等差数列前n项和的公式word版本

合集下载

等差数列前n项和

等差数列前n项和

等差数列的前n 项和1. 数列的前n 项和:对于数列{}n a ,一般地,我们称n a a a a +⋅⋅⋅+++321为数列{}n a 的前n 项和,用n S 表示,即n n a a a a S +⋅⋅⋅+++=321 .2. 等差数列的前n 项和公式:()()d n n na a a n S n n 21211-+=+= 3. 等差数列的前n 项和公式与函数的关系:n d a n d S n ⎪⎭⎫ ⎝⎛-+=2212 数列{}n a 是等差数列的充要条件是其前n 项和公式()n f S n =是n 的二次函数或一次函数且不含常数项. 即Bn An S n +=2 ()022≠+B A在等差数列{}n a 中,001<,>d a ,则n S 存在最大值;若001>,<d a ,则n S 存在最小值.4. 等差数列与等差数列各项的和有关的性质:(1)若{}n a 是等差数列,则⎭⎬⎫⎩⎨⎧n S n 也成等差数列,其首项与{}n a 首项相同,公差是{}n a 公差的21. (2)m m m S S S 32,,分别为{}n a 的前m 项,前2m 项,前3m 项的和,则m m m m m S S S S S 232--,,成等差数列.(3)关于等差数列奇数项与偶数项的性质若项数为2n ,则nd S S =-奇偶, 1+=n n a a S S 偶奇若项数为2n-1,则()n n na S a n S =-=奇偶,1,n a S S =-偶奇,1-=n n S S 偶奇 (4)两个等差数列{}n a 、{}n b 的前n 项和n n T S 、之间的关系为1212--=n n n n T S b a .5.例1. 已知数列{}n a 的前n 项和为n S ,且满足02111=+=-n n n S S a a , ()2≥n .(1)求证:数列⎭⎬⎫⎩⎨⎧n S 1是等差数列; (2)求{}n a 的通项n a .例2. 已知等差数列{}n a 中:(1);及,求,,m m a m S d a 1521231-=-== (2);,求,,d S a a n n 102251211-=-== (3)42524a a S +=,求.例3. 在等差数列{}n a 中,的最大值项和,求前,n S n S S a 917125==.例4. 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220,求它的前30项的和.例5. 两个等差数列{}n a 、{}n b 的前n 项和分别为n n T S 、,若132+=n n T S n n ,求n n b a .例6. 数列()⎭⎬⎫⎩⎨⎧+11n n 的前n 项和()11541431321211+⨯+⋅⋅⋅+⨯+⨯+⨯+⨯=n n S n ,研究一下,能否找到求n S 的一个公式. 你能对这个问题作一些推广吗?例7.【课堂训练】1. 等差数列{a n }的前n 项和为S n , 且S 3=6, a 3=4, 则公差d 等于( )A. 1B. 35C. 2D. 32. 设{a n }为等差数列, 公差d=-2, S n 为其前n 项和. 若S 10=S 11, 则a 1=( )A. 18B. 20C. 22D. 243. 设S n 为等差数列{a n }的前n 项和, 若a 1=1, 公差d=2, S k+2-S k =24, 则k=( )A. 8B. 7C. 6D. 54. 等差数列{a n }的前n 项和为S n , 已知0211=-++-m m m a a a , S 2m-1=38, 则m=() A. 38 B. 20 C. 10 D. 95. 若等差数列{a n }的前5项的和S 5=25, a 2=3, 则a 7等于( )A. 12B. 13C. 14D. 156. 已知等差数列{a n }满足a 2+a 4=4, a 3+a 5=10, 则它的前10项的和S 10=( )A. 138B. 135C. 95D. 237. 设等差数列{a n }的前n 项和为S n . 若S 9=72, 则a 2+a 4+a 9= .8. 设S n 为等差数列{a n }的前n 项和, 若S 3=3, S 6=24, 则a 9= .9. 已知{a n }是等差数列, S n 为其前n 项和, n ∈N *. 若a 3=16, S 20=20, 则S 10的值为 .10. 数列{a n }的通项公式a n =ncos2πn +1, 前n 项和为S n , 则S 2 012= .11. 已知数列{a n }的前n 项和S n =n 2-n+1, 则数列{a n }的通项公式a n = .12. 在数列{a n }中, a 1=2, 其前n 项和为S n , 若数列⎭⎬⎫⎩⎨⎧n S n 是一个公差为2的等差数列, 则a 3= .13. 已知{a n }是一个等差数列, 且a 2=1, a 5=-5.(1) 求{a n }的通项a n ;(2) 求{a n }前n 项和S n 的最大值.14. 在等差数列{a n }中:(1) 若a 3+a 99=200, 求S 101;(2) 若a 4+a 9+a 10+a 15=20, 求S 18.15. 已知数列{a n }的前n 项和为S n , 且满足S n =1211+--n n S S (n≥2), a 1=2. (1) 求证: ⎭⎬⎫⎩⎨⎧n S 1是等差数列; (2) 求{a n }的表达式.【强化训练】1. 在数列{a n }中, a n+1=a n +a(n ∈N *, a 为常数), 数列{a n }的前n 项和为S n . 若平面上三个不共线的非零向量OC OB OA ,,满足: OC =a 1+a 2 014OB , A, B, C 三点共线且该直线不过O 点, 则S 2 014等于( )A. 1 005B. 1 007C. 2 012D. 2 0142. 等差数列{a n }中, S 15> 0, S 16< 0, 则使a n > 0成立的n 的最大值为( )A. 6B. 7C. 8D. 93. 把正整数按下列方法分组: (1), (2,3), (4,5, 6), …, 其中每组都比它的前一组多一个数, 设S n 表示第n 组中各数的和, 那么S 21等于 .4. 已知等差数列{a n }的前n 项和为S n , 且6S 5-5S 3=5, 则a 4= .5. 设a 1, d 为实数, 首项为a 1, 公差为d 的等差数列{a n }的前n 项和为S n , 满足S 5S 6+15=0, 则d 的取值范围是 .6. 已知公差不为0的等差数列{a n }的首项a 1为a(a ∈R), 设数列的前n 项和为S n , 且11a ,21a ,41a 成等比数列. (1) 求数列{a n }的通项公式及S n ;(2) 记n n S S S S A 1111321+⋅⋅⋅+++=,1222211111-+⋅⋅⋅+++=n a a a a B n . 当n≥2时, 试比较A n 与B n 的大小.。

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。

等差数列前n项和公式的

等差数列前n项和公式的

等差数列前n项和公式是数学中重要的知识点,在学习过程中很容易被忽视,但它却能帮助我们简化许多复杂的计算过程。

那么,等差数列前n项和公式是什么呢?
等差数列前n项和公式,指的是,若给定等差数列:a1,a2,a3,……,an,其中每一项与前一项的差均相等,则前n项之和可表示为:Sn=a1+a2+a3+…+an=n(a1+an)/2,其中a1为等差数列中的第一项,an 为等差数列中的第n项。

要加以应用,就需要知道等差数列中每一项的值。

一般来说,等差数列中的每一项可用一个公式来表示,an=a1+(n-1)d,其中a1为等差数列中的第一项,d为等差数列中每一项与前一项的差值,n为项数。

利用这两个公式,我们就可以计算出等差数列的前n项和。

例如,有一个等差数列:4,7,10,13,16,其中每项与前项之差为3,要计算其前5项之和,则可以按照以下步骤操作:
1. 用第一个公式求出an=16,a1=4,n=5,d=3;
2. 用第二个公式计算Sn=5(4+16)/2=70;
以上就是等差数列前n项和的计算过程。

如果要计算等差数列前n项和的值,只需要按照以上方法,求出an和a1,n,d的值,即可轻松求出。

等差数列前n项和公式是数学知识中重要的内容,它不仅可以简化计算过程,而且可以给我们带来更多的想象空间,让我们更好地理解数学知识。

7.2.2等差数列前n项和公式.

7.2.2等差数列前n项和公式.
12排,最前一排摆放了10 盆鲜花,往后每排依次
增加2盆.写出由前到后每排摆放的鲜花盆数构成
的数列,并计算这个花坛一共用了多少盆鲜花.
…… ……
容易算出,第2排的花盆数为 12,第3排的花盆数为 14,…,第12排的
花盆数为 32. 因此,由前到后每排的花盆数构成的数列为
10,12,14,…,32
要计算一共用了多少盆鲜花,就是要计算等差列
3.等差中项:
一般地,当三个数, , 成等差数列时,称为和的等差中项.即 =
+
.

4.等差数列的性质:
若项数满足 + = + , (, , , ∈ +),则对应的项满足 + = + ..




某街道举办国庆70周年成就展,在展厅前用
鲜花摆放了一个等腰梯形花坛.花坛由前到后共有
3.在等差数列{ }中, = , =

,求 .

4.在等差数列{ }中, = + ,求 .
5.在等差数列{ }中,3 = , 6 = ,求 .
, − , − 成等差数列
课后练习
. 在等差数列{}中, = , = , 则数列的前
由上述方法得到启示,

我们可以利用上述方法求一般等差数列{ }的前项和 吗?

对于等差数列{ },∵ + = + − = ⋯ = +

我们用两种顺序表示 :

= + + ⋯ +

= + − + ⋯ +
, , , ⋯ , 各项的和.设想将等腰梯形倒过来,

等差数列前n项和的最值问题及拓展 Word版含解析

等差数列前n项和的最值问题及拓展 Word版含解析

姓名,年级:时间:求等差数列前n项和S n最值的两种方法(1)函数法:等差数列前n项和的函数表达式S n=an2+bn=a错误!2-错误!,求“二次函数”最值. (2)邻项变号法①当a1>0,d<0时,满足错误!的项数m使得S n取得最大值为S m②当a1<0,d>0时,满足错误!的项数m使得S n取得最小值为S m.例题:1。

等差数列{a n}中,已知a6+a11=0,且公差d〉0,则其前n项和取最小值时的n的值为( )A.6 B.7 C.8 D.9解析解法一:因为a6+a11=0,所以a1+5d+a1+10d=0,解得a1=-152 d,所以S n=na1+错误!d=错误!·n+错误!d=错误!(n2-16n)=错误![(n-8)2-64].因为d>0,所以当n=8时,其前n项和取最小值.解法二:由等差数列的性质可得a8+a9=a6+a11=0.由公差d〉0得等差数列{a n}是递增数列,所以a8<0,a9〉0,故当1≤n≤8时,a n〈0;n≥9时,a n>0,所以当n=8时,其前n项和取最小值.2.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为( )A.S15 B.S16 C.S15或S16 D.S17解法一:∵a1=29,S10=S20,∴10a1+错误!d=20a1+错误!d,解得d=-2,∴S n=29n+错误!×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.解法二:S10=S20,∴a11+a12+⋯a20=0a11+a20×10=0,即a11+a20=0,∴a15+a16=02又因为a1=29,可知等差数列{a n}为递减数列,则a15> 0,a16<0∴当n=15时,S n取得最大值.拓展:(2016·全国卷Ⅰ)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________.解析:解法一:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=错误!。

(完整word版)六年级奥数等差数列

(完整word版)六年级奥数等差数列

等差数列知识点:等差数列的和= (首项+末项)×项数÷2项数= (末项-首项)÷公差+1公差= 第二项-首项等差数列的第n项= 首项+(n-1)×公差首项= 末项-公差×(项数-1)例1、计算。

1+3+5+7+……+95+97+99解:1+3+5+7+……+95+97+99=(1+99)×50÷2=2500例2、(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)解:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=-=1000例3、计算1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999解:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999 ==例4、求首项为5,末项为155,项数是51的等差数列的和。

解:(5+155)×51÷2=160×51÷2=80×51=4080例5、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数我4 。

求这60个数的和。

解:(1)末项为: 7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=7500例6、数列3、8、13、18、……的第80项是多少?例7、求3+7+11+……+99=?例8、一个15项的等差数列,末项为110,公差为7,这个等差数列的和是多少?例9、一个大礼堂,第一排有28个座位,以后每排比前排多一个座位,第35排是最后一排,这个大礼堂共有多少个座位?练一练一、计算1、2+4+6+……+96+982、68+65+……+11+83、2+3+4+……+2000+2001+2002+2003二、列式计算1、8、15、22……这列数的第100项是多少?2、一个有20项的等差数列,公差为5,末项是104,这个数列的首项是几?3、一个公差为4的等差数列,首项为7,末项为155.这个数列共有多少项?4、有一列数,已知第1个数为11,从第二个数起每个数都比前一个数多3,这列数的前100个数的和是多少?三、解答下列各题1、王师傅每天工作8小时,第1小时加工零件50个,从第二小时起每小时比前一小时多加工零件3个,求王师傅一天加工多少个零件?2、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下,时钟一昼夜敲打多少次?3、一个剧院设置了30排座位,第一排有38个座位,往后每排都比前一排多1个座位,这个剧院共有多少个座位?4、一个物体从空中自由落下,第一秒下落4.9米,以后每秒多下落9.8米,经过20秒落到地面,物体原来离地面多高?。

4.2.2 等差数列的前n项和公式 (精讲)(解析版)

4.2.2 等差数列的前n项和公式 (精讲)(解析版)

4.2.2等差数列的前n项和公式一、等差数列的前n 项和公式1、等差数列的前n 项和公式已知量首项,末项与项数首项,公差与项数选用公式()12n n n a a S +=()112n n S na d-=+n 2、等差数列前n 项和公式的推导对于公差为d 的等差数列,()()()111121n S a a d a d a n d ⎡⎤=+++++++-⎣⎦①()()()21n n n n n S a a d a d a n d ⎡⎤=+-+-++--⎣⎦②由①+②得()()()()11112n n n n S a a a a a a a a =++++++++n n 个=()1n n a a +,由此得等差数列前n 项和公式()12n n n a a S +=,代入通项公式()11n a a n d =+-得()112n n n S na d -=+.二、等差数列的前n 项和常用的性质1、设等差数列{}n a 的公差为d ,n S 为其前n 项和,等差数列的依次k 项之和,k S ,2k k S S -,32k k S S -…组成公差为2k d 的等差数列;2、数列{}n a 是等差数列⇔2n S an bn =+(a ,b 为常数)⇔数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,公差为2d;3、若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d;①当项数为偶数2n 时,()21n n n S n a a +=+,S S nd -=奇偶,1nn S a S a +=奇偶;②当项数为奇数21n +时,()21121n n S n a ++=+,n S S a -=奇偶,1S n S n+=奇偶.4、在等差数列{}n a ,{}n b 中,它们的前n 项和分别记为,n n S T 则2121n n n n a S b T --=将等差数列前n 项和公式()112n n n S na d -=+,整理成关于n 的函数可得2122n d d S n a n ⎛⎫=+- ⎪⎝⎭.当0d ≠时,n S 关于n 的表达式是一个常数项为零的二次函数式,即点(),n n S 在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线2122d d y x a x ⎛⎫=+- ⎪⎝⎭上横坐标为正整数的一系列孤立的点.四、求等差数列的前n 项和S n 的最值的解题策略1、将()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭配方,若0d ≠,则从二次函数的角度看:当0d >时,S n 有最小值;当0d <时,n S 有最大值.当n 取最接近对称轴的正整数时,n S 取到最值.2、邻项变号法:当10a >,0d <时,满足100n n a a +≥⎧⎨≤⎩的项数n 使n S 取最大值;当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使n S取最小值。

等差数列前n项和及通项公式

等差数列前n项和及通项公式

课题:等差数列通项公式及其求和公式一、 知识要点1、等差数列前n 项和公式:11()().22n m n m n n a a n a a S -+++==. 2、数列通项公式n a 与n S 关系:11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.二、 例题选讲例1、已知数列{},{}n n a b 都是等差数列,12n S a a =++…n a ,12n T b b =++…n b ,且对一切正整数n ,331313n n S n T n +=+,求2828b a 的值.例2、在项数为21n +的等差数列中,若所有奇数项的和为165,所有偶数项的和为150, 求n 的值.例3、一个项数为36的等差数列前四项和为21,末四项的和为67,求36S .例4、已知等差数列{}n a 的前m 项和为a ,前2m 项和为b ,求它的前3m 项的和.例5、已知数列{}n a 满足以下关系:13a =,1n a +={}n a 的通项公式.例6、记等差数列{}n a 的前n 项和为n S ,已知首项小于零,若813S S =,求m i n ()n S 对应的.n三、 巩固练习1.等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,对一切正整数n ,都有231n n S n T n =+,求55a b 的值.2、项数为奇数的等差数列{}n a 中,奇数项之和为80,偶数项之和为75,求此数列的中间项与项数.3、等比数列的前n 项的和为54,前2n 项的和为60,求前3n 项的和.4.等差数列{a n }的通项公式是a n =2n +1,由b n =na a a n +⋅⋅⋅++21 (n ∈N *)确定的数列{b n }的前n 项和n S .5. 记等差数列{}n a 的前n 项和为n S ,已知首项小于零, 若890,0S S <>,求m in ()n S 对应的.n。

等差数列及其前n项和Word版含答案

等差数列及其前n项和Word版含答案

等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。

等差数列前n项和公式大全

等差数列前n项和公式大全

等差数列前n项和公式大全等差数列是指一个数列中,从第二个数(第二项)起,每一项与其前一项的差称为公差,公差代表着数列中相邻两项之间的间隔。

数列的前n 项和是指数列中从第一项到第n项所有项的和。

本文将详细介绍等差数列前n项和的公式及其推导过程。

一、等差数列通项公式等差数列的通项公式表示为:an = a1 + (n-1)d其中,an是数列的第n项,a1是数列的首项,d是数列的公差,n是要求的项数。

S_n = (n/2)(a1 + an)其中,n是要求的项数,a1是数列的首项,an是数列的第n项。

二、等差数列前n项和的推导过程我们将通过举例来推导出等差数列前n项和的公式。

假设有一个等差数列:2,5,8,11,14,...该数列的首项a1=2,公差d=3现在我们要计算数列的前n项和,即S_n。

首先我们写出数列的通项公式an = a1 + (n-1)d。

根据通项公式,我们可以求出数列的第n项an:a_n=2+(n-1)3=3n-1然后,我们将数列的前n项相加,即可得到前n项和S_n。

S_n = a1 + a2 + a3 + ... + an将每一项用通项公式an代入:S_n=(2)+(2+3)+(2+2*3)+...+(2+(n-1)3)S_n=2+2+3+2+3+3+...+3(n-1)将上式写成分组的形式,每个分组中的项都相等:S_n=(2+2+...+2)+(3+3+...+3)+...+((n-1)3+(n-1)3+...+(n-1)3) ---------------------------------------------------n个2n个3n个(n-1)3S_n=n*2+n*3+...+n*(n-1)3S_n=n(2+3+...+(n-1)3)上式中的括号内是一个等差数列,它的首项是2,公差是3,项数是n-1S_n=n[(n-1)/2(2+(n-1)3)]整理上式,得到等差数列前n项和的通项公式:S_n = (n/2)(a1 + an)其中,n是要求的项数,a1是数列的首项,an是数列的第n项。

4.2.2等差数列的前n项和公式

4.2.2等差数列的前n项和公式
n}是等差数列,
*,且p+q=s+t,
p,q,s,t∈N
通过配对凑成相同的数,变“多步求和”为“一步相乘”,
问题:为什么1+100=2+99=…=50+51呢?从数列角度怎么解释?
则a
p+aq=as+at.
也就是将“不同数的求和”转化为“相同数的求和”.
等差数列中,下标和相等的两项和相等.
等差数列的前n项和公式
等差数列任意条件
等差数列任意2个相互独立的条件
a1,d
2个相互独立的方程
等差数列任意问题




课堂小结

象 等差数列
高斯求和
的前n项和
Sn,n,a1,
d 和 an
知三求二
(方程思想)


求 等差数列
连续正整 和
的前n项
数的求和
应用
和公式
公式
(1 + )
=

2
an=a1+(n-1)d
因为1 + = 2 + −1 = ⋯ = + 1 ,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
4.2.2等差数列的前n项和公式
复习回顾
等差数列的概念: 一般地,如果一个数列从第2项起,每一项与它的前
一项的差都等于同一个常数,那么这个数列就叫做
等差数列
an-an-1=d(n≥2)

等差数列的前N项和公式

等差数列的前N项和公式

d a1 5d 0, 2 即 a1 6d 0.
也即 a6 0且a7 0, S6最大。
24 d 3 a 12 2 d , 解法2: 由 1 7 an 12 (n 3)d 0, 得 a 12 (n 2)d 0. 即 5.5 n 7. n1
*
98 7 (n 1) 7 n 14. 100 2 或 由 m 100, 得7n 100 ,即 n 7 14 7
14 (7 98) S14 735 2
n N ,n 14.
*
答:集合M中共有14个元素,它们的和等于735。
14 (14 1) 7 735. 或 S14 14 7 2
n 2an nan 2
2an .
2
S奇 S 偶 nan ( n 1) an an
这里 an a中
S奇 nan n . S偶 (n 1)an n 1
课本P118习题3.3 4,6,8,10。

https:/// 陀螺财经 区块链技术 区块链活动
n(a1 an a2 n 1 a3n ) S1 S3 n(an 1 a2 n ) 2S 2 . 2
S1 , S2 , S3成等差数列。
例题讲解
例3.设等差数列an 的前n项和为 Sn ,已知 a3 12, S12 0, S13 0. (1)求公差d的取值范围; (2)指出 S1 , S2 , , S12 中哪一个最大?并说明理由。 解:(1) 12 (12 1) S12 12a1 d 0, 2a1 11d 0, 2 依题设有 即 a1 6d 0. S 13a 13 (13 1) d 0, 13 1 2

2021版新高考数学一轮教师用书:第6章 第4节 数列求和 Word版含答案

2021版新高考数学一轮教师用书:第6章 第4节 数列求和 Word版含答案

第四节 数列求和[考点要求] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.(对应学生用书第108页)1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形:①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一、思考辨析(正确的打“√”,错误的打“×”)(1)已知等差数列{a n }的公差为d ,则有1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 二、教材改编1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1B .56C .16D .1302.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.S n =12+12+38+…+n2n 等于( ) A .2n -n -12n B .2n +1-n -22nC .2n -n +12nD .2n +1-n +22n4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.(对应学生用书第109页)考点1 分组转化法求和 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和. (2)通项公式为a n =⎩⎨⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:注意在含有字母的数列中对字母的分类讨论.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[母题探究] 在本例(2)中,若条件不变求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n =2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.常用并项求和法解答形如(-1)n a n 的数列求和问题,注意当n 奇偶性不定时,要对n 分奇数和偶数两种情况分别求解.对n 为奇数、偶数讨论数列求和时,一般先求n 为偶数时前n 项和T n .n 为奇数可用T n =T n -1+b n (n ≥2)或T n =T n +1-b n +1最好.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 考点2 裂项相消法求和形如a n =1n (n +k )(k 为非零常数)型a n =1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .提醒:求和抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2019·厦门一模)已知数列{a n }是公差为2的等差数列,数列{b n }满足b 1=6,b 1+b 22+b 33+…+b nn =a n +1.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n b n 的前n 项和.本例第(1)问在求{b n }的通项公式时灵活运用了数列前n 项和与项的关系,注意通项公式是否包含n =1的情况;第(2)问在求解中运用了裂项法,即若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1. [教师备选例题](2019·唐山五校联考)已知数列{a n }满足:1a 1+2a 2+…+n a n=38(32n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n n ,求1b 1b 2+1b 2b 3+…+1b n b n +1.[解] 1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n -1a n -1 =38(32n -1)-38(32n -2-1) =32n -1,当n =1时,na n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn =-(2n -1), 因为1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), 所以1b 1b 2+1b 2b 3+…+1b n b n +1=12[⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. (2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =11S k =________.形如1n +k +n(k 为非零常数)型a n =1n +k +n=1k (n +k -n ).已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *,记数列{a n }的前n 项和为S n ,则S 2 019=( )A . 2 018-1B . 2 019-1C . 2 020-1D . 2 020+1运用分母有理化对分式1n +1+n正确变形并发现其前后项之间的抵消关系是求解本题的关键.求和S =11+3+13+5+…+1119+121=( ) A .5 B .4 C .10 D .9形如b n =(q -1)a n(a n +k )(a n +1+k )(q 为等比数列{a n }的公比)型b n =(q -1)a n (a n +k )(a n +1+k )=1a n +k -1a n +1+k.(2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n .本例第(1)问在求解通项公式时运用了构造法,形如a n +1=λa n +μ的数列递推关系求通项公式都可以采用此法;第(2)问运用了裂项相消法求和.已知 {a n }是等比数列,且a 2=12,a 5=116,若b n =a n +1(a n +1)(a n +1+1),则数列{b n }的前n 项和为( )A .2n -12(2n +1)B .2n -12n +1C .12n +1D .2n -12n +2形如a n =n +1n 2(n +2)2型a n =n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.②1k -1k +1<1k 2<1k -1-1k .③2(n +1-n )<1n<2(n -n -1).已知等比数列{a n }的前n 项和为S n ,满足S 4=2a 4-1,S 3=2a 3-1. (1)求{a n }的通项公式;(2)记b n =log 2(a n ·a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2.考点3 错位相减法求和错位相减法求和的具体步骤 步骤1→写出S n =c 1+c 2+…+c n .步骤2→等式两边同乘等比数列的公比q ,即qS n =qc 1+qc 2+…+qc n . 步骤3→两式错位相减转化成等比数列求和.步骤4→两边同除以1-q ,求出S n .同时注意对q 是否为1进行讨论.(2019·莆田模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1,数列{b n }满足a 1=b 1,点P (b n ,b n +1)在直线x -y +2=0上,n ∈N *.(1)求数列{a n },{b n }的通项公式; (2)设c n =b na n,求数列{c n }的前n 项和T n .本例巧妙地将数列{a n }及其前n 项和为S n ,数列与函数的关系等知识融合在一起,难度适中.求解的关键是将所给条件合理转化,并运用错位相减法求和.(2019·烟台一模)已知等差数列{a n }的公差是1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2a n 的前n 项和T n .课外素养提升⑥ 数学建模—— 数列中等量关系的建立(对应学生用书第111页)2019全国卷Ⅰ理科21题将数列与概率知识巧妙的融合在一起,在考查概率知识的同时,突出考查学生借用数列的递推关系将实际问题转化为数学问题的能力.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题,这就要求考生除熟练运用数列的有关概念外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解题的速度.直接借助等差(等比)数列的知识建立等量关系【例1】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式; (2)至少经过几年,旅游业的总收入才能超过总投入? [解] (1)第1年投入为800万元, 第2年投入为800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入为800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以,n 年内的总投入为:a n =800+800×⎝ ⎛⎭⎪⎫1-15+…+800×⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,第1年旅游业收入为400万元, 第2年旅游业收入为400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年旅游业收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以,n 年内的旅游业总收入为b n =400+400×⎝ ⎛⎭⎪⎫1+14+…+400×⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0, 化简得5×(45)n +2×(54)n -7>0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n,代入上式得:5x 2-7x +2>0.解得x <25,或x >1(舍去). 即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. ∴至少经过5年,旅游业的总收入才能超过总投入.[评析] 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点,正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.【素养提升练习】 公民在就业的第一年就交纳养老储备金a 1,以后每年交纳的数目均比上一年增加d (d >0),历年所交纳的储备金数目a 1,a 2,…,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r )n -1,第二年所交纳的储备金就变为a 2(1+r )n -2,…,以T n 表示到第n 年末所累计的储备金总额.求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列. [解] T 1=a 1,对n ≥2反复使用上述关系式,得 T n =T n -1(1+r )+a n=T n -2(1+r )2+a n -1(1+r )+a n=a 1(1+r )n -1+a 2(1+r )n -2+…+a n -1(1+r )+a n ,① 在①式两端同乘1+r ,得(1+r )T n =a 1(1+r )n +a 2(1+r )n -1+…+a n -1(1+r )2+a n (1+r ),② ②-①,得rT n =a 1(1+r )n +d [(1+r )n -1+(1+r )n -2+…+(1+r )]-a n =dr [(1+r )n -1-r ]+a 1(1+r )n -a n . 即T n =a 1r +d r 2(1+r )n -dr n -a 1r +d r 2.如果记A n =a 1r +d r 2(1+r )n,B n =-a 1r +d r 2-d r n ,则T n =A n +B n ,其中{A n }是以a 1r +dr 2(1+r )为首项,以1+r (r >0)为公比的等比数列;{B n }是以-a 1r +d r 2-d r 为首项,-dr 为公差的等差数列.借助数列的递推关系建立等量关系【例2】 大学生自主创业已成为当代潮流.某大学大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品.银行贷款的年利率为6%,约定一年后一次还清贷款.已知夏某每月月底获得的利润是该月月初投入资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1 500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n 个月月底余a n 元,第n +1个月月底余a n +1元,写出a 1的值并建立a n +1与a n 的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12) [解] (1)依题意,a 1=20 000(1+15%)-20 000×15%×20%-1 500=20 900(元), a n +1=a n (1+15%)-a n ×15%×20%-1 500 =1.12a n -1500(n ∈N *,1≤n ≤11). (2)令a n +1+λ=1.12(a n +λ),则 a n +1=1.12a n +0.12λ,对比(1)中的递推公式,得λ=-12 500. 则a n -12 500=(20 900-12 500)1.12n -1, 即a n =8 400×1.12n -1+12 500.则a 12=8 400×1.1211+12 500≈41 732(元).又年底偿还银行本利总计20 000(1+6%)=21 200(元), 故该生还清银行贷款后纯收入41 732-21 200=20 532(元).[评析] (1)先求出a 1的值,并依据题设条件得出a n +1与a n 的递推关系;(2)利用构造法求得{a n }的通项公式并求出相应值.【素养提升练习】 如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,是曲线C :y 2=12x (y ≥0)上的点,A 1(a 1,0),A 2(a 2,0),…,A n (a n ,0),…,是x 轴正半轴上的点,且△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点).(1)写出a n -1、a n 和x n 之间的等量关系,以及a n -1、a n 和y n 之间的等量关系; (2)用数学归纳法证明a n =n (n +1)2(n ∈N *);(3)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,对所有n ∈N *,b n <log 8t 恒成立,求实数t 的取值范围.[解] (1)依题意,△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点),故有x n =a n -1+a n 2,y n =a n -a n -12.(2)证明:①当n =1时,可求得a 1=1=1×22,命题成立; ②假设当n =k 时,命题成立,即有a k =k (k +1)2. 则当n =k +1时,由归纳假设及(a k -a k -1)2=a k -1+a k , 得⎣⎢⎡⎦⎥⎤a k +1-k (k +1)22=k (k +1)2+a k +1.即(a k +1)2-(k 2+k +1)a k +1+k (k -1)2·(k +1)(k +2)2=0,解得a k +1=(k +1)(k +2)2(a k +1=k (k -1)2<a k ,不合题意,舍去),即当n =k +1时,命题成立.综上所述,对所有n ∈N *,a n =n (n +1)2. (3)b n =1a n +1+1a n +2+1a n +3+…+1a 2n=2(n +1)(n +2)+2(n +2)(n +3)+…+22n (2n +1)=2n +1-22n +1=2n 2n 2+3n +1=2⎝ ⎛⎭⎪⎫2n +1n +3.因为函数f (x )=2x +1x 在区间[1,+∞)上单调递增,所以当n =1时,b n 最大为13,即b n ≤13. 由题意,有13<log 8t ,所以t >2,所以,t ∈(2,+∞).。

(完整word版)等差数列公式大全,推荐文档

(完整word版)等差数列公式大全,推荐文档

等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。

8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。

(完整版)等差数列的求和公式总结

(完整版)等差数列的求和公式总结

(完整版)等差数列的求和公式总结概述等差数列是数学中常见的数列类型之一。

求和公式是用于计算等差数列各项之和的公式。

本文将总结一些常用的等差数列求和公式。

等差数列等差数列是一系列数按照相等的差值递增或递减的数列。

通常表示为:a, a + d, a + 2d, a + 3d, ...其中,a为序列的第一项,d为公差(即相邻两项之间的差值)。

等差数列求和公式公式1:求和公式等差数列的求和公式为:Sn = n * (a + l) / 2其中,Sn表示等差数列的和,n表示等差数列的项数,a表示第一项,l表示最后一项。

公式2:前n项和公式等差数列前n项和的公式为:Sn = (n / 2) * (2a + (n - 1) * d)其中,Sn表示等差数列的和,n表示等差数列的项数,a表示第一项,d表示公差。

公式3:差分法求和公式等差数列的差分法求和公式为:Sn = (n - 1) * (a + l) / 2其中,Sn表示等差数列的和,n表示等差数列的项数,a表示第一项,l表示最后一项。

示例以等差数列1, 4, 7, 10为例,利用上述公式计算其和:- 公式1:Sn = 4 * (1 + 10) / 2 = 28- 公式2:Sn = (4 / 2) * (2 * 1 + (4 - 1) * 3) = 28- 公式3:Sn = (4 - 1) * (1 + 10) / 2 = 28可以看到,三个公式得到的结果均为28,验证了公式的正确性。

总结等差数列的求和公式为Sn = n * (a + l) / 2,前n项和公式为Sn = (n / 2) * (2a + (n - 1) * d),差分法求和公式为Sn = (n - 1) * (a + l) / 2。

这些公式可以帮助我们快速计算等差数列的各项之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
2
【审题指导】根据等差数列前n项和公式解方程.
【规范解答】(1)∵a15=
5 6
+(15-1)d=
3 2
, ∴d=
1 6
.
又Sn=na1+n
n 2
1· d=-5,解得n=15,n=-4(舍).
(2)由已知,得S8=8a12a88解42得a8a8,=39,
又∵a8=4+(8-1)d=39,∴d=5.
∴a1=-5,d=a
6
5
a=1 3.∴a8=a1+(8-1)d=16.
知识点:等差数列前n项和的性质的应用
(1)项数(下标)的“等和”性质:
Sn= n( a1an) n( amanm 1 )
2
2
(2)项的个数的“奇偶”性质:
等差数列{an}中,公差为d: ①若共有2n项,则S2n=n(an+an+1); S偶-S奇=nd;S偶∶S奇= an+1∶an;
【变式训练】在等差数列{an}中,已知a6=10,S5=5,求a8. 【解析】方法一:设公差为d,
∵a6=10,S5=5,

5a1a
5d解 1得0 ,
1 10d 5
∴a ad81=a365+, 2d=16.
方法二:设公差为d,
∵S6=S5+a6=15,∴15(6=a
1
2
a
6),即3(a1+10)=15.
问题2
一个堆放铅笔的V形架 的最下面一层放一支铅 笔,往上每一层都比它 下面一层多放一支,最 上面一层放100支.这个 V形架上共放着多少支 铅笔?
问题就是 求 “1+2+3+4+…+100=?”
问题2:对于这个问题,德国著名数学家高斯10岁 时曾很快求出它的结果。(你知道应如何算吗?)
假设1+2+3+ +100=x,
(1)
那么100+99+98+ +1=x.
(2)
由(1)+(2)得101+101+101+ +101=2x,
100个101
所以 2x10110,0x=5050.
高斯
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
问题3:
求:1+2+3+4+…+n=? 记:S= 1 + 2 + 3 +…+(n-2)+(n-1)+n
即 Sn=n(a1+an)/2
即前n项的和与首项末项及项数有 关
若已知a1,n,d,则如何表示Sn呢?
因为 an= a1+(n-1)d 所以 Sn=na1+n (n-1)d/2
由此得到等差数列的{an}前n项和的公式
Sn
n(a1 an) 2
即:等差数列前n项的和等于首末项的和与项数乘积的一半。
由等差数列的通项公式 an = a1+(n-1)d
上面的公式又可以写成
Sn n1 an(n21)d
解题时需根据已知条件决定选用哪个公式。
公式 5 个 共 a 1 量 ,涉 d ,n ,a n : ,S 及 n .已 到 知 3 个 其 可 2 个
正所谓:知三求二
等差数列前n项和公式补充知识
【说明】
①推导等差数列的前n项和公式的方法叫 倒序相加法 ;
小结:
1.推导等差数列前 n项和公式的方法 -------倒序相加法
2.公式的应用中的数学思想.
-------方程思想
3.公式中五个量a1, d, an, n, sn, 已知 其中三个量,可以求其余两个 -------知三求二
【例1】已知等差数列{an}.
(1)a1= 5 , a15= 3 , Sn=-5,求n和d;(2)a1=4,S8=172,求a8和d.
S= n+(n-1)+(n-2)+…+ 3 + 2 +1
2S n(n 1), S n(n 1)
2
下面将对等差数列的前n项和公式进行推导 设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
有无简单的方法?
探究发现
问题1:图案中,第1层到第21层一共有 多少颗宝石?
借助几何图形之 直观性,使用熟悉的 几何方法:把“全等 三角形”倒置,与原 图补成平行四边形。
探究发现
问题1:图案中,第1层到第21层一共有 多少颗宝石?
1 2 3
21 20 19
获得算法:
s21
(121)21 2
21
1
的前n项和,则有a1=-10, d=-6-(-10)=4
设该数列前n 项和为54
n(n- 1)
根据等差数列前n项和公式: sn=na1+
d 2
有 -10n+n (n-1)?4 54成 立 2
整 理 后 ,得 n 2-6 n -2 7=0
解得 n1=9, n2=-3(舍去)
因此等差数列-10,-6,-2,2,...前9项的和 是54.
等差数列前n项和公式
复习回顾
(1) 等差数列的通项公式:
已知首项a1和公差d,则有:
an=a1+ (n-1) d 已知第m项am和公差d,则有: an=am+ (n-m) d, d=(an-am)/(n-m) (2) 等差数列的性质:
在等差数列﹛an﹜中,如果m+n=p+q (m,n,p,q∈N),那么: an+am=ap+aq
问题呈现
问题1
泰姬陵坐落于印度古都阿格,是十七世 纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃 所建,她宏伟壮观,纯白大理石砌建而 成的主体建筑叫人心醉神迷,成为世界 七大奇迹之一。陵寝以宝石镶饰,图案 之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同 大小的圆宝石镶饰而成,共有100层(见 左图),奢靡之程度,可见一斑。
②{an}为等差数列 Sn=an2+bn,这是一个关于 n 的 没有 常数项 的差数列-10,-6,-2,
2,…前多少项的和是54?
本题实质是反用公式,解一 个关于n 的一元二次函数,注 意得到的项数n 必须是正整数 .
解:将题中的等差数列记为{an},sn代表该数列
你知道这个图案一共花了多少宝石吗?
探究发现
问题1:图案中,第1层到第21层一共有 多少颗宝石?
这是求奇数个项和的问题,不 能简单模仿偶数个项求和的办法, 需 要 把 中 间 项 11 看 成 首 、 尾 两 项1和21的等差中项。
通过前后比较得出认识:高斯 “首尾配对” 的算法还得分奇、 偶个项的情况求和。
相关文档
最新文档