2019年浙江省宁波市中考数学试卷 解析版

合集下载

2019年浙江省宁波市2019年中考数学试卷(解析版)

2019年浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求) 1.2-的绝对值为( ) A .12-B .2C .12D .2-2.下列计算正确的是( ) A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯ D .101.52610⨯4.若分式12x -有意义,则x 的取值范围是 ( )A .2x >B .2x ≠C .0x ≠D .2x ≠-5.如图,下列关于物体的主视图画法正确的是( )ABC D6.不等式32x->x 的解为( )A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为 ( ) A .1m =- B .0m = C .4m = D .5m =8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差2S 2( ) A .甲 B .乙 C .丙 D .丁9.已知直线m n P ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为( )A .60°B .65°C .70°D .7510.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3.5 cmB .4 cmC .4.5 cmD .5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019宁波市中考数学试卷(word+详解+准图)

2019宁波市中考数学试卷(word+详解+准图)

宁波市二〇一九年初中学业水平考试考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题4分,共48分.1.(2019年宁波)-2的绝对值为( )A.-12B.2 C.12D.-2{答案}B{解析}本题考查了绝对值的定义,一个数的绝对值等于这个数在数轴上所表示的点到原点的距离,因为-2在数轴上所表示的点到原点的距离是2,因此本题选B.2.(2019年宁波)下列计算正确的是( )A.a3+a2=a5B.a3·a2=a6C.(a2)3=a5D.a6÷a2=a4{答案}D{解析}本题考查了合并同类项和幂的运算,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.a3和a2不是同类项,故不能合并,选项A错误;同底数幂相乘,底数不变,指数相加,a3·a2=a5,选项B错误;幂的乘方,底数不变,指数相乘,(a2)3=a6,选项C错误;同底数幂相除,底数不变,指数相减,a6÷a2=a4,选项D正确.3.(2019年宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( )A.1.526×108B.15.26×108C.1.526×109D.1.526×1010{答案}C{解析}本题考查了科学记数法,1526000000=1.526×109,因此本题选C.4.(2019年宁波)若分式12x-有意义,则x的取值范围是( )A.x﹥2 B.x≠2 C.x≠0 D.x≠-2{答案}B{解析}本题考查了分式有意义的条件,根据分式的分母不能为零,得到x-2≠0,所以x≠2,因此本题选B.5.(2019年宁波)如图,下列关于物体的主视图画法正确的是( )A.B.C.D.{答案}C{解析}本题考查了几何体的三视图,主视图是指从几何体的正面看到的平面图,该几何体从正面看,只有选项C正确,因此本题选C.6.(2019年宁波)不等式32x-﹥x的解为( )A.x﹤1 B.x﹤-1 C.x﹥1 D.x﹥-1{答案}A{解析}本题考查了解一元一次不等式.根据不等式的解法,不等式的两边同乘以2,得3-x>2x,再移项,合并同类项,得-3x>-3,解得x<1,因此本题选A.7.(2019年宁波)能说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题的反例为( ) A.m =-1 B.m =0 C.m =4 D.m =5{答案}D{解析}本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题,只要满足△=16-4m<0的解即可,即m>4的值,因此本题选D.8.(2019年宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )A.甲B.乙C.丙D.丁{答案}B{解析}本题考查平均数和方差.比较四个品种的平均数可得,甲品种和乙品种的产量更好,而甲的方差>乙的方差,所以乙品种的产量更稳定些,因此本题选B.9.(2019年宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )A.60°B.65°C.70°D.75°n{答案}C{解析}本题考查了平行线的性质和三角形的外角的性质.如图,∵△ABC 是含45°的等腰直角三角形,∴∠B =45°,∴∠3=∠B +∠1=45°+25°=70°,∵m ∥n ,∴∠2=∠3=70°,因此本题选C .10.(2019年宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ) A .3.5cmB .4cmC .4.5cmD .5cm{答案}B{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,扇形的弧长等于圆周长.欲从矩形CDEF 中裁出最大的圆,矩形的两条边CD 、EF 恰好与圆相切,即DE 长是圆的直径,不妨设AB =x ,则扇形弧长为90180x p 白°,圆的周长为()6x p -,得90180xp 白°=()6x p -,所以x =4,因此本题选B .11.(2019年宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元{答案}A{解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰x 元,每支百合y 元,根据题意可列出方程:5x +3y +10=3x +5y -4,得x -y =-7,若小慧只买8支玫瑰,n (第9题解)则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入可得解是31,因此本题选A.12.(2019年宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和图1 图2(第12题图){答案}C{解析}本题考查了图形的面积计算和勾股定理的应用.不妨设图中所给直角三角形的较长直角边为a,较短直角边为b,斜边为c,则a2+b2=c2.将图中阴影部分分离出来,其每条边长如图所示,利用图形面积的和差关系可知阴影部分面积可以表示为c(c-b)-a(a-b),又因为a2+b2=c2,即阴影部分可表示为b(a+b-c).直角三角形的面积是12ab,选项A错误;最大正方形的面积为c2,选项B错误;最大正方形和直角三角形的面积和是c2+12ab,选项D错误;用排除法易得选项C正确.事实上,较小两个正方形重叠部分是以b为长,(a+b-c)为宽的矩形,所以面积是b(a+b-c),选项C正确,因此本题选C.二、填空题:本大题共6小题,每小题4分,共24分.13.(2019年宁波)请写出一个小于4的无理数:.{答案}p(答案不唯一){解析}本题考查了实数的大小比较和无理数的概念.本题答案不唯一,p(第12题解)14.(2019年宁波)分解因式:x 2+xy = . {答案}x (x +y ){解析}本题考查了因式分解——提取公因式.原式= x (x +y ).15.(2019年宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . {答案}58{解析}本题考查概率的基本计算.用红球的个数除以球的总个数即为所求的概率.因为一共有8个球,其中5个红球,所以从袋中任意摸出1个球是红球的概率是58.16.(2019年宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1≈1.4141.732)东A(第16题图){答案}566{解析}本题考查了解直角三角形,锐角三角函数等知识.如图,在Rt △ACO 中,∠ACO =90°,AO =400,∠AOC =45°,∴CO =AO ·cos45°=Rt △BCO 中,∠BCO =90°,∠COB =60°,∴OB = cos60CO°=.17.(2019年宁波)如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .(第16题解)东A{答案}132或{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD 中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴PDAD=PEAC,即13PD=612,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=AD=BD=13,DQ⊥AB,∴AQ=12AB =∴DQ=AFP=∠AQD=90°,∠P AF=∠DAQ,∴△APF∽△ADQ,∴APAD=PFDQ,即13AP,得:AP=AP的值为132或图(1) 图(2)(第17题解)18.(2019年宁波)如图,过原点的直线与反比例函数y =kx(k﹥0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.{答案}6{解析}本题考查了反比例函数,相似三角形,角平分线等知识.如图,连结OE,作AM⊥x轴,AN⊥x轴,垂足分别为点M,N.∵过原点的直线与反比例函数y=kx(k﹥0)的图象交于A,B两点,∴AO=BO,又∵AE⊥BE,∴OE=AO,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴OE∥AC,∴S△OAD=S△EAD=8,∵S四边形OADN=S△OAM+S四边形AMND=S△ODN+S△OAD,又∵点A、D均在反比例函数y=kx的图象上,∴S△OAM=S△ODN=2k,∴S四边形AMND =S△OAD=8.∵AM⊥x轴,AN⊥x轴,∴AM∥DN,∴△CDN∽△CAM,∴DNAM=CDCA=3CDCD=13,不妨设DN=a,AM=3a,∵点A、D均在反比例函数y=kx的图象上,∴OM=3ka,ON=ka,∴MN=OM-ON=23ka,∴S四边形AMND=12(AM+DN)·MN=43k=8,∴k=6.三、解答题:本大题有8小题,共78分.19.(2019年宁波)先化简,再求值:(x-2)(x+2)-x(x-1),其中x =3.{解析}本题考查了整式的乘法和代数式求值.首先计算多项式乘多项式,单项式乘多项式,再合并同类项,化简后再把x的值代入即可.{答案}解:原式=x2-4-x2+x=x-4当x=3时,原式=3-4=-1.20.(2019年宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6一个中心对称图形.)(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形(第20题图){解析}本题考查了轴对称图形和中心对称图形的作图,熟练掌握轴对称图形和中心对称图形定义是解题的关键.{答案}解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.21.(2019年宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.Array100名学生知识测试成绩的频数表(第21题图)由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.{解析}本题考查了频数表,频数直方图,中位数,用样本估计总体.明确题意,找出所求问题需要的条件、利用数形结合思想解析问题.{答案}解:(1)20.补全频数直方图:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<90中,但它们的平均数不一定是85分.(3)4015100+×1200=660(人).答:全校1200名学生中,成绩优秀的约有660人.22.(2019年宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.{解析}本题考查了二次函数的性质、待定系数法求解析式以及距离问题.在第(2)题的第②小题中先确定到y轴的距离等于2的x的值,再利用数形结合思想确定n的取值范围是解此题的关键.{答案}解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∵y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n =11.②2≤n<11.23.(2019年宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD的中点,FH=2,求菱形ABCD的周长.{解析}本题考查了矩形、菱形的性质,全等三角形的判定和性质,平行四边形的判定和性质.根据矩形和菱形的相关性质得到判定三角形全等的条件,进而得出边相等.利用中点的定义进行边的等量转化,判定四边形ABGE是平行四边形,再利用矩形的对角线相等这一性质进行边的转化,求出菱形ABCD周长.{答案}解:(1)在矩形EFGH中,EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)如图,连结EG.在菱形ABCD中,AD∥BC,且AD=BC.(第23题解)HF∵E 为AD 中点,∴AE =ED ,又∵BG =DE , ∴AE ∥BG ,且AE =BG . ∴四边形ABGE 为平行四边形. ∴AB =EG .在矩形EFGH 中,EG =FH =2,∴AB =2,∴菱形的周长为8.24.(2019年宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差. {答案}解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0).把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b ì=+ïí=+ïî,解得1503000k b ì=ïí=-ïî.图 2x y 2700150065382520小聪第一班车(分)(米)O图1∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y=150x-3000(20≤x≤38).(注:x的取值范围可省略不写)(2)把y=1500代入,解得x=30,则30-20=10(分).∴第一班车到塔林所需时间10分钟.(3)设小聪坐上第n班车.30-25+10(n-1)≥40,解得n≥4.5,∴小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分).∴小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟.25.(2019年宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.B图1 图2 图3(第25题图){解析}本题综合考查了直角三角形,等腰三角形,相似三角形的知识.根据邻余四边形的定义判定四边形ABEF是邻余四边形,利用直角三角形的两锐角互余画出图形,利用等腰三角形,相似三角形的判定和性质求出AB长.{答案}解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形.(2)如图所示(答案不唯一)B四边形ABEF即为所求.(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M是EF中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=35.∵QB=3,∴NC=5,又∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(2019年宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB 的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF︰EF=3︰2,AC=6时,求AE的长.(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.图1 图2(第26题图){解析}本题综合考查了圆,等腰三角形的判定、相似三角形的判定和性质.第(1)小题中利用同弧所对的圆周角相等,等角对等边推出两边相等.第(2)小题中利用等边△ABC的性质求出相关边长,再利用相似三角形对应边成比例求出EG长,然后由勾股定理求出AE.第(3)小题中通过构造直角三角形,有效利用tan∠DAE,找出y与x之间的函数关系;通过设参数a表示相关线段长,由面积关系找出等量关系,既而求出y值.{答案}解:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC是等边三角形,AC=6,∴BG=12BC=12AC=3,∴在Rt△ABG中,AG=∵BF⊥EC,∴BF∥AG,∴AFEF=BGEB,∵AF︰EF=3︰2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE(3)①如图,过点E作EH⊥AD于点H.∵∠EBD=∠ABC=60°,∴在Rt△BEH中,EHBE=sin60°=2,∴EH=2BE,BH=12BE,∵BGEB=AFEF=x,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=EHAH=21(2)2x BE+∴y.(第26题第(2)题解)②如图,过点O 作OM ⊥EC 于点M ,设BE =a , ∵BG EB =AFEF=x ,∴CG =BG =xBE =ax , ∴EC =CG +BG +BE =a +2ax , ∴EM =12EC =12a +ax , ∴BM =EM -BE =ax -12a , ∵BF ∥AG ,∴△EBF ∽△EGA , ∴BF AG =BE EG =a a ax +=11x+. ∵AG,∴BF =11x+AG=1x +,∴△OFB 的面积=2BF BM ×=12(ax -12a ),∴△AEC 的面积=2EC AG ×=12(a +2ax ), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12(a +2ax )=10×12×1x +(ax -12a ),∴ 2x 2-7x +6=0,解得x 1=2,x 2=32,∴ y.(第26题第(3)②题解)。

2019年浙江省宁波市中考数学试卷附分析答案

2019年浙江省宁波市中考数学试卷附分析答案

22.(10 分)如图,已知二次函数 y=x2+ax+3 的图象经过点 P(﹣2,3). (1)求 a 的值和图象的顶点坐标. (2)点 Q(m,n)在该二次函数图象上. ①当 m=2 时,求 n 的值; ②若点 Q 到 y 轴的距离小于 2,请根据图象直接写出 n 的取值范围.
第 5页(共 27页)

故选:C.
6.(4 分)不等式 >x 的解为( )
A.x<1
B.x<﹣1
C.x>1
D.x>﹣1
【解答】解: >x,
3﹣x>2x,
3>3x,
x<1,
故选:A.
7.(4 分)能说明命题“关于 x 的方程 x2﹣4x+m=0 一定有实数根”是假命题的反例为( )
A.m=﹣1
B.m=0
C.m=4
D.m=5
则摸出的球是红球的概率为

16.(4 分)如图,某海防哨所 O 发现在它的西北方向,距离哨所 400 米的 A 处有一艘船向
正东方向航行,航行一段时间后到达哨所北偏东 60°方向的 B 处,则此时这艘船与哨所
的距离 OB 约为
米.(精确到 1 米,参考数据: 1.414, 1.732)
17.(4 分)如图,Rt△ABC 中,∠C=90°,AC=12,点 D 在边 BC 上,CD=5,BD=13.点
形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底
面,则 AB 的长为( )
A.3.5cm
B.4cm
C.4.5cm
D.5cm
11.(4 分)小慧去花店购买鲜花,若买 5 支玫瑰和 3 支百合,则她所带的钱还剩下 10 元;
若买 3 支玫瑰和 5 支百合,则她所带的钱还缺 4 元.若只买 8 支玫瑰,则她所带的钱还

2019年浙江省宁波市中考数学试卷

2019年浙江省宁波市中考数学试卷
3-x>2x, 3>3x, x<1, 故选:A. 去分母、移项,合并同类项,系数化成 1 即可. 本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号 、 移项、合并同类项、系数化成 1.
第 2 页,共 17 页
7. 能说明命题“关于 x 的方程 x2-4x+m=0 一定有实数根”是假命题的反例为( )
看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原
数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n学记数法的表示形式为 a×10n 的形式,其中 1≤|a|
<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数
据的方差.方差是反映一组数据的波动大小的一个量.方差越大 ,则平均值的离散程度
越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了 平均数的意义.
9. 已知直线 m∥n,将一块含 45°角的直角三角板 ABC 按 如图方式放置,其中斜边 BC 与直线 n 交于点 D.若 ∠1=25°,则∠2 的度数为( )
2. 下列计算正确的是( )
A. a3+a2=a5
B. a3•a2=a6
C. (a2)3=a5
D. a6÷a2=a4
【答案】D
【解析】解:A、a3 与 a2 不是同类项,故不能合并,故选项 A 不合题意;
B、a3•a2=a5 故选项 B 不合题意;
C、(a2)3=a6,故选项 C 不合题意;
D、a6÷a2=a4,故选项 D 符合题意.
D. 5cm
根据题意,得9108���0���������=π(6-x),

2019年浙江省宁波市中考数学试卷解析版

2019年浙江省宁波市中考数学试卷解析版

2019年浙江省宁波市中考数学试卷解析版一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.−12B.2C.12D.﹣2【解答】解:﹣2的绝对值为2,故选:B.2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【解答】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.3.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010【解答】解:数字1526000000科学记数法可表示为1.526×109元.故选:C.4.(4分)若分式1x−2有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.5.(4分)如图,下列关于物体的主视图画法正确的是()A .B .C .D .【解答】解:物体的主视图画法正确的是:.故选:C . 6.(4分)不等式3−x 2>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣1【解答】解:3−x 2>x ,3﹣x >2x , 3>3x , x <1, 故选:A .7.(4分)能说明命题“关于x 的方程x 2﹣4x +m =0一定有实数根”是假命题的反例为( ) A .m =﹣1B .m =0C .m =4D .m =5【解答】解:当m =5时,方程变形为x 2﹣4x +5=0, 因为△=(﹣4)2﹣4×5<0, 所以方程没有实数解,所以m =5可作为说明命题“关于x 的方程x 2﹣4x +m =0一定有实数根”是假命题的反例. 故选:D .8.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁 x 24 24 23 20 S 22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲B .乙C .丙D .丁【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A .3.5cmB .4cmC .4.5cmD .5cm【解答】解:设AB =xcm ,则DE =(6﹣x )cm , 根据题意,得90πx 180=π(6﹣x ),解得x =4. 故选:B .11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元【解答】解:设每支玫瑰x 元,每支百合y 元, 依题意,得:5x +3y +10=3x +5y ﹣4, ∴y =x +7,∴5x +3y +10﹣8x =5x +3(x +7)+10﹣8x =31. 故选:A .12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C .二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数: √15 . 【解答】解:∵15<16, ∴√15<4,即√15为小于4的无理数. 故答案为√15.14.(4分)分解因式:x 2+xy = x (x +y ) . 【解答】解:x 2+xy =x (x +y ).15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为58.【解答】解:从袋中任意摸出一个球,则摸出的球是红球的概率=58. 故答案为58.16.(4分)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 566 米.(精确到1米,参考数据:√2≈1.414,√3≈1.732)【解答】解:如图,设线段AB 交y 轴于C ,在直角△OAC 中,∠ACO =∠CAO =45°,则AC =OC . ∵OA =400米,∴OC=OA•cos45°=400×√22=200√2(米).∵在直角△OBC中,∠COB=60°,OC=200√2米,∴OB=OCcos60°=200√212=400√2≈566(米)故答案是:566.17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3√13.【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB=√122+182=6√13,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD=√AC2+CD2=13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴PD DA =PH AC ,∴PD 13=612,∴PD =6.5, ∴AP =6.5;当⊙P 于AB 相切时,点P 到AB 的距离=6, 过P 作PG ⊥AB 于G , 则PG =6, ∵AD =BD =13, ∴∠P AG =∠B , ∵∠AGP =∠C =90°, ∴△AGP ∽△BCA , ∴AP AB=PG AC,∴6√13=612,∴AP =3√13, ∵CD =5<6,∴半径为6的⊙P 不与△ABC 的AC 边相切, 综上所述,AP 的长为6.5或3√13, 故答案为:6.5或3√13.18.(4分)如图,过原点的直线与反比例函数y =kx (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 6 .【解答】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG ⊥AF,∵过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,km),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,k3m),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S △HDC =14S △ADG , ∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4k 3m ×2m +12×14×2k 3m ×2m =12k +4k 3+k6=12, ∴2k =12, ∴k =6; 故答案为6;(另解)连结OE ,由题意可知OE ∥AC , ∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积, 设A 的纵坐标为3a ,则D 的纵坐标为a , ∴(3a +a )(ka −k 3a)=16,解得k =6.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x ﹣2)(x +2)﹣x (x ﹣1),其中x =3. 【解答】解:(x ﹣2)(x +2)﹣x (x ﹣1) =x 2﹣4﹣x 2+x =x ﹣4,当x =3时,原式=x ﹣4=﹣1.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解答】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=20,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a ≤90中,但他们的中位数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【解答】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD =CD =3BE ,∴CE =CD +DE =5BE ,∵∠EDF =90°,点M 是EF 的中点,∴DM =ME ,∴∠MDE =∠MED ,∵AB =AC ,∴∠B =∠C ,∴△DBQ ∽△ECN ,∴QB NC =BD CE =35, ∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.26.(14分)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F .(1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长.(3)设AF EF =x ,tan ∠DAE =y .①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.【解答】证明:(1)∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∵∠DEB =∠BAC =60°,∠D =∠C =60°, ∴∠DEB =∠D ,∴BD =BE ;(2)如图1,过点A 作AG ⊥BC 于点G , ∵△ABC 是等边三角形,AC =6,∴BG =12BC =12AC =3,∴在Rt △ABG 中,AG =√3BG =3√3, ∵BF ⊥EC ,∴BF ∥AG ,∴AF EF =BG EB ,∵AF :EF =3:2,∴BE =23BG =2,∴EG =BE +BG =3+2=5,在Rt △AEG 中,AE =√AG 2+EG 2=√(3√3)2+52=2√13;(3)①如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,EH BE =sin60°=√32, ∴EH =√32BE ,BH =12BE ,∵BG EB =AF EF =x ,∴BG =xBE ,∴AB =BC =2BG =2xBE ,∴AH =AB +BH =2xBE +12BE =(2x +12)BE ,∴在Rt △AHE 中,tan ∠EAD =EH AH =√32BE (2x+12)BE =√34x+1, ∴y =√34x+1;②如图2,过点O 作OM ⊥BC 于点M ,设BE =a ,∵BG EB =AF EF =x ,∴CG =BG =xBE =ax ,∴EC =CG +BG +BE =a +2ax ,∴EM =12EC =12a +ax ,∴BM =EM ﹣BE =ax −12a ,∵BF ∥AG ,∴△EBF ∽△EGA ,∴BF AG =BE EG =a a+ax =11+x ,∵AG =√3BG =√3ax ,∴BF =1x+1AG =√3ax x+1,∴△OFB 的面积=BF⋅BM 2=12×√3ax x+1(ax −12a),∴△AEC 的面积=EC⋅AG 2=12×√3ax(a +2ax), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12×√3ax(a +2ax)=10×12×√3ax x+1(ax −12a), ∴2x 2﹣7x +6=0,解得:x 1=2,x 2=32,∴y =√39或√37,。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

2019年浙江宁波中考数学试题(解析版)

2019年浙江宁波中考数学试题(解析版)

F
C
(第 10 题图)
{答案}B
{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,
扇形的弧长等于圆周长.欲从矩形 CDEF 中裁出最大的圆,矩形的两条边 CD、EF 恰好与圆相切,
( ) 90° ×p x
即 DE 长是圆的直径,不妨设 AB=x,则扇形弧长为
,圆的周长为
正确,因此本题选 C.
{分值}4
{章节:[1-17-1]勾股定理}
c-a
c-a
c
c-a
c-ac-b
c-b
{考点:代数式} {考点:列代数式} {考点:勾股定理} {考点:勾股定理的应用} {考点:几何选择压轴} {类别:思想方法} {类别:数学文化} {类别:发现探究} {难度:4-较高难度}
{题型:2-填空题}二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.
{题目}11.(2019 年宁波)小慧去花店购买鲜花,若买 5 支玫瑰和 3 支百合,则她所带的钱还剩下 10
元;若买 3 支玫瑰和 5 支百合,则她所带的钱还缺 4 元.若只买 8 支玫瑰,则她所带的钱还剩下(
)
A.31 元
B.30 元
C.25 元
D.19 元
{答案}A {解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰 x 元,每支 百合 y 元,根据题意可列出方程:5x+3y+10=3x+5y-4,得 x-y=-7,若小慧只买 8 支玫瑰, 则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入 可得解是 31,因此本题选 A. {分值}4 {章节:[1-8-1]二元一次方程组} {考点:代数式} {考点:二元一次方程的解} {类别:思想方法} {类别:易错题} {难度:4-较高难度}

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷-答案

180
解得 x 4..
故答案为:B。
【考点】圆锥的计算
11.【答案】A
【解析】解:设玫瑰花每支 x 元,百合花每支 y 元,小慧带的钱数是 a 元,由题意,
5x 3y a 10


3x+5y a 4
将两方程相减得 y x 7 ,
y x 7,
将 y x 7 代入 5x 3y a 10
【解析】解:(1) m 100 10 15 40 15 20 (人),
故答案为:20. 补全频数直方图如下:
【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图
22.【答案】(1)解: 把P( 2,3)代入y x2 ax 3,得3 ( 2)2 2a 3, 解得a 2. y x2 2x 3 (x 1)2 2,
13.【答案】答案不唯一如 2 , π 等
【解析】解:开放性的命题,答案不唯一,如 2 等。
故答案为:不唯一,如 2 等。
【考点】实数大小的比较,无理数的认识
14.【答案】(x x y)
【解析】解: x2 xy (x x y)
【考点】因式分解-提公因式法
8
15.【答案】
5
【解析】解: P 袋中摸出红球的概率 = 5
∴第一班车离入口处的路程 y(米)与时间 x(分)的函数表达式为
y 150x 300020 x 38 .(注:x 的取值范围对考生不作要求)
(2)解:把 y 1500 代入 y 150x 3000 ,解得 x 30,30 20 1(0 分)。
∴第一班车到塔林所需时间 10 分钟. (3)解:设小聪坐上第 n 班车.

浙江宁波2019中考试题数学卷(解析版)

浙江宁波2019中考试题数学卷(解析版)

1 满分150分,考试时间120分钟
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)
1. 6的相反数是
A. -6
B.
61 C. 61 D. 6
【答案】A.
【解析】试题分析:根据只有符号不同的两个数互为相反数可得
6的相反数是-6,故答案选 A. 考点:相反数.
2. 下列计算正确的是
A. 633a a a
B. 33a a
C. 523)(a a
D. 3
2a a a 【答案】D.
考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算
. 3. 宁波栎社国际机场三期扩建工程建设总投资
84.5亿元,其中84.5亿元用科学计数法表示为
A. 0.845×1010元
B. 84.5
×108元 C. 8.45×109元 D. 8.45×1010元【答案】C.
【解析】
试题分析:科学计数法是指:a ×n 10,且101
a ,n 为原数的整数位数减一.84.5亿=8 450
000 000=8.45×109,故答案选 C.
考点:科学计数法.。

2019年宁波中考数学试卷(解析版)(2021年整理精品文档)

2019年宁波中考数学试卷(解析版)(2021年整理精品文档)

(完整版)2019年宁波中考数学试卷(解析版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2019年宁波中考数学试卷(解析版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2019年宁波中考数学试卷(解析版)的全部内容。

2019年宁波中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1。

﹣2的绝对值为()A.﹣B.2 C.D.﹣22.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a43。

宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1。

526×108B.15。

26×108C.1.526×109D.1。

526×10104.若分式有意义,则x的取值范围是( )A.x>2 B.x≠2 C.x≠0 D.x≠﹣25。

如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.不等式>x的解为( )A.x<1 B.x<﹣1 C.x>1 D.x>﹣17.能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1 B.m=0 C.m=4 D.m=58。

去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320S22。

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面几何体的俯视图正确的是( )A .B .C .D .2.如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要 35 片马赛克片. 已知每箱装有 125 片马赛克片,那么要铺满整个台面需购买马赛克( )A .6 箱B .7 箱C .8 箱D .9 箱 4.过⊙O 内一点M 的最长的弦长为6 cm ,最短的弦长为 4 cm ,则OM 的长为( ) A .3 cm B .2cm C .2 cm D .3 cm5.不等式025x >-的解集是( )A .25x <B .25x >C .52x <D .25-x < 6.等腰三角形形一个底角的余角等于30°,它的顶角等于( )A .30°B .60°C .90°D . 以上都不对7.如图,CD 是△ABC 的中线,DE 是△ACD 的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm 2,则△ABC 的面积是( )A . 4cm 2B .5 cm 2C . 6 cm 2D .8 cm 28.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS9.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1310.如图所示,已知△ABC ≌△DCB ,那么下列结论中正确的是( )A .∠ABC=∠CDB ,∠BAC=∠DCB ,∠ACB=∠DBCB .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠ABDC .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠DBCD .∠ABC=∠DBC ,∠BAC=∠CDB ,∠ACB=∠ACD二、填空题11.2cos45°的值等于 .12.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m ,左边的影子长为 1.5m ,且自己的身高为 1.80 m ,两盏路灯的高相同,两盏路灯之间的距离为 12m ,则路灯的高度为 m .13.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.14.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.15.设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).16.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

【分析】简单几何体的三视图,就是分别从正面向后看,从左面向右看,从上面向下看得到的正投影,能看见的轮廓线需要画成实线,看不见但又存在的轮廓线需要画为虚线,故空心圆柱的主视图应该是一个长方形,加两条虚竖线。

6.不等式的解为()A. B. C. D.【答案】A【考点】解一元一次不等式【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1.故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。

7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D【分析】由一元二次方程的根的判别式可知,当b²-4ac=(-4)²-4×1×m≥0时,方程有实数根,解不等式可得m 的范围,则不在m的取值范围内的值就是判断命题是假命题的值。

8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【考点】平均数及其计算,方差【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

故答案为:B【分析】因为平均数越大,产量越高,所以A和B符合题意;方差越小,波动越小,产量越稳定,所以B、D符合题意,综合平均数和方差可选B。

9.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A. 60°B. 65°C. 70°D. 75°【答案】C【考点】平行线的性质,三角形的外角性质【解析】【解答】解:设直线n与AB的交点为E。

∵∠AED是△BED的一个外角,∴∠AED=∠B+∠1,∵∠B=45°,∠1=25°,∴∠AED=45°+25°=70°∵m∥n,∴∠2=∠AED=70°。

故答案为:C。

【分析】设直线n与AB的交点为E。

由三角形的一个外角等于和它不相邻的两个内角的和可得∠AED=∠B+∠1,再根据两直线平行内错角相等可得∠2=∠AED可求解。

10.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm【答案】B【考点】圆锥的计算【解析】【解答】解:设AB=x,由题意,得,解得x=4.故答案为:B。

【分析】设AB=x,根据扇形的弧长计算公式算出弧AF的长,根据该弧长等于直径为(6-x)的圆的周长,列出方程,求解即可。

11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,由题意,得,将两方程相减得y-x=7,∴y=x+7,将y=x+7代入5x+3y=a-10得8x=a-31,∴若只买8支玫瑰花,则她所带的钱还剩31元。

故答案为:A【分析】设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,根据若买5支玫瑰花和3支百合花所带的钱还剩10元,若买3支玫瑰花和5支百合花所带的钱还差4元,列出方程组,根据等式的性质,将两个等式相减即可得出y-x=7,即y=x+7,将y=x+7代入其中的一个方程,即可得出8x=a-31.从而得出答案。

12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A. 直角三角形的面积B. 最大正方形的面积C. 较小两个正方形重叠部分的面积D. 最大正方形与直角三角形的面积和【答案】C【考点】勾股定理的应用【解析】【解答】解:根据勾股定理及正方形的面积计算方法可知:较小两个直角三角形的面积之和=较大正方形的面积,所以将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,所以知道了图2阴影部分的面积即可知道两小正方形重叠部分的面积。

故答案为:C【分析】根据勾股定理及正方形面积的计算方法可知:将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,从而即可得出答案。

二、填空题(每小题4分,共24分)13.请写出一个小于4的无理数:________【答案】答案不唯一如,π等【考点】实数大小的比较,无理数的认识【解析】【解析】解:开放性的命题,答案不唯一,如等。

故答案为:不唯一,如等。

【分析】无理数就是无限不循环的小数,常见的无理数有三类:①开方开不尽的数,② 的倍数的数,③像0.1010010001…(两个1之间依次多一个0)这类有规律的数,根据定义,只要写出一个比4小的无理数即可。

14.分解因式:x2+xy=________.【答案】x(x+y)【考点】因式分解-提公因式法【解析】【解答】解:x2+xy=x(x+y).【分析】直接提取公因式x即可.15.袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.【答案】【考点】简单事件概率的计算【解析】【解答】解:.故答案为:.【分析】袋中有8个小球,它们除颜色不同外其他的都相同,其中红色的小球共有5个,故从中摸出一个共有8种等可能的结果,其中能摸出红球的只有5种等可能的结果,根据概率公式即可算出答案。

16.如图,某海防响所O发现在它的西北方向,距离哨所400米的A处有一般船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这般船与哨所的距离OB约为________米。

(精确到1米,参考数据:=1.414,≈1.732)【答案】566【考点】解直角三角形的应用﹣方向角问题【解析】【解答】解:设AB与正北方向线相交于点C,根据题意OC⊥AB,所以∠ACO=90°,在Rt△ACO中,因为∠AOC=45°,所以AC=OC= ,Rt△BCO中,因为∠BOC=60°,所以OB=OC÷cos60°=400 =400×1.414≈566(米)。

故答案为:566 。

【分析】根据等腰直角三角形的性质得出,Rt△BCO中,根据锐角三角函数的定义,由OB=OC÷cos60°即可算出答案。

17.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.【答案】或【考点】勾股定理,切线的性质,相似三角形的判定与性质【解析】【解答】解:在Rt△ACD中,∠C=90°,AC=12,CD=5, ∴AD=13;在Rt△ACB中,∠C=90°,AC=12,BC=CD+DB=18, ∴AB=6 ;过点D作DM⊥AB于点M,∵AD=BD=13, ∴AM= ;在Rt△ADM中,∵AD=13,AM= , ∴DM= ;∵当点P运动到点D时,点P到AC的距离最大为CD=5<6,∴半径为6的⊙P不可能与AC相切;当半径为6的⊙P与BC相切时,设切点为E,连接PE,∴PE⊥BC,且PE=6,∵PE⊥BC,AC⊥BC,∴PE∥AC,∴△ACD∽△PED,∴PE∶AC=PD∶AD,即6∶12=PD∶13,∴PD=6.5,∴AP=AD-PD=6.5;当半径为6的⊙P与BA相切时,设切点为F,连接PF,∴PF⊥AB,且PF=6,∵PF⊥BA,DM⊥AB,∴DM∥PF,∴△APF∽△ADM,∴AP∶AD=PF∶DM即AP∶13=6∶,∴AP= ,综上所述即可得出AP的长度为:故答案为:【分析】根据勾股定理算出AD,AB的长,过点D作DM⊥AB于点M,根据等腰三角形的三线合一得出AM 的长,进而再根据勾股定理算出DM的长;然后分类讨论:当点P运动到点D时,点P到AC的距离最大为CD=5<6,故半径为6的⊙P不可能与AC相切;当半径为6的⊙P与BC相切时,设切点为E,连接PE,根据切线的性质得出PE⊥BC,且PE=6,根据同一平面内垂直于同一直线的两条直线互相平行得出PE∥AC,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△ACD∽△PED,根据相似三角形对应边成比例得出PE∶AC=PD∶AD,由比例式即可求出PD的长,进而即可算出AP的长;当半径为6的⊙P与BA相切时,设切点为F,连接PF,根据切线的性质得出PF⊥BC,且PF=6,根据同一平面内垂直于同一直线的两条直线互相平行得出DM∥PF,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△APF∽△ADM,根据相似三角形对应边成比例得出AP∶AD=PF∶DM,由比例式即可求出AP的长,综上所述即可得出答案。

相关文档
最新文档