北师大版九年级数学下册试题3.7切线长定理
北师大版九年级数学下册3.7 切线长定理(同步练习)
*3.7 切线长定理1. 如图,PA 、PB 分别切⊙O 于点A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP , 则与∠PAB 相等的角(不包括∠PAB 本身)有 ( )A .1个B .2个C .3个D .4个2.一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =( )A .50 cmB .253cmC .3350cm D .503cm3.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.4.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .5.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P __ ___度.P B AO6. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.7. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,求弦AB 的长.8. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.9.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.10.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2 cm,AD=4 cm.(1)求⊙O的直径BE的长;(2)计算△ABC的面积.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
它要是给你讲起道理来,那可满满的都是人生啊。
2020北师大版九年级数学下册3.7切线长定理培优训练题(含答案)
北师版九年级数学下册3.7《切线长定理》培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.如图,PA,PB为⊙O的切线,A,B为切点,根据图形得出四个结论:①PA=PB;②∠1=∠2;③∠3=∠4;④AB被OP垂直平分,其中正确结论的个数为( )A.1个B.2个C.3个D.4个2.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( ) A.9 B.10 C.12 D.143. 如图,⊙O是边长为2的等边三角形ABC的内切圆,则⊙O的半径为( )A.33B.12C.32D. 34. 如图,在Rt△ABC中,∠C=90°,BC=5 cm,AC=12 cm,⊙O是Rt△ABC的内切圆,D,E,F 是切点,则⊙O的面积是( )A.πcm2B.2πcm2 C. 4πcm2D.6πcm25.一个钢管放在V形架内,如图是其截面图,O为钢管的圆心,如果钢管的半径为25 cm,∠MPN =60°,则OP等于( )C.5033cm D .50 3 cm6.如图,PA ,PB 分别是切⊙O 于点A ,B ,C 是ACB ︵上的点,∠C =64°,∠P 的度数为( ) A .26° B .62° C .65° D .52°7.如图,四边形ABCD 的边AB ,BC ,CD ,DA 和⊙O 分别相切于点L ,M ,N ,P.若四边形ABCD 的周长为20,则AB +CD 等于( ) A .5 B .8 C .10 D .128.如图,已知PA ,PB 切⊙O 于A ,B 两点,点C 是AB ︵上一动点,过点C 作⊙O 的切线交PA 于点M ,交PB 于点N ,已知∠P =56°,则∠MON = ( ) A .56° B .60° C .62° D .不可求9. 如图,点I 为△ABC 的内心,AB =4,AC =3,BC =2,将∠ABC 平移使其顶点与I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .210.如图,AB 为半圆O 的直径,AD ,BC 分别切⊙O 于A ,B 两点,CD 切⊙O 于点E ,连接OD ,OC.下列结论:①∠DOC =90°;②AD +BC =CD ;③S △AOD ∶S △BOC =AD 2∶AO 2;④OD ∶OC =DE ∶EC ;⑤OD 2=DE·CD.其中正确的有( )二.填空题(共8小题,3*8=24)11.如图,四边形ABCD的四条边都与⊙O相切,且AB=16,CD=10,则四边形ABCD的周长为__________.12.如图所示,若△ABC的边长分别为AB=9,BC=5,CA=6,△ABC的内切圆圆O切AB,BC,AC于D,E,F,则AF的长是_______.13.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B,如果∠APB=60°,PA=8,那么弦AB的长是___________.14.如图,⊙I是Rt△ABC的内切圆,切点是D,E,F,若AF,BE的长是方程x2-13x+30=0的两根,则S△ABC=__________.15.如图,已知AB为⊙O的直径,AB=2,AD和BE是⊙O的两条切线,A,B为切点,过圆上一点C作⊙O的切线CF,分别交AD,BE于点M,N,连接AC,CB,若∠ABC=30°,则AM=____________.16. 如图,P为⊙O外一点,PA,PB分别切⊙O于点A,B,CD切⊙O于点E,且分别交PA,PB 于点C,D,若PA=4,则△PCD的周长为_______.17. 如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形ABCD的周长为_______.18.如图,△ABC的内切圆与AB,BC,AC分别相切于点D,E,F,若∠DEF=52°,则∠A的度数是_______.三.解答题(共7小题,46分)19.(6分)如图,PA,PB分别切⊙O于点A,B,连接PO与⊙O相交于点C,连接AC,BC.求证:AC =BC.20.(6分)为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5 cm,求铁环的半径.21.(6分) 如图,CD是⊙O的直径,且CD=2 cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是____________;②当DP=2-1cm时,四边形AOBP是____________.22.(6分) 如图,直尺、三角尺都和⊙O相切,AB=8 cm.求⊙O的直径.23.(6分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求⊙O的半径及AC的长.24.(8分)如图,⊙O是Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AC=6 cm,BC=8 cm.求⊙O的半径.25.(8分) 如图,⊙O与△ABC的AB、AC边相切于点D、C,与BC边分别交于点E,DE∥OA,CE是⊙O的直径.若BD=4,EC=6,求AC的长.参考答案:1-5DDACA 6-10 DACBC 11. 52 12. 5 13. 8 14. 30 15. 33 16.8 17.34 18.76°19. 解:∵PA ,PB 分别切⊙O 于点A ,B , ∴PA =PB ,∠APC =∠BPC.又∵PC =PC , ∴△APC ≌△BPC ,∴AC =BC 20. 解:设圆心为O ,连接OA ,OP.∵三角板有一个锐角为30°,∴∠PAO =60°.又∵PA 与⊙O 相切,∴∠OPA =90°,∴∠POA =30°. ∵PA =5 cm ,∴OP =5 3 cm. 即铁环的半径为5 3 cm21. 解:(1)连接OA.∵PA 为⊙O 的切线,∴∠OAP =90°.在Rt △AOP 中,∠AOP =90°-∠APO =90°-30°=60°,∴∠ACP =12∠AOP =12×60°=30°,∴∠ACP =∠APO.∴AC =AP.∴△ACP 是等腰三角形 (2) 菱形;正方形22. 解:如答图,连接OE ,OA ,OB.∵AC ,AB 都是⊙O 的切线,切点分别是点E ,B , ∴∠OBA =90°,∠OAE =∠OAB =12∠BAC.∵∠CAD =60°,∴∠BAC =120°, ∴∠OAB =12×120°=60°,∴∠BOA =30°,∴OA =2AB =16(cm).∴⊙O 的直径是16 3 cm.23. 解:(1)直线CD 与⊙O 相切.理由如下:连接OC. ∵CB =CD ,CO =CO ,OB =OD ,∴△OCB ≌△OCD(SSS). ∴∠ODC =∠OBC =90°.∴OD ⊥CD. ∴直线CD 与⊙O 相切. (2)设⊙O 的半径为r.在Rt △OBE 中,∵OE 2=OB 2+EB 2,∴(4-r)2=r 2+22. 解得r =1.5,即⊙O 的半径为1.5.∵tan E =OB BE =CD DE ,∴1.52=CD4.∴CD =BC =3.24. 解:设⊙O 的半径是r cm. 连接OA ,OB ,OC ,OD ,OE ,OF.∵⊙O 为△ABC 的内切圆,切点是D ,E ,F , ∴OD ⊥AB ,OE ⊥BC ,OF ⊥AC , OD =OE =OF =r cm.∵AC =6 cm ,BC =8 cm ,∴AB =10 cm. ∵S △ACB =S △OAC +S △OBC +S △OAB , ∴12AC·BC =12AC·r +12BC·r +12AB·r. 即12×6×8=12×6r +12×8r +12×10r ,解得r =2. 即⊙O 的半径是2 cm.25. 解:∵∠EDC =90°,∴∠DCE +∠CED =90°.∵AB 是⊙O 的切线,∴∠BDO =90°. ∴∠BDE +∠ODE =90°. ∵OD =OE ,∴∠ODE =∠OED. ∴∠DCE =∠BDE. 又∵∠B =∠B ,∴△BDC ∽△BED. ∴BD BE =BCBD. ∴BD 2=BE·BC. 设BE =x ,∵BD =4,EC =6,∴42=x(x +6),解得x =2或x =-8(舍去).∴BE =2. ∴BC =BE +EC =8. ∵AD ,AC 是⊙O 的切线,∴AD =AC.设AD =AC =y ,在Rt △ABC 中,AB 2=AC 2+BC 2, ∴(4+y)2=y 2+82,解得y =6. ∴AC =6.。
北师大版数学九年级下册第3章第7节切线长定理同步检测.docx
初中数学试卷桑水出品北师大版数学九年级下册第3章第7节切线长定理同步检测一、选择题1.如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32 B.34 C.36 D.38答案:B解析:解答:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.2.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为()A.15 B.12 C.20 D.30答案:D解析:解答:∵P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,∴AC=EC,BD=DE,AP=BP,∵PA=15,∴△PCD的周长为:PA+PB=30.故选:D.分析:直接利用切线长定理得出AC=EC,BD=DE,AP=BP,进而求出答案.3.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cm B.15cm C.10cm D.随直线MN的变化而变化答案:A解析:解答:如图:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故选:A.分析:利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.4.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8 B.9 C.10 D.11答案:D解析:解答:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.分析:根据圆外切四边形的性质对边和相等进而得出AD的长.5.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为()A.4 B.8 C.12 D.16答案:D解析:解答:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.故选:D.分析:直接利用圆外切四边形对边和相等,进而求出即可.6.如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.16答案:A解析:解答:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC)=25-2×9=7.故选A.分析:根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC),据此即可求解.7.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB 的长是()A.4 B.8 C.4√3 D.8√3答案:B解析:解答:∵PA、PB都是⊙O的切线,∴PA=PB,又∵∠P=60°,∴△PAB是等边三角形,即AB=PA=8,故选B.分析:根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB的长.8.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35° B.45° C.60° D.70°答案:D解析:解答:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°-∠BAC=90°-35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选D.分析:根据切线长定理得等腰△PAB,运用内角和定理求解.9.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130° B.120° C.110° D.100°答案:C解析:解答:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°-∠A=110°.故选C.分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为360度可解.10.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=23,那么∠AOB等于()A.90° B.100° C.110° D.120°答案:D解析:解答:∵△APO≌△BPO(HL),∴∠AOP=∠BOP.∵sin∠AOP=AP:OP=23:4= 3:2,∴∠AOP=60°.∴∠AOB=120°.故选D.分析:由切线长定理知△APO≌△BPO,得∠AOP=∠BOP.可求得sin∠AOP= 3:2,所以可知∠AOP=60°,从而求得∠AOB的值.11.如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中,错误的是()A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA2=PC•PO答案:D解析:解答:连接OA、OB,AB,∵PA切⊙O于A,PB切⊙O于B,由切线长定理知,∠1=∠2,PA=PB,∴△ABP是等腰三角形,∵∠1=∠2,∴AB⊥OP(等腰三角形三线合一),故A,B,C正确,根据切割线定理知:PA2=PC•(PO+OC),因此D错误.故选D.分析:由切线长定理可判断出A、B选项均正确.易知△ABP是等腰三角形,根据等腰三角形三线合一的特点,可求出AB⊥OP,故C正确.而D选项显然不符合切割线定理,因此D错误.12.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,12(90°+∠P) B.7,90°+12C.10,90°-12∠P D.10,90°+12∠P答案:C解析:解答:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=12∠AOB,∴∠AOB=180°-∠P,∴∠COD=90°-12∠P.故选:C.分析:根据切线长定理,即可得到PA=PB,ED=AD,CE=BC,从而求得三角形的周长=2PA;连接OA、OE、OB根据切线性质,∠P+∠AOB=180°,再根据CD为切线可知∠COD=12∠AOB.A.4 B.6 C.8 D.10答案:C解析:解答:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,∴MN=12(AB+CD),根据切线长定理得:DE=DH,CF=CH,并且等腰梯形和圆都是轴对称图形,∴CD=DH+CH=DE+CF=12(AB+CD),∴CD=MN,而MN=8,∴CD=8.故选C.分析:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,根据中位线定理可以得到上下底之和,然后利用切线长定理可以得到一腰长等于中位线,由此即可解决问题.14.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.8答案:C解析:解答:如图:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9-x,AN=AP=10-x.则有9-x+10-x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QE+DQ=2x=11.故选:C.分析:设AB,AC,BC和圆的切点分别是P,N,M.根据切线长定理得到NC=MC,QE=DQ.所以三角形CDE 的周长即是CM+CN的值,再进一步根据切线长定理由三角形ABC的三边进行求解即可.15.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是()A.大于 B.等于 C.小于 D.不能确定答案:A解析:解答:连接OF,∵AD是切线,∴OF⊥AD,又∵AD∥BC,∴AB≥OF,CD≥OF,又∵AD<BC,∴AB≥OF,CD≥OF最多有一个成立.∴AB+CD>2OF,∵BC=2OF,∴AB+CD>BC.故选A,分析:连接OF,则OF是梯形的高,则AB≥OF,CD≥OF,而两个式子不能同时成立,据此即可证得.二、填空题16.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA= cm.答案:5解析:解答:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.17.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为答案:16解析:解答:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16;∴△PDE的周长为16.故答案为16.分析:由于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长.18.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,若⊙O的半径为r,△PCD的周长等于3r,则tan 12∠APB的值是答案:2 3解析:解答:连接PO,AO,∵PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,∴∠APO=∠BPO,AC=EC,DE=BD,PA=PB,∴PA+PB=△PCD的周长=3r,∴PA=PB=1.5r,∴tan 12∠APB=AO: PA =r :1.5r =23,故答案为:2 3.分析:利用切线长定理得出PA=PB=1.5r,再结合锐角三角函数关系得出答案.19.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为答案:8cm解析:解答:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=4cm,∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm,故答案为:8cm.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=4cm,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.20.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是答案:14解析:解答:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.分析:由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,已知了AB和⊙O的半径,由此可求出梯形的周长.三、计算题21.已知四边形ABCD外切于⊙O,四边形ABCD的面积为24,周长24,求⊙O的半径.答案:2解析:解答:设四边形ABCD是⊙O的外切四边形,切点分别为:F,G,M,E,连接FO,AO,OG,CO,OM,DO,OE,四边形ABCD的面积为:1 2×EO×AD+12OM×DC+12GO×BC+12FO×AB=12EO(AD+AB+BC+DC)=12EO×24=24,解得:EO=2.故r=2.分析:利用切线的性质进而利用三角形面积求法得出⊙O的半径.22.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.答案:2解析:解答:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.分析:由条件可得AD=CD,再由切线长定理可得:CD=CE,所以AD=CE,问题得解.23.如图,已知PA、PB分别切⊙O于点A、B,∠P=90°,PA=3,求⊙O的半径.答案:3解析:解答:连接OA、OB,则OA=OB(⊙O的半径),∵PA、PB分别切⊙O于点A、B,∴PA=PB,∠OAP=∠OBP=90°,已知∠P=90°,∴∠AOB=90°,∴四边形APBO为正方形,∴OA=OB=PA=3,则⊙O的半径长是3,故答案为:3.分析:连接OA、OB,已知PA、PB分别切⊙O于点A、B,由切线的性质及切线长定理可得:PA=PB,∠OAP=∠OBP=90°,再由已知∠P=90°,所以得到四边形APBO为正方形,从而得⊙O的半径长即PA的长.24.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,求∠CPD.答案:60°解析:解答:∵PA=6,⊙O的半径为2,∴PB=PA-AB=6-4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC=2: 4 =0.5 ,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.分析:根据切线的性质定理和切线长定理求出OP=4,∠OPC=∠OPD,再利用解直角三角形的知识求出∠OPC=30°,即可得出答案.25.如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C所对的边长依次为3,4,5,求⊙O的半径.答案:2解析:解答:连接OD、OE,∵⊙O与△ABC中AB、AC的延长线及BC边相切,∴AF=AD,BE=BF,CE=CD,OD⊥AD,OE⊥BC,∵∠ACB=90°,∴四边形ODCE是正方形,设OD=r,则CD=CE=r,∵BC=3,∴BE=BF=3-r,∵AB=5,AC=4,∴AF=AB+BF=5+3-r,AD=AC+CD=4+r,∴5+3-r=4+r,r=2,则⊙O的半径是2.故答案为:2.分析:先连接OD、OE根据⊙O与△ABC中AB、AC的延长线及BC边相切,得出AF=AD,BE=BF,CE=CD,再根据OD⊥AD,OE⊥BC,∠ACB=90°,得出四边形ODCE是正方形,最后设OD=r,列出5+3-r=4+r,求出r=2即可.。
北师大版九年级数学下册《3.7切线长定理》同步测试题带答案
北师大版九年级数学下册《3.7切线长定理》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4B.4√3C.8D.8√32.如图,四边形ABCD的边AB,BC,CD,DA和☉O分别相切于点L,M,N,P.若四边形ABCD的周长为20,则AB+CD等于()A.5B.8C.10D.123.如图,PA,PB是☉O的切线,切点分别为A,B,若OP=4,PA=2√3,则∠AOB的度数为()A.60°B.90°C.120°D.无法确定4.如图,AB为☉O的直径,点C在AB的延长线上,CD,CE分别与☉O相切于点D,E,若AD=6,∠DAC=∠DCA,则CE=.5.如图,AB,AC,BD是☉O的切线,其切点分别为P,C,D,如果AB=5,AC=3,则BD的长为.6.如图,PA,PB分别与☉O相切于点A,B,AC为弦,BC为☉O的直径,若∠P=60°,PB=2 cm.(1)求证:△PAB是等边三角形.(2)求AC的长.【能力巩固】7.如图,有一张三角形纸片ABC,☉O是它的内切圆,D是其中的一个切点,已知AD=5 cm,小明准备用剪刀沿着与☉O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20 cmB.15 cmC.10 cmD.随直线MN的变化而变化8.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆☉O切AB,BC,AC于点D,E,F,则AF的长为()A.5B.10C.7.5D.49.如图,PA,PB是☉O的切线,其切点分别为A,B,点C,D在☉O上.若∠PAD+∠C=220°,则∠P的度数为°.10.如图,AB为☉O的直径,AD,BC分别与☉O相切于点A,B,CD经过☉O上一点E,AD=DE,若AB=12,BC=4,则AD的长为.11.如图,在△ABC中,∠C=90°,点O在BC上,以OC为半径的半圆切AB于点E,交BC于点D,若BE=4,BD=2,求☉O的半径和边AC的长.【素养拓展】12.如图,一位小朋友在不打滑的平面轨道上滚动一个半径为5 cm 的圆环,当滚到与坡面BC 开始相切时停止.AB=40 cm,BC 与水平面的夹角为60°.试问其圆心所经过的路线长是多少?(结果保留根号)参考答案【基础达标】1.C2.C3.C4.65.26.解:(1)证明:∵PA ,PB 分别与☉O 相切于点A ,B∴PA=PB ,且∠P=60° ∴△PAB 是等边三角形. (2)∵△PAB 是等边三角形∴PB=AB=2 cm,∠PBA=60°.∵BC 是☉O 的直径,PB 是☉O 的切线 ∴∠CAB=90°,∠PBC=90°,∴∠ABC=30° ∴AC=2×√33=2√33cm .【能力巩固】 7.C 8.A 9.100 10.9 11.解:如图,连接OE.∵AB 与☉O 相切 ∴OE ⊥AB ∴∠BEO=90°. 设☉O 的半径为r在Rt △BEO 中,由勾股定理得OB 2=OE 2+BE 2.∵BE=4,BD=2∴(2+r )2=r 2+42,解得r=3 ∴CD=6∴BC=BD+CD=2+6=8.∵∠C=90°,OC为☉O的半径∴AC与☉O相切∴AC=AE.设AC=AE=x∴AB=BE+AE=4+x.在Rt△ABC中,由勾股定理得AB2=AC2+BC2 ∴(4+x)2=x2+82,解得x=6∴AC=6.【素养拓展】12.解:如图,连接OD,BD,作DE⊥AB于点E.∵BC与水平面的夹角为60°∴∠DBE=60°,∴∠BDE=30°.设BE=x,则BD=2x∴由勾股定理得4x2-x2=25解得x=5√33∴OD=AE=40-5√3(cm).3)cm.答:其圆心所经过的路线长是(40−5√33。
2021-2022学年北师大版九年级数学下册《3-7切线长定理》同步达标训练(附答案)
2021-2022学年北师大版九年级数学下册《3.7切线长定理》同步达标训练(附答案)1.如图,P A,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交P A,PB于点M,N,若P A=7.5cm,则△PMN的周长是()A.7.5cm B.10cm C.12.5cm D.15cm2.如图,⊙O内切于正方形ABCD,O为圆心,作∠MON=90°,其两边分别交BC,CD 于点N,M,若CM+CN=4,则⊙O的面积为()A.πB.2πC.4πD.0.5π3.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.4.如图,一个菱形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿此菱形的四边做无滑动旋转,直至回到原出发位置时,这个圆共转了()A.6圈B.5圈C.4.5圈D.4圈5.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O 的切线,与边BC交于点E,若AD=,AC=3.则DE长为()A.B.2C.D.6.如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.47.如图,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度数为()A.70°B.90°C.60°D.45°8.如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.9.如图,P A、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)P A的长;(2)∠COD的度数.10.如图,P A,PB分别为⊙O的切线,AC为直径,切点分别为A、B,∠P=70°,则∠C =.11.如图,已知直径与等边三角形ABC的高相等的圆与AB和BC边相切于点D和E,与AC边相交于点F和G,求∠DEF的度数.12.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.若AO=8cm,DO=6cm,求OE的长.13.如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,F点在AD上,BE是⊙O的弦,求△CDF的面积.14.如图,AB为⊙O直径,P A、PC分别与⊙O相切于点A、C,PQ⊥P A,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,P A=AB,且CQ=6,求BD的长.15.如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设AC=x,BD=y,试求xy的值.16.如图所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,B、C是切点,求证:AB⊥AC.17.已知:如图△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,过D作⊙O的切线交BC于点E,EF⊥AB,垂足为F.(1)求证:DE=BC;(2)若AC=6,BC=8,求S△ACD:S△EDF的值.18.如图,P A、PB切⊙O于A、B两点,CD切⊙O于点E,分别交P A、PB于点C、D.若P A、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.19.已知:AB为⊙O的直径,∠A=∠B=90°,DE与⊙O相切于E,⊙O的半径为,AD=2.①求BC的长;②延长AE交BC的延长线于G点,求EG的长.20.如图,已知AB为⊙O的直径,P A,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求P A的长(结果保留根号).参考答案1.解:∵直线P A、PB、MN分别与⊙O相切于点A、B、C,∴MA=MC,NC=NB,∴△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=P A+PB=7.5+7.5=15(cm).故选:D.2.解:设⊙O与正方形ABCD的边CD切于E,与BC切于F,连接OE,OF,则四边形OECF是正方形,∴CF=CE=OE=OF,∠OEM=∠OFN=∠EOF=90°,∵∠MON=90°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=NF,∴CM+CN=CE+CF=4,∴OE=2,∴⊙O的面积为4π,故选:C.3.解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F ∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1:=OF:1∴OF=sin∠CBE==故选:D.4.解:∵菱形的边长与它的一边相外切的圆的周长相等∴圆在菱形的边上转了4圈∵圆在菱形的四个顶点处共转了360°,∴圆在菱形的四个顶点处共转1圈∴回到原出发位置时,这个圆共转了5圈.故选:B.5.解:连接OD,CD.∵AC为⊙O的直径,∴∠ADC=90°,∵AD=,AC=3.∴CD=,∵OD=OC=OA,∴∠OCD=∠ODC,∵DE是切线,∴∠CDE+∠ODC=90°.∵∠OCD+∠DCB=90°,∴∠BCD=∠CDE,∴DE=CE.∴△ADC∽△ACB,∴∠B=∠ACD,∴=,∴BC===4,∵∠ACD+∠DCB=90°,∴∠B+∠DCB=90°,∠B+∠CDE=90°,∠CDE+∠BDE=90°,∴∠B=∠BDE,∴BE=DE,∴BE=CE=DE.∴DE=BC=×4=2.故选:B.6.解:∵P A,PB是⊙O的两条切线,A,B为切点,∴P A=PB,所以①正确;∵OA=OB,P A=PB,∴OP垂直平分AB,所以②正确;∵P A,PB是⊙O的两条切线,A,B为切点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选:C.7.解:∵DA、CD、CB都与⊙O相切,∴∠ADO=∠ODC,∠OCD=∠OCB;∵AD∥BC,∴∠ADC+∠BCD=180°;∴∠ODC+∠OCD=(∠ADC+∠BCD)=×180°=90°,即∠DOC=90°;故选:B.8.解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.9.解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,P A=PB,∴三角形PCD的周长=PD+CD+PC=PD+PC+CA+BD=P A+PB=2P A=12,即P A的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.10.解:∵P A,PB分别为⊙O的切线,∴P A=PB,∵∠P=70°,∴∠P AB=(180°﹣70°)=55°,∴∠OAB=90°﹣55°=35°,∵AC为直径,∴∠ABC=90°,∴∠C=180°﹣90°﹣35°=55°,故答案为55°.11.解:过点E作BC的垂线与圆交于点H,与AC交于点O.连接AH和DH,作AM⊥BC,垂足为M.∵E为切点,∴EH必过圆心,即EH是直径,∴DH⊥DE,∵D、E是切点,∴BD=BE,∵∠B=60°,∴△DBE是正三角形,∴∠BDE=∠BAC=60°,∴DE∥AC,DH⊥AC,由已知得,AM=EH,又AM∥EH,∴四边形AMEH是矩形,∴AH⊥HE,即AH是切线,∴AD=AH,AC垂直平分DH,AC必过圆心,∴AC与EH的交点O是圆心,∴OE=OF,∵∠COE=90°﹣∠C=30°,∴∠OEF=75°,∵∠DEO=∠EOC=30°,∴∠DEF=30°+75°=105°法二:过点E作BC的垂线与圆交于点H,与AC交于点O.∵BC为切线∴O为圆心,OE⊥BC.∵OE=OF∴∠OFE=∠OEF.∴∠OEF=∠C+∠FEC,∠FEC=∠OEF﹣∠C又∵∠OEC=90°,∴∠OEF+∠FEC=90°即2∠OEF﹣∠C=90°.∵∠C=60°,∴∠OEF=75°,∠CEF=15°.又∵AC∥DE,∠C=60°,∴∠DEC=120°.∵∠CEF=15°,∴∠DEF=105°12.解:∵AB∥CD,⊙O为内切圆,∴∠OAD+∠ODA=90°,∴∠AOD=90°,∵AO=8cm,DO=6cm,∴AD=10cm,∵OE⊥AD,∴AD•OE=OD•OA,∴OE=4.8cm.15.解:连接OC,OD.∵AB=18,∴OA=OB=9,∵AC和BD是它的两条切线,∴OA⊥AC,OB⊥BD,∴AC∥BD,∴∠ACD+∠BDE=180°,∴∠OCD+∠ODC=90°,∵AC=x,BD=y,∴OC=,OD=,∵CD是圆O的切线,∴CE=AC=x,DE=BD=y,∴OC2+OD2=CD2,即x2+81+y2+81=(x+y)2,整理得2xy=162,∴xy=81.16.证明:过点A作两圆的内公切线交BC于点O,∵⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,∴OA=OB,OA=OC,∴OA=BC,∴△ABC为直角三角形,∴∠BAC=90°,即AB⊥AC.18.解:∵P A、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,∴P A+PB=m,P A•PB=m﹣1,∵P A、PB切⊙O于A、B两点,∴P A=PB=,即•=m﹣1,即m2﹣4m+4=0,解得:m=2,∴P A=PB=1,∵P A、PB切⊙O于A、B两点,CD切⊙O于点E,∴AD=ED,BC=EC,∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=P A+PB=2.20.解:(Ⅰ)∵P A是⊙O的切线,AB为⊙O的直径,∴P A⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵P A、PC切⊙O于点A、C,∴P A=PC,∴△P AC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=,∴AC=AB•cos∠BAC=2cos30°=.∵△P AC为等边三角形,∴P A=AC,∴P A=.。
北师大版九年级数学下册 3.7 切线长定理(含答案)
北师大版九年级数学下3.7 切线长定理(含答案)一、选择题1.如图1,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB等于()图1A.2 B.3 C.4 D.52.如图2,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()图2A.4 B.8 C.4 3 D.8 33.如图3,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O与AB,BC,CA分别切于点D,E,F,则AF的长为()图3A.5 B.10 C.7.5 D.44.如图4,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是( )图4A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA2=PC·PO5.2019·深圳模拟如图5,AB是⊙O的直径,C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=48°,则∠DBA的度数是()图5A.32°B.48°C.60°D.66°6.如图6,已知PA,PB分别切⊙O于点A,B,C是劣弧AB上一动点,过点C作⊙O的切线交PA于点M,交PB于点N.已知∠P=56°,则∠MON的度数是()图6A.56°B.60°C.62°D.不可求7.把直尺、三角尺和圆形螺母按图7所示放置在桌面上,∠CAB=60°,D为切点,若量得AD=6 cm,则圆形螺母的外直径是()图7A.12 cm B.24 cmC.6 3 cm D.12 3 cm二、填空题8.如图8,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为________.图89.如图9所示,在Rt△ABC中,∠C=90°,AC的长为8,BC的长为15,则△ABC的内切圆⊙O的直径是________.图910.如图10,P是⊙O的直径AB的延长线上一点,PC,PD分别切⊙O于点C,D.若PA=6,⊙O的半径为2,则∠CPD=________°.图1011.如图11所示,已知PA,PB,EF分别切⊙O于点A,B,D,若PA=15 cm,则△PEF的周长是________cm;若∠P=50°,则∠EOF=________°.图1112.如图12所示,⊙O与△ABC中AB,AC边的延长线及BC边相切,且∠ACB=90°,∠A,∠ABC,∠ACB所对的边长依次为3,4,5,则⊙O的半径是________.图12三、解答题13.一个夹角为120°的墙角处放置了一个圆柱形的容器,俯视图如图13,在俯视图中⊙O与两边的墙分别切于B,C两点(圆柱形容器的直径不易直接测量).(1)写出图中相等的线段;(2)请你设计一种可以通过计算求出⊙O的直径的测量方法(写出主要解题过程).图1314.如图14,△ABC外切于⊙O,切点分别为D,E,F,∠A=60°,BC=7,⊙O的半径为 3.求:(1)BF+CE的长;(2)△ABC的周长.图1415.如图15,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,点F在AD 上,BE是⊙O的弦,求△CDF的面积.图15附加题如图16,以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D作⊙O的切线交BC边于点E,连接OE.(1)求证:EB=EC=ED.(2)在线段DC上是否存在点F,使得BC2=4DF·DC?若存在,找出点F,并予以证明;若不存在,请说明理由.图16参考答案1.[答案] B2.[答案] B3.[解析] A设AF=x,根据切线长定理得AD=x,BD=BE=9-x,CE=CF=CA-AF=6-x,则有9-x+6-x=5,解得x=5,即AF的长为5.4.[解析] D如图,连接OA,OB.∵P A切⊙O于点A,PB切⊙O于点B,∴P A=PB,∴△ABP是等腰三角形.易证∠1=∠2,∴AB⊥OP.故A,B,C均正确.设OP 交AB 于点D ,易证△P AD ∽△POA , ∴P A ∶PO =PD ∶P A ,∴P A 2=PD ·PO . 故D 错误.5.[解析] D ∵CA ,CD 是⊙O 的切线, ∴CA =CD , ∴∠CAD =∠CDA . ∵∠ACD =48°, ∴∠CAD =∠CDA =66°. ∵CA ⊥AB ,AB 是⊙O 的直径,∴∠DBA +∠DAB =90°,∠CAD +∠DAB =90°, ∴∠DBA =∠CAD =66°. 6.[答案] C7.[解析] D 设圆形螺母的圆心为O ,与AB 切于点E ,连接OD ,OE ,OA ,如图所示.∵AD ,AB 为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC . 又∵∠CAB =60°,∴∠OAE =∠OAD =12∠DAB =60°.在Rt △AOD 中,∠OAD =60°,AD =6 cm , ∴tan ∠OAD =tan60°=3,即OD6=3, ∴OD =6 3 cm ,∴圆形螺母的外直径为12 3 cm. 8.[答案] 44[解析] ∵四边形ABCD 是⊙O 的外切四边形,∴AD +BC =AB +CD =22,∴四边形ABCD 的周长=AD +BC +AB +CD =44.。
北师大九年级下《3.7切线长定理》课时练习含答案解析
北师大版数学九年级下册第3章第7节切线长定理同步检测一、选择题1.如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32 B.34 C.36 D.38答案:B解析:解答:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.2.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为()A.15 B.12 C.20 D.30答案:D解析:解答:∵P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,∴AC=EC,BD=DE,AP=BP,∵PA=15,∴△PCD的周长为:PA+PB=30.故选:D.分析:直接利用切线长定理得出AC=EC,BD=DE,AP=BP,进而求出答案.3.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cm B.15cm C.10cm D.随直线MN的变化而变化答案:A解析:解答:如图:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故选:A.分析:利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.4.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8 B.9 C.10 D.11答案:D解析:解答:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.分析:根据圆外切四边形的性质对边和相等进而得出AD的长.5.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为()A.4 B.8 C.12 D.16答案:D解析:解答:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.故选:D.分析:直接利用圆外切四边形对边和相等,进而求出即可.6.如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.16答案:A解析:解答:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC)=25-2×9=7.故选A.分析:根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC),据此即可求解.7.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.8答案:B解析:解答:∵PA、PB都是⊙O的切线,∴PA=PB,又∵∠P=60°,∴△PAB是等边三角形,即AB=PA=8,故选B.分析:根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB 的长.8.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35° B.45° C.60° D.70°答案:D解析:解答:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°-∠BAC=90°-35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选D.分析:根据切线长定理得等腰△PAB,运用内角和定理求解.9.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130° B.120° C.110° D.100°答案:C解析:解答:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°-∠A=110°.故选C.分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为360度可解.10.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=23,那么∠AOB等于()A.90° B.100° C.110° D.120°答案:D解析:解答:∵△APO≌△BPO(HL),∴∠AOP=∠BOP.∵sin∠AOP=AP:OP=23:4= 3:2,∴∠AOP=60°.∴∠AOB=120°.故选D.分析:由切线长定理知△APO≌△BPO,得∠AOP=∠BOP.可求得sin∠AOP= 3:2,所以可知∠AOP=60°,从而求得∠AOB的值.11.如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中,错误的是()A.∠1=∠2 B.PA=PB C.AB⊥OP D.=PC•PO答案:D解析:解答:连接OA、OB,AB,∵PA切⊙O于A,PB切⊙O于B,由切线长定理知,∠1=∠2,PA=PB,∴△ABP是等腰三角形,∵∠1=∠2,∴AB⊥OP(等腰三角形三线合一),故A,B,C正确,根据切割线定理知:=PC•(PO+OC),因此D错误.故选D.分析:由切线长定理可判断出A、B选项均正确.易知△ABP是等腰三角形,根据等腰三角形三线合一的特点,可求出AB⊥OP,故C正确.而D选项显然不符合切割线定理,因此D错误.12.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,12(90°+∠P)B.7,90°+12C.10,90°-12∠P D.10,90°+12∠P答案:C解析:解答:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=12∠AOB,∴∠AOB=180°-∠P,∴∠COD=90°-12∠P.故选:C.分析:根据切线长定理,即可得到PA=PB,ED=AD,CE=BC,从而求得三角形的周长=2PA;连接OA、OE、OB根据切线性质,∠P+∠AOB=180°,再根据CD为切线可知∠COD=12∠AOB.13.圆外切等腰梯形的中位线等于8,则一腰长等于()A.4 B.6 C.8 D.10答案:C解析:解答:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,∴MN=12(AB+CD),根据切线长定理得:DE=DH,CF=CH,并且等腰梯形和圆都是轴对称图形,∴CD=DH+CH=DE+CF=12(AB+CD),∴CD=MN,而MN=8,∴CD=8.故选C.分析:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,根据中位线定理可以得到上下底之和,然后利用切线长定理可以得到一腰长等于中位线,由此即可解决问题.14.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.8答案:C解析:解答:如图:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9-x,AN=AP=10-x.则有9-x+10-x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QE+DQ=2x=11.故选:C.分析:设AB,AC,BC和圆的切点分别是P,N,M.根据切线长定理得到NC=MC,QE=DQ.所以三角形CDE的周长即是CM+CN的值,再进一步根据切线长定理由三角形ABC的三边进行求解即可.15.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是()A.大于B.等于C.小于D.不能确定答案:A解析:解答:连接OF,∵AD是切线,∴OF⊥AD,又∵AD∥BC,∴AB≥OF,CD≥OF,又∵AD<BC,∴AB≥OF,CD≥OF最多有一个成立.∴AB+CD>2OF,∵BC=2OF,∴AB+CD>BC.故选A,分析:连接OF,则OF是梯形的高,则AB≥OF,CD≥OF,而两个式子不能同时成立,据此即可证得.二、填空题16.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则PA= cm.答案:5解析:解答:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.17.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O 的切线长为8cm,那么△PDE的周长为答案:16解析:解答:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16;∴△PDE的周长为16.故答案为16.分析:由于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长.18.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,若⊙O的半径为r,△PCD的周长等于3r,则tan 12∠APB的值是答案:2 3解析:解答:连接PO,AO,∵PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,∴∠APO=∠BPO,AC=EC,DE=BD,PA=PB,∴PA+PB=△PCD的周长=3r,∴PA=PB=1.5r,∴tan 12∠APB=AO: PA =r :1.5r =23,故答案为:2 3.分析:利用切线长定理得出PA=PB=1.5r,再结合锐角三角函数关系得出答案.19.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为答案:8cm解析:解答:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=4cm,∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm,故答案为:8cm.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=4cm,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.20.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是答案:14解析:解答:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.分析:由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,已知了AB和⊙O 的半径,由此可求出梯形的周长.三、计算题21.已知四边形ABCD外切于⊙O,四边形ABCD的面积为24,周长24,求⊙O的半径.答案:2解析:解答:设四边形ABCD是⊙O的外切四边形,切点分别为:F,G,M,E,连接FO,AO,OG,CO,OM,DO,OE,四边形ABCD的面积为:1 2×EO×AD+12OM×DC+12GO×BC+12FO×AB=12EO(AD+AB+BC+DC)=12EO×24=24,解得:EO=2.故r=2.分析:利用切线的性质进而利用三角形面积求法得出⊙O的半径.22.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.答案:2解析:解答:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.分析:由条件可得AD=CD,再由切线长定理可得:CD=CE,所以AD=CE,问题得解.23.如图,已知PA、PB分别切⊙O于点A、B,∠P=90°,PA=3,求⊙O的半径.答案:3解析:解答:连接OA、OB,则OA=OB(⊙O的半径),∵PA、PB分别切⊙O于点A、B,∴PA=PB,∠OAP=∠OBP=90°,已知∠P=90°,∴∠AOB=90°,∴四边形APBO为正方形,∴OA=OB=PA=3,则⊙O的半径长是3,故答案为:3.分析:连接OA、OB,已知PA、PB分别切⊙O于点A、B,由切线的性质及切线长定理可得:PA=PB,∠OAP=∠OBP=90°,再由已知∠P=90°,所以得到四边形APBO为正方形,从而得⊙O的半径长即PA的长.24.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O 的半径为2,求∠CPD.答案:60°解析:解答:∵PA=6,⊙O的半径为2,∴PB=PA-AB=6-4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC=2: 4 =0.5 ,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.分析:根据切线的性质定理和切线长定理求出OP=4,∠OPC=∠OPD,再利用解直角三角形的知识求出∠OPC=30°,即可得出答案.25.如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C 所对的边长依次为3,4,5,求⊙O的半径.答案:2解析:解答:连接OD、OE,∵⊙O与△ABC中AB、AC的延长线及BC边相切,∴AF=AD,BE=BF,CE=CD,OD⊥AD,OE⊥BC,∵∠ACB=90°,∴四边形ODCE是正方形,设OD=r,则CD=CE=r,∵BC=3,∴BE=BF=3-r,∵AB=5,AC=4,∴AF=AB+BF=5+3-r,AD=AC+CD=4+r,∴5+3-r=4+r,r=2,则⊙O的半径是2.故答案为:2.分析:先连接OD、OE根据⊙O与△ABC中AB、AC的延长线及BC边相切,得出AF=AD,BE=BF,CE=CD,再根据OD⊥AD,OE⊥BC,∠ACB=90°,得出四边形ODCE是正方形,最后设OD=r,列出5+3-r=4+r,求出r=2即可.。
北师大版数学九年级下册第三章 3.7 切线长定理
北师大版数学九年级下册第三章 3.7 切线长定理概述在数学中,切线是与曲线相切且只有一个交点的直线。
切线长定理指出了当直线与圆相切时,切线在圆上所切割的弧长与切线外部的剩余弧长之间存在着一种特殊的关系。
在本文中,我们将详细讨论切线长定理在数学中的应用。
切线长定理的表述设在平面直角坐标系中,原点为圆心,半径为r的圆的方程为x^2 + y^2 =r^2。
对于圆上的任意一点P(x, y),若以圆心O为顶点,OP的斜率为k且通过P 点,则切线的方程为y = kx + b,其中b为常数。
则点P处的切线在圆上所切割的弧长等于切点到圆心的距离所对应的圆心角的弧长的一半。
切线长定理的证明首先,我们先证明切线y = kx + b与圆x^2 + y^2 = r^2相切。
设点P(x, y)为圆上的一点。
由于切线与圆相切,则切线过点P且与圆的切点只有一个交点,也就是说切线与圆只有一个交点。
因此,我们可以通过解方程组来判断切线与圆是否相切。
将切线方程代入圆的方程中,得到(x^2 + (kx + b)^2) - r^2 = 0. 经过化简,得到(k^2 + 1)x^2 + 2bkx + (b^2 - r^2) = 0。
由于切线与圆只有一个交点,所以该方程只有一个解,即判别式D = (2bk)^2 - 4(k^2 + 1)(b^2 - r^2) = 0。
解方程D = 0,得到b = r^2 / (2k)。
代入切线方程y = kx + b,得到切线方程为y = kx + r^2 / (2k)。
同时,由于切线过点P(x, y),所以点P满足切线方程,即y = kx + r^2 / (2k)。
将此方程代入圆的方程x^2 + y^2 = r2中,得到x2 + (kx + r^2 / (2k))^2 = r2。
经过化简,得到x2 + k^2*x^2 + r22 / (4k^2) + 2k2x r2 / (2k) = r^2。
合并同类项,得到(k^2 + 1)x^2 + r22 / (4k^2) + k2r^2 = r^2。
2020-2021学年九年级数学北师大版下册 第三章 圆 3.7 切线长定理 复习练习含答案
第三章圆 3.7 切线长定理1.如图,PA、PB切⊙O于点A、B,OP交⊙O于点C,下列结论错误的是( )A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA=AB2.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别为A、B.如果∠APB =60°,PA=8,那么弦AB的长是( )A.4 B.8 C.4 3 D.8 33.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为( )A.65° B.130° C.50° D.100°4.在△ABC中,∠C=90°,BC=3,AC=4,则它的内切圆的半径是( ) A.1 B.2 C.3 D.45. 如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径.若∠P=46°,则∠BAC等于( )A.21 B.22 C.23 D.256.如图所示,若△ABC的边长分别为AB=9,BC=5,CA=6,△ABC的内切圆O切AB 、BC 、AC 于D 、E 、F ,则AF 的长为( ) A .6 B .5 C .4 D .37.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是()A .PA =PB B .∠BPD =∠APDC .AB ⊥PD D .AB 平分PD 8.平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A .0条B .1条C .2条D .无数条9.如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC 、BC 相切于点D 、E ,则AD 为()A .2.5B .1.6C .1.5D .110. 如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB =3cm ,则此光盘的直径是cm.11.如图,Rt △ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若⊙O 的半径为r ,则Rt △MBN 的周长为 .12.如图,已知AB 为⊙O 的直径,AB =2,AD 和BE 是圆O 的两条切线,A 、B 为切点,过圆上一点C 作⊙O 的切线CF ,分别交AD 、BE 于点M 、N ,连接AC 、CB.若∠ABC =30°,则AM=.13. 如图所示,在△ABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是 .14. 如图,PA 、PB 分别切⊙O 于A 、B 两点,∠P =40°,则∠C= .15.如图,△ABC 的内切圆分别与BC 、AC 、AB 相切于点D 、E 、F ,且AB =9 cm ,BC =14 cm ,AC =13 cm ,求AF 、BD 、CE 的长.16. 如图所示,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B 两点,PA =PB =4cm ,∠P =40°,C 是AB ︵上任意一点,过点C 作⊙O 的切线,分别交PA 、PB 于点D 、E.求:(1)△PDE 的周长;(2)∠DOE 的度数.17.已知△ABC 的内切圆⊙O 与AB 、BC 、AC 分别相切于点D 、E 、F ,若EF ︵=DE ︵,如图1.(1)判断△ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,AF =2FC =4,求AM 的长.18.如图①,直线y =-34x +3与x 轴相交于点A ,与y 轴相交于点B ,点C(m ,n)是第二象限内一点,以点C 为圆心的圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE是矩形时,求点C的坐标;(2)如图②,若⊙C与y轴相切于点D,求⊙C的半径.19.如图,在Rt△ABC中,∠ACB=90°,内切圆⊙I与BC相切于点D,∠BIC =105°,AB=8 cm,求:(1)∠IBA和∠A的度数;(2)BC和AC的长;(3)内切圆⊙I的半径和BI的长.20. 如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6 cm,OC=8 cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.答案:1-9 DBCAC BDCB10. 6 311. 2r12.3 313. 114. 70°15. 解:∵⊙O为△ABC内切圆,∴AF=AE,BF=BD,CD=CE,又∵AB=9 cm,BC=14 cm,AC=13 cm,∴C△ABC=36 cm,∴AF=AE=(C△ABC-BF-BD-CD-CE)÷2=(C△ABC-2BC)÷2=4 cm,同理可得:BD=(C△ABC-2AC)÷2=5 cm,CE=(C△ABC-2AB)÷2=9 cm.15.解: (1)如图所示,连接OA、OB、OC.∵PA、PB、DE分别是⊙O的切线,A、B、C为切点,∴OA⊥PA,OB⊥PB,OC⊥DE.∴DA=DC,EB=EC.16.∴DE=DC+CE=DA+EB.17.∴△PDE的周长=PD+PE+DE=PD+PE+DA+EB=PA+PB=4+4=8(cm);(2)∵PA、PB为⊙O的切线,∴∠PAO=∠PBO=90°.在四边形APBO中,∠AOB=180°-∠P=140°.∵DA、DC为⊙O的切线,∴DA=DC,∠ADO=∠CDO.又∵DO=DO,∴△ADO≌△CDO.∴∠1=∠2,同理,∠3=∠4.∴∠DOE=∠2+∠3=12∠AOB=12×140°=70°.17. 解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D 、E 、F ,∴∠CFO =∠CEO =∠BDO =∠BEO =90°,∵四边形内角和为360°,∴∠EOF +∠C =180°,∠DOE +∠B =180°,∵EF ︵=DE ︵,∴∠EOF =∠DOE ,∴∠B =∠C ,AB =AC ,∴△ABC 为等腰三角形;(2)连接OB 、OC 、OD 、OF ,如图,∵等腰三角形ABC 中,AE ⊥EC ,∴E 是BC 中点,BE =CE ,∵在Rt △AOF 和Rt △AOD 中,⎩⎪⎨⎪⎧OD =OF OA =OA,∴Rt △AOF ≌Rt △AOD ,∴AF =AD ,同理Rt △COF ≌Rt △COE ,CF =CE =2,Rt △BOD ≌Rt △BOE ,BD =BE ,∴AD =AF ,BD =CF ,∴DF ∥BC,∴AM AE =AF AC =23,∵AE =AC 2-CE 2=42,∴AM =23AE =42×23=823.18. 解:(1)连接CB 、CE 、CF 、AC ,则∠BAC =∠EAC =∠BCA ,∴AB =BC =5, CE =OB =3,∴C 的坐标为(-5,3);(2)连接CD 、CE 、CF ,∵∠CEO =∠CDO =90°,又∠DOE =90°,∴四边形CEOD 为矩形,又∵CE =CD ,得正方形CEOD ,∴CE =DO =R ,又BO =3,∴BD =3-R ,∵BF 、BD 为切线,∴FB =BD =3-R ,同理AE =AF ,即R +4=3-R +5,∴R =2. 19. 解:(1)连接ID.∵∠ICD =12∠ACB =45°,ID ⊥BC ,∴∠CID =45°,又∵∠BIC =105°,∴∠BID =60°,∴∠IBA =∠IBD =30°,∴∠A =30°; (2)∵在Rt △ABC 中,∠A =30°,AB =8 cm ,∴BC =4 cm ,AC =4 3 cm ; (3)∵在Rt △BID 中,ID 2+BD 2=IB 2,r 2+(4-r)2=(2r)2,解得r =(23-2) cm ,BI =(43-4) cm ,内切圆⊙I 的半径为(23-2) cm. 20. 解:(1)连接OF ;根据切线长定理得:BE =BF ,CF =CG ,∠OBF =∠OBE ,∠OCF =∠OCG ;∵AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6 cm,OC=8 cm,∴由勾股定理得到:BC=OB2+OC2=10 cm,∴BE+CG=BC=10 cm;(3)∵OF⊥BC,∴OF=OB·OCBC=4.8 cm.。
2020版九年级北师大数学下册 第3章 圆:3.7 切线长定理
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
拓展探究突破练
-2-
知识点1 切线长的概念 1.下列说法正确的有 ( C )
①切线就是切线长;②切线是可以度量的;③切线长是可以度量的;④切线与切线长是不
同的量,切线是直线,而切线长是线段的长度. A.0个 B.1个 C.2个 D.3个 2.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆于点C.已知PC=3,PB=1,则 该半圆的半径为 4 .
A.3 B.4 C.5 D.6
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
拓展探究突破练
-4-
5.如图,已知直尺、三角板和☉O相切,AB=8 cm,求☉O的直径.
解:设☉O与三角板相切于点E,连接OE,OA,OB.
∵AC,AB都是☉O的切线,切点分别是E,B,
∴∠OBA=∠OEA=90°,OE=OB.
(2)连接DF.由(1)知DH是☉O的直径,
∴∠DFH=90°,∴∠FDH+∠FHD=90°. ∵∠G+∠FHD=90°,∴∠FDH=∠G. ∵AC与☉O相切,∴∠AFH=∠GFC=∠FDH, ∴∠GFC=∠G,∴CG=CF, 又∵CD=CF,∴CD=CG.
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
拓展探究突破练
-15-
(3)∵AF 与☉O 相切,∴∠ADF=∠AFH.
∵∠DAF=∠FAH,∴△AFH∽△ADF,
∴������������
������������
=
������������ ������������
=
北师大版九年级下册九年级下册第三章3.7切线长定理
北师大版九年级下册九年级下册第三章3.7切线长定理学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为()A.2 B.3 C D.2.如图,半圆O与等腰直角三角形两腰CA,CB分别切于D,E两点,直径FG在AB上,若BG-1,则△ABC的周长为( )A.4+B.6 C.2+D.4二、填空题3.如图,AB,AC,BD是⊙O的切线,P,C,D为切点.若AB=5 cm,AC=3 cm,则BD的长为________ cm.4.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.5.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径等于__________.6.如图,四边形ABCD 的边AB ,BC ,CD ,DA 和O 相切,且10cm AB =,5cm CD =,则AD BC +=________cm.三、解答题7.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.8.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP=10cm ,射线PN 与⊙O 相切于点Q .A ,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为ts .(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?参考答案1.D【解析】【分析】标注A、B、C点,连接AD,OB,则AD过O,求出∠OBD=30°,求出OB,根据勾股定理求出BD,同法求出CD,求出BC即可.【详解】如图,⊙O是△ABC的内切圆,⊙O切AB于F,切AC于E,切BC于D,连接AD,OB,则AD过O(因为等边三角形的内切圆的圆心再角平分线上,也在底边的垂直平分线上),∵△ABC是等边三角形,∴∠ABC=60∘,∵⊙O是△ABC的内切圆,∴∠OBC=12∠ABC=30∘,∵⊙O切BC于D,∴∠ODB=90∘,∵OD=1,∴OB=2,由勾股定理得:同理求出即.故选D.【点睛】本题考查三角形的内切圆与内心、等边三角形的性质,解题的关键是掌握三角形的内切圆与内心、等边三角形的性质.2.A【分析】连接OD,OE,证四边形ODCE是正方形,△OEB是等腰直角三角形,设OE=r,则BE=OG=r,建立关于r的方程,即可求解【详解】解:如图,连接OD,OE,∵半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,∴∠C=∠OEB=∠OEC=∠ODC=90°,∴四边形ODCE是矩形.∵OD=OE,∴四边形ODCE是正方形.∴CD=CE=OE.∵∠A=∠B=45°,∴△OEB是等腰直角三角形.设OE=r,则BE=OG=r﹣1+r.r﹣r,解得r=1.∴AC=BC=2r=2,AB=2OB=2×(﹣1).∴△ABC的周长为:.故选A.【点睛】熟练掌握圆中的相关性质和定理是解本题的关键.3.2【解析】【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=5-3=2.故答案是:2.【点睛】考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.4.70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=1 2∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=12∠ABC=12×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.5.2【分析】设AB、BC、AC与⊙O的切点分别为D、E、F;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC−AB),由此可求出r的长.【详解】如图,在Rt△ABC,∠C=90°,AC=6,BC=8;根据勾股定理AB10;四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AF,BD=BE,CE=CF;∴CE=CF=12(AC+BC−AB);即:r=12(6+8−10)=2.故答案是:2.【点睛】此题主要考查三角形内切圆与圆心,勾股定理,需要熟练掌握直角三角形内切圆的性质及半径的求法.6.15.【解析】【分析】根据切线长定理,结合题意证明AB+CD=AD+BC,由此即可解决问题.【详解】∵四边形ABCD的边AB、BC、CD、DA和O分别切于L、M、N、P,∴AP=AL,BM=BL,CM=CN,DN=DP,∴AL+BL+DN+CN=AP+BM+DP+CM,即AB+CD=AD+BC,∵AB=10cm,CD=5cm,∴AB+CD =AD BC+=15cm,故答案为15.【点睛】本题考查切线长定理,解题的关键是掌握切线长定理.7.(1)证明见解析;(2)3.【解析】【分析】(1)根据切线的性质定理得到PC PD =,OP 平分CPD ∠.根据等腰三角形的性质即可得到PQ CD ⊥于Q ,即OP CD ⊥.(2)连接OC 、OD .根据等腰三角形的性质和平角的性质得到18060COD AOD BOC ∠=︒-∠-∠=︒.进而得到1302DOQ COD ∠=∠=︒.在Rt ODP 中,解直角三角形即可.【详解】(1)证明:∵PC 、PD 与O 相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD 中,PC PD =,PQ 平分CPD ∠.∴PQ CD ⊥于Q ,即OP CD ⊥.(2)解:连接OC 、OD .∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒同理:40BOC ∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒.在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒. ∵PD 与O 相切于D .∴OD DP ⊥.∴90ODP ∠=︒.在Rt ODP 中,90ODP ∠=︒,30POD ∠=︒∴cos cos30OD OA OP POD ====∠︒ 【点睛】本题考查了切线的性质和判定,圆周角定理,解直角三角形等,题目比较典型,综合性比较强,难度适中.8.(1)8cm .(2)当t 为0.5s 或3.5s 时直线AB 与⊙O 相切.【分析】(1)根据切线的性质得∠OQP=90°,在直角△OPQ 中根据勾股定理就可以求出PQ 的值;(2)过点O 作OC ⊥AB ,垂足为C .直线AB 与⊙O 相切,则△PAB ∽△POQ ,根据相似三角形的对应边的比相等,就可以求出t 的值.【详解】(1)连接OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP=90°.∵OP=10,OQ=6,∴PQ=√102−62=8(cm ).(2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm/s ,点B 的运动速度为4cm/s ,运动时间为ts ,∴PA=5t ,PB=4t.∵PO=10,PQ=8,∴PA PO =PB PQ .∵∠P=∠P ,∴△PAB ∽△POQ.∴∠PBA=∠PQO=90°.∵∠BQO=∠CBQ=∠OCB=90°,∴四边形OCBQ 为矩形.∴BQ=OC .∵⊙O 的半径为6,∴BQ=OC=6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置,BQ=PQ -PB=8-4t ,∵BQ=6,∴8-4t=6.∴t=0.5(s).②当AB运动到如图2所示的位置,BQ=PB﹣PQ=4t-8,∵BQ=6,∴4t-8=6.∴t=3.5(s).∴当t为0.5s或3.5s时直线AB与⊙O相切.。
北师大版九年级数学下册3.7:切线长定理 同步测试
3.7 切线长定理同步测试一、选择题1.如图,直线AB 与半径为2的⊙O 相切于点C ,点D ,E ,F 是⊙O 上三个点,EF ∥AB ,若EF=2 3,则∠EDC 的度数为( )A. 60°B. 90°C. 30°D. 75°2.如图,PA 、PB 分别切⊙O 于点A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角(不包括∠PAB 本身)有( )A .1个B .2个C .3个D .4个3.如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π 2π C.π D.2π4.边长分别为3,4,5的三角形的内切圆半径与外接圆的半径之比为( ).A.1:5B.2:5C.3:5D. 4:55.一个钢管放在V形架内,右图是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60 ,则OP =( )A.50 cm B.25cm C.cm D.50cm6. 一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 C.19 D.187.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°8.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 C.19 D.189.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D. 4个10.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A. 20°B. 25°C. 30°D. 35°二、填空题11.如图,在△ABC中,,cos B.如果⊙O的半径为cm,且经过点B、C,那么线段AO= cm.12.如图,PA、PB是⊙O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .13.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .14.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为________.15.如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.三、综合题16. 如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.17.如图,AB是 O的直径,点P是BA延长线上一点,过点P作 O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是 O的切线;(2)若AB=10,tanB=1,求PA的长;218.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=45,CD=4,则⊙O的半径是.19.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线交BC于点M,切点为N,求DM的长.3.7 切线长定理同步测试答案一、选择题1.A2.C3.A4.C5.D6.B7.C8.C9.D 10.B二、填空题11.12.200 4 13.110014.5215.200三、综合题 16.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP∵PA 、PB 是⊙O 的切线∴PO 平分∠APB ,即∠APO =21∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°∴AP ==3.17.解:(1)连接OD,∵CD ⊥AB,∴CE =ED,∴PC =PD,∵OC =OD,∴△POC ≌△POD,∴∠PDO =∠PCO,∵PC 是 O 的切线,∴PC ⊥OC,∠PCO =90°,∴∠PDO =90°,∴PD ⊥DO,∴PD 是 O 的切线;(2)连接AC,∵tanB =12,∴设AC =x,则BC =2x,∵AB =10,∴AO =CO =5,在Rt △ABC 中,由勾股定理可求得:AC =25,BC =45,∴CE =4,EO =3,∵△COE ∽△POC,∴PO =253,∴AP =PO -AO =103; 18.(1)证明:连接OC ,∵MN 为⊙O 的切线,∴OC ⊥MN ,∵BD ⊥MN ,∴OC ∥BD ,∴∠CBD =∠BCO .又∵OC =OB ,∴∠BCO =∠ABC ,∴∠CBD =∠ABC .;(2)解:连接AC ,在Rt △BCD 中,BC =45,CD =4,∴BD =8,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB =∠CDB =90°,∵∠ABC =∠CBD ,∴△ABC ∽△CBD , ∴BD CB BC AB ,即54AB =854,∴AB =10,∴⊙O 的半径是5,故答案为5.19.解:连接OE ,OF ,ON ,OG .∵四边形ABCD 是矩形,∴∠A =∠B =90°,CD =AB =4.∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°,OE =OF =OG ,∴四边形AFOE ,FBGO 是正方形,∴AF =BF =AE =BG =2,∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG ,∴CM =BC -BG -MG =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=42+(3-MN )2,∴MN =43,∴DM =3+43=133.。
九年级数学下册北师大版:3.7切线长定理
课 堂 精 讲
(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD= ∠AOB=65°.
课 堂 精 讲 类 比 精 炼
2. 如图,⊙O是四边形ABCD的内切圆,切点分别为 E、F、G、H,已知AB=5,CD=7,那么AD+BC= 12 .
课 后 作 业
3.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C, 交PB于N;若PA=7.5 cm,则△PMN的周长是 ( C ) A.7.5 cm B.10 cm C.15 cm D.12.5 cm 4. 如图,△ABC是一张周长为17 cm的三角形的纸 片,BC=5 cm,⊙O是它的内切圆,小明准备用剪 刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN 剪下△AMN,则剪下的三角形的周长为( B ) A.12 cm B.7 cm C.6 cm D.随直线MN的变化而变化
பைடு நூலகம்
课 后 作 业
5. 已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B. 若PA=6,则PB= 6 . 6.如图,P是⊙O外的一点,PA、PB分别与⊙O相切 于点A、B,C是AB上的任意一点,过点C的切线分 别交PA、PB于点D、E.若PA=4,求△PED的周长.
解:∵PA、PB分别与⊙O 相切于点A、B, ∴PA=PB=4,∵过点C的 切线分别交PA、PB于点D、E,∴DC=DA,EC=EB, ∴△PED的周长=PD+DE+PE=PD+DC+CE+PE =PD+DA+EB+PE=PA+PB=4+4=8.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
灿若寒星整理制作
3.7切线长定理
一、选择题
1. 一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( )
A .21
B .20
C .19
D .18
2. 如图,PA 、PB 分别切⊙O 于点A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP , 则与∠PAB 相等的角(不包括∠PAB
本身)有
( )
A .1个
B .2个
C .3个
D .4个 3. 如图,已知△ABC 的内切圆⊙O 与各边相切于点D 、
E 、
F ,则点O 是△DEF 的 ( ) A .三条中线的交点 B .三条高的交点 C .三条角平分线的交点 D .三条边的垂直平分线的交点
4.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )
A .120°
B .125°
C .135°
D .150°
5.一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60 ,则OP =( ) A .50 cm B .253
cm
C .
3
3
50cm D .503cm 6.如图1,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB=( ).
A .60°
B .75°
C .105°
D .120°
(1) (2)
7.圆外一点P ,PA 、PB 分别切⊙O 于A 、B ,C 为优弧AB 上一点,若∠ACB=a ,则∠APB=( )
A .180°-a
B .90°-a
C .90°+a
D .180°-2a 二、填空题
8. 如图,在△ABC 中,5cm AB AC ==,cosB 3
5
=.如果⊙O 的半径为10cm ,
且经过点B 、C ,那么线段AO= cm .
9.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P __ ___度.
B
A C D
P
O B
A
C P
O
10. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,则△ABC 的周长是 .
11. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,弦AB 的长为------.
三、解答题:
12. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.
13. 如图,已知AB 为⊙O 的直径,AD 、BC 、CD 为⊙O 的切线,切点分别是A 、B 、E ,则有一下结论:(1)CO ⊥DO ;(2)四边形OFEG 是矩形.试说明理由.
G
F
E
C
B
O
A
D
P
B
A
O
14. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.
(1)求∠APB 的度数; (2)当OA =3时,求AP 的长.
15. 如图,在△ABC 中,已知∠ABC=90o ,在AB 上取一点E ,以BE 为直径的⊙O 恰与AC 相切于点D ,若AE=2 cm ,AD=4 cm . (1)求⊙O 的直径BE 的长; (2)计算△ABC 的面积.
参考答案
1. C
2. B (提示:②④错误)
3. D (提示:AD=AF,BD=BE,CE=CF ∴周长=821218⨯+⨯=)
4. C
5. D
6. C
7.D
8. A (提示:∠MPN=600可得∠OPM=300
可得OP=2OM=50)
P
B
A
O
9.
510
3
(提示:连接OB ,易得:∠ABC=∠AOB ∴cos ∠AOB=cos ∠35=10OB OA AO
)
os300=AB
AC
∴AB=63
10. ∠P=600
11. 760 (提示:连接ID,IF ∵∠DEF=520 ∴∠DIF=1040 ∵D 、F 是切点 ∴DI ⊥AB,IF ⊥AC
∴∠ADI=∠AFI=900 ∴∠A=1800-1040=760) 12. 52 (提示:AB+CD=AD+BC)
13. 1150 (提示:∵∠A=500 ∴∠ABC+∠ACB=1300 ∵OB,OC 分别平分∠ABC,∠ACB ∴∠OBC+∠OCB=650∴∠BOC=1800-650=1150)
14. 解:∵AD,AE 切于⊙O 于D,E ∴AD=AE=20 ∵AD,BF 切于⊙O 于D,F ∴BD=BF 同理:CF=CE
∴C △ABC =AB+BC+AC=AB+BF+FC+AC=AB+BD+EC+AC=AD+AE=40 14 解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°
∴∠AOB =180°-2×30°=120°
∵PA 、PB 是⊙O 的切线
∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90° ∴在四边形OAPB 中,
∠APB =360°-120°-90°-90°=60°. (2)如图①,连结OP
∵PA 、PB 是⊙O 的切线
∴PO 平分∠APB ,即∠APO =1
2
∠APB =30°
又∵在Rt △OAP 中,OA =3, ∠APO =30°
∴AP =
tan 30OA
°
=33. P
B A
O
15 解:(1)连接OD ∴OD⊥AC
∴△ODA是Rt△
设半径为r ∴AO=r+2 ∴(r+2)2—r2=16
解之得:r=3 ∴BE=6
(2) ∵∠ABC=900∴OB⊥BC ∴BC是⊙O的切线
∵CD切⊙O于D ∴CB=CD 令CB=x
∴AC=x+4,BC=4,AB=x,AB=8 ∵222
8(4)
x x
+=+∴6
x=
∴S
△ABC =
1
8624 2
⨯⨯=。