二元一次方程组
二元一次方程的定义 解二元一次方程组

3.把这个未知数的值代入上面的式子,求得另一个未知数的值, 即“求”.
4.写出方程的解,即“写”. 注意:用带入消元法解二元一次方程组时,尽量选取一个未知数的 系数是1或-1的方程进行变形.
二、加减消元法 定义:通过两式相加或相减消去其中一个未知数,这种解二元一次 方程的方法叫做加减消元法. 步骤:1、方程组的两个方程中,如果同一个未知数的系数既不相 等也不互为相反数,就要用适当的数去乘方程的两边,使某一个未 知数的系数相等或互为相反数.“乘” 2、当同一个未知数的系数互为相反数时,用加法消去这个未知数, 得到关于另一个未知数的一元一次方程;当同一个未知数的系数相 等时,用减法消去这个未知数,得到.关于另一个未知数的一元一次 方程.“加减” 3、解这个一元一次方程,求得一个未知数的值,即“解” 4、将这个求得的未知数的值代入原方程组中任意一个方程中,求 出另一个未知数的值即“回代”. 5、把求得的两个未知数的值用{联立起来,即“联”.
(2) (4)
解:
解:方程组整得:
②①解把则×得方﹣ y=:程4③得﹣组得y=1:的:代4﹣解1x入11-为y, ②8=y得=﹣1:61x1=,③2,①②③把则-y××方④=23程得得得﹣组:::2的466﹣代解xxyy入++为=89=②yy2﹣==4得11264:484,x=③ ④60,
方程组可化为
在代数ax2+bx中,当x=1时,其值为13;
当x=2时,其值为18,求当x=−2时,这个
代数式的值为多少?
解答: 由题意可得方程组{a+b=13
4a+2b=18, 解得{a=−4
b=17. 原式=ax2+bx=−4x2+17x, 把x=−2代入,得−4×(−2)2+17×(−2)
二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
二元一次方程组20道例题及答案

二元一次方程组20道例题及答案1.解方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x - 3y = -2 \\end{cases} $$2.答案:x=1,y=33.解方程组:$$ \\begin{cases} 3x - 2y = 8 \\\\ 5x + y = 19 \\end{cases} $$4.答案:x=3,y=45.解方程组:$$ \\begin{cases} 4x + 3y = 10 \\\\ 2x - y = 5 \\end{cases} $$6.答案:x=2,y=17.解方程组:$$ \\begin{cases} x + y = 7 \\\\ 3x - 2y = 5 \\end{cases} $$8.答案:x=3,y=49.解方程组:$$ \\begin{cases} 2x - 3y = 4 \\\\ x + 2y = -1 \\end{cases} $$10.答案:x=−2,y=111.解方程组:$$ \\begin{cases} x - y = 3 \\\\ 3x + 2y = 9 \\end{cases} $$12.答案:x=4,y=113.解方程组:$$ \\begin{cases} 2x + y = 6 \\\\ x + 3y = 9 \\end{cases} $$14.答案:x=3,y=015.解方程组:$$ \\begin{cases} 3x + y = 11 \\\\ x - 2y = 4 \\end{cases} $$16.答案:x=3,y=217.解方程组:$$ \\begin{cases} x + y = 4 \\\\ 2x - 3y = 5 \\end{cases} $$18.答案:x=3,y=119.解方程组:$$ \\begin{cases} 2x - y = 1 \\\\ x + 4y = 5 \\end{cases} $$20.答案:x=2,y=021.解方程组:$$ \\begin{cases} x + y = 2 \\\\ x - y = 0 \\end{cases} $$22.答案:x=1,y=123.解方程组:$$ \\begin{cases} 3x + 2y = 8 \\\\ 2x + 3y = 7 \\end{cases} $$24.答案:x=1,y=225.解方程组:$$ \\begin{cases} x - 2y = 3 \\\\ 2x + y = 4 \\end{cases} $$26.答案:x=2,y=−127.解方程组:$$ \\begin{cases} 4x - y = 9 \\\\ x + 2y = 4 \\end{cases} $$28.答案:x=2,y=129.解方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x + y = 3 \\end{cases} $$30.答案:x=2,y=131.解方程组:$$ \\begin{cases} x + 2y = 5 \\\\ 3x - y = 9 \\end{cases} $$32.答案:x=3,y=133.解方程组:$$ \\begin{cases} 3x + y = 8 \\\\ x + y = 4 \\end{cases} $$34.答案:x=2,y=235.解方程组:$$ \\begin{cases} 2x + y = 6 \\\\ x - y = 1 \\end{cases} $$36.答案:x=2,y=037.解方程组:$$ \\begin{cases} x + y = 3 \\\\ x - y = 1 \\end{cases} $$38.答案:x=2,y=139.解方程组:$$ \\begin{cases} 3x - y = 5 \\\\ 2x + y = 7 \\end{cases} $$40.答案:x=2,y=1。
二元一次方程组解法详解

一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a 1,a 2,b 1,b 2,c 1,c 2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )① ② ③④mn +m=7 ⑤x +y=6A .1个B .2个C .3个D .4个(2)在方程(k 2-4)x 2+(2-k)x +(k +1)y +3k=0中,若此方程为二元一次方程,则k 的值为( )A .2B .-2C .±2D .以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5 ③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b 的值.题设的已知条件是两个方程组有相同的解。
常见的二元一次方程组

常见的二元一次方程组摘要:一、二元一次方程组的定义二、二元一次方程组的形式三、解二元一次方程组的方法1.代入法2.消元法四、二元一次方程组的应用1.鸡兔同笼问题2.行程问题五、总结正文:一、二元一次方程组的定义二元一次方程组是指包含两个未知数,且每个方程中的未知数的次数都是一次的方程组。
它可以表示为:ax + by = cdx + ey = f其中,a、b、c、d、e、f 都是已知数,x、y 是未知数。
二、二元一次方程组的形式二元一次方程组可以分为以下三种形式:1.标准形式:ax + by = c,dx + ey = f2.简化形式:a1x + b1y = c1,a2x + b2y = c23.斜率截距形式:y = kx + b三、解二元一次方程组的方法1.代入法代入法是一种简单直观的解法,首先解出一个未知数,然后将解出的未知数代入到另一个方程中,从而求得另一个未知数的值。
2.消元法消元法是将两个方程中的一个未知数消去,从而将二元一次方程组转化为一个一元一次方程,然后求解。
消元法又分为加减消元法和乘除消元法。
四、二元一次方程组的应用1.鸡兔同笼问题鸡兔同笼问题是一个典型的二元一次方程组应用问题。
假设鸡的数量为x,兔的数量为y,鸡和兔的总数量为n,鸡和兔的总腿数为m,我们可以得到以下方程组:x + y = n2x + 4y = m2.行程问题行程问题也是二元一次方程组的常见应用场景。
例如,一个人先以速度v1 行走了一段距离s1,然后以速度v2 行走了一段距离s2,我们可以得到以下方程组:s1 = v1t1s2 = v2t2s1 + s2 = d五、总结二元一次方程组是数学中的一个基本概念,它由两个未知数和两个方程组成。
二元一次方程组的概念及解法

第四讲 二元一次方程组的概念及解法考点梳理考点一 二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
典例分析 例1、在方程组、、、、、中,是二元一次方程组的有 个;例2、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = . 练习:1、方程x +y =2的正整数解是__________. 2、在方程3x -ay =8中,如果是它的一个解,那么a 的值为例3、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。
问鸡兔各几何。
”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。
考点二 解二元一次方程⎩⎨⎧==13y x(一)消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = , 化成含x 的代数式表示y 的形式:y = . 练习:用含一个未知数的代数式表示另一未知数 (1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)1223=+y x (4)24741=+y x例2、用代入消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩(二)二元一次方程组的特殊解法 1、整体代入法例4、解方程组y x x y +=+-=⎧⎨⎪⎩⎪14232313、设参代入法例6、解方程组⎩⎨⎧==-3:4:23y x y x2、先消常数法 例5、解方程组⎩⎨⎧=-=+1523334y x y x4、换元法例7、解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪236345、简化系数法 例8、解方程组⎩⎨⎧=-=-443334y x y x练习:解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x考点三 二元一次方程组解的应用 例1、若,则= ,= 。
第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
第8讲 二元一次方程(组)的概念和解法

第8讲二元一次方程(组)的概念和解法【学习目标】1.二元一方程(组)的概念2.二元一次方程组的基本解法3.复杂的多元一次方程组【模块一】二元一次方程组的概念在本模块我们的学习目标是:1、掌握二元一次方程概念2、掌握二元一次方程组概念3、理解方程组的解(公共解)一、二元一次方程1、定义:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程. 【例】x+2y=5,2x=3y,3x=y-2对于二元一次方程的定义可以用“三个条件一个前提”来理解:①含有两个未知数一一“二元②含有未知数的项的最高次数为1一“一次③未知数的系数不能为0前提:方程两边的代数式都是整式一一整式方程2、一般形式:二元一次方程的一般形式:ax+by+c=0(a=0,b=0)【课堂建议】类比一元一次方程:标准式:ax+b=0(a≠0)3、判定:先看前提,再化一般形式易错总结(1)二元:x+y+z=1,x-2=1(2)一次:x2-x+y=1,xy+x+y=1【袁华燕录入】(3) 系数不为0:x+y-1=x-y+1,x2-x+y-1=x2+x-y+1(4) 整式方程:1x+y=1,1x+x+y=1x【易错】x+y-1=x-y+1,x2-x+y-1=x2+x-y+1,1x+x+y=1x【例1】下列方程中,是二元一次方程的有哪些?①x+3=7;②a+b=0;③3a+4t=9;④xy-1=0;⑤1x-y=0;⑥x+y+z=4;⑦2x2+x+1=2x2+y+5;⑧x2+y-6=2x.【练1】方程2x-3y=5,xy=3,x+3y-1,3x-y+2z=0,x2+y=6中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个【例2】⑴己知方程x n-1+2y|m-1|=m关于x,y的二元—次方程,求m、n的值.⑵己知方程(a-2)x|a|-1-(b+5)y|b|-4=3是关于x、少的一元一次方程,求a、b的值.【练2】(1)若方程2x m-1+y n+m=12是二元一次方程.则mn=_____(2)若己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=_______时,方程为一元一次方程,当k=_____时,方程为二元一次方程.4、二元一次方程的解:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.【例3】⑴己知21xy=⎧⎨=⎩是方程3x+ay=5的解,则a的值为()A.-1B.1C.2D.3⑵判断下列数值是否是二元一次方程3t+2s=24的解.①29ts=⎧⎨=⎩②21ts=⎧⎨=⎩③89ts=⎧⎨=⎩④46ts=⎧⎨=⎩【练3】⑴若23x ky k=⎧⎨=-⎩是二元—次方程2x-y=14的解,则k的值是()A.2B.-2C.3D.-3⑵已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x+y-=n的解,求m与n的值.二.二元_次方程组:1、二元一次方程组.由几个一次方程组成并且含有两个未知数的方程组叫二元—次力程组.(1)二元:总共有两个未知数如:+12 22 xx=⎧⎨=⎩,21x y yx+=⎧⎨=⎩,12x yx y+=⎧⎨+=⎩,121x yx+=⎧⎨=⎩,12xy=⎧⎨=⎩,12x y zx y z+-=⎧⎨-+=⎩,11x yy z+=⎧⎨+=⎩(2) —次:每个都是一次方程如:22x yy x⎧=⎪⎨=⎪⎩,2222+x x xy y y⎧=⎪⎨+=⎪⎩,11x yxy+=⎧⎨=⎩,1111xy⎧=⎪⎪⎨⎪=⎪⎩(3)方程组:方程个数大于等于2如:x+y=l,112 xyz=⎧⎪=⎨⎪=⎩① 二元—次方程组一定是由两个或多个二元一次方程组成(错)② 两个或多个二元一次方程一定可以组成二元一次方程组(错)【例4】下列方程组中,属于二元一次方程组的是()A.527x yxy+=⎧⎨=⎩B.121340xyx y⎧+=⎪⎨⎪-=⎩C.354433x yx y=⎧⎪⎨+=⎪⎩D.28312x zx y-=⎧⎨+=⎩【练4】下列方程组中,是二元一次方程组的是()A.4119x yx y+=⎧⎪⎨+=⎪⎩B.57x yy z+=⎧⎨+=⎩C.1x y xyx y-=⎧⎨-=⎩D.1326xx y=⎧⎨-=⎩2、二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解,同时它也必须是-个数对.而不能是一个数.【例5】⑴己知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则(a+b)b=_______,(2)己知21xy=⎧⎨=⎩是二元一次方程组12ax bybx ay+=⎧⎨+=⎩的解,则a-b的值为( )A.1B.-1C.2D.3【练5】(1)下列四个解中是方程组16223111x yx y⎧-=⎪⎨⎪+=-⎩的解是()A.810xy=⎧⎨=-⎩B.101xy=⎧⎨=-⎩C.6xy=⎧⎨=-⎩D.112xy⎧=-⎪⎨⎪=⎩⑵关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个未知数的值互为相反数,其中x=l,求a,b的值.模块二二元一次方程组的基本解法一.会解基本二元一次方程组(体会消元过程)2、熟练应用代入与加减的方法,养成严格书写的习惯二元一次方程方程组最根本的思路就是将二元方程消元变成一元方程,代入消元法和加减消元法是最常用的方法.1.代入消元:why:等量代换when:(未知数系数为1时优先)how:用一个字母表示另一个字母直接代入(1)12xx y=⎧⎨+=⎩(2)2x yx y=⎧⎨+=⎩⑶23x yx y=⎧⎨+=⎩⑷13x yx y+=⎧⎨+=⎩变形代入(5)13x yx y-=⎧⎨+=⎩(6)2127x yx y-=⎧⎨+=⎩(7)2+38321x yx y=⎧⎨-=-⎩1.代入消元法代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想, 代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式:②把y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程:③解这个一元一次方程,求出x的值:④回代求解:把求得的x的值代入y=ax+b中求出y的值从而得出方程组的解.⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式.【例】解方程组2 239 x yx y-=⎧⎨+=⎩②①解:由①得y=x—2 ③把③代入②,得2x+3(x-2)=9 解得x=3把x=3代入③得,y=l所以方程组的解是31 xy=⎧⎨=⎩2、加减消元:Why:等式性质When:系数绝对值相同优先How:系数统一后相加减直接加减;⑴31x yx y+=⎧⎨-=⎩⑵521327x yx y-=⎧⎨+=⎩⑶24234x yx y+=⎧⎨-=-⎩系数统一(4)23124x yx y-=⎧⎨+=⎩(5)237324x yx y+=⎧⎨-=⎩2.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一,也是今后解其他方程(组)经常用到的方法用加减法解二元一次方程组的-般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数.使两个方程里的某―个未知数互为相反数或相等.②加减消元:把两个方程的两边分别相加或相减.消去一个未知教,得到一个一个―次方程:③解这个一元一次方程,求得一个未知数的值:④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值:⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式例:解方程组32 12 3 x yx y-=⎧⎨+=⎩②①解:①×2 得4x+2y=6 ③①+③得7x=7解得x=l把x=l代入①得y=l所以方程组的解是11 xy=⎧⎨=⎩代入消元与加减消元的对比:代入消元方法的选择:①运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0” 的形式.求不出未知数的值.②当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.加减消元方法的选择:① 一般选择系数绝对值最小的未知数消元;② 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解.④当未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时方程进行变形,转化为系数的绝对值相同,再用加减消元求解.【例6】⑴方程组233x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩⑵方程组535213x yx y+=⎧⎨-=⎩的解是()A.12xy=⎧⎨=⎩B.45xy=-⎧⎨=⎩C.53xy=⎧⎨=⎩D.45xy=⎧⎨=-⎩⑶用代入消元法解方程组:3 3814 x yx y-=⎧⎨-=⎩⑷用加减消元法解方程组:49 351 x yx y+=-=⑸二元一次方程ax+by=6有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求a,b的值.【练6】⑴二元―次方程组2x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩⑵方程组25342x yx y-=⎧⎨+=⎩的解是____________.⑶己知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,那么m,n的值为()A.11mn=⎧⎨=-⎩B.21mn=⎧⎨=⎩C.32mn=⎧⎨=⎩D.31mn=⎧⎨=⎩三元:【例7】0 423 9328 a b ca b ca b c++=⎧⎪++=⎨⎪-+=⎩【练7】解方程组0.5320 322 x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩模块三二元一次方程组的基本解法本模块中,我们主要学习复杂二元一次方程组化简,同时,对换元,轮换,连等式等量代信思想的建议认识理解.复杂方程组化简为基本二元一次方程组消元求解【例8】解下列方程组:⑴3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩⑵134723m nm n⎧-=-⎪⎪⎨⎪+=⎪⎩【练8】解方程组:⑴2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩⑵3221245323145x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩2、轮换对称:二元对称:【例9】解方程组:⑴231763172357x yx y+=⎧⎨+=⎩⑵201120134023201320114025x yx y+=⎧⎨+=⎩【曾伟录入】【练9】(1)解关于x、y的方程组301120722 150271571x yx y+=⎧⎨+=⎩(2)解关于x、y的方程组331512 173588x yx y+=⎧⎨+=⎩三元轮换【例10】解方程组(1)222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩;(2)1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩.【练10】(1)解方程组12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩;(2)已知1467245735674757671234567394941131499x x x x x x x x x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪+++=⎪+=⎨⎪+=⎪⎪+=⎪++++++=⎩,求7x .3、换元:【例11】(1)解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩【练11】(第七届“华罗庚杯”邀请赛试题) 解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪+=⎪--⎩【例12】解方程组(1)1513pq p q pq p q ⎧=⎪+⎪⎨⎪=⎪-⎩;(2)1321312312mn m n mn m n ⎧=⎪⎪+⎨⎪=⎪+⎩.【练12】(1)已知1,2,3xy yz zx x y y z z x===+++,求x y z ++的值.(2)解关于x 、y 的方程组1111(0,)x y abx a b x y aby ab ab b aa b ⎧+=+⎪⎪⎨⎪+=+≠±≠⎪⎩.4、连等比例【例13】解方程组:(1):::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩;(2)解方程组:2345238x y z x y z ⎧==⎪⎨⎪+-=⎩【练13】已知a b c k b c a c a b===+++,求k 的值.第8讲[尖端课后作业二元一次方程(的)念和解法【习1】下列各方程中,是二元一次方程的是( )A. 312x xy +=B. x y =C. 2115x y =+ D. 253x y x y -=+ 【习2】下列各方程是二元一次方程的是( )A. 23x y z +=B. 45y x +=C. 2102x y +=D. 1(8)2y x =+【习3】若关于x 、y 的方程2(3)0a a x y --+=是二元一次方程,那么a 的取值为( )A. 3a =-B. 3a =C. 3a >D. 3a <【习4】若方程22(4)(23)(2)0k x k x k y -+-+-=为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D. 以上均不对【习5】若方程2(3)25m m x y -+-=为关于x 、y 的二元一次方程,则2012(2)m -= .【习6】下列方程组中,是二元一次方程组的是( )A. 4119x y x y +=⎧⎪⎨+=⎪⎩B. 57x y y z +=⎧⎨+=⎩C. 1x y xy x y -=⎧⎨-=⎩D.1326x x y =⎧⎨-=⎩【习7】下列不是二元一次方程组的是( )A. 23x y y z +=⎧⎨+=⎩B. 2334m n n m =+⎧⎨-=⎩ C. 21x y =⎧⎨=-⎩D. 4252()12()3a a b a b +=⎧⎨-+=+-⎩ 【习8】解下列二元一次方程组:(1)527341x y x y -=⎧⎨+=-⎩ ;(2)327238x y x y +=⎧⎨+=⎩ ;(3)34165633x y x y +=⎧⎨-=⎩【习9】若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( ) A. 6.32.2x y =⎧⎨=⎩ B. 8.31.2x y =⎧⎨=⎩ C. 10.32.2x y =⎧⎨=⎩ D. 10.30.2x y =⎧⎨=⎩【习10】若实数x 、y 满足2142y x ⎛⎫= ⎪⎝⎭,求关于x 、y 的方程组12x y a x y a +=-⎧⎨-=-⎩的解.【习11】已知211(3)02a b -++=,解方程组315ax y x by -=⎧⎨+=⎩. 【习12】解方程组2(1)5(2)1101217102x y x y --++=⎧⎪-+⎨-=⎪⎩【习13】解方程组3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 【习14】解方程组2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩【习15】解方程组9()18523()2032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩【习16】解方程组1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【习17】解方程组37043225x y y z x z -+=⎧⎪+=⎨⎪-=-⎩【习18】解方程组23162125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩【习19】解方程组56812412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【玉勇录入】【习20】已知方程组361463102463361102x y x y +=-⎧⎨+=⎩的解是x p y q =⎧⎨=⎩,方程组345113435113991332x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是x m y n z t =⎧⎪=⎨⎪=⎩,则(p -q )(m -n +t )等于 .【习21】(武汉市“CASIO ”竞赛题)已知正数a ,b ,c ,d ,e ,f 满足becdf a =4,acdef b =9,abdef c =16,abcef d =14,abcdf e =19, abcde f =116,求(a +c +e )-(b +d +f )的值.【习22】(第二十三届“希望杯”全国数学邀请赛初二第1试)已知实数x 1,x 2,x 3,x 4满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,其中a 1<a 2<a 3<a 4,则x 1,x 2,x 3,x 4的大小关系是( ) A . x 1<x 2<x 3<x 4 B . x 2<x 3<x 4<x 1 C . x 3<x 2<x 1<x 4 D . x 4<x 3<x 2<x 1【习23】若x1,x2,x3,x4,x5满足方程组12323434545151212345x x xx x xx x xx x xx x x-+=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤,求x2x3x4的值.【习24】解方程组::3:2:5:466 x yy zx y z=⎧⎪=⎨⎪++=⎩【张来录入】。
2元一次方程组

2元一次方程组
一次方程组是数学中最基本的几何问题,由一个方程与一个变量组成。
它们包括一元方程、二元方程和n元方程。
二元一次方程组是指由两个变量和一个等号组成的方程,其形式如:ax + by = c。
它们有着广泛的应用,可以用来求解几何图形和空间矢量。
二元一次方程组是解决各种抽象问题的基础,这些问题有可能涉及较复杂的数学运算。
这是因为,求解一元方程的方法可以很容易的移植到二元方程中,使其能够被用于更复杂的问题。
二元一次方程组的解决方法主要有三种:求解、图像法和代数法。
求解方法是通过将方程的参数(如a、b、c)代入方程中去求解未知变量,从而获得问题的解。
图像法是通过绘制出点(x,y)的图像,来求解未知变量,也就是找出两个变量的关系,从而计算出未知变量的值。
最后,代数法是指将方程用代数的方法进行求解,从而找出解的方法。
二元一次方程组在实际应用中非常重要。
它不仅能够被用来求解几何图形,还可用于分析物理问题、社会问题等复杂问题。
在求解几何图形中,二元一次方程组可用于求出点到线或点到面的最短距离。
此外,它也可以用于解决物理问题,比如给定力和质量,计算物体的运动轨迹。
当然,它也可以被用来求解社会问题,比如淘汰政治问题、经济和收入差距问题等。
总而言之,二元一次方程组是一门非常重要的数学知识,在实际应用中有着广泛的应用。
它不仅能帮助我们求解几何图形和各种复杂
问题,还可以帮助我们理解那些日常生活中不可避免的数学概念。
二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。
教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。
情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。
教学难点:二元一次方程组的解的含义。
教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。
3.如何检验一对数是否是某个二元一次方程(组)的解。
6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。
并不是任意两个二元一次方程都能组成二元一次方程组。
(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。
二元一次方程组知识讲解

《二元一次方程组》复习与巩固知识讲解【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值; ④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是( ). A.⎩⎨⎧+==-13032x y y x B.⎩⎨⎧=-=+211z y x C.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组⎩⎨⎧=+-=+63222y x y x x x 中,y x x x 3222-=+可以整理为y x 32-=. 【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键.举一反三:【高清课堂:二元一次方程组章节复习409413 例1(2)】 【变式】若32225a b a b x y --+-=是二元一次方程,则a = ,b = .【答案】1, 0.2.以⎩⎨⎧-==11y x 为解的二元一次方程组是( ).A.⎩⎨⎧=-=+10y x y xB.⎩⎨⎧-=-=+10y x y xC.⎩⎨⎧=-=+20y x y xD.⎩⎨⎧-=-=+20y x y x【答案】C. 【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是0=+y x ,第二个方程的左边都是y x -,而右边不同,根据二元一次方程的解的意义可知,当⎩⎨⎧-==11y x 时,211)1(1=+=--=-y x .【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解.举一反三:【变式】若⎩⎨⎧==12y x 是关于y x 、的方程032=+-k y x 的解,则=k .【答案】 -1.类型二、二元一次方程组的解法3. (潜江)解方程组15(2)3(25)4(34)5x y x y +=+⎧⎨--+=⎩【思路点拨】由于本题结构比较复杂,不能直接消元,应先将方程组化为一般形式,再看如何消元,即用加减或代入消元法.【答案与解析】解:将原方程组化简得5926x y x y -=⎧⎨-=⎩①-②得:-3y =3,得y =-1,将y =-1代入①中,x =9-5=4.故原方程组的解为41x y =⎧⎨=-⎩. 【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:【高清课堂:二元一次方程组章节复习409413 例2(2)】【变式】已知方程组35x y x y +=⎧⎨-=⎩的解是二元一次方程m (x +1)=3(x -y )的一个解,则m = . 【答案】3.4. (台湾)若二元一次方程组23343x y x y -=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a+b 等于( ).A .1B .6C .35 D .125【思路点拨】将解代入方程组,得到关于,a b 的方程组,解之,代入要求的代数式即得答案. 【答案】D【解析】解:把x a y b=⎧⎨=⎩代入原方程组中,得,23343a b a b -=⎧⎨-=⎩, 解得9535a b ⎧=⎪⎪⎨⎪=⎪⎩. 所以9312555a b +=+=. 【总结升华】根据已知条件构造出方程组,再选择恰当方法求得方程组的解,然后再代入求出最后答案.类型三、实际问题与二元一次方程组5. 2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额.【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)2007年药品降价金额=6×2003年的药品降价金额.【答案与解析】解:设2003年和2007年药品降价金额分别为x 亿元、y 亿元.根据题意,得⎩⎨⎧=++++=2694035546y x x y ,解方程组得⎩⎨⎧==12020y x .答:2003年和2007年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解. 举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元.根据题意,可列方程组3192218x y x y +=⎧⎨+=⎩,解得54x y =⎧⎨=⎩. 所以第三束鲜花的价格是x+3y =5+3×4=17(元).答:第三束鲜花的价格是17元.类型四、三元一次方程组6.解方程组312,23,3716.x y z x y z x y z ++=⎧⎪--=-⎨⎪+-=-⎩①②③ 【思路点拨】先用加减法消去y ,变为x 、z 的二元一次方程组. 【答案与解析】解:①+②,得329x z +=.②+③,得5819x z -=-.解方程组329,5819,x z x z +=⎧⎨-=-⎩得1,3.x z =⎧⎨=⎩把13x z =⎧⎨=⎩,代入①,得2y =. 所以方程组的解是1,2,3.x y z =⎧⎪=⎨⎪=⎩【总结升华】因为y 的系数为1+或1-,所以先消去y 比先消去x 或z 更简便.。
二元一次方程(组)

课题二元一次方程(组)教学目标理解二元一次方程(组)的概念,掌握二元一次方程组、三元一次方程组的解法教学重难点重点:灵活运用加减消元法、代入消元法解二元一次方程组难点:学会运用二元一次方程组解决实际问题教学内容一、知识回顾1.概念(1)二元一次方程:含有两个未知数的一次(含未知数项的次数是1)方程叫做二元一次方程(2)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解(3)二元一次方程的解集:二元一次方程有无数个解,二元一次方程的解的全体,叫做这个二元一次方程的解集(4)方程组:由几个方程组成的一组方程叫做方程组(5)二元一次方程组:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组(6)二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解2.二元一次方程组的解法:代入消元法加减消元法(1)核心思想:消元把二元一次方程转化为我们学过的一元一次方程,把未知转化为已知.(就是把我们不会的问题转化为已经学会的问题)(2)代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程,从而求出方程组的解。
解题步骤:1)将一个方程的一个未知数用另一个未知数的代数式来表示;2)将这个代数式代入另一个方程,从而转化为一元一次方程,达到消元的目的。
(3)加减消元法:将两个方程相加(或相减)消去一个未知数,将方程转化为一元一次方程,从而求出方程的解。
解题步骤:观察两个方程的两个未知数的系数:如1)如果有未知数的系数相等或相反数,那么两方程就相减或相加。
2)如果未知数的系数不相等,那么就先乘一个适当的数,使未知数的系数相等或相反,然后再相减或相加。
(4)检验:与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验很重要,花费时间很少,而且可以保证得分,何乐而不为呢?(5)注意:1)二元一次方程与二元一次方程组的解为二个未知数的值,不要漏掉任何一个哦2)二元一次方程组的解的个数可能为一个、可能没有、也可能有无限个二、习题巩固 11.判断下列哪些方程是二元一次方程:1)210xy y x 22)331x x 3)45xy 44)212yx25)1553y x 6)32x z-7)35x 8)2123a b9)2xy10)0.80.311xy2.判定下列说法是否正确:1)二元一次方程2x y 的解只有一个.( )2)11x y 是二元一次方程2xy的解. ()3)二元一次方程组22x y x y 有无数组解. ( )4)二元一次方程组22x y xy的解为2x . ()5)52x y是二元一次方程2axby的解,则4522a b . ()6)二元一次方程组32624x y x y有一个解. ( )3.选择与填空1) 下列方程组中,是二元一次方程组的是()A.228423119...23754624x y x y a b x B C D x y b c y x xy2) 下列各式,属于二元一次方程的个数有()①xy+2x -y=7;②4x+1=x -y ;③1x+y=5;④x=y ;⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .43)方程y=1-x 与3x+2y=5的公共解是()A .3333...2422x x x x B C D yyyy4) 若二元一次方程123y x有正整数解,则x 的取值应为( ) A.正奇数B.正偶数C.正奇数或正偶数D.05) 若方程组ayx a y x 13313的解满足y x >0,则a 的取值范围是( )A.a <-1B.a <1C.a >-1D.a >16) 若33125m n xy是二元一次方程,则m=_________,n=___________.7)二元一次方程x+y=5的正整数解有______________.8)二元一次方程x+y=5的非负整数解有______________.9)已知2316x mxyy x ny是方程组的解,则m=_________,n=_________.10)如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足_______________.11) 当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)有相同的解,则a=__________.12)二元一次方程组437(1)3x ykx k y的解x ,y 的值相等,则k=__________.13)用加减消元法解方程组31421x y xy ,由①×2—②得 .14)定义运算“※”,规定x ※y =a 2x +by ,其中a 、b 为常数,且1※2=5,2※1=6,则2※3=_________.15)已知关于x ,y 的方程组ayxa y x 34321323其中1≤a ≤3,给出下列结论:①5152yx是方程组的解;②当a =2时,35xy;③当a =1时,方程组的解也是方程x –y =a 的解;④若x ≤1 , 则y 的取值范围是25y ≥.其中正确的是___________.(填序号)3.解二元一次方程211)3211x y x y37422)4x y xy13)230.20.3 1.4x yx y 7244)442x y y x5)方程组42235x y k x y的解x 与y 的值相等,求k 的值.6)在代数式21ax bx 中,当2x 和x =6时,代数式的值分别为5和7,求a 、b 的值.7)二元一次方程组213321x y x my的解也是二元一次方程417x y 的解,求m 的值.8)若方程组27x y a xy与3278x y cx y有相同的解,求a 、b 的值.9)已知22(325)(538)0x y x y ,求2x y 的值.10)已知2320x y z 且3531x y z,求x y z 的值.11)小明、小杰两人解关于x 、y 的方程组278ax by cx y,小明正确的解出32x y,小杰把c 抄错,解得22x y,求a 、b 、c 的值,并求出小杰抄错的c 的值.12)已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少?13)已知关于x 、y 的二元一次方程组myxm y x 22362的解满足二元一次方程453y x ,求m 的值.3、二元一次方程组的实际应用步骤:列二元一次方程组解应用题的一般步骤可概括为“审、找、设、列、解、验、答”7步,即:1) 审:通过审题,把实际问题抽象成数学问题,分析已知量和未知量;2) 找:找出能够表示题意两个相等关系;3) 设:根据等量关系设出未知数;4) 列:根据这两个相等关系列出必需的代数式,从而列出方程组;5) 解:解这个方程组,求出两个未知数的值;6) 检验:一是检验解的结果对不对,二是检验解的结果是否符合实际意义.7) 答:写出答案.这7步是列方程解应用题的万能步骤,包括以后学习到的运用分式方程、无理方程解应用题都是这7个步骤常考题型:1)、数字问题一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y yx x y 得14x y,因此所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.2)、利润问题一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y xy,解得200150x y,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.3)配套问题某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y 人生产螺母,则十位上的数个位上的数对应的两位数相等关系原两位数x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27每天可生产螺栓25x 个,螺母20y 个,依题意,得120502201x y x y ,解之,得20100x y.故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即ab甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:abc甲产品数乙产品数丙产品数.4)、行程问题在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则3120120x y xy,整理,得40120x y xy,解得8040x y,因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.5)、货运问题某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y,整理,得3003600x y xy,解得150150x y ,因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.6)、工程问题某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得41505200125y xy x ,解得337518x y.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.习题巩固2.1) 小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是() A.22056,2328x y xyB.20256,2328x y xyC.20228,2356x y x y D.2228,20356x y x y2) 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)3) 某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?4) 20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润.5) 某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B 种奖品3件,共需95元. 求A、B两种奖品单价各是多少元?6) 某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满....这50间宿舍.(1)求大、小宿舍各有多少间?(2)如果大间每天每人50元,小间每天每人80元,那么该校要住3天共需多少元.7) 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒的长度之和为220cm,则此时木桶中水的深度是多少?两根铁棒长度分别为多少?8) 某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元.(I)求每条全自动生产线和半自动生产线的成本各为多少万元?(II)据预测,2016年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这一年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2016年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本)9) 某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳的单价的2倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.⑴两种跳绳的单价各是多少元?⑵若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问:学校有几种购买方案?。
二元一次方程组

一、二元一次方程含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——分母中不能含有字母; ②有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”.关于x 、y 的二元一次方程的一般形式:ax by c +=(0a ≠且0b ≠). 二、二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.如:方程2x y +=的一组解为11x y =⎧⎨=⎩,表明只有当1x =和1y =同时成立时,才能满足方程.一般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了.【例1】 若211350a b x y +-+=是关于x 、y 的二元一次方程,则a =______,b =______.【例2】 已知方程()21320m n m x y ---+=是关于x 、y 的二元一次方程,则m =______,n =______. 【例3】 下列方程中,属于二元一次方程的是()A .10x y +-=B .54xy +=-C .2389x y +=D .12x y+= 【例4】 在方程325x y -=中,若2y =-,则x =________. 【例5】 求二元一次方程25x y +=的所有非负整数解.【例6】 已知23x y =⎧⎨=⎩是关于x 、y 的二元一次方程432x y a =+的一组解,求231a a -+的值.一、二元一次方程组由几个一次方程组成并且一共..含有两个未知数的方程组叫做二元一次方程组. 特别地,134x y x +=⎧⎨-=⎩和31x y =⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解...叫做二元一次方程组的解. 注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x y x y -=⎧⎨+=⎩的解是61x y =⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12x y =⎧⎨=⎩能同时满足方程3x y +=、1y x -=,所以12x y =⎧⎨=⎩是方程组31x y y x +=⎧⎨-=⎩的解. 【例7】 下列方程中,与方程325x y +=所组成的方程组的解是32x y =⎧⎨=-⎩的是()A .34x y -=B .434x y +=C .1x y +=D .432x y -=【例8】 若x ay b =⎧⎨=⎩是方程31x y +=的一个解,则934_______a b ++=.【例9】 若关于x 、y 的二元一次方程组2x y m x my n -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -的值是()A .1B .3C .5D .2【例10】 已知方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组()()()()223113325130.9x y x y ⎧+--=⎪⎨++-=⎪⎩的解是_________.一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值. 二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y ),用另一个未知数(如x )的代数式表示出来,即将方程写成y ax b =+的形式; ②代入消元:将y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式. 三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式. 【例11】 把方程513yx y +=+写成用含x 的式子表示y 的形式,下列各式正确的是( ) A .352y x =+B .3102y x =-C .31522y x =--D .31522y x =-+【例12】 已知代数式133m x y --与52n m n x y +是同类项,那么m 、n 的值分别是()A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩【例13】 已知x 、y 满足方程组2100721006x y x y +=⎧⎨+=-⎩,则x y -的值为_________.【例14】在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为()A.3m >B.3m <C.3m ≥D.3m ≤【例15】 解下列二元一次方程组:(1)1243231y x x y ++⎧=⎪⎨⎪-=⎩ (2)2320.40.7 2.8yx x y ⎧+=⎪⎨⎪+=⎩【例16】已知关于x、y的方程组227x y kx y k-=-⎧⎨+=⎩,则:________x y=.【作业1】已知12xy=-⎧⎨=⎩是关于x、y的方程组12x aybx y+=-⎧⎨-=⎩的解,则a b+=______.【作业2】若12xy=⎧⎨=-⎩是关于x、y的方程1ax by-=的一组解,且3a b+=-,求52a b-的值.解下列二元一次方程组:(1)45805620x yy x-=⎧⎨+=⎩(2)1243231y xx y++⎧=⎪⎨⎪-=⎩(1)、三元一次方程的概念三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。
解二元一次方程组的四种方法

解二元一次方程组的四种方法
解二元一次方程组有四种方法:
一、消元法
消元法是一种利用矩阵求解方程的常用方法,它将问题转化为矩阵的形式,利用矩阵的法则进行消元,从而求解出方程的解。
二、乘法法
乘法法是将两边的非零因子都乘以一个比较大的数,从而把一个未知数变成另一个未知数的倍数,从而将方程化简为两个未知数的积等于某常数的形式,从而求出方程的解。
三、图解法
图解法是将二元一次方程组表示为两个一次函数的图象,可以观察两曲线的位置与交点的位置,通过观察分析,从而求出方程的解。
四、换元法
换元法是将一方的未知数用另一方的未知数替换,再将方程解出来,
可以通过代入替换后的结果求出原方程的解。
这种解法适用于只有两个未知数的二元一次方程组。
常见的二元一次方程组

常见的二元一次方程组(原创版)目录1.二元一次方程组的定义与概念2.二元一次方程组的解法:代入法和消元法3.二元一次方程组的实际应用正文一、二元一次方程组的定义与概念二元一次方程组是指由两个含有两个未知数的一次方程所组成的方程组。
其中,每个方程中的未知数的次数都是一次,且方程的形式为 ax + by = c。
例如,下面这个方程组就是一个二元一次方程组:2x + 3y = 75x - 4y = 11二、二元一次方程组的解法解二元一次方程组有多种方法,其中最常见的是代入法和消元法。
1.代入法代入法是一种比较直观的方法。
首先,我们可以解出一个未知数,然后将其表示为另一个未知数的表达式,最后将其代入另一个方程,从而将二元一次方程组转化为一个一元一次方程。
例如:2x + 3y = 7解得 y = (7 - 2x) / 3将 y 的表达式代入另一个方程:5x - 4y = 11得到:5x - 4((7 - 2x) / 3) = 11解得 x = 1将 x 的值代入 y 的表达式,得到 y = 1因此,方程组的解为 x = 1, y = 1。
2.消元法消元法的基本思想是通过加减消去一个未知数,从而将二元一次方程组转化为一个一元一次方程。
例如:2x + 3y = 75x - 4y = 11我们可以将第一个方程乘以 4,然后将第二个方程与它相加,从而消去 y:8x + 12y = 285x - 4y = 11-------------13x = 39解得 x = 39 / 13 = 3将 x 的值代入任意一个原方程,例如第一个方程:2 *3 + 3y = 7解得 y = 1因此,方程组的解为 x = 3, y = 1。
三、二元一次方程组的实际应用二元一次方程组在实际生活中有很多应用,例如购物问题、行程问题、配料问题等。
以购物问题为例,假设小明想买一本书和一支笔,书的价格是 30 元,笔的价格是 5 元。
如果书店对一次性购买满 50 元的顾客提供 10% 的优惠,那么小明需要支付多少钱?设小明购买了书和笔,可以得到以下二元一次方程组:30x + 5y = 500.1 * (30x + 5y) = 50 * 0.1其中,x 表示购买的书的数量,y 表示购买的笔的数量。
(完整版)二元一次方程组知识点归纳

t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
例:解方程组x+y=5① 6x+13y=89② 解:由①得 x=5-y ③ t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n把y=59/7带入③, x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 基本思路:未知数又多变少。
初中数学 二元一次方程组及其解法

二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 二元一次方程组1.谁的包裹多班级:________ 姓名:________一、选择题(1)以下方程中,是二元一次方程的是( ) A.8x -y =y B.xy =3 C.3x +2y D.y =x1 (2)以下的各组数值是方程组⎩⎨⎧-=+=+2222y x y x 的解( )A.⎩⎨⎧-==22y xB.⎩⎨⎧=-=22y xC.⎩⎨⎧==20y xD.⎩⎨⎧==02y x(3)若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-+12)1(2y nx y m x 的解,则m +n 的值是( )A.1B.-1C.2D.-2 (4)二元一次方程3a +b =9在正整数范围内的解的个数是( ) A.0 B.1 C.2 D.3 二、填空题(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_________,n =__________.(2)若⎩⎨⎧-==12y x 是二元一次方程ax +by =2的一个解,则2a -b -6的值是__________.(3)图1表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .图1按此规律推断,以S 、n 为未知数的二元一次方程是________.(4)请写出解为⎩⎨⎧==11y x 的一个二元一次方程组________.三、根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?四、现有布料25米,需裁成大人和小孩的两种服装.已知大人每套用布2.4米,小孩每套用布1米,问各裁多少套恰好把布用完?作业导航理解二元一次方程、二元一次方程组和它的解的意义;会检验一对数是不是某个二元一次方程(组)的解及其有关计算.一、选择题1.下列方程中,是二元一次方程的是( )A.xy =1B.y =3x -1C.x +y1=2 D.x +y +z =12.下列方程组中,不是二元一次方程组的是( )A.⎩⎨⎧=-=-yx y x 14023 B.⎩⎨⎧=+=+35z y y x C.⎩⎨⎧=-+=-20222y x y x x x D.⎩⎨⎧=+=012y y x 3.下列各对数值中是方程组⎩⎨⎧-=+=+2222y x y x 的解的是( )A.⎩⎨⎧==22y xB.⎩⎨⎧=-=22y xC.⎩⎨⎧==20y xD.⎩⎨⎧==02y x 4.二元一次方程3a +b =9在正整数范围内的解的个数是( ) A.0 B.1 C.2 D.35.已知方程mx +(m +1)y =4m -1是关于x ,y 的二元一次方程,则m 的取值范围是 ( ) A.m ≠0 B.m ≠-1 C.m ≠0且m ≠1 D.m ≠0且m ≠-1 二、填空题6.若8x m -4和11x 4-n 是同类项,则m ,n 的关系是________.7.在方程3x +y =2中,用x 表示y ,则y =________;用y 表示x ,则x =________.8.在二元一次方程-x +6y -4=0中,当x =4时,y =________;当y =-1时,x =________. 9.⎩⎨⎧-==12y x 是二元一次方程ax +by =-1的一组解,则2a -b +11=________.10.已知(x -1)2+12y +11=0,且2x -my =4,则m =_______. 三、解答题11.解下列关于x 的方程 (1)x -4y =6 (2)2x +7y =1212.已知⎩⎨⎧-==32y x 是方程2x -6my +8=0的一组解,求m 的值.13.如果⎩⎨⎧==t y t x 32是方程x -6y +16=0的解,则t =?14.根据下列语句,设适当的未知数,列出二元一次方程(组) (1)甲数的2倍与乙数的21的差等于48的31. (2)某学校招收七年级学生292人,其中男生人数比女生人数多35人. 15.已知关于x ,y 的二元一次方程组⎩⎨⎧=+=-0325y kx y x ,当x =-4时,求k 的值.2.解二元一次方程组班级:________ 姓名:________一、认真选择(1)用代入法解方程组⎩⎨⎧=+=-2329253y x y x 的最佳策略是( )A.消y ,由②得y =21(23-9x ) B.消x ,由①得x =31(5y +2) C.消x ,由②得x =91(23-2y ) D.消y ,由①得y =51(3x -2)(2)解以下两个方程组,较为简便的是( ) ①⎩⎨⎧=+-=85712y x x y ②⎩⎨⎧=-=+486172568t s t s A.①②均用代入法 B.①②均用加减法C.①用代入法②用加减法D.①用加减法②用代入法(3)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,则m 的值等于( )A.-7B.10C.-10D.-12(4)不解方程组,下列与⎩⎨⎧=+=+823732y x y x 的解相同的方程组是( )A.⎩⎨⎧=+-=2196382y x xyB.⎩⎨⎧+=+=732382y x xyC.⎪⎪⎩⎪⎪⎨⎧+=+=382273y y y xD.⎪⎪⎩⎪⎪⎨⎧+=+-=283273x y y x二、看谁做得又对又快(1)若-3x a -2b y 7与2x 8y 5a +b 是同类项,则a =__________,b =__________.(2)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =__________.(3)已知y =kx +b ,当x =1时,y =-1,当x =3时,y =-5,则k =__________,b =__________.(4)若方程组⎩⎨⎧=+=+54ay bx by ax 的解是[J B ({]x =2y =1[J B )],则a +b =__________.三、解下列方程组(1)⎪⎩⎪⎨⎧=-+=+1323241y x x y(2)⎩⎨⎧==-4:3:23x y y x 四、小明和小华同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗? 作业导航 一、选择题1.用代入法解方程组⎩⎨⎧=-=+52243y x y x 使得代入后化简比较容易的变形是( )A.由①得x =342y -B.由①得y =432x -C.由②得x =25+x D.由②得y =2x -52.用加减法解方程组⎩⎨⎧=-=+823132y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①⎩⎨⎧=-=+846196y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+2469264y x y x其中变形正确的是( ) A.①② B.③④ C.①③ D.②④4.如果5x 3m -2n -2y n -m +11=0是二元一次方程,则( ) A.m =1,n =2 B.m =2,n =1 C.m =-1,n =2 D.m =3,n =45.已知21x b +5y 3a 和-3x 2a y 2-4b 是同类项,那么a ,b 的值是( ) A.⎩⎨⎧=-=21b a B.⎩⎨⎧==07b a C.⎪⎩⎪⎨⎧-==53b a D.⎩⎨⎧-==12b a 二、填空题6.将x =-23y -1代入4x -9y =8,可得到一元一次方程_______. 7.用代入法解方程组⎩⎨⎧=-=+1472y x y x 由②得y =______③,把③代入①,得________,解得x =________,再把求得的x 值代入②得,y =________.原方程组的解为_______.8.关于x ,y 的方程组⎩⎨⎧=-=+524y mx y mx 中,若x 的值为23,则m =________,y =________.9.若2a 7x -y b 17与-31a 2b 2x +3y是同类项,则x =________,y =________. 10.解关于x 的方程组⎩⎨⎧=-=+m y x m y x 932得⎩⎨⎧==.________,y x 当m 满足方程5x +8y =38时,m =________.三、解答题11.用代入法解下列方程组 12.用加减法解方程组(1)⎩⎨⎧=+=-74823x y y x (2)⎪⎪⎩⎪⎪⎨⎧+=--=-3593332y y x y x (1)⎩⎨⎧-=-=t s t s 41835276 (2)⎪⎩⎪⎨⎧-=-=+743243y x y x13.在公式S n =na 1+2)1(-n n d 中,已知S 2=5,S 4=14,求S 6的值.① ②①② ①②.3.鸡兔同笼班级:________ 姓名:________1. 21枚1角与5角的硬币,共是5元3角,其中1角与5角的硬币各是多少?设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.1角5角总和硬币数x y21钱数5元3角2.小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?设做1个小狗用x分,做1个小汽车用y分,填写下表,并求出x、y的值.小狗小汽车总数用时用时3.某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.甲乙总和票数x y钱数4.有大小两种盛米的桶,已经知道5个大桶加上一个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?设大桶盛米量为x斛,小桶盛米量为y斛,填写下表,并求出x、y的值.大桶小桶总量盛米盛米二、参考练习1.填空题(1)已知3a y+4b3x-1与-3a2x-2b1-2y是同类项,则x=_________,y=_________.(2)若(5x+2y-12)2+|3x+2y-6|=0,则2x+4y=_________.(3)若3x3m+5n+9+9y4m-2n+3=5是二元一次方程,则nm=_________.(4)在代数式mx+n中,当x=3时,它的值是4,当x=4时,它的值是7,则m=_________,n=_________.2.选择题(1)用加减消元法解方程组⎩⎨⎧=-=+823132yxyx时,有以下四种结果,其中正确变形是①⎩⎨⎧=-=+846396yxyx②⎩⎨⎧=-=+869164yxyx③⎩⎨⎧=-=+1646396yxyx④⎩⎨⎧=-=+2469264yxyxA.只有①和②B.只有③和④C.只有①和③D.只有②和④(2)已知⎩⎨⎧=+=+,42354yxyx则x-y的值是A.1B.0C.-1D.不能确定(3)方程组⎩⎨⎧=-+=+3)1(134ykkxyx的解x和y的值相等,则k的值等于A.9B.10C.11D.123.用加减消元法解方程组:(1)⎩⎨⎧=-=+6581058yxyx(2)⎩⎨⎧=-=+19542023yxyx(3)x+2y=3124+=-xxy(4)⎪⎪⎩⎪⎪⎨⎧-=--+=--+143,132nmnmnmnm3应用题从小华家到姥姥家,有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?4.增收节支班级:________ 姓名:________1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?设城镇人口是x 万,农村人口是y万,根据题意填写下表,并列出方程组求x、y的值.城镇农村全市现有人数(万人)x y 42一年后增加人口(万人)2.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?若设预定期限为x天,计划生产y辆汽车,请你根据题意填空,并列出方程组求x与y的值.(1)若每天生产35辆,在预定期限x天内可生产__________辆,比计划产量y辆汽车__________(“多”或“少”)生产10辆,则可得二元一次方程______________________.(2)若每天生产40辆,在预定期限x天内可生产__________辆,比计划产量y__________(填“多”或“少”)生产20辆,则可列二元一次方程_________________________.(3)列方程组_________________________,并解得________.3.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?如图1:图1若设快车每秒钟行x米,慢车每秒行y米.根据题意填空:(1)若同向而行,经过20秒快车行驶路程比慢车行驶路程多____米,可列方程_________.(2)若相向而行,两车4秒钟共行驶__________米,可列方程__________________.(3)由以上可得方程组__________________,解得________.4.想一想:一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数(辆) 2 5乙种货车辆数(辆) 3 6累计运货吨数(吨)15.5 35现租用该公司330元计算,问货主应付运费多少元?参考练习1.填空题(1)用代入法解二元一次方程组⎩⎨⎧=-=+46365yxyx最为简单的方法是将_________式中的_________表示为_________,再代入_________式.(2)若方程3x-13y=-12的解也是x-3y=2的解,则x=_________,y=_________.(3)已知3b+2a=17,2a-b=-7,则a2+b2+4ab=_________.(4)已知|4x-2y-3|+(x+2y-7)2=0,则(x-y)2=_________.2.选择题(1)若方程组⎩⎨⎧-=-=+ayxyx3962的解是一对相同的数,则a的值为A.3B.4C.5D.6(2)已知x、y的值满足等式54321yxyx+=+=+,那么代数式32123++++yxyx的值为A.43 B.34C.-43D.-34(3)若方程组⎩⎨⎧=+++=10)1(232ykkxyx的解互为相反数,则k的值为A.8B.9C.10D.113.用代入法解下列方程组(1)⎩⎨⎧=+-=-33225yxyx(2)⎩⎨⎧=--=52332baba4.若y=kx+b,当x=1时y=-1;当x=3时,y=5,求k和b的值5.某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?6.小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?7.1995年全国足球甲A联赛共22轮(即每个队均需参赛22场),全国冠军上海申花队共积46分(胜一场3分,平一场得1分,负一场得0分),并知申花队胜的场数比负的场数的3倍还多2,问申花队胜、平、负各几场?8.解方程⎪⎩⎪⎨⎧=-+=+++=52141zyxzyxyx.①②5.里程碑上的数班级:________ 姓名:________(1)如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是( ) A.3 B.6 C.5 D.4(2)已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,设需含盐20%的盐水x 千克,含盐5%的盐水y 千克,则下列方程组中正确的是( )A.⎩⎨⎧=+=+%14%5%20200y x y x B.⎩⎨⎧=+=+200%5%20200y x y xC.⎩⎨⎧⨯=+=+%14200%5%20200y x y xD.⎩⎨⎧⨯=+=+%14200%20%5200y x y x(3)甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A.⎩⎨⎧=-=+360)(24360)(18y x y xB.⎩⎨⎧=+=+360)(24360)(18y x y xC.⎩⎨⎧=-=-360)(24360)(18y x y xD.⎩⎨⎧=+=-360)(24360)(18y x y x(4)请你算一算:松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天中有几天晴天,几天是雨天?(5)有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这个两位数.作业导航 一、选择题1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,由题意可得方程组( )A.⎩⎨⎧==+yx y x 3442 B.⎩⎨⎧==+y x y x 4342 C.⎪⎩⎪⎨⎧==-443420y yx D.⎩⎨⎧=-=+04342y x x y2.甲、乙两条绳共长17 m,如果甲绳减去51,乙绳增加1 m,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组( )A.⎪⎩⎪⎨⎧+=-=+15117y x y x B.⎪⎩⎪⎨⎧-=+=+1511y x y x C.⎪⎩⎪⎨⎧+=-=+15117y x x y x D.⎪⎩⎪⎨⎧-=+=+15117y x x y x 3.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A.3∶1B.2∶1C.1∶1D.5∶24.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.如果甲数为x ,乙数为y ,则得方程组是( )A.⎩⎨⎧=+++=+x x y y x y x 2011001188100100B.⎩⎨⎧++=+=+1188100100201100y x x y x y xC.⎩⎨⎧=+-+=+y x y y x y x 2011001188100100D.⎩⎨⎧-+=+=+1188100100201100y x x y y y x 5.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺.结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为( )A.150,100B.125,75C.120,70D.100,150 二、填空题6.两数之差为7,又知此两数各扩大3倍后的和为45,则这样的两个数分别为________.7.武炜购买8分与10分邮票共16枚,花了一元四角六分,购买8分和10分的邮票的枚数分别为_________.8.在1996年全国足球甲级A 组的前11轮(场)比赛中,大连万达队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.9.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应分配______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰好配套.10.已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x =________,y =________.三、解答题11.(我国古代问题)有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛(斛,音hu,是古代的一种容积单位)米,1个大桶加上5个小桶可以盛2斛米.那么1个大桶、1个小桶分别可以盛多少斛米?12.去年甲、乙两人总收入之比是8∶7,总支出之比是18∶17,已知在这一年里甲结余了1200元,乙结余了800元,求甲、乙两人去年的总收入各是多少?13.一个两位数的十位上的数与个位上的数的和是5,如果这个两位数减去27,则恰好等于十位上的数与个位上的数对调后组成的两位数,求这个两位数.14.据报道,2000年一季度我国对外贸易进出口总额达980亿美元,比1999年同期增长40%,其中出口增长39%,进口增长41%.1999年一季度我国对外贸易出口多少亿美元?进口多少亿美元?二、参考练习1某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现在要在63天的生产中,使所生产的三种零件全部配套,这个车间应该对这三种零件的生产各用几天才能使生产出来的零件配套?2甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20千米,那么甲用1小时能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度.3.A 、B 两地相距36千米,甲从A 地步行到B 地,乙从B 地步行到A 地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求二人的速度?4.小强和小红做算术题,小强将第一个加数后面多写一个零,所得的和为2342,小红将第一个数后面少写一个零,所得的和是65.求原来的两个加数.6.二元一次方程与一次函数班级:________ 姓名:________一、填空题1.已知直线l 1:y =k 1x +b 1和直线l 2:y =k 2x +b 2(1)当__________时,l 1与l 2相交于一点,这个点的坐标是________.(2)当__________时,l 1∥l 2,此时方程组⎩⎨⎧+=+=2211b x k y b x k y 的解的情况是________.(3)当__________时,l 1与l 2重合,此时方程组⎩⎨⎧+=+=2211b x k y b x k y 的解的情况是________.2.无论m 取何实数,直线y =x +3m 与y =-x +1的交点不可能在第__________象限.3.一次函数的图象过点A (5,3)且平行于直线y =3x -21,则这个函数的解析式为________. 二、选择题(1)函数y =ax -3的图象与y =bx +4的图象交于x 轴上一点,那么a ∶b 等于( ) A.-4∶3 B.4∶3 C.(-3)∶(-4) D.3∶(-4)(2)如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y =mx +n 的解析式为( ) A.y =-x +2 B.y =x - 2 C.y =-x -2 D.y =x +2(3)若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ) A.k <31 B.31<k <1 C.k >1 D.k >1或k <31 三、已知y 1=-4bx -4 y 2=2ax +4a +b (1)求a 、b 为何值时,两函数的图象重合? (2)如果两直线相交于点(-1,3),求a 、b 的值. 四、已知两直线y 1=2x -3,y 2=6-x(1)在同一坐标系中作出它们的图象.(2)求它们的交点A 的坐标. (3)根据图象指出x 为何值时,y 1>y 2;x 为何值时,y 1<y 2. (4)求这两条直线与x 轴所围成的△ABC 的面积.作业导航 一、填空题1.方程2x +y =5的解有________个,请写出其中的四组解____________,在直角坐标系中分别描出以这些解为坐标的点,它们______一次函数y =5-2x 的图象上(此空填“在”或“不在”).2.在一次函数y =5-2x 的图象上任取一点,它的坐标________方程2x +y =5(此空填“适合”或“不一定适合”).3.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数________的图象相同.4.一次函数y =7-4x 和y =1-x 的图象的交点坐标为_______,则方程组⎩⎨⎧=+=+174y x y x 的解为_______.5.方程组⎩⎨⎧=+=+5222y x y x 的解为________,则一次函数y =2-2x ,y =5-2x 的图象之间________.6.如图,l 甲、l 乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s 与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,与甲相距________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修理,修车的时间为______小时;(3)乙从出发起,经过______小时与甲相遇;(4)甲行走的路程s (千米)与时间t (时)之间的函数关系是________;(5)如果乙的自行车不出现故障,那么乙出发后经过______时与甲相遇,相遇处离乙的出发点______千米,并在图中标出其相遇点.二、解答题7.用图象法解下列方程组:(1)⎩⎨⎧=+=-2212y x x y (2)⎩⎨⎧=-=+6323y x y x8.某工厂有甲、乙两条生产线先后投产.在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线投产后,总产量y (吨)与从乙开始投产以来所用时间x (天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?9.如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x 的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.第七章测试题一、填空题1.已知|2x -y +1|+(x +2y -7)2=0,则(x +y )2=_________.2.若3x2a +b +1y 与5xya -2b -1是同类项,则b -a =_________.3.二元一次方程2x +3y =16的正整数解为_________.4.当a =_________时,方程组⎩⎨⎧=+-+=-+039062a y x y x 的解满足x =y .5.如果x -2y =13,那么17-x +2y =_________.6.已知x =1-m ,y =2-3m ,用y 的代表式表示x 的式子是_________.7.已知y =kx +b 中,当x =2时,y =5;当x =-1时,y =3.则k =_________,b =_________.当x =21时,y =_________.8.已知⎩⎨⎧-==21y x 是方程组⎩⎨⎧-=--=-11032by ax b y ax 的一个解,则(b -a )3=_________.9.方程2x -y =7和x +2y =-4的公共解是_________.10.解方程组⎪⎪⎩⎪⎪⎨⎧=-=-23281213281y x y x 若B y A x ==32,81,则原方程组可以变形为⎩⎨⎧解这个方程组得⎩⎨⎧==. ,B A 所以原方程组的解为_________.二、选择题11.若x =-2,y =5是方程2x +3ky =11的解,那么k 的值为 A.157 B.715 C.1 D.7312.下列方程中,是二元一次方程的是 A.xy =2 B.y =3x - C.x +y1=21 D.x 2+x -3=0 13.二元一次方程3x +2y =15的正整数解的个数是A.5B.3C.2D.无数个 14.4x +1=m (x -2)+n (x -5),则m 、n 的值是 A.⎩⎨⎧-=-=14n m B.⎩⎨⎧==14n m C.⎩⎨⎧-==37n n D.⎩⎨⎧=-=37n m15.如果方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 为A.6B.-6C.9D.-9 三、解下列方程组16.⎩⎨⎧+=-+=-1)1(514)1(3x y y x 17.⎪⎩⎪⎨⎧=-=%2%16%3032y x yx四、解答题 18.已知方程组⎩⎨⎧=-=-351932x y ny mx 和⎩⎨⎧=+=-7423ny mx y x 有相同的解,求m 和n 的值.19.若方程组⎩⎨⎧+=+=+345223k y x ky x 的解之和:x +y =-5,求k 的值,并解此方程组.五、列方程解应用题20.某人以两种形式一共储蓄了8000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为12%,一年后共得利息860元整,问甲、乙两种储蓄存储各多少元?单元测试一、选择题(每小题3分,共24分)1.已知下列各式:①x 1+y =2 ②2x -3y =5 ③21x +xy =2 ④x +y =z -1 ⑤21+x =312-x ,其中二元一次方程的个数是( )A.1B.2C.3D.42.在方程组⎩⎨⎧=+=-1253by x y ax 中,如果⎪⎩⎪⎨⎧-==121y x 是它的一个解,那么a 、b 的值为( )A.a =1,b =2B.不能惟一确定C.a =4,b =0D.a =21,b =-13.用代入法解方程组(a )⎩⎨⎧=+-=82332y x x y ( b )⎩⎨⎧=-=52332t s t s (c )⎩⎨⎧=--=-613873y x x x ( d )⎩⎨⎧=--=13432y x x y 将各方程组中的方程①代入方程②中,所得的方程正确的是( ) A.(a )3x +4x -3=8 B.(b )3t -2t =5 C.(c )40-3y =61 D.(d )4x -6x -9=14.用加减法解方程组⎪⎩⎪⎨⎧=+-=++=+54628239311z y x z y x z x ,较方便的是( )A.先消去x ,再解⎩⎨⎧-=-=+33386661222z y z yB.先消去y ,再解⎩⎨⎧=+=+931129711z x z xC.先消去z ,再解⎩⎨⎧=+=+2714119311y x z xD.先消去z ,再解⎩⎨⎧=+-=-89191562y x y x5.若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( )A.s =3,t =-2B.s =-3,t =2C.s =-3,t =-2D.s =3,t =26.方程3y +5x =27与下列的方程________所组成的方程组的解是⎩⎨⎧==43y x ( )A.4x +6y =-6B.4x +7y -40=0C.2x -3y =13D.以上答案都不对7.二元一次方程组⎩⎨⎧=-=+ky x k y x 7252的解满足方程31x -2y =5,那么k 的值为( )A.53B.35 C.-5 D.18.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是 ( )A.⎩⎨⎧=-=+360)(24360)(18y x y xB.⎩⎨⎧=+=+360)(24360)(18y x y xC.⎩⎨⎧=-=-360)(24360)(18y x y xD.⎩⎨⎧=+=-360)(24360)(18y x y x二、填空题(每小题3分,共24分)9.已知方程4x -3y =5,用含x 的代数式表示y 的式子是________,当x =-41时,y =________. 10.已知x -3y =3,则7+6y -2x =________.11.如果方程组⎪⎩⎪⎨⎧=-=+122331234y x y x 与方程y =kx -1有公共解,则k =________. 12.已知⎩⎨⎧==21y x 与⎩⎨⎧==cy x 3都是方程ax +by =0(b ≠0)的解,则c =________.13.如果a +b =1,a +3b =-1,那么关于x ,y 的方程组⎩⎨⎧=-+=-+6)2(6)2(y b a ax by x b a 的解是________.14.已知⎩⎨⎧=-+=--0720634z y x z y x ,则z y x zy x +++-=________. 15.若方程组⎩⎨⎧=+=+1022y cx by ax 的解是⎩⎨⎧==42y x ,某学生看错了c ,求出解为⎪⎩⎪⎨⎧==2163y x ,则正确的c =______,b =_____. 16.已知甲、乙两数的和为13,乙数比甲数少5,则甲数是________,乙数是________. 三、解答题17.解方程组:(1)⎩⎨⎧-=+=-1244y x y x (2)⎩⎨⎧=--=+2.5464.343y x y x (3)⎩⎨⎧-=+-=-665537y x y x (4)⎪⎪⎩⎪⎪⎨⎧=+=+823734y x y x18.用图象法解方程组:⎩⎨⎧+-=-=212x y x y19.有一批画册,如果3人合看1本,那么余2本;如果2人合看1本,就有9人没有看的.共有多少人?20.有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.求这个两位数.21.某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.22.甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲、乙与丙相向而行,甲每分走120米,乙每分走130米,丙每分走150米.已知丙遇上乙后,又过了5分钟遇到甲,求A 、B 两地的距离.:费等),则他账户上星期二比星期一增加200元,星期三比星期二增加1300元.这个人持有甲、乙股票各多少股?①②。