2017-2018学年九年级数学上册 二次函数 单元测试卷 含答案
九年级上册数学《二次函数》单元检测题(含答案)
【考试时间:90分钟分数:120分】
一、选择题(共10小题,每小题3分,共30分)、
1.下列函数1个B.2个C.3个D.4个
2.已知二次函数 图象如图所示,给出以下结论:① ;② ;③ ;④ ,其中结论正确有()个.
A.2个B.3个C.4个D.5个
C.10D.无法确定
【答案】C
【解析】
【分析】
根据抛物线 自变量的取值范围问题,可得出二次函数的最值,再求和即可.
【详解】∵函数y=2(x−3)2−4的对称轴为x=3,
当x=3时,函数有最小值−4,
∵1≤x≤6,
∴当x=6时,函数的最大值为14,
∴最大值与最小值的和为−4+14=10.
故答案选C.
【点睛】本题考查了二次函数的最值,解题的关键是根据抛物线与取值范围求出最值.
17.若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为_________.
18.如图,利用一面墙(墙的长度不超过 ),用 长的篱笆围一个矩形场地,当 ________ 时,矩形场地的面积最大.
19.将一条长为20 cm 铁丝剪成两段并用每一段铁丝刚好围成一个正方形,则这两个正方形面积之和的最小值是____________.
14.已知二次函数 的图象如图所示,对称轴是直线 ,下列结论:① ;② ;③ ;④ .正确的是________.
15.如图所示,有一根长 的铁丝,用它围成一个矩形,写出矩形面积 与它的一边长 之间的函数关系式________.
16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为______.
数学九年级上册《二次函数》单元测试题(带答案)
点睛:本题考查了二次函数图象上点的坐标的特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口向上是解题的关键.
8.若二次函数 的图象与 轴有两个交点,坐标分别是(x1,0),(x2,0),且 .图象上有一点 在 轴下方,则下列判断正确的是()
A. B. C. D.
【答案】D
A. –1≤x≤9B. –1≤x<9
C. –1<x≤9D.x≤–1或x≥9
7.已知两点 均在抛物线 上,点 是该抛物线 顶点,若 ,则 的取值范围是()
A. B. C. D.
8.若二次函数 的图象与 轴有两个交点,坐标分别是(x1,0),(x2,0),且 .图象上有一点 在 轴下方,则下列判断正确的是()
【解析】
【分析】
根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
B、∵x1<x2,
∴△=b2-4ac>0,故本选项错误;
C、若a>0,则x1<x0<x2,
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
答案与解析
一、选择题(共24分)
1.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()
A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-2
20.在关于x,y的二元一次方程组 中.
(1)若a=3.求方程组的解;
(2)若S=a(3x+y),当a为何值时,S有最值.
2017-2018学年九年级数学上册《二次函数》测试题(含答案)
《二次函数》检测题(全卷共五个大题,满分150分,考试时间120分钟)抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、 选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷中相应的位置上.1.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大2、k 为任何实数,则抛物线y =2(x +k)2-k 的顶点在( )上A 、直线y=x 上,B 、直线y= -xC 、x 轴D 、y 轴3、0=+q p ,抛物线q px x y ++=2必过点( )A 、(-1,1)B 、(1,-1)C 、(-1,-1)D 、(1,1 ) 4、已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 15.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6、抛物线234y x x =--+与坐标轴的交点个数是( )A . 0B . 1C . 2D . 37、若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .a b x -=B .x =1C .x =2D .x =3 8.二次函数c bx ax y ++=2的图象如右上图所示,则abc ,ac b 42-,b a +2,cb a ++这四个式子中,值为正数的有( )A . 4个B .3个C .2个D .1个 9、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A . ﹣1<x <5B . x >5C . x <﹣1且x >5D . x <﹣1或x >5 10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( )卷相应位置的横线上.11:抛物线422-+=x x y 的对称轴是________,顶点坐标是_________;12.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(1, 3.2)--及部分图象(如图1所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x =。
数学九年级上册《二次函数》单元测试卷附答案
九年级上册数学《二次函数》单元测试卷(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列函数关系中,可以看作二次函数y =ax 2+bx +c (a ≠0)模型的是 A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系 2.抛物线y =–x 2+4x –4与坐标轴的交点个数为 A .0B .1C .2D .33.下列函数中,y 总随x 的增大而减小的是 A .y =4xB .y =–4xC .y =x –4D .y =x 24.将抛物线y =(x –1)2+3向左平移1个单位,再向下平移3个单位得到的解析式是 A .y =(x –1)2B .y =(x –2)2+6C .y =x 2D .y =x 2+65.已知抛物线23(2)y ax x a =++-,a 是常数且0a <,下列选项中可能是它大致图象的是A .B .C .D .6.已知抛物线y =ax 2+bx +c 开口向下,顶点坐标(3,-5),那么该抛物线有 A .最小值-5B .最大值-5C .最小值3D .最大值37.二次函数2y ax bx c =++的图象如图所示,则下列结论成立的是A .a >0,bc >0,Δ<0B .a <0,bc >0,Δ<0C .a >0,bc <0,Δ<0D .a <0,bc <0,Δ>08.已知二次函数215y x x =-+-,当自变量x 取m 时对应的值大于0,当自变量x 分别取1m -、1m +时对应的函数值为1y 、2y ,则1y 、2y 必须满足 A .10y >、20y > B .10y <、20y < C .10y <、20y >D .10y >、20y <9.用”描点法”画二次函数y =ax 2+bx +c (a ≠0)的图象时,列了如下表格:根据表格上的信息回答问题:一元二次方程ax 2+bx +c –5=0的解为 A .x 1=–2,x 2=4B .x 1=–1,x 2=3C .x 1=3,x 2=4D .x 1=–4,x 2=410.如图,在坐标平面上,二次函数y =–x 2+4x –k 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:3,则k 值为A .1B .12C .34D .45二、填空题(本大题共10小题,每小题3分,共30分)11.把二次函数y =2x 2–8x +9,化成y =a (x –h )2+k 的形式是:__________. 12.二次函数y =12(x +2)2+3的顶点坐标是__________. 13.已知二次函数2(2)y m x =-的图象开口向下,则m 的取值范围是__________. 14.如果二次函数22my mx -=(m 为常数)的图象有最高点,那么m 的值为__________.15.把抛物线y=22x先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是__________.16.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(-2,y2),试比较y1和y2的大小:y1__________y2(填”>“,”<“或”=“).17.已知关于x的二次函数y=ax2-4ax+a2+2a-3在-1≤x≤3的范围内有最小值5,则a的值为__________.18.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x 轴交于C,D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标的最大值为__________.19.直线y=ax+m和直线y=bx+n在同一平面直角坐标系中的图象如图所示,则抛物线y=ax2+bx+c的对称轴为__________.20.如图,抛物线y=–2x2–8x–6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=–x+m与C1,C2共有3个不同的交点,则m的取值范围是__________.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(6分)已知函数y=(m2-4)x2+(m2-3m+2)x-m-1.(1)当m为何值时,y是x的二次函数?(2)当m为何值时,y是x的一次函数?22.(6分)关于二次函数y =mx 2+(2m +4)x +8(m 为常数,且m ≠0),(1)证明:该函数与x 轴一定有交点; (2)若该函数经过点A (–1+1m,y 1),B (–1,y 2),请比较y 1,y 2的大小关系,并说明理由.23.(8分)已知抛物线y =ax 2+bx +c 经过点A (0,3)和B (4,3).(1)直接写出a ,b 之间的数量关系式:__________; (2)若抛物线的顶点在x 轴上,求a 的值;(3)若M (–1,0),N (3,0),且抛物线与线段MN 只有一个公共点,求a 的取值范围.24.(8分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y =–16x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为172m . (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?25.(8分)把抛物线212y x =平移得到抛物线m ,抛物线m 经过点A (-6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线212y x =交于点Q .(1)求顶点P 的坐标; (2)写出平移过程; (3)求图中阴影部分的面积.26.(10分)为发展”低碳经济”,某单位花12500元引进了一条环保型生产线生产新产品,在生产过程中,每件产品还需成本40元,物价部门规定该产品售价不得低于100元/件且不得高于150元/件,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一个月该单位是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3)在(2)的前提下,即在第一个月盈利最大或亏损最小时,第二个月公司重新确定产品售价,能否使两个月共盈利达10800元?若能,求出第二个月的产品售价;若不能,请说明理由.27.(10分)设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=-c,b=2d,且开口方向相同时,则称y1是y2的”反倍顶二次函数”.(1)请写出二次函数y=x2+x+1的一个”反倍顶二次函数”;(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰是y1-y2的”反倍顶二次函数”,求n.28.(10分)如图,在平面直角坐标系中,已知抛物线y=–43x2+bx+c过A(3,0),B(0,2)两点.点N为第一象限内抛物线上一动点,点N的横坐标为m,过点N作NM⊥x轴于M,交直线AB于点P.(1)求抛物线的解析式;(2)若PN=2PM,求此时点N的坐标;(3)连接AN,设△ANB的面积为S.求S关于m的函数关系式.参考答案1.【答案】C【解析】A、v=st,是反比例函数,错误;B、y=m(1+1%)x,不是二次函数,错误;C、S=-x2+12cx,是二次函数,正确;D、C=2πr,是正比例函数,错误,故选C.2.【答案】C【解析】当x=0时,y=–x2+4x–4=–4,则抛物线与y轴的交点坐标为(0,–4),当y=0时,–x2+4x–4=0,解得x1=x2=2,抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选C.【名师点睛】本题考查了抛物线与坐标轴的交点,分为两种情况:与x轴的交点,与y轴的交点.与x 轴的交点可以转化为解关于x的一元二次方程;与y轴的交点取x=0时即可.3.【答案】B【解析】y=4x中y随x的增大而增大,故选项A不符题意,y=–4x中y随x的增大而减小,故选项B符合题意,y=x–4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,故选B.【名师点睛】本题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.4.【答案】C【解析】∵向左平移1个单位,再向下平移3个单位,∴y=(x–1+1)2+3–3.故得到的抛物线的函数关系式为:y=x2.故选C.5.【答案】B【解析】∵抛物线y=ax2+3x+(a-2),a是常数且a<0,∴图象开口向下,a-2<0,∴图象与y轴交于负半轴,∵a<0,b=3,∴抛物线对称轴在y轴右侧.故选B.6.【答案】B【解析】由抛物线的开口向下和其顶点坐标为(3,-5),根据抛物线的性质,可以知该抛物线有最大值-5.故选B.7.【答案】D【解析】∵抛物线开口向下,∴a <0,∵对称轴x =02ba-<,∴b <0,抛物线与y 轴的交点在x 轴上方,∴c >0,∴bc <0,抛物线与x 轴有两个交点,∴Δ>0.故选D . 8.【答案】B 【解析】令y =−x 2+x −15=0,解得x=510±∵当自变量x 取m 时对应的值大于0,∴510-<m<10, ∵点(m +1,0)与(m -1,0)之间的距离为2,大于二次函数与x 轴两交点之间的距离,∴m -1的最大值在左边交点之左,m +1的最小值在右边交点之右.∴点(m +1,0)与(m -1,0)均在交点之外,∴y 1<0,y 2<0.故选B . 9.【答案】A【解析】方法一:由题意可知点(0,–3),(1,–4),(2,–3)在二次函数y =ax 2+bx +c 的图象上,则34423c a b c a b c =-++=-++=-⎧⎪⎨⎪⎩,解得123a b c ==-=-⎧⎪⎨⎪⎩,所以一元二次方程ax 2+bx +c –5=0可化为:x 2–2x –3–5=0,解得x 1=–2,x 2=4,故选A .方法二:因为二次函数的图象具有对称性,观察表格可知当x =0和x =2时对应的y 值相等,所以二次函数y =ax 2+bx +c (a ≠0)的对称轴为x =1,又由表格可知当x =4时y =5,所以当x =–2时y 的值也为5,所以ax 2+bx +c –5=0的解应该为x 1=–2,x 2=4,故选A . 10.【答案】A【解析】二次函数y =–x 2+4x –k 顶点坐标为(2,4–k ),C (0,–k ), ∵△ABC 与△ABD 的面积比为1:3,∴||4k k --=13, ∵k >0,∴4kk -=13,∴k =1;故选A . 【名师点睛】本题考查二次函数图象及性质,三角形的面积与坐标的关系;熟练掌握二次函数顶点和与坐标轴上点的求法,将三角形面积转化为点坐标的关系是解题的关键. 11.【答案】y =2(x –2)2+1【解析】y =2x 2–8x +9=2(x 2–4x )+9=2(x –2)2+1.所以y =2(x –2)2+1. 故答案为:y =2(x –2)2+1.【名师点睛】本题考查了二次函数的三种形式,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式. 12.【答案】(–2,3)【解析】二次函数y =12(x +2)2+3的图象的顶点坐标是(–2,3).故答案为:(–2,3). 【名师点睛】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y =a (x –h )2+k (a ≠0)的顶点坐标为(h ,k ),注意符号问题. 13.【答案】m <2【解析】由二次函数2(2)y m x =-的图象的开口方向,知m -2<0,确定m 的取值范围m <2.故答案为:m <2. 14.【答案】–2【解析】∵二次函数y =mx m 2−2(m 为常数)的图象有最高点,则图象开口向下,∴2220m m =⎩-⎧⎨<,解得m =–2,故答案为:–2. 【名师点睛】本题考查了二次函数的最值,解题的关键是根据二次函数的定义及开口方向确定m 的值,难度不大.15.【答案】y =2(x +1)2-2【解析】将抛物线y =2x 2先向左平移1个单位,再向下平移2个单位,所得新抛物线的解析式为:y = 2(x +1)2-2.故答案为:y =2(x +1)2-2. 16.【答案】<【解析】∵抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(-2,y 2),∴点(-1,y 1)直线x =1最近,点(-2,y 2)离直线x =1最远,∵抛物线开口向上,∴y 1<y 2.故答案为:<. 17.【答案】4或-8【解析】根据函数解析式可得函数的对称轴为直线x =2;当a >0,则当x =2时函数的最小值为5,即248235a a a a -++-=,解得:a =4或a =-2(舍去);当a <0时,则当x =-1时函数的最小为5,即24235a a a a +++-=,解得:a =-8或x =1(舍去).综上所述a =4或a =-8.故答案为:4或-8.18.【答案】8【解析】当点C 横坐标为−3时,抛物线顶点为A (1,4),对称轴为x =1,此时D 点横坐标为5,则CD =8;当抛物线顶点为B (4,4)时,抛物线对称轴为x =4,且CD =8,故C (0,0),D (8,0);由于此时D 点横坐标最大,故点D 的横坐标最大值为8.故选D . 19.【答案】直线x =–18【解析】如图可知,当x =2时,2a +m =2b +n ,得2a –2b =n –m ;当x =3时,y 1=3a +m ①,当x =6时,y 2=6b +n ②,且y 1=y 2; ②–①得n –m =3a –6b , ∴2a –2b =3a –6b ,∴a =4b .由二次函数的性质可知,其对称轴为直线x =–2b a =–18. 故答案为:直线x =–18. 【名师点睛】本题主要考查二次函数的性质、一次函数图象上点的坐标特征,解题关键是根据一次函数图象建立方程组,求出a 、b 的等量关系式. 20.【答案】–3<m <–158【解析】令y =–2x 2–8x –6=0,即x 2+4x +3=0,解得x =–1或–3, 则点A (–1,0),B (–3,0),由于将C 1向左平移2个长度单位得C 2,则C 2解析式为y =–2(x +4)2+2(–5≤x ≤–3), 当y =–x +m 1与C 2相切时, 令y =–x +m 1=–2(x +4)2+2, 即2x 2+15x +30+m 1=0, △=–8m 1–15=0,解得m 1=–158, 当y =–x +m 2过点B 时,即0=3+m 2,m 2=–3,当–3<m <–158时直线y =–x +m 与C 1、C 2共有3个不同的交点, 故答案为:–3<m <–158.【名师点睛】本题主要考查抛物线与x 轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.21.【解析】(1)由m2-4≠0,解得m≠±2.故当m≠±2时,y是x的二次函数.(2分)(2)由m2-4=0,解得m=±2.由m2-3m+2≠0,解得m≠1,m≠2.所以m=-2.因此,当m=-2时,y是x的一次函数.(6分)22.【解析】(1)二次函数y=mx2+(2m+4)x+8,Δ=(2m+4)2–32m=4m2–32m+16=(2m–4)2≥0,∴函数与x轴一定有交点;(3分)(2)函数的对称轴为x=–1–2m,当m>0时,–1+1m>–1>–1–2m,∴y随x的增大而增大,∴y1>y2;当m<0时,–1–2m>–1>–1+1m,∴y随x的增大而增大,∴y2>y1.(6分)【名师点睛】本题考查二次函数的图象及性质;熟练掌握二次函数对称轴与函数值之间的关系是解题的关键.23.【解析】(1)将A(0,3)和B(4,3)代入y=ax2+bx+c中得31643ca b c=++=⎧⎨⎩,∴4a+b=0,故答案为:4a+b=0;(2分)(2)∵抛物线y=ax2+bx+c经过点A(0,3)和B(4,3),∴对称轴为直线x=2,∵x=2时,y=4a+2b+c=b+3,∴顶点坐标为(2,b+3),∵抛物线的顶点在x轴上,∴b+3=0,∴b=–3,∴a=34;(4分)(3)y=ax2–4ax+3,∴其对称轴是x=2.①当抛物线开口向上时,∵抛物线与线段MN只有一个公共点,∴抛物线与x轴只有一个交点,此时,Δ=0或(3)0f∆><⎧⎨⎩,解得a=34或a>1;(6分)②当抛物线开口向下时,1()0f∆>-≤⎧⎨⎩,解得a≤–35,综上,抛物线与线段MN只有一个公共点时,a的取值范围是a≤–35或a>1或a=34.(8分)【名师点睛】本题考查了待定系数法求二次函数解析式,二次函数的顶点坐标与对称轴的求解,二次函数的性质,求出函数解析式是解题的关键.24.【解析】(1)根据题意得B (0,4),C (3,172), 把B (0,4),C (3,172)代入y =–16x 2+bx +c , 得241173362c b c =⎧⎪⎨-⨯++=⎪⎩,解得24b c ==⎧⎨⎩. 所以抛物线解析式为y =–16x 2+2x +4, 则y =–16(x –6)2+10,所以D (6,10), 所以拱顶D 到地面OA 的距离为10m ;(4分)(2)由题意得货运汽车最外侧与地面OA 的交点为(2,0)或(10,0),当x =2或x =10时,y =223>6, 所以这辆货车能安全通过.(8分)【名师点睛】本题考查了二次函数的应用:构建二次函数模型解决实际问题,利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.25.【解析】(1)平移的抛物线解析式为1(6)2y x x =+=2132x x +=219(3)22x +-, 所以顶点P 的坐标为(-3,92-).(3分) (2)把抛物线212y x =先向左平移3个单位,再向下平移92个单位即可得到抛物线219(3)22y x =+-.(6分) (3)图中阴影部分的面积=1273922OPQ S =⨯⨯=△.(8分)26.【解析】(1)设y =kx +b ,由图象可得:100160150110k b k b +=⎧⎨+=⎩,解得1260k b =-⎧⎨=⎩,故函数解析式为:y =-x +260(100≤x ≤150).(4分)(2)设公司第一个月的盈利为w 元,由题意得,w =y (x -40)-12500=-x 2+300x -10400-12500=-(x -150)2-400,∴第一个月公司亏损了,最小亏损为400元,此时商品售价定为150元/件.(7分) (3)由题意,两个月共盈利10800元,得:-x 2+300x -10400-400=10800, 解得x 1=120,x 2=180,又∵100≤x ≤150,∴x =120,∴每件商品售价定为120元时,公司两个月可盈利10800元.(10分)27.【解析】(1)∵y =x 2+x +1,∴y =213()24x ++, ∴二次函数y =x 2+x +1的顶点坐标为(-12,34), ∴二次函数y =x 2+x +1的一个”反倍顶二次函数”的顶点坐标为(12,32), ∴反倍顶二次函数的解析式为y =x 2-x +74.(5分) (2)y 1+y 2=x 2+nx +nx 2+x =(n +1)x 2+(n +1)x ,y 1+y 2=(n +1)(x 2+x +14)-14n +, 顶点坐标为(-12,-14n +),(7分) y 1-y 2=x 2+nx -nx 2-x =(1-n )x 2+(n -1)x ,y 1-y 2=(1-n )(x 2-x +14)-14n -,顶点坐标为(12,-14n -), 由于函数y 1+y 2恰是y 1-y 2的”反倍顶二次函数”,则-2×14n -=-14n +, 解得n =13.(10分) 28.【解析】(1)抛物线过点B (0,2),∴c =2,把点A 坐标(3,0)代入二次函数表达式得:0=–43×9+3b +2,解得:b =103, 故抛物线的表达式为:y =–43x 2+103x +2;(4分) (2)设直线AB 的表达式为:y =kx +2,将点A坐标(3,0)代入上式得:0=3k+2,解得:k=–23,则直线AB的表达式为:y=–23x+2,点N的横坐标为m,则点N坐标为(m,–43m2+103m+2)、点P坐标为(m,–23m+2)、点M坐标为(m,0),则PM=–23m+2,PN=–43m2+103m+2–(–23m+2)=–43m2+4m,由PN=2PM,解得:m=3或1(舍去m=3),故点N的坐标为(1,4);(8分)(3)由(2)得:PN=–43m2+4m,则S=12•PN•x A=–2m2+6m(0<x<3).(10分)。
九年级上册数学《二次函数》单元综合测试卷含答案
一、单选题
1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a−2b+c>0;④a+c>0,其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据抛物线的开口方向和对称轴判断①;根据抛物线与y轴的交点和对称轴判断②;根据x=-2时,y<0判断③;根据x=±1时,y>0判断④.
(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.
(3)如图,在(1)的条件下,点P的坐标为(-1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.
18.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.
19.如图,已知二次函数 的图象经过 , 两点.
(1)求这个二次函数的解析式;
C.先向右平移2个单位长度,然后向上平移1个单位长度
D.先向右平移2个单位长度,然后向下平移1个单位长度
9.已知二次函数y=ax2+bx+c 图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:① =﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是( )
数学九年级上册《二次函数》单元检测题(附答案)
九年级上册数学《二次函数》单元测试卷考试总分:120 分考试时间:120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是()A. B. C. D.2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()A. 当时,的值小于B. 当时,的值大于C. 当时,的值等于D. 当时,的值大于3.函数的图象大致为()A. B. C. D.4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A. 1或-5B. -1或5C. 1或-3D. 1或35.抛物线的顶点坐标是()A. (3, 1)B. (-3, 1)C. (1, -3)D. (1, 3)6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A. 2B. 3C. 4D. 57.如图所示为二次函数的图象,在下列选项中错误的是()A.B. 时,随的增大而增大C.D. 方程的根是,8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A. abc>0B. b-2a=0C. 3a+c>0D. 9a+6b+4c>09.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A. y1<y2B. y1=y2C. y1>y2D. 不能确定10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.12.已知二次函数y =ax2+bx+c 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y …3-2-5-6-5…则x<-2时, y的取值范围是▲ .13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.14.将二次函数配方成的形式,则y=_________________.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是()A. B. C. D.【答案】D【解析】试题解析:根据二次函数定义中对常数a,b,c的要求,只要a≠0,b,c可以是任意实数,故选D.2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()A. 当时,的值小于B. 当时,的值大于C. 当时,的值等于D. 当时,的值大于【答案】B【解析】【分析】根据抛物线与y轴的交点位置对A进行判断;根据二次函数的性质,当x=-2时,y=1,则x=-3时,y>1,于是可对B进行判断;根据图象,当x=5时,不能确定函数值等于0,则可对C进行判断;根据二次函数图象上点的坐标特征对D进行判断.【详解】解:A、抛物线与y轴的交点在x轴下方,且在点(1,-1)上方,所以x=0时,-1<y<0,所以A 选项错误;B、当x=-3时,y>1,所以B选项正确;C、当x=5时,不能确定函数值等于0,所以C选项错误;D、当x=1时,y=-1,所以D选项错误.故选:B.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.函数的图象大致为()A. B. C. D.【答案】B【解析】分析:本题考查二次函数的图形问题.解析:函数的二次项系数为-1,所以开口向下,抛物线与y轴的交点为(0,1).故选B.4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A. 1或-5B. -1或5C. 1或-3D. 1或3【答案】B【解析】分析:由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.详解:本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.5.抛物线的顶点坐标是()A. (3, 1)B. (-3, 1)C. (1, -3)D. (1, 3)【答案】A【解析】【分析】直接根据二次函数的顶点式可得出结论.【详解】解:∵抛物线的解析式为:y=2(x-3)2+1,∴其顶点坐标为(3,1).故选:A.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A. 2B. 3C. 4D. 5【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=-1时,y=a-b+c;然后由图象确定当x取何值时,y>0.【详解】解:①∵开口向下,∴a<0,∵对称轴在y轴右侧,∴->0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与-1之间;∴当x=-1时,y=a-b+c<0,故正确;③∵对称轴x=-=1,∴2a+b=0;故正确;④∵2a+b=0,∴b=-2a,∵当x=-1时,y=a-b+c<0,∴a-(-2a)+c=3a+c<0,故正确;⑤如图,当-1<x<3时,y不只是大于0.故错误.∴正确的有4个.故选:C.【点睛】此题考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.7.如图所示为二次函数的图象,在下列选项中错误的是()A.B. 时,随的增大而增大C.D. 方程的根是,【答案】C【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,根据开口方向及对称轴判断二次函数的增减性,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.【详解】解:A、由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,所以ac <0,正确;B、由a>0,对称轴为x=1,可知x>1时,y随x的增大而增大,正确;C、把x=1代入y=ax2+bx+c得,y=a+b+c,由函数图象可以看出x=1时二次函数的值为负,错误;D、由二次函数的图象与x轴交点的横坐标是-1或3,可知方程ax2+bx+c=0的根是x1=-1,x2=3,正确.故选:C.【点睛】由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会判断二次函数的增减性,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A. abc>0B. b-2a=0C. 3a+c>0D. 9a+6b+4c>0【答案】D【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:A、∵根据图示知,抛物线开口方向向下,∴a<0;∵抛物线交x轴于点(-1,0),(3,0),∴对称轴x==-=1,∴b=-2a>0.∵根据图示知,抛物线与y轴交于正半轴,∴c>0,∴abc<0.故本选项错误;B、∵对称轴x==-=1,∴b=-2a,∴b+2a=0.故本选项错误;C、根据图示知,当x=-1时,y=0,即a-b+c=a+2a+c=3a+c=0.故本选项错误;D、∵a<0,c>0,∴-3a>0,4c>0,∴-3a+4c>0,∴9a+6b+4c=9a-12a+4c=-3a+4c>0,即9a+6b+4c>0.故本选项正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A. y1<y2B. y1=y2C. y1>y2D. 不能确定【答案】C【解析】【分析】直接利用二次函数的性质得出其增减性,再利用A,B点横坐标得出答案.【详解】解:如图所示:x>-3时,y随x的增大而减小,∵1<2,∴y1>y2.故选:C.【点睛】此题主要考查了二次函数的性质,正确得出二次函数增减性是解题关键.10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A. B. C. D.【答案】B【解析】【分析】先根据函数关系式为h=gt2确定图象属于那一类函数的图象,再根据g、t的取值范围确定图象的具体形状.【详解】解:t为未知数,关系式h=gt2为二次函数,∵g为正常数∴抛物线开口方向向上,排除C、D;又∵时间t不能为负数,∴图象只有右半部分.故选:B.【点睛】根据关系式判断属于哪一类函数,关键要会判断未知数及未知数的指数的高低.二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.【答案】【解析】【分析】由题意知利润y(元)与销售的单价x(元)之间的关系式,化为顶点式求出y的最大值.【详解】解:利润y(元)与销售的单价x(元)之间的关系为y=-20x2+1400x-2000=-20(x-35)2+22500.∵-20<0∴当x=35元时,y最大为22500元.即该商品获利最多为22500元.故答案为:22500.【点睛】本题考查二次函数的实际应用,借助二次函数的顶点式解决实际问题.12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲.【答案】y>-5【解析】考点:待定系数法求二次函数解析式;二次函数的性质.分析:根据图表知二次函数的顶点坐标是(-1,-6),可将二次函数的解析式设为顶点式,任取一点坐标代入即可求得二次函数的解析式,然后根据二次函数的性质填空.解:由图表知,二次函数的顶点坐标是(-1,-6),可设二次函数的解析式为:y=a(x+1)2-6;∵二次函数经过点(0,-5),∴-5=a-6,解得,a=1,∴二次函数的解析式为:y=(x+1)2-6;∴当x<-2时,y>-5;故答案为:y>-5.13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.【答案】【解析】【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【详解】解:y=x2-4ax+4a2+a-1=(x-2a)2+a-1,∴抛物线顶点坐标为:(2a,a-1),设x=2a①,y=a-1②,①-②×2,消去a得,x-2y=2,即y=x-1.故答案为:y=x-1.【点睛】此题主要考查了根据顶点式求顶点坐标的方法,消元的思想.主要利用x、y代表顶点的横坐标、纵坐标,消去a得出是解题关键.14.将二次函数配方成的形式,则y=_________________.【答案】【解析】试题解析:利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,即=x2-2x+1+2=(x-1)2+2.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)【答案】①②【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①根据图象知,当x=-2时,y<0,即4a-2b+c<0;故①正确;②∵该函数图象的开口向下,∴a<0;又∵对称轴-1<x=-<0,∴2a-b<0,故②正确;③∵a<0,-<0,∴b<0.∵抛物线交y轴与正半轴,∴c>0.∴abc>0,故③错误.④∵y=>2,a<0,∴4ac-b2<8a,即b2+8a>4ac,故④错误.综上所述,正确的结论有①②.故答案为:①②.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)【答案】②④⑤【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:①由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由对称轴0<x<1,得出b>0,则abc<0,故①错误;②∵对称轴0<x<1,-<1,a<0,∴-b>2a,∴2a+b<0,故②正确;③把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y>0,即a-b+c>0,故③错误;④把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y>0,即a-b+c>0,a+c>b,∵b>0,∴a+c>0,故④正确;⑤∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4ac,故⑤正确;⑥当x>1时,y随x的增大而减小,故⑥错误;故答案为:②④⑤.【点睛】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.【答案】【解析】【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45°,∴OB1的解析式为y=x联立,解得或,∴点B1(1,1),OB1==,∵OA1C1B1是正方形,∴OC1=OB1=×=2,∵C1A2C2B2是正方形,∴C1B2的解析式为y=x+2,联立,解得,或,∴点B2(2,4),C1B2==2,∵C1A2C2B2是正方形,∴C1C2=C1B2=×2=4,∴C2B3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B3(3,9),C2B3==3,…,依此类推,正方形C2010A2011C2011B2011的边长C2010B2011=2011.故答案为:2011.【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.【答案】①②④【解析】【分析】由上表得与y轴的交点坐标为(0,-8);与x轴的一个交点坐标为(-2,0);函数图象有最低点(1,-9);有抛物线的对称性可得出可得出与x轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y为-5.从而可得出答案.【详解】根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,-9);②与y轴的交点坐标为(0,-8);③与x轴的交点坐标为(-2,0)和(4,0);④当x=-1时,对应的函数值y为-5.故答案是:①②④.【点睛】考查了用函数图象法求一元二次方程的近似根,体现了数形结合的思想方法.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)【答案】【解析】【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【详解】解:∵二次函数y=x2+2的图象的对称轴是y轴,在对称轴的左面y随x的增大而减小,∵点A(-4,y1)、B(-3,y2)是二次函数y=x2+2的图象上两点,-4<-3,∴y1>y2.故答案为:y1>y2.【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)【答案】①③【解析】【分析】由图象可知过(1,0),代入得到a+b+c=0;根据-=-1,推出b=2a;根据图象关于对称轴对称,得出与X 轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.【详解】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;-=-1,∴b=2a,∴②错误;根据图象关于对称轴x=-1对称,与X轴的交点是(-3,0),(1,0),∴③正确;∵b=2a>0,∴-b<0,∵a+b+c=0,∴c=-a-b,∴a-2b+c=a-2b-a-b=-3b<0,∴④错误.故答案为:①③.【点睛】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.【答案】【解析】【分析】设小路的宽为x米,那么长方形花圃的长为(15-2x),宽为(10-x),花圃面积为y平方米,根据长方形面积公式即可列出方程,进而求出函数的定义域.【详解】解:设小路的宽为米,那么长方形花圃的长为,宽为,根据题意得,由,解得.【点睛】本题考查了根据实际问题列二次函数关系式,关键是设出小路的宽,表示出长方形花圃的长和宽,根据面积这个等量关系可列出方程.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?【答案】(1)或;(2)月能够获得最大利润,最大利润是万;(3) 该企业一年中应停产的月份是月、月、月【解析】【分析】(1)把y=21代入,求出n的值即可;(2)根据解析式,利用配方法求出二次函数的最值即可;(3)根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.【详解】解:由题意得:,解得:或;,∵,∴开口向下,有最大值,即时,取最大值,故月能够获得最大利润,最大利润是万;)∵,当时,或者.又∵图象开口向下,∴当时,,当时,,当时,,则该企业一年中应停产的月份是月、月、月.【点睛】此题主要考查了二次函数的应用,难度一般,解答本题的关键是熟练运用配方法求二次函数的最大值,借助二次函数解决实际问题.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?【答案】(1)见解析;(2)y=;(3)当时,有最大值,最大值为平方米【解析】【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE;(2)设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(3)利用二次函数的性质求出y的最大值,以及此时x的值即可.【详解】解:∵三块矩形区域的面积相等,∴矩形面积是矩形面积的倍,又∵是公共边,∴;设,则,∴,∴,,∴,∵,∴,∴∵,且二次项系数为,∴当时,有最大值,最大值为平方米.【点睛】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.【答案】(1)函数的解析式即;(2)抛物线的开口向上,对称轴为直线=1, 顶点坐标;(3)当时,.【解析】【分析】(1)设抛物线的解析式为y=a(x-x1)(x-x2),再把A(-1,0),B(3,0),C(0,-3)代入即可得出此函数的解析式;(2)根据a的符号判断抛物线的开口方向、由顶点公式得出对称轴及顶点坐标;(3)由题意把函数转化为不等式,得x2-2x-3>0,从而求出x的取值范围.【详解】解:设抛物线的解析式为,把,,代入得,解得,∴此函数的解析式即;∵,∴抛物线的开口向上,对称轴为直线,,顶点坐标;∵,即图象在轴的下方,∴由图象可知:当时,.【点睛】本题考查了二次函数的性质,以及用待定系数法求二次函数的解析式,求抛物线的顶点坐标的方法,是中考的常见题型.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.【答案】(1)抛物线的顶点坐标为;(2)①当时,;②当时,或.【解析】【分析】(1)把A点和C点坐标代入y=ax2+bx+c得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a、b、c即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x为-1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y<3时,x的取值范围.【详解】解:根据题意得,解得,所以二次函数关系式为,因为,所以抛物线的顶点坐标为;①当时,;时,;而抛物线的顶点坐标为,且开口向下,所以当时,;②当时,,解得或,所以当时,或.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.【答案】(1)抛物线的解析式为:;(2) 当时,的面积最大,最大值,的坐标为:;(3) 点的坐标为:,,,【解析】【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.【详解】解:∵平行四边形绕点顺时针旋转,得到平行四边形,且点的坐标是,∴点的坐标为:,。
【单元测试】2017-2018学年 九年级数学上册 二次函数 单元检测题(含答案)
2017-2018学年九年级数学上册二次函数单元检测题一、选择题:1、抛物线y=-(x-2)2+3的顶点坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)2、抛物线y=(x+1)2+2的对称轴为( )A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣13、下列说法错误的是( )A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点4、将抛物线y=x2-2x+3平移得到抛物线y=x2,则这个平移过程正确的是( )A.先向左平移1个单位,再向下平移2个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移2个单位,再向上平移1个单位5、若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=56、已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是( )A.16B.-4C.4D.87、二次函数y=kx2﹣2x+1的图象与x轴有两个交点,则k的取值范围是( )A.k<1B.k<1且k≠0C.k≤1D.k≤1且k≠08、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第8秒B.第10秒C.第12秒D.第15秒10、已知二次函数y=﹣x2+bx+c中,函数y与自变量x之间的部分对应值如表所示,点A(x1,y1),B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )A.y1>y2B.y1≤y2C.y1<y2D.y1≥y211、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个B.2个C.3个D.4个12、如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是抛物线上两点,则y1>y2.其中正确的是( )A.①②B.②③C.①②④D.②③④二、填空题:13、如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .14、若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为 .15、已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线 .16、把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.17、如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是 .18、用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).三、解答题:19、已知二次函数的顶点坐标为(2,﹣2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标.20、已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(2,﹣1.5).(1)求此抛物线的解析式;(2)当y<0时,x的取值范围是______(直接写出结果)21、已知二次函数y=﹣x2+2x+3.(1)在如图所示的坐标系中,画出该函数的图象;(2)根据图象回答,x取何值时,y>0?(3)根据图象回答,x取何值时,y随x的增大而增大?x取何值时,y随x的增大而减小?22、如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x米,面积为y平方米.(1)求y与x的函数关系式,并求自变量x的取值范围;(2)生物园的面积能否达到210平方米?说明理由23、某商店现在的销售价格为每件35元,每天可卖出50件,市场调查发现,如果调整价格,每降价1元你,每天可多卖出2件,设每件商品降价x元,每天的销售额为y元.(1)求y与x的函数关系式;(2)当每件商品降价多少元时,可使每天的销售额最大.最大销售额是多少?24、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.参考答案1、D2、D3、C4、A.5、D6、A7、B8、C9、B10、C11、B12、C13、答案为:-1<x<3.14、答案为:12.15、答案为:x=2.16、答案为:y=-(x+1)2+3.17、答案为:﹣1.18、答案为:y=﹣x2+4x19、二次函数的解析式为y=3(x﹣2)2﹣2,当x=0时,y=3×4﹣2=10,函数图象与y轴的交点坐标(0,10).20、解:(1)把A(﹣1,0),B(3,0),C(2,﹣1.5)代入抛物线解析式,得解得∴该函数的解析式为:y=x2﹣x﹣.(2)由抛物线开口向上,交点为A(﹣1,0),B(3,0)可知,当y<0时,x的取值范围是﹣1<x<3;21、解:(1)列表:描点、连线可得如图所示抛物线.(2)当﹣1<x<3时,y>0;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.22、()、,方程无解,不能23、解:(1)根据题意得:y=(35﹣x)(50+2x);(2)∵每天的销售额y=(35﹣x)(50+2x),(0<x<35)配方得y=﹣2(x﹣5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l 800元24、解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.。
二次函数测试题
2017-2018学年 九年级数学上册 二次函数 单元检测题一、选择题:1、二次函数y=x2+4x﹣5的图象的对称轴为( )A.x=4B.x=﹣4C.x=2D.x=﹣22、对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点3、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式时( )A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-24、在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )5、已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是( )A.x≥1B.x≥0C.x≥﹣1D.x≥﹣26、如图,在平面直角坐标系中,抛物线2经过平移得到抛物线2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.167、如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是( )π D.条件不足,无法求8、某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( ) A.y=20(1﹣x)2 B.y=20+2x C.y=20(1+x)2 D.y=20+20x2+20x 9、如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为( )A.y=5﹣xB.y=5﹣x2C.y=25﹣xD.y=25﹣x210、已知抛物线y=ax2+bx+c的图象如图所示,则|b﹣a﹣2c|+|3a+b|=( )A.2a+2bB.﹣2a﹣2bC.﹣4a﹣2bD.4a11、如图,已知顶点为(-3,-6)的抛物线y= ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>n.D.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-112、如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )二、填空题:13、如果二次函数y=(m﹣2)x2+3x+m2﹣4的图象经过原点,那么m= .14、二次函数y=x2+6x+5图象的顶点坐标为 .15、将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .16、抛物线的部分图象如图所示,则当y<0时,x的取值范围是 .17、将函数y=x2的图象向右平移2个单位得到函数y1的图象,将y与y1合起来构成新图象,直线y=m被新图像一次截得三段的长相等,则m= .18、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=_____.三、解答题:19、根据条件求二次函数的解析式(1)二次函数y=ax2+bx+c的对称轴为x=3,最小值为﹣2,且过(0,1)点.(2)抛物线过(﹣1,0),(3,0),(1,﹣5)三点.20、已知抛物线2+(m﹣2)x+2m﹣6的对称轴为直线x=1,与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求m的值;(2)直线l经过B、C两点,求直线l的解析式.21、如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.22、某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23、如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O 点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?24、在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.1、D.2、C.3、A4、D5、A.6、B7、B8、C9、D.10、D11、C12、A13、答案为:﹣2.14、答案为:(﹣3,﹣4).15、答案为:y=(x﹣4)2+4;16、答案为:x>3或x<﹣1.17、答案为:m=4或1/418、答案为:﹣1.19、解:(1)设抛物线解析式为y=a(x﹣3)2﹣2,把(0,1)代入得9a﹣2=1,解得a= ,所以抛物线解析式为y= (x﹣3)2﹣2;(2)设抛物线解析式为y=a(x+1)(x﹣3),把(1,﹣5)代入得a•2•(﹣2)=﹣5,解得a=﹣ ,所以抛物线解析式为y=﹣ (x+1)(x﹣3),即y=﹣ x2+ x+ .20、解:(1)∵抛物线y= x2+(m﹣2)x+2m﹣6的对称轴为直线x=1,解得:m=1;(2)∵m=1,∴抛物线的解析式为y= x2﹣x﹣4,当y=0时, x2﹣x﹣4=0,解得:x=﹣2或x=4,∴A(﹣2,0),B(4,0),当x=0时,y=﹣4,∴C(0,﹣4),设直线l的解析式为y=k x+b,根据题意得:4k+b=0,b=-4,解得:k=1,b=-4.∴直线l的解析式为y=﹣x﹣4.21、解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴4a+2b+c=0,c=-1,16a+4b+c=5,∴a= ,b=﹣ ,c=﹣1,∴二次函数的解析式为y= x2﹣ x﹣1;(2)当y=0时,得 x2﹣ x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.22、解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23、解:(1)以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣ ,所以抛物线解析式为:y=﹣ x2+x+1;(2)令y=0,则﹣ x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.24、解:(1)由题意4a-2b+2=6,4a+2b+2=2解得a=0.5,b=-1.∴抛物线解析式为y= x2﹣x+2.(2)∵y= x2﹣x+2= (x﹣1)2+ .∴顶点坐标(1, ),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BD H+S△D H C=3.(3)由y=-0.5x+b,y=0.5x2-2x+2,消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b= .当直线y=﹣ x+b经过点C时,b=3,当直线y=﹣ x+b经过点B时,b=5,∵直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴ <b≤3.。
数学九年级上册《二次函数》单元综合测试附答案
九年级上册数学《二次函数》单元测试卷【考试时间:90分钟满分:120分】一.选择题(共12小题)1.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A.y=x2﹣2x+2B.y=x2﹣2x﹣2C.y=﹣x2﹣2x+1D.y=x2﹣2x+1 2.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③a+c>b;④b﹣2a>0.其中正确的结论有()A.1个B.2个C.3个D.4个3.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论①a+b>0;②若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;③a(m﹣1)+b=0;④若c≤﹣1,则b2﹣4ac ≤4a.其中正确结论的个数是()A.1B.2C.3D.44.若A(1,y1),B(﹣1,y2),C(4,y3)在抛物线上y=﹣(x﹣2)2+m上,则()A.y3>y2>y1B.y1>y3>y2C.y1>y2>y3D.y3>y2>y1 5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=m+2 3D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时,y1<y26.关于x的一元二次方程x2﹣ax+a﹣2=0的两个根中,只有一个正根,则()A.a≥2B.a≤2C.a≥﹣2D.a≤﹣27.已知a、b都是正整数,且抛物线y=ax2+bx+l与x轴有两个不同的交点A、B.若A、B 到原点的距离都小于1,则a+b的最小值等于()A.16B.10C.4D.18.不论a为任何实数,二次函数y=x2﹣ax+a﹣2的图象()A.在x轴上方B.在x轴下方C.与x轴有一个交点D.与x轴有两个交点9.对于抛物线y=﹣mx2﹣4mx﹣n(m≠0)与x轴的交点为A(﹣1,0),B(x2,0),则下列说法:①一元二次方程mx2+4mx+n=0的两根为x1=﹣1,x2=﹣3;②原抛物线与y轴交于C点,CE∥x轴交抛物线于E点,则CE=4;③点D(2,y1),点F(﹣6,y2)在原抛物线上,则y2≤y1;④抛物线y=mx2+4mx+n与原抛物线关于x轴对称.其中正确的说法有()A.①②③④B.①③④C.②③D.①②④10.若关于x的方程x2+px+q=0没有实数根,则函数y=x2﹣px+q的图象的顶点一定在()A.x轴的上方B.x轴的下方C.x轴上D.y轴上11.y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,当△ABC为直角三角形时,则()A.ac=﹣1B.ac=1C.ac=±1D.无法确定12.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根B.有两个同号不等实数根C.有两个异号实数根D.有两个相等实数根二.填空题(共6小题)13.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=−32(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=12AB,则k的值为.14.已知抛物线y1=a(x﹣m)2+k与y2=﹣a(x+m)2﹣k(m≠0)关于原点对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”.15.如图,是二次函数y=ax2+bx+c的大致图象,则下列结论:①a<0;②b>0;③c<0;④b2﹣4ac>0中,正确的有.(写上所有正确结论的序号)16.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为.17.在直角坐标系中,点A的坐标为(3,0),若抛物线y=x2﹣2x+n﹣1与线段OA有且只有一个公共点,则n的取值范围为.18.如图,抛物线y=−12x2+32x+5与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.三.解答题(共6小题)19.已知直线y=kx+m与抛物线y=﹣x2+bx+c(b<0)相交于A,B两点,且点A在x轴的正半轴上,点B在y轴上,设点A横坐标为m,抛物线的顶点纵坐标为n.(1)求k的值;(2)当m<2时,试比较n与b+m﹣k的大小.20.一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B.一个二次函数y=x2+bx+c的图象经过点A、B.(1)求点A、B的坐标;(2)求二次函数的解析式及它的最小值.21.如图,直线AB:y=kx+3过点(﹣2,4)与抛物线y=12x2交于A、B两点;(1)直接写出点A、点B的坐标;(2)在直线AB的下方的抛物线上求点P,使△ABP的面积等于5.22.已知关于x的方程mx2﹣3(m+1)x+2m+3=0.(1)求证:无论m取任何实数,该方程总有实数根;(2)若m≠0,抛物线y=mx2﹣3(m+1)x+2m+3与x轴的交点到原点的距离小于2,且交点的横坐标是整数,求m的整数值.23.已知:抛物线y=ax2+bx+c与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=﹣2.(1)求出抛物线与x轴的两个交点A、B的坐标;(2)试确定抛物线的解析式.24.二次函数y=ax2+bx+c(a≠0)的部分图象如图,根据图象解答下列问题:(1)写出x为何值时,y的值大于0;(2)写出x为何值时,y随x的增大而增大;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.答案与解析一.选择题(共12小题)1.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A.y=x2﹣2x+2B.y=x2﹣2x﹣2C.y=﹣x2﹣2x+1D.y=x2﹣2x+1【分析】利用配方法把二次函数化为顶点式,得出顶点坐标,比较得出答案即可.【解答】解:A、y=x2﹣2x+2=(x﹣1)2+1,顶点坐标为(1,1),不合题意;B、y=x2﹣2x﹣2=(x﹣1)2﹣3,顶点坐标为(1,﹣3),符合题意;C、y=﹣x2﹣2x+2=﹣(x+1)2+3,顶点坐标为(﹣1,3),不合题意;D、y=x2﹣2x+1=(x﹣1)2,顶点坐标为(1,0),不合题意.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③a+c>b;④b﹣2a>0.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c 的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③x=﹣1时,y>0,即a﹣b+c>0,所以a+c>b.④由−b 2a>−1,a <0,得到b >2a ,所以b ﹣2a >0. 【解答】解:①由开口向下,可得a <0,又由抛物线与y 轴交于正半轴,可得c >0,然后由对称轴在y 轴左侧,得到b 与a 同号,则可得b <0,abc >0,故①错误; ②由抛物线与x 轴有两个交点,可得b 2﹣4ac >0,故②正确;③∵x =﹣1时,y >0,即a ﹣b +c >0,∴a +c >b ,故③正确;④∵抛物线对称轴x =−b 2a >−1,a <0,∴b >2a ,∴b ﹣2a >0,故④正确.综上所述,正确的结论有3个.3.抛物线y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过点(﹣1,0)和(m ,0),且1<m <2,当x <﹣1时,y 随着x 的增大而减小.下列结论①a +b >0;②若点A (﹣3,y 1),点B (3,y 2)都在抛物线上,则y 1<y 2;③a (m ﹣1)+b =0;④若c ≤﹣1,则b 2﹣4ac ≤4a .其中正确结论的个数是( )A .1B .2C .3D .4【分析】利用x <﹣1时,y 随着x 的增大而减小可判断抛物线开口向上,则a >0,由于抛物线经过点(﹣1,0)和(m ,0),且1<m <2,可判断抛物线的对称轴的位置,所以0<−b 2a <12,于是可对①进行判断;通过比较点A 到对称轴的距离和点B 到对称轴的距离可对②进行判断;根据二次函数图象上点的坐标特征得到a ﹣b +c =0,am 2+bm +c =0,消去c ,再因式分解得到(m +1)(m ﹣1)+b (m +1)=0,于是可对③进行判断;利用抛物线顶点的纵坐标小于﹣1得到4ac−b 24a <−1,然后利用不等式性质变形后可对④进行判断. 【解答】解:∵抛物线过点(﹣1,0),当x <﹣1时,y 随着x 的增大而减小,∴抛物线开口向上,∴a >0,∵抛物线经过点(﹣1,0)和(m ,0),且1<m <2,∴0<−b 2a <12,∴a +b >0,所以①正确;∵点A (﹣3,y 1),点B (3,y 2)都在抛物线上,而点A 到对称轴的距离比点B 到对称轴的距离要大,∴y 1>y 2,所以②错误;∵抛物线经过点(﹣1,0)和(m ,0),∴a ﹣b +c =0,am 2+bm +c =0,∴am 2﹣a +bm +b =0,即a (m +1)(m ﹣1)+b (m +1)=0,∴a (m ﹣1)+b =0,所以③正确;∵c ≤﹣1,∴4ac−b 24a <−1,∴b 2﹣4ac >4a ,所以④错误.4.若A (1,y 1),B (﹣1,y 2),C (4,y 3)在抛物线上y =﹣(x ﹣2)2+m 上,则( )A.y3>y2>y1B.y1>y3>y2C.y1>y2>y3D.y3>y2>y1【分析】对二次函数y=﹣1(x﹣2)2+m,对称轴x=2,则A、B、C的横坐标离对称轴越近,则纵坐标越大,由此判断y1、y2、y3的大小.【解答】解:在二次函数y=﹣(x﹣2)2+m,对称轴x=2,在图象上的三点A(1,y1),B(﹣1,y2),C(4,y3),|2﹣1|<|4﹣2|<|﹣1﹣2|,则y1、y2、y3的大小关系为:y1>y3>y2.5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=m+2 3D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时,y1<y2【分析】由抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a<0,则可对A选项进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x轴的交点问题可对B选项进行判断;把B(0,﹣2),A(﹣1,m)和b=﹣2a代入抛物解析式可对C选项进行判断;利用二次函数的增减性对D 进行判断.【解答】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =−b 2a =1,∴b =﹣2a <0,∴ab <0,所以A 选项的结论正确;∵抛物线的对称轴为直线x =1,抛物线与x 轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax 2+bx +c =0的正实数根在2和3之间,所以B 选项的结论正确; 把B (0,﹣2),A (﹣1,m )代入抛物线得c =﹣2,a ﹣b +c =m ,而b =﹣2a ,∴a +2a ﹣2=m ,∴a =m+23,所以C 选项的结论正确; ∵点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,∴当点P 1、P 2都在直线x =1的右侧时,y 1<y 2,此时t ≥1;当点P 1在直线x =1的左侧,点P 2在直线x =1的右侧时,y 1<y 2,此时0<t <1且t +1﹣1>1﹣t ,即12<t <1, ∴当12<t <1或t ≥1时,y 1<y 2,所以D 选项的结论错误.6.关于x 的一元二次方程x 2﹣ax +a ﹣2=0的两个根中,只有一个正根,则( )A .a ≥2B .a ≤2C .a ≥﹣2D .a ≤﹣2【分析】由于关于x 的一元二次方程x 2﹣ax +a ﹣2=0的两个根中,只有一个正根,则△>0,且x 1•x 2≤0,建立关于a 的不等式,求得a 的取值范围.【解答】解:关于x 的一元二次方程x 2﹣ax +a ﹣2=0的两个根中,只有一个正根,则△>0,且x 1•x 2≤0,①∴△=b 2﹣4ac =(﹣a )2﹣4(a ﹣2)=a 2﹣4a +8=(a ﹣2)2+4>0,∴a 取全体实数.②x 1•x 2=a ﹣2≤0,即a ≤2.∴a 可取值a ≤2.7.已知a 、b 都是正整数,且抛物线y =ax 2+bx +l 与x 轴有两个不同的交点A 、B .若A 、B 到原点的距离都小于1,则a +b 的最小值等于( )A .16B .10C .4D .1【分析】首先根据a ,b 都是正整数,得出对称轴的符号,以及△的符号,a ﹣b +c 的符号,进而得出不等式组,分析得出a 的取值即可.【解答】解:∵a ,b 都是正整数,∴−b 2a <0,1a >0, ∵抛物线y =ax 2+bx +l 与x 轴有两个不同的交点A 、B ,且A 、B 到原点的距离都小于1,则点A ,B 两点在0和﹣1之间,于是,a ,b 同时满足{ △=b 2−4ac >0a −b +1>0−1<−b 2a <0,即{ a <b 24a >b −1a >b 2,① ①当b 2≥b −1,即b ≤2时,有b 24≤1,又a <b 24与a 是正整数矛盾, 故b 2<b ﹣1,即b >2,若b ﹣1≥b 24,有(b ﹣2)2≤0,则b ﹣1<b 24,不等式组①的解为:b﹣1<a<b2 4,若b﹣1<a,而a,b都是正整数,取最小的a,令a=b,则a<a2 4,得:a>4,取最小的a=5.故a+b的最小值等于10.8.不论a为任何实数,二次函数y=x2﹣ax+a﹣2的图象()A.在x轴上方B.在x轴下方C.与x轴有一个交点D.与x轴有两个交点【分析】先求出△的表达式,判断出△的取值范围即可解答.【解答】解:∵△=(﹣a)2﹣4×(a﹣2)=(a﹣2)2+4>0,∴不论a为任何实数,二次函数y=x2﹣ax+a﹣2的图象总与x轴有两个交点.9.对于抛物线y=﹣mx2﹣4mx﹣n(m≠0)与x轴的交点为A(﹣1,0),B(x2,0),则下列说法:①一元二次方程mx2+4mx+n=0的两根为x1=﹣1,x2=﹣3;②原抛物线与y轴交于C点,CE∥x轴交抛物线于E点,则CE=4;③点D(2,y1),点F(﹣6,y2)在原抛物线上,则y2≤y1;④抛物线y=mx2+4mx+n与原抛物线关于x轴对称.其中正确的说法有()A.①②③④B.①③④C.②③D.①②④【分析】先求出抛物线y=﹣mx2﹣4mx﹣n(m≠0)的对称轴为直线x=﹣2,根据抛物线的对称性得到x2=﹣3,再根据抛物线与x轴的交点得到一元二次方程mx2+4mx+n=0的两根为x1=﹣1,x2=﹣3;由于C点到对称轴的距离为2,所以当CE∥x轴交抛物线于E点,则CE=4;由于点D(2,y1)和点F(﹣6,y2)关于直线x=﹣2对称,所以y2=y1;先确定两抛物线的顶点坐标(﹣2,4m﹣n)和(﹣2,﹣4m+n),然后根据抛物线的性质和关于x轴对称的点的坐标特征可判断抛物线y=mx2+4mx+n与原抛物线关于x 轴对称.【解答】解:抛物线y=﹣mx2﹣4mx﹣n(m≠0)的对称轴为直线x=−−4m2×(−m)=−2,∵抛物线y=﹣mx2﹣4mx﹣n(m≠0)与x轴的交点为A(﹣1,0),B(x2,0),∴x2=﹣3,∴一元二次方程mx2+4mx+n=0的两根为x1=﹣1,x2=﹣3,所以①正确;∵抛物线的对称轴为直线x=﹣2,∴C点到对称轴的距离为2,∴当抛物线与y轴交于C点,CE∥x轴交抛物线于E点,则CE=4,所以②正确;∵点D(2,y1)和点F(﹣6,y2)关于直线x=﹣2对称,则y2=y1,所以③错误;④y=﹣mx2﹣4mx﹣n=﹣m(x+2)2+4m﹣n,而y=mx2+4mx+n=m(m+2)2﹣4m+n,点(﹣2,4m﹣n)与点(﹣2,﹣4m+n)关于x轴对称,∴抛物线y=mx2+4mx+n与原抛物线关于x轴对称,所以④正确.10.若关于x的方程x2+px+q=0没有实数根,则函数y=x2﹣px+q的图象的顶点一定在()A.x轴的上方B.x轴的下方C.x轴上D.y轴上【分析】根据所给的方程没有实数根,得到p2﹣4q<0,由此判断出抛物线的判别式△<0,即可解决问题.【解答】解:∵关于x的方程x2+px+q=0没有实数根,∴△=p2﹣4q<0;而对于函数y=x2﹣px+q,∵△=(﹣p)2﹣4q=p2﹣4q<0,∴函数y=x2﹣px+q的图象的顶点一定在x轴的上方,11.y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,当△ABC为直角三角形时,则()A.ac=﹣1B.ac=1C.ac=±1D.无法确定【分析】设出A、B两点的坐标,根据根与系数的关系可得到AO•BO,且OC=|c|,利用射影定理可得到AO、BO、CO之间的关系,可得到ac的值.【解答】解:设A(x1,0),B(x2,0),由△ABC为直角三角形可知x1、x2必异号,∴x1•x2=ca<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=|ca|,故|ac|=1,ac=±1,由于ca<0,所以ac=﹣1.12.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根B.有两个同号不等实数根C.有两个异号实数根D.有两个相等实数根【分析】由图象可知a,b,c的取值范围,利用根的判别式和根与系数的关系可得根的情况.【解答】解:由图象可知a<0,b>0,c>0,b2﹣4ac>0,∴关于x的方程ax2+bx+c+2=0的根的判别式为:△=b2﹣4a(c+2)=b2﹣4ac﹣8a,∵a<0,∴﹣8a>0,∵b2﹣4ac>0,∴△>0,∴方程有两个不相等的实数根,又∵两根之和为−ab>0,两根之积为c+2a<0,∴两根异号,二.填空题(共6小题)13.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=−32(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=12AB,则k的值为72.【分析】根据题意,可以得到点C的坐标和h的值,然后将点C的坐标代入抛物线的解析式,即可得到k的值,本题得以解决.【解答】解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,∵抛物线y=−32(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=12AB=2,∴设点C的坐标为(c,2),则点D的坐标为(c+2,2),h=2c+22=c+1,∴抛物线2=−32[c﹣(c+1)]2+k,解得,k=7 2.14.已知抛物线y1=a(x﹣m)2+k与y2=﹣a(x+m)2﹣k(m≠0)关于原点对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”y=4x2+6x ﹣7.【分析】根据关于原点对称的点的坐标规律:纵坐标互为相反数,横坐标互为相反数,可得答案.【解答】解:抛物线y=﹣4x2+6x+7的“和谐抛物线”是y=﹣4(﹣x)2﹣6(﹣x)﹣7,化简,得y=4x2+6x﹣7,15.如图,是二次函数y=ax2+bx+c的大致图象,则下列结论:①a<0;②b>0;③c<0;④b2﹣4ac>0中,正确的有①②④.(写上所有正确结论的序号)【分析】利用抛物线开口方向对①进行判断;利用抛物线的对称轴的位置对②进行判断;利用抛物线与y轴的交点位置对③进行判断;利用抛物线与x轴的交点个数对④进行判断.【解答】解:∵抛物线开口向下,∴a <0;所以①正确;∵抛物线的对称轴在y 轴的右侧,∴b >0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.16.已知抛物线y =x 2﹣x +3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M ′与点N 重合,则平移后的抛物线的解析式为 y =(x ﹣1)2+52 .【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M 、N 点坐标,进而得出平移方向和距离,即可得出平移后解析式.【解答】解:y =x 2﹣x +3=(x −12)2+114,∴N 点坐标为:(12,114),令x =0,则y =3,∴M 点的坐标是(0,3).∵平移该抛物线,使点M 平移后的对应点M ′与点N 重合,∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可,∴平移后的解析式为:y =(x ﹣1)2+52.17.在直角坐标系中,点A 的坐标为(3,0),若抛物线y =x 2﹣2x +n ﹣1与线段OA 有且只有一个公共点,则n 的取值范围为 ﹣2≤n <1或n =2 .【分析】根据题意可以将函数解析式化为顶点式,由抛物线y =x 2﹣2x +n ﹣1与线段OA 有且只有一个公共点,可以得到顶点的纵坐标为0或当x =0时y <0且当x =3时,y 不小于0,从而可以求得x 的取值范围.【解答】解:∵点A 的坐标为(3,0),抛物线y =x 2﹣2x +n ﹣1=(x ﹣1)2+n ﹣2与线段OA 有且只有一个公共点,∴n ﹣2=0或{n −1<032−2×3+n −1≥0, 解得,﹣2≤n <1或n =2,18.如图,抛物线y =−12x 2+32x +5与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 (﹣1,3)或(4,3) .【分析】先画出点P 的位置,求出点P 的纵坐标,再代入函数解析式,求出点的横坐标即可.【解答】解:作线段CD 的垂直平分线,交抛物线于P 1,P 2,则此时△CDP 1和△CDP 2是以CD 为底的等腰三角形,符合题意,∵抛物线y =−12x 2+32x +5与y 轴交于点C ,∴D(0,5),∵点D(0,1),∴P点的纵坐标是3,把y=3代入y=−12x2+32x+5得:y=−12x2+32x+5=3,解得:x=﹣1或4,即点P的坐标是(﹣1,3)或(4,3),三.解答题(共6小题)19.已知直线y=kx+m与抛物线y=﹣x2+bx+c(b<0)相交于A,B两点,且点A在x轴的正半轴上,点B在y轴上,设点A横坐标为m,抛物线的顶点纵坐标为n.(1)求k的值;(2)当m<2时,试比较n与b+m﹣k的大小.【分析】(1)将点A(m,0)代入直线y=kx+m得:y=km+m=0,即可求出k=﹣1;(2)将k=﹣1代入y=kx+m得到直线为y=﹣x+m,求出与y轴的交点B为(0,m),将点A和点B代入抛物线得出0<m<1,那么n=14b2+c=[12(m+1)]2,b﹣k+m=m﹣1﹣(﹣1)+m=2m,于是n﹣(b﹣k+m)=14(m+1)2﹣2m=14(m2+2m+1﹣8m)=14(m2﹣6m+1)=14[(m﹣3)2﹣8],由0<m<1,解方程(m﹣3)2﹣8=0得:m=3﹣2√2,进而求解.【解答】解:(1)点A(m,0),并且m>0,代入直线y=kx+m得:y=km+m=0,解得:k=﹣1;(2)直线为y=﹣x+m,与y 轴的交点B (0,m ).抛物线y =﹣x 2+bx +c 开口向下,对称轴x =b 2<0,顶点为(b 2,14b 2+c ), 所以:n =14b 2+c ,点A 和点B 代入抛物线得:y (0)=﹣0+0+c =m >0,y (m )=﹣m 2+bm +c =0,解得:b =m ﹣1<0,c =m >0,所以:0<m <1,所以:n =14b 2+c =14(m ﹣1)2+m =14(m +1)2=[12(m +1)]2, 所以:b ﹣k +m =m ﹣1﹣(﹣1)+m =2m ,所以:n ﹣(b ﹣k +m )=14(m +1)2﹣2m =14(m 2+2m +1﹣8m )=14(m 2﹣6m +1)=14[(m ﹣3)2﹣8],因为:0<m <1,解(m ﹣3)2﹣8=0得:m =3﹣2√2,所以:0<m <3﹣2√2时,n >b ﹣k +m ;m =3﹣2√2时,n =b ﹣k +m ;3﹣2√2<m <1时,n <b ﹣k +m .20.一次函数y =x ﹣3的图象与x 轴、y 轴分别交于点A 、B .一个二次函数y =x 2+bx +c 的图象经过点A 、B .(1)求点A 、B 的坐标;(2)求二次函数的解析式及它的最小值.【分析】(1)根据题意,一次函数y =x ﹣3的图象与x 轴,y 轴分别交于点A ,B ;可令y =0,得x =3,得到A 的坐标;令x =0,得y =﹣3,得到点B 的坐标;(2)二次函数y =x 2+bx +c 的图象经过点A ,B ;由(1)求得的A 、B 的坐标,用待定系数法可得二次函数的解析式,进而求出最小值.【解答】解:(1)令y =0,得x =3,∴点A 的坐标是(3,0),令x =0,得y =﹣3,∴点B 的坐标是(0,﹣3).(2)∵二次函数y =x 2+bx +c 的图象经过点A ,B ,∴{0=9+3b +c −3=c ,解得:{b =−2c =−3, ∴二次函数y =x 2+bx +c 的解析式是y =x 2﹣2x ﹣3,∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴函数y =x 2﹣2x ﹣3的最小值为﹣4.21.如图,直线AB :y =kx +3过点(﹣2,4)与抛物线y =12x 2交于A 、B 两点;(1)直接写出点A 、点B 的坐标;(2)在直线AB 的下方的抛物线上求点P ,使△ABP 的面积等于5.【分析】(1)把点(﹣2,4)代入直线AB :y =kx +3求得k ,再与抛物线y =12x 2建立方程求得A 、B 两点;(2)设出点P 的横坐标为a ,运用割补法用a 的代数式表示△APB 的面积,然后根据条件建立关于a 的方程,从而求出a 的值,进而求出点P 的坐标.【解答】解:(1)∵把点(﹣2,4)代入直线AB :y =kx +3,解得k =−12,∴直线的解析式为y =−12x +3.联立方程得12x 2=−12x +3, 解得:x =﹣3或x =2.∴点A 的坐标为(﹣3,92),点B 的坐标为(2,2). (2)过点P 作PQ ∥y 轴,交AB 于点Q ,过点A 作AM ⊥PQ ,垂足为M ,过点B 作BN ⊥PQ ,垂足为N ,如图1所示.设点P 的横坐标为a ,则点Q 的横坐标为a .∴y P =12a 2,y Q =−12a +3.∵点P 在直线AB 下方,∴PQ =y Q ﹣y P=−12a +3−12a 2∵AM +NB =a ﹣(﹣3)+2﹣a =5.∴S △APB =S △APQ +S △BPQ=12PQ •AM +12PQ •BN=12PQ •(AM +BN ) =12(−12a +3−12a 2)•5=5.整理得:a 2+a ﹣2=0.解得:a 1=﹣2,a 2=1.当a =﹣2时,y P =12×(﹣2)2=2.此时点P 的坐标为(﹣2,2).当a =1时,y P =12×12=12.此时点P 的坐标为(1,12). ∴符合要求的点P 的坐标为(﹣2,2)或(1,12).22.已知关于x 的方程mx 2﹣3(m +1)x +2m +3=0.(1)求证:无论m取任何实数,该方程总有实数根;(2)若m≠0,抛物线y=mx2﹣3(m+1)x+2m+3与x轴的交点到原点的距离小于2,且交点的横坐标是整数,求m的整数值.【分析】(1)由关于x的一元二次方程得到m不为0,得到根的判别式≥0,列出关于m 的不等式,求出不等式的解集即可得到m的范围;(2)对于抛物线解析式,令y=0,表示出x,根据抛物线与x轴交点的横坐标都是整数,根据x的范围即可确定出m的整数值.【解答】解:(1)①若方程为一元二次方程由题意m≠0,∵△=[﹣3(m+1)]2﹣4m(2m+3)=(m+3)2≥0,∴无论m取何值,该方程总有实数根;②若方程不为一元二次方程则m=0,原方程:﹣3x+3=0,则x=1,∴该方程有实数根;无论m取任何实数,该方程总有实数根;(2)设y=0,则mx2﹣3(m+1)x+2m+3=0.∵△=(m+3)2,∴x=3m+3±(m+3)2m,∴x1=2m+3m,x2=1,当x1=2m+3m是整数时,可得m=1或m=﹣1或m=3或m=﹣3,∵|x|<2,m=1和m=3不合题意舍去,∴m的值为﹣1或﹣3.23.已知:抛物线y=ax2+bx+c与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=﹣2.(1)求出抛物线与x轴的两个交点A、B的坐标;(2)试确定抛物线的解析式.【分析】(1)由直线方程易求点A的坐标;然后根据抛物线的对称性来求点B的坐标;(2)把点A、B、C的坐标代入抛物线解析式,利用方程组来求系数a、b、c的值.【解答】解:(1)∵直线方程是y=x+3,∴当y=0时,x=﹣3,∴A(﹣3,0).又∵抛物线y=ax2+bx+c与直线y=x+3交与点,且抛物线的对称轴为直线x=﹣2,∴B(﹣1,0).综上所述,抛物线与x轴的两个交点A、B的坐标分别是:A(﹣3,0)、B(﹣1,0);(2)由(1)知,A(﹣3,0)、B(﹣1,0).∵直线方程是y=x+3,∴当x=0时,y=3,∴C(0,3).依题意得{9a−3b+c=0 a−b+c=0c=3.解得{a=1 b=4 c=3.故该抛物线的解析式是:y=x2+4x+3.24.二次函数y=ax2+bx+c(a≠0)的部分图象如图,根据图象解答下列问题:(1)写出x为何值时,y的值大于0;(2)写出x为何值时,y随x的增大而增大;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.【分析】(1)先求出抛物线与x轴的另一交点,再根据函数图象即可得出结论;(2)根据抛物线的对称轴即可得出结论;(3)先求出抛物线的顶点坐标,再根据ax2+bx+c=k有两个不相等的实数根可得出△>0,由此得出结论.【解答】解:(1)∵抛物线的对称轴为x=﹣1,抛物线与x轴一个交点的坐标为(﹣3,0),∴抛物线与x轴的另一交点坐标为(1,0),∴当﹣3<x<1时,y的值大于0;(2)∵抛物线开口向下,对称轴为直线x=﹣1,∴当x<﹣1时,y随x的增大而增大;(3)∵抛物线与坐标轴的交点分别为(0,1.5),(﹣3,0),(1,0),∴{1.5=c9a−3b+c=0a+b+c=0,解得{a=−12b=−1c=1.5,∵方程ax2+bx+c=k有两个不相等的实数根,∴△>0,即b2﹣4a(c﹣k)=b2﹣4ac+4ak=4﹣2k>0解得k<2.。
九年级上册第二十二章《二次函数》单元测试卷(含答案解析)
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A . y=(x +2)2﹣5B . y=(x +2)2+5C . y=(x ﹣2)2﹣5D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12D . 14或346.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表:则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax 2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数.2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k 中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;<1,②∵a>0,x=﹣b2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定. 5.A 【解析】 【分析】首先根据题意确定a,b 的符号,然后进一步确定a 的取值范围,根据a,b 为整数确定a,b 的值,从而确定答案. 【详解】依题意知a,0,b2a ,0,a+b,2=0, 故b,0,且b=2,a, a,b=a,,2,a,=2a,2, 于是0,a,2, ∴,2,2a,2,2, 又a,b 为整数, ∴2a,2=,1,0,1, 故a=12,1,32, b=32,1,12,∴ab=34或1,故选A,【点睛】根据开口和对称轴可以得到b 的范围。
九年级上册数学《二次函数》单元综合测试卷(含答案)
A.(﹣6,0)B.(6,0)C.(﹣9,0)D.(9,0)
7.将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是()
A.y=2x2+2B.y=2(x+2)2C.y=(x-2)2D.y=2x2-2
A.(﹣6,0)B.(6,0)C.(﹣9,0)D.(9,0)
【答案】D
【解析】
【分析】
首先确定顶点坐标A和y轴的交点坐标,然后根据抛物线的对称性确定点C的坐标,进而确定D点坐标.
【详解】解:令x=0得y=-9,即点B坐标(0,-9)
∵y=﹣x2+6x﹣9=-(x-3)2,
∴顶点坐标A(3,0),对称轴 x=3,
故选A
【点睛】本题考查了二次函数图像上点的特征,属于简单题,熟悉概念是解题关键.
2.若 为二次函数,则 的值为()
A. -2或1B. -2C. -1D. 1
【答案】D
【解析】
【分析】
由二次函数定义可知m2+m=2,同时满足 .
【详解】解:由题意可知m2+m=2,解得m=-2或1,
∵ ,
∴m=1,
故选择D.
23. 某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.
(1)求售价为70元时 销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
《二次函数》单元测试卷 (含答案)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
数学九年级上学期《二次函数》单元测试卷(附答案)
12.若实数A、B满足A+B2=2,则A2+5B2的最小值为_____.
13.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为__________元时,获得的利润最多.
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得C D平分∠A CQ,请求出点Q 坐标;
(3)在直线C D的下方的抛物线上取一点N,过点N作NG∥y轴交C D于点G,以NG为直径画圆在直线C D上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段C D上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
人教版数学九年级上学期
《二次函数》单元测试
(满分120分,考试用时120分钟)
第Ⅰ卷(选择题)
一.选择题(共9小题)
1.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是( )
A.图象的开口向下B.函数的最大值为1
C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小
2.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为( )
A.8Cm2B.9Cm2C.16Cm2D.18Cm2
6.在抛物线y=Ax2-2Ax-3A上有A(-0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()
九年级上册数学《二次函数》单元测试题含答案
∵向右平移3个单位,再向上平移2个单位,
∴原抛物线的顶点坐标为(﹣2,0),
∴原抛物线解析式为y=(x+2)2=x2+4x+4,
∴b=4.
故答案为4.
【点睛】此题主要考查了平移规律,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原抛物线的解析式.
11.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是 ,则选取点B为坐标原点时的抛物线解析式是.
【答案】 .
【解析】
试题分析:根据题意,选取点A为坐标原点时的抛物线解析式是 ,则选取点B为坐标原点时的抛物线相当于把原抛物线向左平移12个单位.
(1)建立如图所示的平面直角坐标系,求此抛物线的表达式;
(2)现在一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280 km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶了1 h后,突然接到紧急通知:前方连降暴雨,造成水位以0.25 m/h的速度持续上涨(货车接到通知时,水位在CD处,当水位涨到拱桥最高点O时,禁止车辆通行).
故选A.
点睛:此题主要考查了二次函数的应用,根据已知得出B,A两点的坐标是解决问题的关键.
7.已知二次函数 (a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()
A. 4个B. 3个C. 2个D. 1个
【答案】B
【解析】
原抛物线的顶点为(6,4),根据平移的性质,平移后的抛物线的顶点为( ,4),即选取点B为坐标原点时的抛物线解析式是 .
人教版九年级数学上册《第二十二章 二次函数》单元测试卷(附答案)
人教版九年级数学上册《第二十二章二次函数》单元测试卷(附答案)一、选择题1.下列函数中是二次函数的是( )A. y=3x−1B. y=3x2−1C. y=(x+1)2−x2D. y=x3+2x−32.已知点A(−3,y1),B(2,y2),C(3,y3)在抛物线y=2x2−4x+c上,则y1、y2、y3的大小关系是( )A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y2>y3>y13.在同一直角坐标系中,一次函数y=−kx+1与二次函数y=x2+k的大致图象可以是( )A. B. C. D.4.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. y=3(x−1)2−2B. y=3(x+1)2−2C. y=3(x+1)2+2D. y=3(x−1)2+25.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )A. (72,0) B. (3,0) C. (52,0) D. (2,0)6.如图,在△ABC中∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )A. 19cm2B. 16cm2C. 15cm2D. 12cm27.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…ℎ08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是( )A. ①B. ②C. ③D. ④9.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为( )A. −1B. −3C. −5D. −710.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1−m,−1−m]的函数的一些结论,其中不正确的是( )A. 当m=−3时,函数图象的顶点坐标是(13,8 3 )B. 当m>0时,函数图象截x轴所得的线段长度大于32C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>1时,y随x的增大而减小4二、填空题11.请写出一个二次函数表达式,使其图象的对称轴为y轴:______.12.某个函数具有性质:当x<0时,y随x的增大而增大,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).13.若关于x的方程x2−2ax+a−2=0的一个实数根为x1≥1,另一个实数根x2≤−1,则抛物线y=−x2+ 2ax+2−a的顶点到x轴距离的最小值是______.14.若二次函数y=ax2+bx+c的x与y的部分对应值如表,则当x=−1时,y的值为______.x−7−6−5−4−3−2y−27−13−335315.抛物线y=−x2+bx+c的部分图象如图所示,则关于x的一元二次方程−x2+bx+c=0的解为______.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n> ax2+bx+c的解集是________.17.如图,在平面直角坐标系中,二次函数y=−12x2+2x+2的图象与x轴、y轴分别交于A、B、C三点,点D是其顶点,若点P是x轴上一个动点,则CP+DP的最小值为.18.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=−12x2的图象,则阴影部分的面积是________.19.如图,拋物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a−2b+c的值为________.20.当a≤x≤a+1时,函数y=x2−2x+1的最小值为1,则a的值为________.三、解答题21.由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=−2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(−1,0),(2,0).(1)求这个二次函数的表达式;(2)求当−2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2−m)x+2−m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.23.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.24.已知抛物线y=ax2+bx+1经过点(1,−2),(−2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12−y1,求m的值.25.如图,二次函数y=ax2+bx+2的图像与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图像上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q顶点的三角形与▵ABC相似,求点P的坐标.答案和解析1.【答案】B【解析】【分析】此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键.直接利用一次函数以及二次函数的定义分别分析得出答案.【解答】解:A.y=3x−1是一次函数,故此选项错误;B.y=3x2−1是二次函数,故此选项正确;C.y=(x+1)2−x2化简为y=2x+1,故此选项错误; D.y=x3+2x−3不是二次函数,故此选项错误;故选B.2.【答案】B【解析】【分析】本题考查二次函数的性质,根据二次函数的增减性即可解答.关键是确定抛物线的对称轴为直线x=1,根据点到对称轴的距离的大小即可解答.【解答】解:y=2x2−4x+c=2(x−1)2+c−2,则抛物线的对称轴为直线x=1∵抛物线开口向上,−3<1<2<3且点A(−3,y1)到对称轴的距离比C(3,y3)远∴y1>y3>y2.故选B.3.【答案】A【解析】解:由y=x2+k可知抛物线的开口向上,故B不合题意;若二次函数y=x2+k与y轴交于负半轴,则k<0∴−k>0∴一次函数y=−kx+1的图象经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.根据二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=−kx+1经过的象限,对比后即可得出结论.本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.4.【答案】A【解析】【分析】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线y=3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(1,−2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0)把点(0,0)先向右平移1个单位,再向下平移2个单位后所得对应点的坐标为(1,−2)所以新抛物线的表达式为y=3(x−1)2−2.故选A.5.【答案】B【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2根据两个交点关于对称轴直线x=1对称可知:x1+x2=2即x2−1=2,得x2=3∴抛物线与x轴的另一个交点为(3,0)故选:B.6.【答案】C【解析】解:在Rt△ABC中∠C=90°,AB=10cm,BC=8cm∴AC=√ AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm∴S四边形PABQ =S△ABC−S△CPQ=12AC⋅BC−12PC⋅CQ=12×6×8−12(6−t)×2t=t2−6t+24=(t−3)2+15.∵1>0∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选:C.在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm 利用分割图形求面积法可得出S四边形PABQ=t2−6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解;本题考查了二次函数的最值以及勾股定理,解题的关键是:利用分割图形求面积法找出S四边形PABQ=t2−6t+24.7.【答案】B【解析】【分析】本题考查二次函数的应用.由题意,抛物线经过(0,0),(9,0)所以可以假设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.【解答】解:根据抛物线的对称性可得抛物线经过(9,0),设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1∴ℎ=−t2+9t=−(t−4.5)2+20.25∴足球距离地面的最大高度为20.25m,故①错误∴抛物线的对称轴t=4.5,故②正确∵t=9时ℎ=0∴足球被踢出9s时落地,故③正确∵t=1.5时ℎ=11.25,故④错误.∴正确的有②③.8.【答案】C【解析】解:二次函数y=−(x−m)2−m+1(m为常数)①∵顶点坐标为(m,−m+1)且当x=m时∴这个函数图象的顶点始终在直线y=−x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0其中m≤1解得:x1=m−√ −m+1∵顶点坐标为(m,−m+1)且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√ −m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.9.【答案】C【解析】解:根据题意知点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(−2,0)当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(−5,0)故点M的横坐标的最小值为−5故选:C.根据顶点P在线段AB上移动,又知点A、B的坐标分别为(−2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M 点横坐标的最小值.本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.10.【答案】D【解析】【分析】此题考查二次函数的性质,二次函数与一元二次方程以及二次函数图象上点的坐标特征,熟悉相关知识点是解题的关键.A 、把m =−3代入[2m,1−m,−1−m]求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、通过找到定点,即可解决问题;D 、首先求得对称轴,利用二次函数的性质解答即可. 【解答】解:因为函数y =ax 2+bx +c 的特征数为[2m,1−m,−1−m];A 、当m =−3时y =−6x 2+4x +2=−6(x −13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时令y =0,有2mx 2+(1−m)x +(−1−m)=0,解得:x 1=1,x 2=−12−12m|x 2−x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x =1时y =2mx 2+(1−m)x +(−1−m)=2m +(1−m)+(−1−m)=0函数图象都经过同一个点(1,0),故当m ≠0时,函数图象经过同一个定点此结论正确.D 、当m <0时,y =2mx 2+(1−m)x +(−1−m)是一个开口向下的抛物线,其对称轴是:直线x =m−14m 在对称轴的右边y 随x 的增大而减小.因为当m <0时,m−14m=14−14m >14即对称轴在x =14右边,因此函数在x =14右边先增大到对称轴位置,再减小,此结论错误; 故选:D .11.【答案】y =x 2(答案不唯一)【解析】解:∵图象的对称轴是y 轴 ∴函数表达式为y =x 2(答案不唯一) 故答案为y =x 2(答案不唯一).根据形如y =ax 2+c 的二次函数的性质直接写出即可. 本题考查了二次函数的性质.12.【答案】y =−x 2(答案不唯一)【解析】【分析】本题主要考查的是一次函数的性质,正比例函数的性质,反比例函数的性质,二次函数的性质的有关知识,直接根据函数的性质写出一个符合题意的解析式即可. 【解答】解:∵当x <0时,y 随x 的增大而增大 ∴这个函数的表达式可以为y =−x 2 故答案为y =−x 2(答案不唯一).13.【答案】169【解析】解:∵关于x 的方程x 2−2ax +a −2=0的一个实数根为x 1≥1,另一个实数根x 2≤−1∴{1+2a +a −2≤01−2a +a −2≤0解得:−1≤a ≤13.抛物线y =−x 2+2ax +2−a 的顶点坐标为(a,a 2−a +2)∵a 2−a +2=(a −12)2+74∴当a =13时a 2−a +2取最小值169. 故答案为:169.由一元二次方程根的范围结合图形,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由二次函数的性质可得出抛物线的顶点坐标,利用配方法即可求出抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值.本题考查了抛物线与x 轴的交点、二次函数的性质以及二次函数的最值,通过解一元一次不等式组求出a 的取值范围是解题的关键.14.【答案】−3【解析】【分析】本题主要考查了二次函数的性质,解答本题的关键是根据表格数据得到二次函数图象的对称轴,此题难度不大.根据表格可知,二次函数图象的对称轴为x =−3,进而求出横坐标为−1的点关于x =−3的对称点,进而得到答案. 【解答】解:∵x=−4,y=3;x=−2,y=3;∴二次函数图象的对称轴为直线x=−2−42=−3∵−1−52=−3∴横坐标为−1的点与横坐标为−5的点关于x=−3对称∴当x=−1时y=−3故答案为−3.15.【答案】x1=1,x2=−3【解析】解:观察图象可知,抛物线y=−x2+bx+c与x轴的一个交点为(1,0),对称轴为直线x=−1∴抛物线与x轴的另一交点坐标为(−3,0)∴一元二次方程−x2+bx+c=0的解为x1=1,x2=−3.故答案为x1=1,x2=−3.本题考查二次函数的性质,以及二次函数与一元二次方程.直接观察图象,抛物线与x轴的一个交点为(1,0),对称轴是直线x=−1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程−x2+bx+c=0的解.16.【答案】x<−1或x>4【解析】【分析】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<−1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方∴不等式mx+n>ax2+bx+c的解集为x<−1或x>4.故答案为x<−1或x>4.17.【答案】2√ 10【解析】【分析】本题考查了二次函数的性质、轴对称−最短路线问题以及勾股定理的应用,熟练掌握二次函数的性质、轴对称的性质是解题关键.作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D与x轴交于P点.分别求出C,C′,D,E坐标,可得DE 与C′E的长度,进而可求C′D,即可解答.【解答】解:如图,作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D交x轴于点P则C′D的长就是CP+DP的最小值.把x=0代入y=−12x2+2x+2,得y=2∴C(0,2)∴C′(0,−2).∵y=−12x2+2x+2=−12(x−2)2+4∴点D(2,4),E(0,4)∴DE=2,C′E=6.在Rt△C′DE中C′D=√ 22+62=2√ 10即CP+DP的最小值为2√ 10.18.【答案】2π【解析】解:∵12与−12互为相反数∴C1与C2的图象关于x轴对称∴x轴下方阴影部分的面积正好等于x轴上方空白部分的面积则阴影部分的面积S=12×π×22=2π.故答案为2π.根据二次函数的性质可知C1与C2的图象关于x轴对称,从而得到x轴下方阴影部分的面积正好等于x轴上方空白部分的面积,所以,阴影部分的面积等于⊙O的面积的一半,然后列式计算即可得解.本题考查了二次函数的性质,根据函数的对称性判断出阴影部分的面积等于⊙O的面积的一半是解题的关键,也是本题的难点.19.【答案】0【解析】【分析】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0)∴与x轴的另一个交点Q(−2,0)把(−2,0)代入解析式得:0=4a−2b+c∴4a−2b+c=0故答案为0.20.【答案】2或−1【解析】【分析】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2−2x+1=1解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1∴a=2或a+1=0∴a=2或a=−1故答案是2或−1.21.【答案】解:(1)由题意得:w=(x−200)y=(x−200)(−2x+1000)=−2x2+1400x−200000;(2)令w=−2x2+1400x−200000=40000解得:x=300或x=400故要使每月的利润为40000元,销售单价应定为300或400元;(3)y =−2x 2+1400x −200000=−2(x −350)2+45000当x =250时y =−2×2502+1400×250−200000=25000; 故最高利润为45000元,最低利润为25000元.【解析】(1)根据销售利润=每天的销售量×(销售单价−成本价),即可列出函数关系式; (2)令y =40000代入解析式,求出满足条件的x 的值即可; (3)根据(1)得到销售利润的关系式,利用配方法可求最大值.本题考查了二次函数的实际应用,难度适中,解答本题的关键是熟练掌握利用配方法求二次函数的最大值.22.【答案】解:(1)由二次函数y =x 2+px +q 的图象经过(−1,0)和(2,0)两点∴{1−p +q =04+2p +q =0,解得{p =−1q =−2 ∴此二次函数的表达式y =x 2−x −2; (2)∵抛物线开口向上 对称轴为直线x =−1+22=12∴在−2≤x ≤1范围内当x =−2时,函数有最大值为:y =4+2−2=4; 当x =12时函数有最小值:y =1412−2=−94∴最大值与最小值的差为:4−(−94)=254;(3)∵y =(2−m)x +2−m 与二次函数y =x 2−x −2图象交点的横坐标为a 和b ∴x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0 ∵a <3<b ∴a ≠b∴Δ=(m −3)2−4×(m −4)=(m −5)2>0 ∴m ≠5∵a <3<b当x =3时(2−m)x +2−m >x 2−x −2把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1∴m 的取值范围为m <1.【解析】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质,数形结合是解题的关键.(1)由二次函数的图象经过(−1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;(2)求得抛物线的对称轴,根据图象即可得出当x =−2时,函数有最大值4;当x =12时函数有最小值−94,进而求得它们的差;(3)由题意得x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0,因为a <3<b ,a ≠b ,Δ=(m −3)2−4×(m −4)=(m −5)2>0,把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1. 23.【答案】解:(1)把B(1,0)代入y =ax 2+4x −3,得0=a +4−3,解得a =−1∴y =−x 2+4x −3=−(x −2)2+1∴A(2,1)∵对称轴直线x =2,B ,C 两点关于x =2对称∴C(3,0)∴当y >0时1<x <3.(2)∵D(0,−3)∴点D 平移到A ,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y =−(x −4)2+5. 【解析】本题考查抛物线与x 轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意点D 平移的A ,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.24.【答案】解:(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1解得:{a =1b =−4;(2)由(1)得函数解析式为y =x 2−4x +1 把x =5代入y =x 2−4x +1得y 1=6∴y 2=12−y 1=6∵y 1=y 2,对称轴为x =2∴m +52=2∴m =−1.【解析】本题考查了二次函数图象上点的坐标特征和待定系数法求解析式,解方程组,正确理解题意是解题的关键.(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2−4x +1得到y 1=6,于是得到y 1=y 2,再根据对称轴x =2,即可得到结论.25.【答案】解:(1)抛物线解析式为y =a(x +1)(x −4)即y =ax 2−3ax −4a ,则−4a =2 解得a =−12所以抛物线解析式为y =−12x 2+32x +2;(2)①作PN ⊥x 轴于N ,交BC 于M ,如图BC =√ 22+42=2√ 5当x =0时y =−12x 2+32x +2=2,则C(0,2)设直线BC 的解析式为y =mx +n ,把C(0,2),B(4,0)得 {n =24m +n −0,解得{m =−12n =2∴直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2)则M(t,−12t +2)∴PM =−12t 2+32t +2−(−12t +2)=−12t 2+2t ∵∠NBM =∠NPQ∴△PQM∽△BOC∴PQ :OB =PM :BC 即PQ =2√ 5∴PQ =−√ 55t 2+√ 54t =−√ 55(t −2)2+4√ 55∴当t =2时,线段PQ 的最大值为4√ 55;②当∠PCQ =∠OBC 时△PCQ∽△CBO 此时PC//OB ,点P 和点C 关于直线x =32对称 ∴此时P 点坐标为(3,2);当∠CPQ =∠OBC 时△CPQ∽△CBO∵∠OBC =∠NPQ∴∠CPQ =∠MPQ ,而PQ ⊥CM ∴△PCM 为等腰三角形∴PC =PM∴t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2解得t =32,此时P 点坐标为(32,258)综上所述,满足条件的P 点坐标为(3,2)或(32,258). 【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和等腰三角形的性质;会利用待定系数法求一次函数和二次函数的解析式.能运用相似比计算线段的长或表示线段之间的关系;能利用分类讨论的思想解决数学问题.(1)设交点式y =a(x +1)(x −4),再展开可得到−4a =2,解得a =−12,然后写出抛物线解析式; (2)①作PN ⊥x 轴于N ,交BC 于M ,如图,先利用待定系数法求出直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2),则M(t,−12t +2),用t 表示出PM =−12t 2+2t ,再证明△PQM∽△BOC ,利用相似比得到PQ =−√ 55t 2+√ 54t ,然后利用二次函数的性质解决问题;②讨论:当∠PCQ =∠OBC 时△PCQ∽△CBO ,PC//x 轴,利用对称性可确定此时P 点坐标;当∠CPQ =∠OBC 时△CPQ∽△CBO ,则∠CPQ =∠MPQ ,所以△PCM 为等腰三角形,则PC =PM ,利用两点间的距离公式得到t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2,然后解方程求出t 得到此时P 点坐标.。
九年级上册数学《二次函数》单元综合测试题附答案
【解析】
【分析】
设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用×每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可.
【详解】设每张床位提高x个2元,每天收入为y元.根据题意得:
y=(10+2x)(100﹣10x)=﹣20x2+100x+1000.
当x=﹣ =2.5时,可使y有最大值.
1.已知 ,点 , , 都在函数 的图象上,则()
A. B. C. D.
【答案】A
【解析】
【分析】
由a<﹣2即可得出a﹣1<a<a+1<﹣1,再根据在函数y=x2的图象上,当x<0时,y随着x的增大而减小,由此即可得出y1<y2<y3.
【详解】解:∵a<﹣2,∴a﹣1<a<a+1<﹣1.
∵在函数y=x2的图象上,当x<0时,y随着x的增大而减小,∴y1<y2<y3.
(1)求y与x之间 函数关系式(不求自变量的取值范围);
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?
(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?
九年级上册数学《二次函数》单元测试卷(带答案)
人教版数学九年级上学期《二次函数》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2018·全国初三课时练习)下列函数解析式中,一定为二次函数的是( )A .s =2t 2﹣2t +1B .y =3x ﹣1C .y =A x 2+B x +CD .y =x 2+1x2.(2019·厦门市第五中学初三期中)二次函数y=﹣x 2+4的图象的对称轴是( )A .直线x=2B .直线x=﹣2C .y 轴D .直线x=43.(2019·湖北初三期中)抛物线221y x x =-+( )A .开口向上,具有最高点B .开口向上,具有最低点C .开口向下,具有最高点D .开口向下,具有最低点4.(2019·湖北初三期中)二次函数y =A (x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 5.(2019·内蒙古初三期中)把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位6.(2019·武威第十七中学初三月考)二次函数y=A x 2+B x+C (A ≠0)图象如图,下列结论: ①A B C >0;②3A +C <0;③A +B ≥A m 2+B m ;④A ﹣B +C >0;⑤若A x 12+B x 1=A x 22+B x 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有( )个.A .2B .3C .4D .57.(2019·武威第十七中学初三月考)表是用计算器探索函数y=2x 2﹣2x ﹣10所得的数值,则方程2x 2﹣2x ﹣10=0的一个近似解为( ) x﹣2.1 ﹣2.2 ﹣2.3 ﹣2.4 y ﹣1.39 ﹣0.76 ﹣0.11 0.56A .x=﹣2.1B .x=﹣2.2C .x=﹣2.3D .x=﹣2.4 8.(2019·武威第十七中学初三月考)抛物线图象如图所示,根据图象,抛物线的解析式可能是( )A .y=x 2-2x+3B .y=-x 2-2x+3C .y=x 2-2x-3D .y=-x 2+2x-39.(2019·涟水县郑梁梅中学初三期中)对于y=2(x-3)2+2的图象下列叙述正确的是( )A .顶点坐标为(-3,2)B .当x≥3时,y 随x 增大而增大C .对称轴为y=3D .当x≥3时,y 随x 增大而减小10.(2019·莱芜市寨里镇寨里中学初三期中)某旅行社要组团去外地旅游,经计算所获营业额y (元)与旅行团人数x (人)满足关系式210028400y x x =-++,要使所获营业额最大,则此旅行团应有( )A .30人B .40人C .50人D .55人 二、填空题(每小题4分,共24分)11.(2019·夏河县夏河中学初三月考)22(1)5y x =--+的图象开口向________,顶点坐标为________,当1x >时,y 值随着x 值的增大而________.12.(2018·上海初三)抛物线与轴的交点坐标是 .13.(2019·山东初三期中)用配方法把函数224y x x =-化成2()y a x h k =++的形式是y =________.14.(2019·北京四中初三月考)已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是_____.15.(2019·河南初三月考)如图,已知函数y=A x 2+B x+C (A >0)的图象的对称轴经过点(2,0),且与x 轴的一个交点坐标为(4,0).下列结论:①B 2﹣4A C >0; ②当x <2时,y 随x 增大而增大; ③抛物线过原点; ④当0<x <4时,y <0.其中结论正确的是____.(填序号)16.(2019·上海初三期中)如图,在平面直角坐标系中,点A 在抛物线y=2x 2﹣4x +3上运动.过点A 作A C ⊥x 轴于点C ,以A C 为对角线作矩形A B C D ,连结B D ,则对角线B D 的最小值为______.三、解答题一(每小题6分,共18分)17.(2019·涟水县郑梁梅中学初三期中)已知二次函数图象的顶点是(1,2),且这个函数过点(2,3),求这个二次函数的解析式.18.(2018山东初三月考)已知一抛物线与x 轴的交点是()2,0A -、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.19.(2018全国初三单元测试)已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值, 函数图象的顶点都在同一直线上.四、解答题二(每小题7分,共21分)20.(2019·武威第十七中学初三月考)某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A 处推出,达到最高点B 时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C 处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?21.(2019·浙江初三月考)二次函数y=x2+B x+C 的图象交于点(4,﹣3),(﹣1,12).(1)求二次函数的解析式;(2)二次函数与x轴交于点A ,B ,与y轴交于点C ,求△A B C 的面积.22.(2019·重庆巴蜀中学初三)如图,在正方形A B C D 中,A B =2,E是A D 边上一点(点E与点A ,D 不重合).B E的垂直平分线交A B 于M,交D C 于N.(1)设A E=x,四边形A D NM的面积为S,写出S关于x的函数关系式;(2)当A E为何值时,四边形A D NM的面积最大?最大值是多少?五、解答题三(每小题9分,共27分)23.(2019·夏河县夏河中学初三月考)已知:抛物线y=-2x+B x+C 经过A (-1,0)、B (5,0)两点,顶点为P.求:(1)求B ,C 的值;(2)求△A B P的面积;(3)若点C (1x ,1y )和点D (2x ,2y )在该抛物线上,则当1201x x <<<时,请写出1y 与2y 的大小关系.24.(2019·夏河县夏河中学初三月考)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发 现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:(1)求y 与x 之间的函数关系式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?25.(2019·山西初三月考)如图,已知抛物线2142y x x =-+与x 轴正半轴交于点A ,对称轴l 交x 轴于点H,点P 是抛物线对称轴l 上一点,且在x 轴上方,直线A P 交抛物线于点B (在对称轴左侧),过点B 作x 轴的平行线,交抛物线于另一点C ,(1)若点B 的横坐标为1,求B C 的长.(2)连接PC ,A C ,①若PHA PCA S S ∆∆=,求直线A B 的函数表达式.②记点P 关于A C 的对称点为P',若P'恰好落在直线B C 上,则PC +A P 的值为_____.(直接写出答案)参考答案一、单选题(每小题3分,共30分)1.(2018·全国初三课时练习)下列函数解析式中,一定为二次函数的是( )A .s =2t 2﹣2t +1B .y =3x ﹣1C .y =A x 2+B x +CD .y =x 2+1x [答案]A[解析]根据二次函数的定义对选项进行分析即可得到答案.[详解]A . s =2t 2﹣2t +1符合二次函数的定义,是二次函数,故正确;B . y =3x ﹣1是一次函数,故错误;C . y =A x 2+B x +C 中的A 如果为0,则不符合二次函数的定义,故错误;D . y =x 2+1x不符合二次函数的定义,错误; 故选择A .[点睛]本题考查二次函数的定义,解题的关键是掌握二次函数的定义.2.(2019·厦门市第五中学初三期中)二次函数y=﹣x 2+4的图象的对称轴是( )A .直线x=2B .直线x=﹣2C .y 轴D .直线x=4[答案]C[解析]已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出对称轴.[详解]解:二次函数y=-x 2+4的图象的对称轴是直线x=0,即y 轴.故选:C .[点睛]本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=A (x-h )2+k 中,对称轴为x=h,顶点坐标为(h,k ).3.(2019·湖北初三期中)抛物线221y x x =-+( )A .开口向上,具有最高点B .开口向上,具有最低点C .开口向下,具有最高点D .开口向下,具有最低点[答案]B[解析]把抛物线化为顶点式可求得答案.[详解]∵y=x 2-2x+1=(x-1)2, ∴抛物线开口向上,当x=1时,y 有最小值,即抛物线有最低点,故选:B .[点睛]主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=A (x-h )2+k 中,对称轴为x=h,顶点坐标为(h,k ).4.(2019·湖北初三期中)二次函数y =A (x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限[答案]A [解析]由抛物线的顶点坐标在第四象限可得出m >0,n >0,再利用一次函数图象与系数的关系,即可得出一次函数y =mx +n 的图象经过第一、二、三象限.[详解]解:观察函数图象,可知:m >0,n >0,∴一次函数y =mx +n 的图象经过第一、二、三象限.故选:A .[点睛]本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k >0,B >0⇔y =kx +B 的图象在一、二、三象限”是解题的关键.5.(2019·内蒙古初三期中)把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位[答案]C[解析]根据抛物线顶点的变换规律作出正确的选项.[详解]抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,),所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .[点睛]主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式. 6.(2019·武威第十七中学初三月考)二次函数y=A x 2+B x+C (A ≠0)图象如图,下列结论:①A B C >0;②3A +C <0;③A +B ≥A m 2+B m ;④A ﹣B +C >0;⑤若A x 12+B x 1=A x 22+B x 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有( )个.A .2B .3C .4D .5[答案]B [解析]由抛物线开口方向得到A <0,利用抛物线的对称轴方程得到B =-2A >0,由抛物线与x 轴的交点位置得到C >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点在(-1,0)与(0,0)之间,所以当x=-1时,A -B +C <0,则可对④进行判断;把B =-2A 代入可对②进行判断;利用二次函数的最值问题对③进行判断;把A x 12+B x 1=A x 22+B x 2进行变形得到(x 1-x 2)[A (x 1+x 2)+B ]=0,从而得到A (x 1+x 2)+B =0,再利用B =-2A 可对⑤进行判断.[详解]∵抛物线开口向下,∴A <0,∵抛物线的对称轴为直线x=-2b a=1, ∴B =-2A >0,∵抛物线与x 轴的交点在x 轴上方,∴C >0,∴A B C <0,所以①错误;∵抛物线与x 轴的一个交点在(2,0)与(3,0)之间,∴抛物线与x轴的另一个交点在(-1,0)与(0,0)之间, ∴当x=-1时,y<0,即A -B +C <0,所以④错误;∴A +2A +C <0,即3A +C <0,所以②正确;∵x=1时,y有最大值,∴A +B +C ≥A m2+B m+C ,即A +B ≥A m2+B m,所以③正确;∵A x12+B x1=A x22+B x2,∴A (x1+x2)(x1-x2)+B (x1-x2)=0,∴(x1-x2)[A (x1+x2)+B ]=0,而x1≠x2,∴A (x1+x2)+B =0,∴x1+x2=-ba=-2aa=2,所以⑤正确.故选B .[点睛]本题考查了二次函数图象与系数的关系:对于二次函数y=A x2+B x+C (A ≠0),二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置.当A 与B 同号时(即A B >0),对称轴在y轴左;当A 与B 异号时(即A B <0),对称轴在y轴右;常数项C 决定抛物线与y轴交点位置.也考查了二次函数的性质.7.(2019·武威第十七中学初三月考)表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为()A .x=﹣2.1B .x=﹣2.2C .x=﹣2.3D .x=﹣2.4[答案]C[解析]根据表格可得:方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得:它的根近似的看作是﹣2.3.[详解]∵当x=﹣2.3时,y=﹣0.11,当x=﹣2.4时,y=0.56,则方程的根﹣2.3<x<﹣2.4.∵|﹣0.11|<|0.56|,∴方程2x2﹣2x﹣10=0的一个近似解为x≈2.3.故选C .[点睛]本题考查了用图象法求一元二次方程的近似根,解题的关键是看y 值的变化.8.(2019·武威第十七中学初三月考)抛物线图象如图所示,根据图象,抛物线的解析式可能是( )A .y=x 2-2x+3B .y=-x 2-2x+3C .y=x 2-2x-3D .y=-x 2+2x-3[答案]C[解析]抛物线开口向上,A >0,与y 轴的负半轴相交C <0,对称轴在原点的右侧A 、B 异号,则B <0,再选答案.[详解]解:由图象得:A >0,B <0,C <0.C 中y =x 2-2x -3 ,A =1,B =-2,C =-3符合题意,故选:C .[点睛]此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.掌握二次函数系数和图形的关系,是解答本题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数单元测试卷
(满分:100分时间:60分钟)
一、选择题(每题3分,共21分)
1.由二次函数y=-x2+2x,可知( )
A.图象的开口向上B.图象的对称轴为直线x=1
C.最大值为-1 D.图象的顶点坐标为(-1,1)2.已知函数y=x2-x-4,当函数值y随x的增大而减小时,x的取值范围是( ) A.x<1 B.x>1 C.x>-2 D.-2<x<4
3.把二次函数y=1
2
x2+3x+
5
2
的图象向右平移2个单位后,再向上平移3个单位,所得
函数图象的顶点坐标是( )
A.(-5,1) B.(1,-5) C.(-1,1) D.(-1,3)
4.已知抛物线y=ax2+bx+c(a<0)过A(-2,0)、O(0,0)、B(-3,y1)、C(3,y2)四点,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
5.二次函数y=a(x+k)2+k,当k取不同的实数值时,图象顶点所在的直线是( ) A.y=x B.x轴C.y=-x D.y轴
6.已知二次函数y=a(x-1)2+b有最小值-1,则a与b之间的大小关系是( ) A.a<b B.a=b C.a>b D.不能确定
7.二次函数y=ax2+bx+c的图象如图所示,下列结论
错误的是( )
A.ab<0
B.a c<0
C.当x<2时,函数值随x的增大而增大;当x>2时,函数值随x的
增大而减小
D.二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根二、填空题(每题3分,共21分)
8.二次函数y=(x-1)2-2的图象的对称轴是直线______.
9.若抛物线y=x2-2x-2的顶点为A,与y轴的交点为B,则过A、B两点的直线所对应的函数关系式为______________.
10.将抛物线y=-1
2
x2向上平移2个单位,再向右平移1个单位后,得到的抛物线所对
应的函数关系式为_______.
11.若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2-4x+3的图象关于y轴对称,则抛物线y=ax2+bx+c所对应的函数关系式为______________.
12.若抛物线y=x2+bx+c与y轴交于点A,与x轴正半轴交于B、C两点,且BC=2,S△ABC=3,则b=_______.
13.二次函数y=x2-6x+c图象的顶点与原点的距离为5,则c=______.
14.某厂2015年创利320万元,若以后每年以相同的增长率x递增,2016年和2017年两
年共创利y万元,则y关于x的函数关系式是______(用y=ax2+bx+c的形式表示).三、解答题(共58分)
15.(8分)已知二次函数图象的顶点坐标为(3,-2),且与y轴交于点(0,5
2).
(1)求函数的关系式,并画出它的图象.
(2)当x为何值时,y随x的增大而增大?
16.(8分)用长度为20 m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m,当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.
17.(10分)已知抛物线y=-x2+2x+2.
(1)该抛物线的对称轴是_______,顶点坐标是_______;
(2)选取适当的数据填入下表,并在如图所示的平面直角坐标系内描点画出该抛物线;
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大
小.
18.(10分)已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).
(1)求该函数的关系式;
(2)求该函数图象与两坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A'、B',
求△OA'B'的面积.
19.(10分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不
得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x之间的函数关系式及自变量x的取值范
围;
(2)设宾馆一天的利润为w元,求w与x之间的函数关系式;
(3)一天订住多少个房间时,宾馆每天的利润最大?最大利润是多少元?
20.(12分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,1),且过原点O.过抛
物线上一点P(x,y)向直线y=5
4
作垂线,垂足为M.
(1)求a、b、c的值;
(2)在直线x=1上有一点F(1,3
4
),连接FM,求以PM为底边的等腰△PFM上点P
的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在,
请求出t的值;若不存在,请说明理由.
参考答案
一、1.B 2.A 3.C 4.A 5.C 6.C 7.B
二、8.x =1 9.y =-x -2 10.y =-
12x 2+x +32 11.y =x 2+4x +3 12.-4 13.5或13 14.y =320x 2+960x +640
三、15.(1)y =12
(x -3)2-2 图略 (2)当x ≥3时,y 随x 的增大而增大
16.一边长(60-m ,相邻边长为10)m ,最大面积为(300-2
17. (1)直线x =1 (1,3) (2)如图 (3)y 1<y 2
18.(1) y =-x 2-2x +3 (2)(0,3),(-3,0),(1,0) (3)15 19.(1)y =50-
110x (0≤x ≤160,且x 为10的正整数倍) (2)w =-110
x 2+34x +8 000 (3)一天订住34个房间时,宾馆每天的利润最大,最大利润是10880元
20.(1)a =-1,b =2,c =0 (2)P 的纵坐标为
14,横坐标为1+12(3)存在N (1,
34)使PM =PN 恒成立。