.设g x 的最小值为h (a ),求函数h (a )的值域.【详解】解析:(1)证明:f x =x -2x +2e x f x =e x x -2x +2+4x +2 2=x 2e x x +22∵当x ∈-∞,-2 ∪-2,+∞ 时,f x >0∴f x 在-∞,-2 和-2,+∞ 上单调递增∴x >0时,x -2x +2e x>f 0 =-1∴x -2 e x+x +2>0(2)g(x )=(x -2)e x +a (x +2)x 3=x +2x 3(f (x )+a ),由(1)知,f (x )+a 单调递增,对任意的a ∈0,1 ,f (0)+a =a -1<0,f (2)+a =a >0,因此,存在唯一x a ∈(0,2],使得f (x a )+a =0,即g (x a )=0.当0<x <x a 时,f (x )+a <0,g (x )<0,g (x )单调递减;当x >x a 时,f (x )+a >0,g (x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a-a (x a +1)x 2a =e x a-f (x a )(x a +1)x 2a=ex ax a +2.于是h (a )=e x ax a +2,由e x x +2 =(x +1)e x (x +2)2>0,得e x x +2单调递增.所以,由x a∈(0,2],得12<h (a )<e 24,因为e x x +2单调递增,对任意的λ∈12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ,所以h (a )的值域为12,e 24 .综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域为12,e 24.2已知函数f (x )=ax 3-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -32<f (x 0)<1e.【解答】解:(1)由f (x )=ax 3-ax -x ln x =x (ax 2-a -ln x )≥0恒成立,令g (x )=ax 2-a -ln x 且x >0,①当a ≤0时,f (2)=2(3a -ln2)<0(舍);②当a >0时,g(x )=2ax -1x =2ax 2-1x,在0,12a 上,g ′(x )<0,g (x )单调递减,在12a,+∞ 上,g ′(x )>0,g (x )单调递增,g (x )min =g 12a =12-a -ln 12a =12(ln2a -2a +1)≥0.令h (a )=ln2a -2a +1,h ′(a )=1a-2=1-2a a ,在0,12 上,h ′(a )>0,h (a )单调递增,在12,+∞ 上,h ′(a )<0,h (a )单调递减,∴h (a )max =h 12 =0,则a =12.(2)证明:由(1)知:a =12,∴f (x )=12x 3-12x -x ln x ,则f ′(x )=32(x 2-1)-ln x ,令u (x )=f ′(x ),则u ′(x )=3x -1x =3x 2-1x ,在0,33 上,u ′(x )<0,则u (x )单调递减,在33,+∞ 上,u ′(x )>0,则u (x )单调递增,∴u (x )min =u 33 =-1-ln 33=ln 3e<0,u (1)=0,u e -32>0,u (x )=f ′(x )有两个根1,x 0∈e -32,33,f ′(x )图象如下,∴f (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )存在唯一极大值为f (x 0)=12x 30-12x 0-x 0ln x 0,又32(x 20-1)=ln x 0,∴f (x 0)=12x 30-12x 0-x 0ln x 0=-x 30+x 0,令φ(x )=-x 3+x ,在e -32,33上φ′(x )=1-3x 2>0,故φ(x )单调递增.f ′(e -1)=32(e -2-1)+1<0,故e -32<x 0<e -1<33,且f (x 0)为极大值,∴f (x 0)=φ(x 0)<φ(e -1)=e -1-e -3<e -1,f (x 0)>f e -32 =12e -32 3-12e -32-e -32ln e -32=12e -32 3+e -32>e -32,∴e -32<f (x 0)<e -1.3已知函数f (x )=xe x -3e x .(1)求f (x )的极值;(2)若g (x )=f ′(x )-x +ln x 在14,1上的最大值为λ,求证:-6e -3<f (λ)<-7e -4;【解答】解:(1)f (x )=xe x -3e x .∴f ′(x )=(x -2)e x ,f ′(2)=0,x >2时,f ′(x )>0,此时函数f (x )单调递增;x <2时,f ′(x )<0,此时函数f (x )单调递减.∴f (x )在x =2处取得极小值,f (2)=-e 2,无极大值.(2)证明:g (x )=f ′(x )-x +ln x =(x -2)e x -x +ln x ,x ∈14,1 .g ′(x )=(x -1)e x-1+1x=(x -1)e x-1x .∵x ∈14,1 ,∴x -1≤0.函数h (x )=e x -1x在x ∈14,1 上单调递增,又h 12 =e -2<0,h (1)=e -1>0,因此函数h (x )在x ∈14,1 上存在唯一零点x 0,并且x 0∈12,1 ,e x 0=1x 0(可得x 0=-ln x 0).∴x =x 0时,函数g (x )取得极大值即最大值λ=g (x 0)=(x 0-2)e x 0-x 0+ln x 0=(x 0-2)×1x 0-x 0-x 0=1-21x 0+x 0∈(-4,-3).而函数f (x )在λ∈(-4,-3)上单调递减.∴f (-3)<f (λ)<f (-4),而f (-3)=-6e -3,f (-4)=-7e -4,∴-6e -3<f (λ)<-7e -4.。

导数压轴题之隐零点问题专辑含标准答案纯word版

导数压轴题之隐零点问题专辑含标准答案纯word版

导数压轴题之隐零点问题导数压轴题之隐零点问题(共13题)1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且.【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立,即a(e x﹣1)≥x恒成立,x=0时,显然成立,x>0时,e x﹣1>0,故只需a≥在(0,+∞)恒成立,令h(x)=,(x>0),h′(x)=<0,故h(x)在(0,+∞)递减,而==1,故a≥1,x<0时,e x﹣1<0,故只需a≤在(﹣∞,0)恒成立,令g(x)=,(x<0),g′(x)=>0,故h(x)在(﹣∞,0)递增,而==1,故a≤1,综上:a=1;(2)证明:由(1)f(x)=e x(e x﹣x﹣1),故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1,所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0,∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知,方程h(x)=0在(﹣2,ln)有唯一根,设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.2.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数,∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.∴a≥﹣2.∴a的取值范围是[﹣2,+∞).(2)a=1时,f(x)=x+lnx,k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,∴k<,令g(x)=,则g′(x)=,令h(x)=x﹣lnx﹣2(x>1).则h′(x)=1﹣=>0,∴h(x)在(1,+∞)上单增,∵h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,存在x0∈(3,4),使h(x0)=0.即当1<x<x0时h(x)<0 即g′(x)<0x>x0时h(x)>0 即g′(x)>0g(x)在(1,x0)上单减,在(x0+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,g(x)min=g(x0)===x0∈(3,4).k<g(x)min=x0∈(3,4),且k∈Z,∴k max=3.3.函数f(x)=alnx﹣x2+x,g(x)=(x﹣2)e x﹣x2+m(其中e=2.71828…).(1)当a≤0时,讨论函数f(x)的单调性;(2)当a=﹣1,x∈(0,1]时,f(x)>g(x)恒成立,求正整数m的最大值.【解答】解:(1)函数f(x)定义域是(0,+∞),,(i)当时,1+8a≤0,当x∈(0,+∞)时f'(x)≤0,函数f(x)的单调递减区间是(0,+∞);(ⅱ)当,﹣2x2+x+a=0的两根分别是:,,当x∈(0,x1)时f'(x)<0.函数f(x)的单调递减.当x∈(x1,x2)时f'(x)>0,函数f(x)的单调速递增,当x∈(x2,+∞)时f'(x)<0,函数f(x)的单调递减;综上所述,(i)当时f(x)的单调递减区间是(0,+∞),(ⅱ)当时,f(x)的单调递增区间是,单调递减区间是和(2)当a=﹣1,x∈(0,1]时,f(x)>g(x),即m<(﹣x+2)e x﹣lnx+x,设h(x)=(﹣x+2)e x﹣lnx+x,x∈(0,1],∴,∴当0<x≤1时,1﹣x≥0,设,则,∴u(x)在(0,1)递增,又∵u(x)在区间(0,1]上的图象是一条不间断的曲线,且,∴使得u(x0)=0,即,当x∈(0,x0)时,u(x)<0,h'(x)<0;当x∈(x0,1)时,u(x)>0,h'(x)>0;∴函数h(x)在(0,x0]单调递减,在[x0,1)单调递增,∴=,∵在x∈(0,1)递减,∵,∴,∴当m≤3时,不等式m<(﹣x+2)e x﹣lnx+x对任意x∈(0,1]恒成立,∴正整数m的最大值是3.4.已知函数f(x)=e x+a﹣lnx(其中e=2.71828…,是自然对数的底数).(Ⅰ)当a=0时,求函数a=0的图象在(1,f(1))处的切线方程;(Ⅱ)求证:当时,f(x)>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.本资料分享自千人教师QQ群323031380 高中数学资源大全5.已知函数f(x)=axe x﹣(a+1)(2x﹣1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.【解答】解:(1)若a=1,则f(x)=xe x﹣2(2x﹣1),当x=0时,f(0)=2,f'(x)=xe x+e x﹣4,当x=0时,f'(0)=﹣3,所以所求切线方程为y=﹣3x+2.……(3分)(2)由条件可得,首先f(1)≥0,得,而f'(x)=a(x+1)e x﹣2(a+1),令其为h(x),h'(x)=a(x+2)e x恒为正数,所以h(x)即f'(x)单调递增,而f'(0)=﹣2﹣a<0,f'(1)=2ea﹣2a﹣2≥0,所以f'(x)存在唯一根x0∈(0,1],且函数f(x)在(0,x0)上单调递减,在(x0+∞)上单调递增,所以函数f(x)的最小值为,只需f(x0)≥0即可,又x0满足,代入上式可得,∵x0∈(0,1],∴,即:f(x0)≥0恒成立,所以.……(13分)6.函数f(x)=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.(1)求a和b的值;(2)若f(x)满足:当x>0时,f(x)≥lnx﹣x+m,求实数m的取值范围.【解答】解:(1)∵f(x)=xe x﹣ax+b,∴f′(x)=(x+1)e x﹣a,由函数f(x)的图象在x=0处的切线方程为:y=﹣x+1,知:,解得a=2,b=1.(2)∵f(x)满足:当x>0时,f(x)≥lnx﹣x+m,∴m≤xe x﹣x﹣lnx+1,①令g(x)=xe x﹣x﹣lnx+1,x>0,则=,设g′(x0)=0,x0>0,则=,从而lnx0=﹣x0,g′()=3()<0,g′(1)=2(e﹣1)>0,由g′()﹣g′(1)<0,知:,当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=﹣x0﹣lnx0=﹣x0﹣lnx0=x0•﹣x0+x0=1.m≤xe x﹣x﹣lnx+1恒成立⇔m≤g(x)min,∴实数m的取值范围是:(﹣∞,1].本资料分享自千人教师QQ群323031380 高中数学资源大全7.已知函数f(x)=3e x+x2,g(x)=9x﹣1.(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;(2)比较f(x)与g(x)的大小,并加以证明.【解答】解:(1)φ'(x)=(x﹣2)(e x﹣2),令φ'(x)=0,得x1=ln2,x2=2;令φ'(x)>0,得x<ln2或x>2;令φ'(x)<0,得ln2<x<2.故φ(x)在(﹣∞,ln2)上单调递增,在(ln2,2)上单调递减,在(2,+∞)上单调递增.(2)f(x)>g(x).证明如下:设h(x)=f(x)﹣g(x)=3e x+x2﹣9x+1,∵h'(x)=3e x+2x﹣9为增函数,∴可设h'(x0)=0,∵h'(0)=﹣6<0,h'(1)=3e﹣7>0,∴x0∈(0,1).当x>x0时,h'(x)>0;当x<x0时,h'(x)<0.∴h(x)min=h(x0)=,又,∴,∴==(x0﹣1)(x0﹣10),∵x0∈(0,1),∴(x0﹣1)(x0﹣10)>0,∴h(x)min>0,∴f(x)>g(x).8.已知函数f(x)=lnx+a(x﹣1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.【解答】解:(1),①当0<a≤2时,f'(x)≥0,y=f(x)在(0,+∞)上单调递增,②当a>2时,设2ax2﹣2ax+1=0的两个根为,且,y=f(x)在(0,x1),(x2,+∞)单调递増,在(x1,x2)单调递减.(2)证明:依题可知f(1)=0,若f(x)在区间(0,1)内有唯一的零点x0,由(1)可知a>2,且.于是:①②由①②得,设,则,因此g(x)在上单调递减,又,根据零点存在定理,故.9.已知函数f(x)=,其中a为常数.(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,﹣a)上单调递增,求实数a的取值范围;(3)若a=﹣1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<﹣2.【解答】解:(1)f(x)=的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得0<x<,令f′(x)<0,解得:x>,则f(x)在(0,)递增,在(,+∞)递减,=f()=,无极小值;故f(x)极大值(2)函数f(x)的定义域为{x|x>0且x≠﹣a}.=,要使函数f(x)在(0,﹣a)上单调递增,则a<0,又x∈(0,﹣a)时,a<x+a<0,只需1+﹣2lnx≤0在(0,﹣a)上恒成立,即a≥2xlnx﹣x在(0,﹣a)上恒成立,由y=2xlnx﹣x的导数为y′=2(1+lnx)﹣1=1+2lnx,当x>时,函数y递增,0<x<时,函数y递减,当﹣a≤即﹣<a<0时,函数递减,可得a≥0,矛盾不成立;当﹣a>即a<﹣时,函数y在(0,)递减,在(,﹣a)递增,可得y<﹣2aln(﹣a)+a,可得a≥﹣2aln(﹣a)+a,解得﹣1≤a<0,则a的范围是[﹣1,0);(3)证明:a=﹣1,则f(x)=导数为f′(x)=,设函数f(x)在(0,1)上的极值点为x0,可得1﹣2lnx0﹣=0,即有2lnx0=1﹣,要证f(x0)<﹣2,即+2<0,由于+2=+2==,由于x0∈(0,1),且x0=,2lnx0=1﹣不成立,则+2<0,故f(x0)<﹣2成立.10.已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).【解答】解:(Ⅰ)…………………………………(2分)x∈(0,1)时,f'(x)>0,y=f(x)单增;x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)故…………………………….(7分)令h'(x)=0即,两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna……………….(9分)∴,∴h(x)≥2lna﹣2ln2……………………………(12分)11.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.12.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.13.已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.【解答】解:(1)f(x)的定义域为(0,+∞),,由题意知,则,解得x0=1,a=1或x0=a,a=1,所以a=1.(2)令,则,因为,所以,即g(x)在(0,+∞)上递增,以下证明在g(x)区间上有唯一的零点x0,事实上,,因为,所以,,由零点的存在定理可知,g(x)在上有唯一的零点x0,所以在区间(0,x0)上,g(x)=f'(x)<0,f(x)单调递减;在区间(x0,+∞)上,g(x)=f'(x)>0,f(x)单调递增,故当x=x0时,f(x)取得最小值,因为,即,所以,即>0.∴f(x)>0.。

(2021年整理)导数之隐零点问题

(2021年整理)导数之隐零点问题

(完整)导数之隐零点问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)导数之隐零点问题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)导数之隐零点问题的全部内容。

函数与导数解答题之隐零点问题1.设函数()2x f x e ax =--。

(Ι)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.2. 已知函数()()ln ,f x x x ax a R =+∈.(1)若函数()f x 在)2,e ⎡+∞⎣上为增函数,求a 的取值范围;(2)若()()()∀∈+∞>-+-恒成立,求正整数k的值。

1,,1x f x k x ax x3。

已知函数()()ln x f x e x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明()0f x >.4. 已知函数()32213f x x x ax =+++在()1,0-上有两个极值点1x 、2x ,且12x x <。

(1)求实数a 的取值范围; (2)证明:()21112f x >.5。

已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+。

(Ⅰ)求()f x 的解析式及单调区间; (Ⅱ)若21()2f x x ax b ≥++,求(1)a b +的最大值。

6。

已知函数()21ln 2f x x ax x =-+,a R ∈。

(Ⅰ)求函数()f x 的单调区间; (Ⅱ)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.。

导数专题--隐零点问题-2

导数专题--隐零点问题-2

导数专题---<<隐零点问题>>1.已知函数f(x)=e x-ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.2.设函数f(x)=e x+ax+b在点(0,f(0))处的切线方程为x+y+1=0.(Ⅰ)求a,b值,并求f(x)的单调区间;(Ⅱ)证明:当x≥0时,f(x)>x2-4.3.已知函数f(x)=.(1)证明:∀k∈R,直线y=g(x)都不是曲线y=f(x)的切线;(2)若∃x∈[e,e2],使得f(x)≤g(x)+成立,求实数k的取值范围.4.已知函数f(x)=a ln x-e x;(1)讨论f(x)的极值点的个数;(2)若a=2,求证:f(x)<0.5.已知函数f(x)=+a ln x有极值点,其中e为自然对数的底数.(1)求a的取值范围;(2)若a∈(0,],求证:∀x∈(0,2],都有f(x)<.6.设函数f(x)=ax2-ln x+1(a∈R)(1)求函数f(x)的单调区间;(2)若函数g(x)=ax2-e x+3,求证:f(x)>g(x)在(0,+∞)上恒成立.7.已知函数f(x)=x lnx+ax+b在点(1,f(1))处的切线为3x-y-2=0.(1)求函数f(x)的解析式;(2)若k∈Z,且对任意x>1,都有k<成立,求k的最大值.【练习】1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且.2.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.3.已知函数f(x)=e x+a﹣lnx(其中e=2.71828…,是自然对数的底数).(Ⅰ)当a=0时,求函数a=0的图象在(1,f(1))处的切线方程;(Ⅱ)求证:当时,f(x)>e+1.4.函数f(x)=alnx﹣x2+x,g(x)=(x﹣2)e x﹣x2+m(其中e=2.71828…).(1)当a≤0时,讨论函数f(x)的单调性;(2)当a=﹣1,x∈(0,1]时,f(x)>g(x)恒成立,求正整数m的最大值.5.已知函数f(x)=axe x﹣(a+1)(2x﹣1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.6.函数f(x)=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.(1)求a和b的值;(2)若f(x)满足:当x>0时,f(x)≥lnx﹣x+m,求实数m的取值范围.7.已知函数f(x)=3e x+x2,g(x)=9x﹣1.(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;(2)比较f(x)与g(x)的大小,并加以证明.8.已知函数f(x)=lnx+a(x﹣1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.9.已知函数f(x)=,其中a为常数.(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,﹣a)上单调递增,求实数a的取值范围;(3)若a=﹣1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<﹣2.10.已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).11.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.12.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;13.已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.。

高考数学难点突破--隐零点专题(有答案)

高考数学难点突破--隐零点专题(有答案)

专题三 . 隐零点专题知识点一、不含参函数的隐零点问题已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,②注意确定0x 的合适范围.二、含参函数的隐零点问题已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 例1.已知函数)2ln()(+-=x e x g x ,证明)(x g >0.例2.(2017052001)已知函数x a e x f x ln )(-=.(I )讨论)(x f 的导函数)('x f 的零点的个数;(II )证明:当0>a 时,)ln 2()(a a x f -≥.例3.(2017.全国II.21)已知函数x x ax ax x f ln )(2--=,且()0f x ≥.(I )求a ;(II )证明:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e . 例 4.(2016.全国甲.21)(I )讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II )证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.例 5.(2013.湖北.10)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则 A.21)(,0)(21->>x f x f B.21)(,0)(21-<<x f x fC.21)(,0)(21-<>x f x fD.21)(,0)(21-><x f x f 例6.(2017022802)已知函数)ln 1()(x x x f +=.(I )求函数)(x f 的单调区间及其图象在点1=x 处的切线方程;(II )若Z ∈k ,且)()1(x f x k <-对任意1>x 恒成立,求k 的最大值.例1例4导数压轴题中的“隐零点”问题之专项训练题1、设函数()2xf x e ax =--. (Ι)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.变式训练: 已知函数()()ln ,f x x x ax a R =+∈.(Ⅰ)若函数()f x 在)2,e ⎡+∞⎣上为增函数,求a 的取值范围; (Ⅱ)若()()()1,,1x f x k x ax x ∀∈+∞>-+-恒成立,求正整数k 的值.2、已知函数()()ln xf x e x m =-+. (Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.变式训练: 已知函数()32213f x x x ax =+++在()1,0-上有两个极值点1x 、2x ,且12x x <.(Ι)求实数a 的取值范围; (Ⅱ)证明:()21112f x >.3、已知a R ∈,函数()2x f x e ax =+;()g x 是()f x 的导函数. (Ⅰ)当12a =-时,求函数()f x 的单调区间; (Ⅱ)当0a >时,求证:存在唯一的01,02x a ⎛⎫∈-⎪⎝⎭,使得()00g x =; (Ⅲ)若存在实数,a b ,使得()f x b ≥恒成立,求a b -的最小值.变式训练:已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间; (Ⅱ)若21()2f x x ax b ≥++,求(1)a b +的最大值.4、已知函数()()222ln 22=-++--+f x x a x x ax a a ,其中0>a . (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在()0,1∈a ,使得()0≥f x 在区间()1,+∞内恒成立,且()0=f x 在区间()1,+∞内有唯一解.变式训练 ,已知函数()222ln 2f x x x ax a =-+-+,其中0>a ,设()g x 是()f x 的导函数.(Ⅰ)讨论()g x 的单调性;(Ⅱ)证明:存在()0,1∈a ,使得()0≥f x 恒成立,且()0=f x 在区间()1,+∞内有唯一解.变式训练,已知函数()2ln 12a f x x x x =-++,()21x a g x ae ax a x=++--,其中a R ∈. (Ⅰ)若2a =,求()f x 的极值点;(Ⅱ)试讨论()f x 的单调性;(Ⅲ)若0a >,()0,x ∀∈+∞,恒有()()g x f x '≥(()f x '为()f x 的导函数),求a 的最小值.变式训练 ,已知函数()21ln 2f x x ax x =-+,a R ∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.。

隐零点专题讲义---难度(解析版)

隐零点专题讲义---难度(解析版)

隐零点专题1一 、知识点1、不含参函数的隐零点问题已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出(试根法失效),设方程0)('=x f 的根为0x ,则 ① 有关系式0)('0=x f 成立 ② 注意确定0x 的合适范围(用零点存在定理)③ 将0x 代入原函数)(x f ,获得)(0x f y =,然后利用关系式0)('0=x f ,进行消参或者降次,可以得出具体值或者关于0x 的一个函数,然后求值域. 2、含参函数的隐零点问题已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成=立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关 ③ 将0x 代入原函数)(x f ,获得)(0x f y =,然后利用关系式0)('0=x f ,进行消参a ,可以得出关于0x 的一个函数,然后求值域.二、例题例0.直线l 与函数]),0[(sin π∈=x x y 图象相切于点A ,且OP l //,O 为原点,P 为图象的极值点,l 与x 轴交点为B ,过切点A 作x AC ⊥轴,垂足为C ,则_____=BA例1.已知函数)2ln()(+-=x e x g x,证明)(x g >0.例2.设函数2)(--=ax e x f x(1)求)(x f 的单调区间;(2)若1=a ,k 为整数,且当0>x 时,01)()('>++-x x f k x ,求k 的最大值------------------------------------------------------------------------------------------------------------------------------------配套练习: 1、设函数x x x f )1ln(1)(++=(0>x ),若1)(+>x kx f 恒成立,求正整数k 的最大值。

导数之隐零点问题

导数之隐零点问题

函数与导数解答题之隐零点问题
1.设函数()2x f x e ax =--.
(Ι)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.
2. 已知函数()()ln ,f x x x ax a R =+∈.
(1)若函数()f x 在)
2,e ⎡+∞⎣上为增函数,求a 的取值范围; (2)若()()()1,,1x f x k x ax x ∀∈+∞>-+-恒成立,求正整数k 的值.
3.已知函数()()ln x f x e x m =-+.
(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明()0f x >.
4. 已知函数()32213
f x x x ax =
+++在()1,0-上有两个极值点1x 、2x ,且12x x <. (1)求实数a 的取值范围; (2)证明:()21112f x >.
5.已知函数满足满足. (Ⅰ)求的解析式及单调区间; (Ⅱ)若,求的最大值.
6.已知函数()21ln 2
f x x ax x =-+,a R ∈. (Ⅰ)求函数()f x 的单调区间;
(Ⅱ)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.
()f x 121()(1)(0)2
x f x f e f x x -'=-+()f x 21()2f x x ax b ≥
++(1)a b +。

高中数学压轴题系列——导数专题——隐零点问题

高中数学压轴题系列——导数专题——隐零点问题

高中数学压轴题系列——导数专题——隐零点问题1.(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.2.(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.3.(2015•新课标Ⅰ)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,假设存在b满足0<b<ln时,且b<,f′(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.4.(2016•新课标Ⅱ)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.f'(x)=e x()=解:(1)证明:f(x)=,∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增,∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)===a∈[0,1),由(1)知,当x>0时,f(x)=的值域为(﹣1,+∞),只有一解使得,只需•e t≤0恒成立,可得﹣2<t≤2,由x>0,可得t∈(0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].5.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),所以等价于f(x)在x=1处是极小值,所以解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数压轴题之隐零点问题导数压轴题之隐零点问题(共13题)1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且.【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立,即a(e x﹣1)≥x恒成立,x=0时,显然成立,x>0时,e x﹣1>0,故只需a≥在(0,+∞)恒成立,令h(x)=,(x>0),h′(x)=<0,故h(x)在(0,+∞)递减,而==1,故a≥1,x<0时,e x﹣1<0,故只需a≤在(﹣∞,0)恒成立,令g(x)=,(x<0),g′(x)=>0,故h(x)在(﹣∞,0)递增,而==1,故a≤1,综上:a=1;(2)证明:由(1)f(x)=e x(e x﹣x﹣1),故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1,所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0,∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知,方程h(x)=0在(﹣2,ln)有唯一根,设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.2.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数,∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.∴a≥﹣2.∴a的取值范围是[﹣2,+∞).(2)a=1时,f(x)=x+lnx,k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,∴k<,令g(x)=,则g′(x)=,令h(x)=x﹣lnx﹣2(x>1).则h′(x)=1﹣=>0,∴h(x)在(1,+∞)上单增,∵h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,存在x0∈(3,4),使h(x0)=0.即当1<x<x0时h(x)<0 即g′(x)<0x>x0时h(x)>0 即g′(x)>0g(x)在(1,x0)上单减,在(x0+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,g(x)min=g(x0)===x0∈(3,4).k<g(x)min=x0∈(3,4),且k∈Z,∴k max=3.3.函数f(x)=alnx﹣x2+x,g(x)=(x﹣2)e x﹣x2+m(其中e=2.71828…).(1)当a≤0时,讨论函数f(x)的单调性;(2)当a=﹣1,x∈(0,1]时,f(x)>g(x)恒成立,求正整数m的最大值.【解答】解:(1)函数f(x)定义域是(0,+∞),,(i)当时,1+8a≤0,当x∈(0,+∞)时f'(x)≤0,函数f(x)的单调递减区间是(0,+∞);(ⅱ)当,﹣2x2+x+a=0的两根分别是:,,当x∈(0,x1)时f'(x)<0.函数f(x)的单调递减.当x∈(x1,x2)时f'(x)>0,函数f(x)的单调速递增,当x∈(x2,+∞)时f'(x)<0,函数f(x)的单调递减;综上所述,(i)当时f(x)的单调递减区间是(0,+∞),(ⅱ)当时,f(x)的单调递增区间是,单调递减区间是和(2)当a=﹣1,x∈(0,1]时,f(x)>g(x),即m<(﹣x+2)e x﹣lnx+x,设h(x)=(﹣x+2)e x﹣lnx+x,x∈(0,1],∴,∴当0<x≤1时,1﹣x≥0,设,则,∴u(x)在(0,1)递增,又∵u(x)在区间(0,1]上的图象是一条不间断的曲线,且,∴使得u(x0)=0,即,当x∈(0,x0)时,u(x)<0,h'(x)<0;当x∈(x0,1)时,u(x)>0,h'(x)>0;∴函数h(x)在(0,x0]单调递减,在[x0,1)单调递增,∴=,∵在x∈(0,1)递减,∵,∴,∴当m≤3时,不等式m<(﹣x+2)e x﹣lnx+x对任意x∈(0,1]恒成立,∴正整数m的最大值是3.4.已知函数f(x)=e x+a﹣lnx(其中e=2.71828…,是自然对数的底数).(Ⅰ)当a=0时,求函数a=0的图象在(1,f(1))处的切线方程;(Ⅱ)求证:当时,f(x)>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.本资料分享自千人教师QQ群323031380 高中数学资源大全5.已知函数f(x)=axe x﹣(a+1)(2x﹣1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.【解答】解:(1)若a=1,则f(x)=xe x﹣2(2x﹣1),当x=0时,f(0)=2,f'(x)=xe x+e x﹣4,当x=0时,f'(0)=﹣3,所以所求切线方程为y=﹣3x+2.……(3分)(2)由条件可得,首先f(1)≥0,得,而f'(x)=a(x+1)e x﹣2(a+1),令其为h(x),h'(x)=a(x+2)e x恒为正数,所以h(x)即f'(x)单调递增,而f'(0)=﹣2﹣a<0,f'(1)=2ea﹣2a﹣2≥0,所以f'(x)存在唯一根x0∈(0,1],且函数f(x)在(0,x0)上单调递减,在(x0+∞)上单调递增,所以函数f(x)的最小值为,只需f(x0)≥0即可,又x0满足,代入上式可得,∵x0∈(0,1],∴,即:f(x0)≥0恒成立,所以.……(13分)6.函数f(x)=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.(1)求a和b的值;(2)若f(x)满足:当x>0时,f(x)≥lnx﹣x+m,求实数m的取值范围.【解答】解:(1)∵f(x)=xe x﹣ax+b,∴f′(x)=(x+1)e x﹣a,由函数f(x)的图象在x=0处的切线方程为:y=﹣x+1,知:,解得a=2,b=1.(2)∵f(x)满足:当x>0时,f(x)≥lnx﹣x+m,∴m≤xe x﹣x﹣lnx+1,①令g(x)=xe x﹣x﹣lnx+1,x>0,则=,设g′(x0)=0,x0>0,则=,从而lnx0=﹣x0,g′()=3()<0,g′(1)=2(e﹣1)>0,由g′()﹣g′(1)<0,知:,当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=﹣x0﹣lnx0=﹣x0﹣lnx0=x0•﹣x0+x0=1.m≤xe x﹣x﹣lnx+1恒成立⇔m≤g(x)min,∴实数m的取值范围是:(﹣∞,1].本资料分享自千人教师QQ群323031380 高中数学资源大全7.已知函数f(x)=3e x+x2,g(x)=9x﹣1.(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;(2)比较f(x)与g(x)的大小,并加以证明.【解答】解:(1)φ'(x)=(x﹣2)(e x﹣2),令φ'(x)=0,得x1=ln2,x2=2;令φ'(x)>0,得x<ln2或x>2;令φ'(x)<0,得ln2<x<2.故φ(x)在(﹣∞,ln2)上单调递增,在(ln2,2)上单调递减,在(2,+∞)上单调递增.(2)f(x)>g(x).证明如下:设h(x)=f(x)﹣g(x)=3e x+x2﹣9x+1,∵h'(x)=3e x+2x﹣9为增函数,∴可设h'(x0)=0,∵h'(0)=﹣6<0,h'(1)=3e﹣7>0,∴x0∈(0,1).当x>x0时,h'(x)>0;当x<x0时,h'(x)<0.∴h(x)min=h(x0)=,又,∴,∴==(x0﹣1)(x0﹣10),∵x0∈(0,1),∴(x0﹣1)(x0﹣10)>0,∴h(x)min>0,∴f(x)>g(x).8.已知函数f(x)=lnx+a(x﹣1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.【解答】解:(1),①当0<a≤2时,f'(x)≥0,y=f(x)在(0,+∞)上单调递增,②当a>2时,设2ax2﹣2ax+1=0的两个根为,且,y=f(x)在(0,x1),(x2,+∞)单调递増,在(x1,x2)单调递减.(2)证明:依题可知f(1)=0,若f(x)在区间(0,1)内有唯一的零点x0,由(1)可知a>2,且.于是:①②由①②得,设,则,因此g(x)在上单调递减,又,根据零点存在定理,故.9.已知函数f(x)=,其中a为常数.(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,﹣a)上单调递增,求实数a的取值范围;(3)若a=﹣1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<﹣2.【解答】解:(1)f(x)=的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得0<x<,令f′(x)<0,解得:x>,则f(x)在(0,)递增,在(,+∞)递减,故f(x)=f()=,无极小值;极大值(2)函数f(x)的定义域为{x|x>0且x≠﹣a}.=,要使函数f(x)在(0,﹣a)上单调递增,则a<0,又x∈(0,﹣a)时,a<x+a<0,只需1+﹣2lnx≤0在(0,﹣a)上恒成立,即a≥2xlnx﹣x在(0,﹣a)上恒成立,由y=2xlnx﹣x的导数为y′=2(1+lnx)﹣1=1+2lnx,当x>时,函数y递增,0<x<时,函数y递减,当﹣a≤即﹣<a<0时,函数递减,可得a≥0,矛盾不成立;当﹣a>即a<﹣时,函数y在(0,)递减,在(,﹣a)递增,可得y<﹣2aln(﹣a)+a,可得a≥﹣2aln(﹣a)+a,解得﹣1≤a<0,则a的范围是[﹣1,0);(3)证明:a=﹣1,则f(x)=导数为f′(x)=,设函数f(x)在(0,1)上的极值点为x0,可得1﹣2lnx0﹣=0,即有2lnx0=1﹣,要证f(x0)<﹣2,即+2<0,由于+2=+2==,由于x0∈(0,1),且x0=,2lnx0=1﹣不成立,则+2<0,故f(x0)<﹣2成立.10.已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).【解答】解:(Ⅰ)…………………………………(2分)x∈(0,1)时,f'(x)>0,y=f(x)单增;x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)故…………………………….(7分)令h'(x)=0即,两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna……………….(9分)∴,∴h(x)≥2lna﹣2ln2……………………………(12分)11.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x(0,x0)x0(x0,∞)g′(x)﹣0+g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.12.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.13.已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.【解答】解:(1)f(x)的定义域为(0,+∞),,由题意知,则,解得x0=1,a=1或x0=a,a=1,所以a=1.(2)令,则,因为,所以,即g(x)在(0,+∞)上递增,以下证明在g(x)区间上有唯一的零点x0,事实上,,因为,所以,,由零点的存在定理可知,g(x)在上有唯一的零点x0,所以在区间(0,x0)上,g(x)=f'(x)<0,f(x)单调递减;在区间(x0,+∞)上,g(x)=f'(x)>0,f(x)单调递增,故当x=x0时,f(x)取得最小值,因为,即,所以,即>0.∴f(x)>0.。

相关文档
最新文档