2017年安徽省合肥市高考数学二模试卷(理科)有答案

合集下载

2017安徽合肥市高考数学二模试题(理科)(解析版)

2017安徽合肥市高考数学二模试题(理科)(解析版)

2016年安徽省合肥市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合为自然数集,则下列选项正确的是()A.M⊆{x|x≥1} B.M⊆{x|x>﹣2} C.M∩N={0} D.M∪N=N2.若i是虚数单位,复数z满足(1﹣i)z=1,则|2z﹣3|=()A.B.C.D.3.已知等差数列{a n}的前n项和为S n,a9=1,S18=0,当S n取最大值时n的值为()A.7 B.8 C.9 D.104.若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.105.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A.B.C.±1D.6.点G为△ABC的重心,设=, =,则=()A.﹣B. C.﹣2D.27.由棱锥和棱柱组成的几何体的三视图如图所示,则该几何体的体积为()A.14 B.C.22 D.8.执行下面的程序框图,则输出的n的值为()A.10 B.11 C.1024 D.20489.在三棱锥P﹣ABC中,PA⊥平面ABC,,则三棱锥P﹣ABC的外接球的表面积为()A.20π B.24π C.28π D.32π10.已知实数x,y满足,若z=kx﹣y的最小值为﹣5,则实数k的值为()A.﹣3 B.3或﹣5 C.﹣3或﹣5 D.±311.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A.B.C.D.12.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)﹣f(1)<x2﹣1成立的实数x的取值范围为()A.{x|x≠±1}B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,1)D.(﹣1,0)∪(0,1)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“”的否定是______.14.双曲线的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为______.15.已知各项均为正数的数列{a n}前n项和为S n,若,则a n=______.16.若函数f(x)=x2(x﹣2)2﹣a|x﹣1|+a有4个零点,则a的取值范围为______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数为偶函数,(1)求b;(2)若a=3,求△ABC的面积S.18.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)附:.19.如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3(1)求证:EG⊥DF;(2)求BE与平面EFGH所成角的正弦值.20.已知椭圆经过点,且离心率为,F1,F2是椭圆E的左,右焦点(1)求椭圆E的方程;(2)若点A,B是椭圆E上关于y轴对称两点(A,B不是长轴的端点),点P是椭圆E上异于A,B的一点,且直线PA,PB分别交y轴于点M,N,求证:直线MF1与直线NF2的交点G在定圆上.21.已知函数g(x)=ax3+x2+x(a为实数)(1)试讨论函数g(x)的单调性;(2)若对∀x∈(0,+∞)恒有,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD (1)求证:∠ACB=∠ACD;(2)若PA=3,PC=6,AM=1,求AB的长.23.在直角坐标系xOy中,曲线(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m(1)若m=0,判断直线l与曲线C的位置关系;(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.24.已知函数f(x)=|x﹣4|+|x﹣a|(a∈R)的最小值为a(1)求实数a的值;(2)解不等式f(x)≤5.2016年安徽省合肥市高考数学二模试卷(理科)答案与解析一、选择题1.若集合为自然数集,则下列选项正确的是()A.M⊆{x|x≥1} B.M⊆{x|x>﹣2} C.M∩N={0} D.M∪N=N解:∵=[﹣2,1),N为自然数集,故M⊆{x|x≥1}错误;M⊆{x|x>﹣2}错误;M∩N={0}正确;M∪N=N错误;选C2.若i是虚数单位,复数z满足(1﹣i)z=1,则|2z﹣3|=()A. B. C. D.解:设z=a+bi,则(1﹣i)z=(1﹣i)(a+bi)=1,∴(a+b)+(b﹣a)i=1,∴a+b=1,a﹣b=0,∴a=b=,则|2z﹣3|=|2(+i)﹣3|=|﹣2+i|=,选B3.已知等差数列{a n}的前n项和为S n,a9=1,S18=0,当S n取最大值时n的值为()A.7 B.8 C.9 D.10解:设等差数列{a n}的公差为d,∵a9=1,S18=0,∴a1+8d=1,18a1+d=0,可得:a1=17,d=﹣2.∴a n=17﹣2(n﹣1)=19﹣2n,由a n≥0,解得,∴当S n取最大值时n的值为9.选C4.若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.10解:∵a,b都是正数,则=5++≥5+2=9,当且仅当b=2a>0时取等号.选C5.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A. B.C.±1 D.解:抛物线的焦点为F(,0),准线方程为x=﹣.∵点M到焦点F的距离等于2p,∴M到准线x=﹣的距离等于2p.∴x M=,代入抛物线方程解得y M=±p.∴k MF==.选D6.点G为△ABC的重心,设=, =,则=()A.﹣ B. C.﹣2 D.2解:由题意知,+=,即+=,故=﹣2=﹣2选C7.由棱锥和棱柱组成的几何体的三视图如图所示,则该几何体的体积为()A.14 B. C.22 D.解:由三视图可知:该几何体的体积V=4+×2=14.选A8.执行下面的程序框图,则输出的n的值为()A.10 B.11 C.1024 D.2048解:模拟执行程序框图,可得n=1,S=1满足条件S≤2016,n=2,S=1+2=3满足条件S≤2016,n=4,S=3+4=7满足条件S≤2016,n=8,S=7+8=15满足条件S≤2016,n=16,S=15+16=31满足条件S≤2016,n=32,S=31+32=63满足条件S≤2016,n=64,S=63+64=127满足条件S≤2016,n=128,S=127+128=255满足条件S≤2016,n=256,S=255+256=511满足条件S≤2016,n=512,S=511+512=1023满足条件S≤2016,n=1024,S=1023+1024=2047不满足条件S≤2016,退出循环,输出n的值为1024.选C9.在三棱锥P﹣ABC中,PA⊥平面ABC,,则三棱锥P﹣ABC的外接球的表面积为()A.20π B.24π C.28π D.32π解:∵AB=AC=2,∠BAC=60°,∴由余弦定理可得BC=2,设△ABC外接圆的半径为r,则2r==4,∴r=2,设球心到平面ABC的距离为d,则由勾股定理可得R2=d2+22=22+(2﹣d)2,∴d=1,R2=5,∴三棱锥P﹣ABC的外接球的表面积为4πR2=20π.选A10.已知实数x,y满足,若z=kx﹣y的最小值为﹣5,则实数k的值为()A.﹣3 B.3或﹣5 C.﹣3或﹣5 D.±3解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(﹣2,﹣1),化z=kx﹣y为y=kx﹣z,由图可知,当k<0时,直线过A时在y轴上的截距最大,z有最小值为k﹣2=﹣5,即k=﹣3;当k>0时,直线过B时在y轴上的截距最大,z有最小值﹣2k+1=﹣5,即k=3.综上,实数k的值为±3.选D11.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A. B. C. D.解:方法一:“学生A和B都不是第一个出场,B不是最后一个出场”的出场顺序为:分为两类.第一类:A最后一个出场,从除了B之外的3人选1人安排第一个,其它的任意排,故有A31A33=18种,第二类:A不是最后一个出场,从除了A,B之外的3人选2人安排在,第一个或最后一个,其余3人任意排,故有A32A33=36种,故学生A和B都不是第一个出场,B不是最后一个出场的种数18+36=54种,“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的”的出场顺序为:分为两类第一类:学生C第一个出场,A最后一个出场,故有A33=6种,第二类:学生C第一个出场,A不是最后一个出场,从除了A,B之外的2人选1人安排在最后一个,其余3人任意排,故有A21A33=12种,故在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的种数6+12=18种,故学生C第一个出场的概率为=,方法二:先排B,有A31(非第一与最后),再排A有A31(非第一)种方法,其余三个自由排,共有A31A31A33=54这是总结果;学生C第一个出场,先排B,有A31(非第一与最后),再排A有A31,C第一个出场,剩余2人自由排,故有A31A31A22=18种,故学生C第一个出场的概率为=,选A12.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)﹣f(1)<x2﹣1成立的实数x的取值范围为()A.{x|x≠±1}B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,1) D.(﹣1,0)∪(0,1)解:当x>0时,由2f(x)+xf′(x)﹣2<0可知:两边同乘以x得:2xf(x)﹣x2f′(x)﹣2x<0设:g(x)=x2f(x)﹣x2则g′(x)=2xf(x)+x2f′(x)﹣2x<0,恒成立:∴g(x)在(0,+∞)单调递减,由x2f(x)﹣f(1)<x2﹣1∴x2f(x)﹣x2<f(1)﹣1即g(x)<g(1)即x>1;当x<0时,函数是偶函数,同理得:x<﹣1综上可知:实数x的取值范围为(﹣∞,﹣1)∪(1,+∞),选B二、填空题13.命题“”的否定是.解:因为全称命题的否定是特称命题,所以,命题“”的否定是:14.双曲线的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为.解:坐标原点O为圆心,c为半径的圆的方程为x2+y2=c2,由,解得x2=,由|PF1|=c+2,由双曲线的定义可得|PF2|=|PF1|﹣2a=c+2﹣2=c,在直角三角形PF1F2中,可得c2+(c+2)2=4c2,解得c=1+,由c2=a2+b2=1+b2,可得b2=3+2,可得P 的横坐标为=.答案:.15.已知各项均为正数的数列{a n }前n 项和为S n ,若,则a n = .解:由S 1=2,得a 1=S 1=2,由,得,又a n >0,∴2S n =S n +a n+1,即S n =a n+1, 当n ≥2时,S n ﹣1=a n ,两式作差得:a n =a n+1﹣a n ,即,又由,求得a 2=2,∴当n ≥2时,.验证n=1时不成立,∴,16.若函数f (x )=x 2(x ﹣2)2﹣a|x ﹣1|+a 有4个零点,则a 的取值范围为 .解:函数f (x )=x 2(x ﹣2)2﹣a|x ﹣1|+a 有4个零点,转化为:x 2(x ﹣2)2﹣a|x ﹣1|+a=0由4个根,即y=x 2(x ﹣2)2;y=a|x ﹣1|﹣a=两个函数的图象有4个交点,在同一个直角坐标系中画出两个函数的图象,如图:当a <0时,如图中蓝色的折线,函数有4个零点,可得﹣1<a <0; 当a >0时,如图中的红色折线,此时函数有4个零点.满足题意. 综上:a ∈(﹣1,0)∪(0,+∞)三、解答题17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数为偶函数,(1)求b;(2)若a=3,求△ABC的面积S.解:(1)在△ABC中,由f(x)为偶函数可知,所以又0<B<π,故所以…(2)∵,b=,∴由正弦定理得sinA==,∴A=或,当A=时,则C=π﹣﹣=,△ABC的面积S==当时,则C=π﹣﹣==,△△AB C的面积S===18.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%(1(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)附:.解:(1)根据表中数据,计算=×(1+2+3+4+5)=3,=×(0.02+0.05+0.1+0.15+0.18)=0.1;∴==0.042,∴=0.1﹣0.042×3=﹣0.026,所以线性回归方程为;…(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加1个月,市场占有率都增加0.042个百分点;由,解得x≥13;预计上市13个月时,市场占有率能超过0.5%.…19.如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3(1)求证:EG⊥DF;(2)求BE与平面EFGH所成角的正弦值.解:(1)连接AC,∵四边形ABCD为菱形,∴AC⊥BD,∵BF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BF,又BD⊂平面BDF,BF⊂平面BDF,BD∩BF=B,∴AC⊥平面BDF,∵AE∥CG,AE=CG,∴四边形AEGC是平行四边形,∴EG∥AC,∴EG⊥平面BDF,又DF⊆平面BDF,∴EG⊥DF.(2)设AC∩BD=O,EG∩HF=P,∵四边形ABCD为菱形,AE⊥平面ABCD,BF⊥平面ABCD,∴AD∥BC,AE∥BF,∴平面ADHE∥平面BCGF,∴EH∥FG,同理可得:EH∥HG,∴四边形EFGH为平行四边形,∴P为EG的中点,又O为AC的中点,∴OP∥AE,AE=OP,∴OP⊥平面ABCD,又OA⊥OB,所以OA,OB,OP两两垂直,∵OP=(BF+DH),∴BF=2.以O为原点建立空间直角坐标系O﹣xyz,∵△ABD是等边三角形,AB=4,∴OA=2.∴E(2,0,3),P(0,0,3),F(0,2,2),B(0,2,0).∴=(2,﹣2,3),=(2,0,0),=(0,2,﹣1).设平面EFGH的一个法向量为,则,∴,令y=1,得.设BE与平面EFGH所成角为θ,则.20.已知椭圆经过点,且离心率为,F1,F2是椭圆E的左,右焦点(1)求椭圆E的方程;(2)若点A,B是椭圆E上关于y轴对称两点(A,B不是长轴的端点),点P是椭圆E上异于A,B的一点,且直线PA,PB分别交y轴于点M,N,求证:直线MF1与直线NF2的交点G在定圆上.解:(1)∵椭圆经过点,且离心率为,∴由条件得,解得,∴椭圆C的方程证明:(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0)直线PA的方程为,令x=0,得故,同理可得,,∴=∴F1M⊥F2N,∴直线F1M与直线F2N交于点G在以F1F2为直径的圆上.21.已知函数g(x)=ax3+x2+x(a为实数)(1)试讨论函数g(x)的单调性;(2)若对∀x∈(0,+∞)恒有,求实数a的取值范围.解:(1)g'(x)=3ax2+2x+1(i)当a=0时,g(x)在单调减和单调增;(ii)当a≠0时,△=4﹣12a,当时,g'(x)=3ax2+2x+1≥0恒成立,此时g(x)在R单调增;当时,由g'(x)=3ax2+2x+1=0得,,g(x)在(x1,x2)单调减,在(﹣∞,x1)和(x2,+∞)单调增;当a<0时,g(x)在(x2,x1)单调增,在(﹣∞,x2)和(x1,+∞)单调减;(2)令,则因此,f(x)在(0,1)单调减,在(1,+∞)单调增∴f min(x)=f(1)=1当a>﹣1时,g(1)=a+2>1=f(1),显然,对∀x∈(0,+∞)不恒有f(x)≥g(x);当a≤﹣1时,由(1)知,g(x)在(0,x1)单调增,在(x1,+∞)单调减,,即所以,在(0,+∞)上,,又所以,即满足对∀x∈(0,+∞)恒有f(x)≥g(x)综上,实数a∈(﹣∞,﹣1].22.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD (1)求证:∠ACB=∠ACD;(2)若PA=3,PC=6,AM=1,求AB的长.(1)证明:∵P A为切线,∴∠PAB=∠ACB.∵PA∥BD,∴∠PAB=∠ABD=∠ACD,∴∠ACB=∠ACD…(2)解:已知PA=3,PC=6,AM=1,由切割线定理PA2=PB•PC得:,∵PA∥BD,得又知△AMB~△ABC,所以所以AB2=AM•AC=4,所以AB=223.在直角坐标系xOy中,曲线(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m(1)若m=0,判断直线l与曲线C的位置关系;(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.解:(1)曲线(α为参数),曲线C的直角坐标方程为:(x﹣1)2+(y﹣1)2=2,是一个圆;圆心(1,1),半径为:.直线l:ρsinθ+ρcosθ=0,可得直线l的直角坐标方程为:x+y=0圆心C到直线l的距离,所以直线l与圆C相切(2)由已知可得:圆心C到直线lx+y=m的距离,解得﹣1≤m≤524.已知函数f(x)=|x﹣4|+|x﹣a|(a∈R)的最小值为a(1)求实数a的值;(2)解不等式f(x)≤5.解:(1)f(x)=|x﹣4|+|x﹣a|≥|4﹣a|=a,从而解得a=2…(2)由(1)知,f(x)=|x﹣4|+|x﹣2|=,综合函数y=f(x)的图象知,解集为。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 .【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{an }的前n项和为Sn,a3=3,S4=10,则= .【解答】解:等差数列{an }的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,Sn=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 .【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y),由题意可得N(x,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y),可得x﹣x0=0,y=y,即有x0=x,y=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由kOQ=﹣,kPF=,由kOQ •kPF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x﹣2﹣lnx=0,所以f(x0)=﹣x﹣xlnx=﹣x+2x﹣2=x﹣,由x0<可知f(x)<(x﹣)max=﹣+=;由f′()<0可知x<<,所以f(x)在(0,x0)上单调递增,在(x,)上单调递减,所以f(x)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

(完整版)2017年高考理科数学全国2卷-含答案

(完整版)2017年高考理科数学全国2卷-含答案

输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

最新安徽省示范高中高考数学二模试卷(理科)(解析版)

最新安徽省示范高中高考数学二模试卷(理科)(解析版)

精品文档2017 年安徽省示范高中高考数学二模试卷(理科)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合 A={x|x2<2x},B={x|x﹣1<0},则 A∩B=( )A.(﹣∞,﹣1) B.(﹣∞,1) C.(0,1) D.(1,2)2.命题“∃ x0∈(1,+∞),x02+2x0+2≤0”的否定形式是( )A.B.C.D.3.已知角 α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则 α=( ) A.215° B.225° C.235° D.245°4.已知是夹角为 60°的两个单位向量,则“实数 k=4”是“”的( ) A.充分不必要条件 C.必要不充分条件B.充要条件 D.既不充分也不必要条件5.函数的最小正周期是 π,则其图象向右平移 个单位后的单调递减区间是( )A.B.C.D.6.已知,则( )A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2) C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2) 7.设函数 f(x)在(m,n)上的导函数为 g(x),x∈(m,n),g(x)若的导 函数小于零恒成立,则称函数 f(x)在(m,n)上为“凸函数”.已知当 a≤2 时,,在 x∈(﹣1,2)上为“凸函数”,则函数 f(x)在(﹣1,2)上结论正确的是( )精品文档精品文档A.既有极大值,也有极小值 B.有极大值,没有极小值C.没有极大值,有极小值 D.既无极大值,也没有极小值8.=( )A.B.﹣1C.D.9.设函数 f(x)是二次函数,若 f(x)ex 的一个极值点为 x=﹣1,则下列图象 不可能为 f(x)图象的是( )A.B.C.D.10.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的 概念,内容涉及方程、几何、数列、面积、体积的计算等多方面.书的第 6 卷 19 题,“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀 变细(各节容量可视为等差数列),则中间剩下的两节容量是多少升( )A.B.C.D.11.△ABC 内一点 O 满足,直线 AO 交 BC 于点 D,则( )A.B.C.D.12.曲线的一条切线 l 与 y=x,y 轴三条直线围成三角形记为△OAB,则△OAB 外接圆面积的最小值为( )A.B.C.D.二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)精品文档精品文档13.已知{an}是等比数列,a3=1,a7=9,则 a5= .14.计算: (﹣x)dx= .15.已知 y=f(x+1)+2 是定义域为 R 的奇函数,则 f(e)+f(2﹣e)= .16.在△ABC 中,,过 B 点作 BD⊥AB 交 AC 于点 D.若 AB=CD=1,则 AD= .三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算 步骤.) 17.在△ABC 中,角 A,B,C 的对边长是 a,b,c 公差为 1 的等差数列,且 a+b=2ccosA. (Ⅰ)求证:C=2A; (Ⅱ)求 a,b,c. 18.已知等差数列{an}的公差 d≠0,其前 n 项和为 Sn,若 S9=99,且 a4,a7,a12 成等比数列. (Ⅰ)求数列{an}的通项公式;(Ⅱ)若,证明:.19.已知.(Ⅰ)求 f(x)的最小正周期和最大值;(Ⅱ)若,画出函数 y=g(x)的图象,讨论 y=g(x)﹣m(m∈R)的零点个数.精品文档精品文档20.已知 Sn 是等比数列{an}的前 n 项和,S3,S9,S6 成等差数列. (Ⅰ)求证:a2,a8,a5 成等差数列; (Ⅱ)若等差数列{bn}满足 b1=a2=1,b3=a5,求数列{an3bn}的前 n 项和 Tn. 21.已知函数 f(x)=ex+ax+b(a,b∈R)在 x=ln2 处的切线方程为 y=x﹣2ln2. (Ⅰ)求函数 f(x)的单调区间; (Ⅱ)若 k 为差数,当 x>0 时,(k﹣x)f'(x)<x+1 恒成立,求 k 的最大值(其 中 f'(x)为 f(x)的导函数).22.已知函数 f(x)=2ln(x+1)+﹣(m+1)x 有且只有一个极值.(Ⅰ)求实数 m 的取值范围; (Ⅱ)若 f(x1)=f(x2)(x1≠x2),求证:x1+x2>2.精品文档精品文档2017 年安徽省示范高中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的. 1.设集合 A={x|x2<2x},B={x|x﹣1<0},则 A∩B=( ) A.(﹣∞,﹣1) B.(﹣∞,1) C.(0,1) D.(1,2) 【考点】交集及其运算. 【分析】分别求解一元二次不等式及一元一次不等式化简集合 A、B,再由交集 运算得答案. 【解答】解:∵A={x|x2<2x}=(0,2),B={x|x﹣1<0}=(﹣∞,1), ∴A∩B=(0,1), 故选:C.2.命题“∃ x0∈(1,+∞),x02+2x0+2≤0”的否定形式是( )A.B.C.D.【考点】命题的否定. 【分析】根据特称命题的否定是全称命题,写出它的否定命题即可. 【解答】解:命题“∃ x0∈(1,+∞),x02+2x0+2≤0”的否定形式是: “∀ x∈(1,+∞),x2+2x+2>0”. 故选:A.3.已知角 α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则 α=( ) A.215°B.225°C.235°D.245° 【考点】任意角的三角函数的定义. 【分析】利用诱导公式,任意角的三角函数的定义,求得 α 的值.精品文档精品文档【解答】解:∵角 α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°), 由三角函数定义得 cosα=sin215°=cos235°,sinα=cos215°=sin235°,∴α=235°, 故选:C.4.已知是夹角为 60°的两个单位向量,则“实数 k=4”是“”的( ) A.充分不必要条件 B.充要条件 C.必要不充分条件 D.既不充分也不必要条件 【考点】必要条件、充分条件与充要条件的判断.【分析】设出向量的坐标,求出”的充要条件,判断即可.【解答】解:设 =(1,0),则 =( , ),若”,则(2 ﹣k )• =0,故[2(1,0)﹣k( , )]•(1,0)=2﹣ =0,解得:k=4,故实数 k=4”是“”的充要条件,故选:B.5.函数 单位后的单调递减区间是( A.的最小正周期是 π,则其图象向右平移 个 )B.C.D.【考点】余弦函数的图象.【分析】根据最小正周期是 π,可知 ω=2,求得图象向右平移 个单位后解析式,再结合三角函数的性质求单调递减区间.精品文档精品文档【解答】解:由函数的最小正周期是 π,即,解得:ω=2,图象向右平移 个单位,经过平移后得到函数解析式为,由(k∈Z),解得单调递减区间为.故选:B.6.已知,则( )A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2) C.f(3)>f(2)>f (e) D.f(e)>f(3)>f(2) 【考点】利用导数研究函数的单调性. 【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而 求出函数的最大值,计算 f(e),f(3),f(2)的值,比较即可. 【解答】解:f(x)的定义域是(0,+∞),∵,∴x∈(0,e),f'(x)>0;x∈(e,+∞),f'(x)<0,故 x=e 时,f(x)max=f(e),而,f(e)>f(3)>f(2), 故选:D.7.设函数 f(x)在(m,n)上的导函数为 g(x),x∈(m,n),g(x)若的导 函数小于零恒成立,则称函数 f(x)在(m,n)上为“凸函数”.已知当 a≤2 时,,在 x∈(﹣1,2)上为“凸函数”,则函数 f(x)在(﹣1,精品文档精品文档2)上结论正确的是( ) A.既有极大值,也有极小值 B.有极大值,没有极小值 C.没有极大值,有极小值 D.既无极大值,也没有极小值 【考点】利用导数研究函数的极值. 【分析】根据函数恒成立,得出 m 的值,利用函数单调性得出结果.【解答】解:,由已知得 g′(x)=x﹣a<0,当 x∈(﹣1,2)时恒成立, 故 a≥2,又已知 a≤2,故 a=2, 此时由 f′(x)=0,得:x1=2﹣ ,x2=2+ ∉(﹣1,2), 当 x∈(﹣1,2﹣ )时,f′(x)>0;当 x∈(2﹣ ,2)时,f′(x)<0, 所以函数 f(x)在(﹣1,2)有极大值,没有极小值, 故选:B.8.=( )A. B.﹣1 C.D.【考点】三角函数的化简求值.【分析】利用“切化弦”的思想与辅助角公式结合化简即可.【解答】解:故选:B.9.设函数 f(x)是二次函数,若 f(x)ex 的一个极值点为 x=﹣1,则下列图象 不可能为 f(x)图象的是( )A.B.C.精品文档精品文档D.【考点】利用导数研究函数的极值. 【分析】先求出函数 f(x)ex 的导函数,利用 x=﹣1 为函数 f(x)ex 的一个极值 点可得 a,b,c 之间的关系,再代入函数 f(x)=ax2+bx+c,对答案分别代入验证, 看哪个答案不成立即可. 【解答】解:由 y=f(x)ex=ex(ax2+bx+c)⇒ y′=f′(x)ex+exf(x)=ex[ax2+(b+2a) x+b+c], 由 x=﹣1 为函数 f(x)ex 的一个极值点可得,﹣1 是方程 ax2+(b+2a)x+b+c=0 的一个根, 所以有 a﹣(b+2a)+b+c=0⇒ c=a. 法一:所以函数 f(x)=ax2+bx+a,对称轴为 x=﹣ ,且 f(﹣1)=2a﹣b,f(0) =a. 对于 A,由图得 a>0,f(0)>0,f(﹣1)=0,不矛盾, 对于 B,由图得 a<0,f(0)<0,f(﹣1)=0,不矛盾, 对于 C,由图得 a<0,f(0)<0,x=﹣ >0⇒ b>0⇒ f(﹣1)<0,不矛盾, 对于 D,由图得 a>0,f(0)>0,x=﹣ <﹣1⇒ b>2a⇒ f(﹣1)<0 与原图 中 f(﹣1)>0 矛盾,D 不对. 法二:所以函数 f(x)=ax2+bx+a,由此得函数相应方程的两根之积为 1,对照四 个选项发现,D 不成立. 故选:D.10.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的 概念,内容涉及方程、几何、数列、面积、体积的计算等多方面.书的第 6 卷 19 题,“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀 变细(各节容量可视为等差数列),则中间剩下的两节容量是多少升( )精品文档精品文档A.B.C.D.【考点】等差数列的通项公式.【分析】设九节竹自上而下分别为 a1,a2,…,a9,由题意可得,求出首项和公差,则答案可求. 【解答】解:由题意,设九节竹自上而下分别为 a1,a2,…,a9,则,解得,∴.故选:B.11.△ABC 内一点 O 满足,直线 AO 交 BC 于点 D,则( )A.B.C.【考点】平面向量的基本定理及其意义.【分析】由已知得=,则D. = ,从而得到= ,由此能求出 2 +3 = .【解答】解:∵△ABC 内一点 O 满足= ,直线 AO 交 BC 于点 D,∴=,令=,则=,∴B,C,E 三点共线,A,O,E 三点共线,∴D,E 重合.∴= ,∴2 +3 =2 ﹣2 +3 ﹣3 =﹣ ﹣5 = .故选:A.12.曲线的一条切线 l 与 y=x,y 轴三条直线围成三角形记为△OAB,则△OAB 外接圆面积的最小值为( )精品文档精品文档A.B.C.D.【考点】利用导数研究曲线上某点切线方程.【分析】设直线 l 与曲线的切点坐标为(x0,y0),求出函数的导数,可得切线的 斜率和方程,联立直线 y=x 求得 A 的坐标,与 y 轴的交点 B 的坐标,运用两点距离公式和基本不等式可得 AB 的最小值,再由正弦定理可得外接圆的半径,进而得到所求面积的最小值.【解答】解:设直线 l 与曲线的切点坐标为(x0,y0),函数的导数为.则直线 l 方程为,即,可求直线 l 与 y=x 的交点为 A(2x0,2x0),与 y 轴的交点为,在△OAB 中,当且仅当 x02=2 时取等号. 由正弦定理可得△OAB 得外接圆半径为 则△OAB 外接圆面积 故选 C.,, ,二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.已知{an}是等比数列,a3=1,a7=9,则 a5= 3 . 【考点】等比数列的通项公式. 【分析】由已知结合等比数列的性质求解. 【解答】解:∵a3=1,a7=9, ∴由等比数列的性质可得:,又>0,∴a5=3.精品文档精品文档故答案为:3.14.计算: (﹣x)dx=【考点】定积分.【分析】先利用定积分的几何意义计算. dx,即求被积函数 y=与直线 x=0,x=1 所围成的图形的面积即可,再求出 (﹣x)dx,问题得以解决.【解答】解:由定积分的几何意义知dx 是由 y=与直线 x=0,x=1 所围成的图形的面积,即是以(1,0)为圆心,以 1 为半径的圆的面积的 ,故dx= ,(﹣x)dx=﹣=,∴(﹣x)dx= .故答案为: .15.已知 y=f(x+1)+2 是定义域为 R 的奇函数,则 f(e)+f(2﹣e)= ﹣4 . 【考点】函数奇偶性的性质. 【分析】y=f(x+1)+2 的图象关于原点(0,0)对称,则 y=f(x)图象关于(1, ﹣2)对称,即可求出 f(e)+f(2﹣e). 【解答】解:y=f(x+1)+2 的图象关于原点(0,0)对称, 则 y=f(x)是由 y=f(x+1)+2 的图象向右平移 1 个单位、向下平移 2 个单位得 到,图象关于(1,﹣2)对称,f(e)+f(2﹣e)=﹣4. 故答案为﹣4.16.在△ABC 中,则 AD=.精品文档,过 B 点作 BD⊥AB 交 AC 于点 D.若 AB=CD=1,精品文档【考点】正弦定理. 【分析】设 AD=x,由题意求出∠CBD、sin∠BDC,由正弦定理求出 BC,在△ABC 中由余弦定理列出方程,化简后求出 x 的值,可得答案. 【解答】解:设 AD=x,且 BD⊥AB,AB=CD=1,在△BCD 中,,则,且 sin∠BDC=sin(π﹣∠ADB)=sin∠ADB= = ,由正弦定理得,,所以 BC===,在△ABC 中,由余弦定理得, AC2=AB2+BC2﹣2•AB•BCcos∠ABC则,化简得,,解得 x= ,即 AD= , 故答案为: .三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算 步骤.) 17.在△ABC 中,角 A,B,C 的对边长是 a,b,c 公差为 1 的等差数列,且 a+b=2ccosA. (Ⅰ)求证:C=2A; (Ⅱ)求 a,b,c. 【考点】正弦定理;余弦定理.精品文档精品文档【分析】(Ⅰ)由 a+b=2ccosA.利用正弦定理可证 C=2A. (Ⅱ)由 a,b,c 公差为 1 的等差数列,得 a=b﹣1,c=b+1,由余弦定理得 a2=b2+c2 ﹣2bccosA,利用正弦定理可求 a,b,c 的值. 【解答】(Ⅰ)证明:由已知 a+b=2ccosA 及正弦定理得 sinA+sinB=2sinCcosA…①, 又 sinB=sin(A+C)=sinAcosC+cosAsinC…② 把②代入①得:sinA+sinAcosC+cosAsinC=2sinCcosA, 整理得:sinA=sin(C﹣A) 又∵0<A<π,0<C﹣A<π, ∴A=C﹣A 故 C=2A. (Ⅱ)由已知得 a=b﹣1,c=b+1,由余弦定理得 a2=b2+c2﹣2bccosA, 整理得:b+4=2(b+1)cosA① 由(Ⅰ)知 C=2A,得 sinC=sin2A=2sinAcosA,由正弦定理得 c=2acosA 即 cosA= =②由①②整理得:b=5, ∴a=4,b=5,c=6.18.已知等差数列{an}的公差 d≠0,其前 n 项和为 Sn,若 S9=99,且 a4,a7,a12 成等比数列. (Ⅰ)求数列{an}的通项公式;(Ⅱ)若,证明:.【考点】数列与不等式的综合;等差数列的通项公式;数列的求和. 【分析】(Ⅰ)由 S9=99,求出 a5=11,由 a4,a7,a12 成等比数列,求出 d=2,由 此能求出数列{an}的通项公式.(Ⅱ)求出=n(n+2),从而 ==,由此利用裂项求和法能证明.【解答】解:(Ⅰ)因为等差数列{an}的公差 d≠0,其前 n 项和为 Sn,S9=99,精品文档精品文档∴a5=11,…由 a4,a7,a12 成等比数列,得,即(11+2d)2=(11﹣d)(11+7d),∵d≠0,∴d=2,… ∴a1=11﹣4×2=3, 故 an=2n+1 …证明:(Ⅱ)=n(n+2), ==,…∴= [(1﹣ )+(= [1+故.…)+( ]=)+…+()+( ,)]…19.已知.(Ⅰ)求 f(x)的最小正周期和最大值;(Ⅱ)若,画出函数 y=g(x)的图象,讨论 y=g(x)﹣m(m∈R)的零点个数.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦函数的图象. 【分析】(Ⅰ)根据 f(x)=2 ,利用向量数量积的运算法则求解 f(x)并化精品文档精品文档简,即可求得 f(x)的最小正周期和最大值(Ⅱ),利用“5 点画法”画出函数 y=g(x)的图象.【解答】解:(Ⅰ)(f x)=2 =2sinxcosx+2sin2x=sin2x﹣cos2x+1=∴f(x)的最小正周期 T=π;函数 f(x)的最大值为:;(Ⅱ),利用“5 点画法”,函数 y=g(x)在区间上列表为 x﹣π00﹣1 012112描点作图那么:y=g(x)﹣m(m∈R)的零点个数,即为函数 y=g(x)与直线 y=m 的交 点个数,由图可知,当时,无零点;当时,有 1 个零点;当或当 m=2 时,有 3 个零点.时,有 2 个零点;精品文档精品文档20.已知 Sn 是等比数列{an}的前 n 项和,S3,S9,S6 成等差数列. (Ⅰ)求证:a2,a8,a5 成等差数列; (Ⅱ)若等差数列{bn}满足 b1=a2=1,b3=a5,求数列{an3bn}的前 n 项和 Tn. 【考点】数列的求和;等差数列的通项公式.【分析】(Ⅰ)设等比数列{an}的公比为 q.当 q=1 时,显然 S3+S6≠2S9,与已知 S3,S9,S6 成等差数列矛盾,可得 q≠1.由 S3+S6=2S9,利用求和公式化为:1+q3=2q6, 即可证明 a2,a8,a5 成等差数列.( Ⅱ ) 由 ( Ⅰ ) 1+q3=2q6 , 解 得 q3= ﹣.可得===.b1=a2=1,b3=a5=﹣ ,可得 bn=﹣ + ,=,再利用“错位相减法”与等比数列的求和公式即可得出. 【解答】(Ⅰ)证明:设等比数列{an}的公比为 q. 当 q=1 时,显然 S3+S6≠2S9,与已知 S3,S9,S6 成等差数列矛盾,∴q≠1.由 S3+S6=2S9,可得+=2,化为:1+q3=2q6,∴a2+a5===2a8.∴a2,a8,a5 成等差数列.(Ⅱ)解:由(Ⅰ)1+q3=2q6,解得 q3=1(舍去),q3=﹣ .∴===.b1=a2=1,b3=a5=﹣ ,数列{bn}的公差 d= (b3﹣b1)=﹣ .∴bn=﹣ + ,故=Tn=+, +…+,①精品文档精品文档=+…+①﹣②得:= ﹣ 2+=﹣=+解得 Tn=﹣ +.+2﹣ ,② ﹣ ﹣21.已知函数 f(x)=ex+ax+b(a,b∈R)在 x=ln2 处的切线方程为 y=x﹣2ln2.(Ⅰ)求函数 f(x)的单调区间;(Ⅱ)若 k 为差数,当 x>0 时,(k﹣x)f'(x)<x+1 恒成立,求 k 的最大值(其 中 f'(x)为 f(x)的导函数). 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出原函数的导函数,由 f'(ln2)=1 求导 a 值,再由 f(ln2)= ﹣ln2 求得 b 值,代入原函数的导函数,再由导函数的符号与原函数单调性间的 关系确定原函数的单调区间;(Ⅱ)把当 x>0 时,(k﹣x)f'(x)<x+1 恒成立,转化为在 x>0 时恒成立.令,利用导数求其最小值得答案.【解答】解:(Ⅰ)f'(x)=ex+a,由已知得 f'(ln2)=1,故 eln2+a=1,解得 a=﹣1.又 f(ln2)=﹣ln2,得 eln2﹣ln2+b=﹣ln2,解得 b=﹣2,∴f(x)=ex﹣x﹣2,则 f'(x)=ex﹣1,精品文档精品文档当 x<0 时,f'(x)<0;当 x>0 时,f'(x)>0, ∴f(x)的单调区间递增区间为(0,+∞),递减区间为(﹣∞,0); (Ⅱ)由已知(k﹣x)f'(x)<x+1,及 f'(x)=ex﹣1,整理得在 x>0 时恒成立.令,,当 x>0 时,ex>0,ex﹣1>0; 由(Ⅰ)知 f(x)=ex﹣x﹣2 在(0,+∞)上为增函数, 又 f(1)=e﹣3<0,f(2)=e2﹣4>0,∴存在 x0∈(1,2)使得,此时当 x∈(0,x0)时,g'(x)<0;当 x∈(x0,+∞)时,g'(x)>0∴.故整数 k 的最大值为 2.22.已知函数 f(x)=2ln(x+1)+﹣(m+1)x 有且只有一个极值.(Ⅰ)求实数 m 的取值范围; (Ⅱ)若 f(x1)=f(x2)(x1≠x2),求证:x1+x2>2. 【考点】利用导数研究函数的极值;利用导数研究函数的单调性. 【分析】(Ⅰ)求出函数的导数,通过讨论 m 的范围,根据函数有且只有一个极 值,求出 m 的范围即可; (Ⅱ)不妨设﹣1<x1<1<x2,令 g(x)=f(2﹣x)﹣f(x)(﹣1<x<1),根据 函数的单调性证明即可. 【解答】解:(Ⅰ)f(x)定义域为(﹣1,+∞),精品文档精品文档…即求 f'(x)=0 在区间(﹣1,+∞)上只有一个解,(1)当 m≠0 时,由 f'(x)=0 得 x=1 或,则,m<0…(2)当 m=0 时,.得 x=1 符合题意,综上:当 m≤0 时,f(x)有且只有一个极值…(Ⅱ)由(Ⅰ)知:m≤0,x=1 时 f(x)有且只有一个极大值.又 f(x1)=f(x2)(x1≠x2),不妨设﹣1<x1<1<x2令 g(x)=f(2﹣x)﹣f(x)(﹣1<x<1)则 g ( x ) =2ln ( 3 ﹣ x ) ﹣ 2ln ( x+1 ) +2x ﹣ 2 ( m+1 )所以 g(x)在(﹣1,1)上为减函数,故 g(x)>g(1)=0… 即当﹣1<x<1 时,f(2﹣x)>f(x). 所以 f(2﹣x1)>f(x1)=f(x2),即 f(2﹣x1)>f(x2) 由(Ⅰ)知,f(x)在(1,+∞)上为减函数,且 2﹣x1>1,x2>1, 所以 2﹣x1<x2,故 x1+x2>2.…精品文档精品文档2017年3月3日精品文档。

安徽省合肥市年高三第二次教学质量检测理数汇编

安徽省合肥市年高三第二次教学质量检测理数汇编

合肥市2017年高三第二次教学质量检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,若复数()()12mi i ++是纯,则实数m =( ) A .1 B .1- C .12- D .22.已知[)1,A =+∞,1|212B x x a ⎧⎫=∈≤≤-⎨⎬⎩⎭R ,若A B φ≠I ,则实数a 的取值范围是( )A .[)1,+∞B .1,12⎡⎤⎢⎥⎣⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .()1,+∞3.已知变量x ,y 满足约束条件241x y x y y -≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最小值为( )A .1-B .1C .3D .74.若输入4n =,执行如图所示的程序框图,输出的s =( ) A .10 B .16 C.20 D .355.若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双 曲线的渐近线方程为( )A .y x =±B .22y x =±C.2y x =± D .12y x =±6.等差数列{}n a 的前n 项和为n S ,且36S =,63S =,则10S =( ) A .110B .0 C.10- D .15- 7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A .283B 28 D .22+8.对函数()f x ,如果存在00x ≠使得()()00f x f x =--,则称()()00,x f x 与()()00,x f x --为函数图像的一组奇对称点.若()x f x e a =-(e 为自然数的底数)存在奇对称点,则实数a 的取值范围是( )A .(),1-∞B .()1,+∞ C.()e,+∞ D .[)1,+∞9.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( ) A .0条 B .1条 C.2条 D .1条或2条10.已知5件产品中有2件次品,现逐一检测,直至能确定...所有次品为止,记检测的次数为ξ,则E ξ=( )A .3B .72 C.185D .4 11.锐角..ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足()()()sin sin sin a b A B c b C -+=-,若a =22b c +的取值范围是( )A .(]3,6B .()3,5 C.(]5,6 D .[]5,612.已知函数()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( ) A .10,e ⎛⎫ ⎪⎝⎭ B .()0,e C.1,e e ⎛⎫⎪⎝⎭D .(),e -∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等比数列{}n a 满足0n a >,且284a a =,则21222329log log log log a a a a ++++=L . 14.不共线向量a r ,b r 满足a b =r r ,且()2a a b ⊥-r r r ,则a r 与b r的夹角为 .15.在411x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为 .16.已知关于x 的方程()1cos sin 2t x t x t +-=+在()0,π上有实根,则实数t 的最大值是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知()sin a =x x r ,()cos ,cos b x x =-r ,函数()f x a b =⋅r r .(Ⅰ)求函数()y f x =图像的对称轴方程; (Ⅱ)若方程()13f x =在()0,π上的解为1x ,2x ,求()12cos x x -的值.18. 某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?附:()()()()()22n ab bc K a b c d a c b d -=++++,其中n a b c d =+++.19. 矩形ABCD 中,1AB =,2AD =,点E 为AD 中点,沿BE 将ABE ∆折起至PBE ∆,如右图所示,点P 在面BCDE 的射影O 落在BE 上.(Ⅰ)求证:BP CE ⊥;(Ⅱ)求二面角B PC D --的余弦值.20. 如图,抛物线E :()220y px p =>与圆O :228x y +=相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点()00,P x y 作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线1l ,2l ,1l 与2l 相交于点M . (Ⅰ)求p 的值;(Ⅱ)求动点M 的轨迹方程.21. 已知()()ln f x x m mx =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)设1m >,1x ,2x 为函数()f x 的两个零点,求证:120x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=.(Ⅰ)求出圆C 的直角坐标方程;(Ⅱ)已知圆C 与x 轴相交于A ,B 两点,直线l :2y x =关于点()()0,0M m m ≠对称的直线为'l .若直线'l 上存在点P 使得90APB ∠=o ,求实数m 的最大值.23.选修4-5:不等式选讲已知函数())0f x =≠. (Ⅰ)求函数()f x 的定义域;(Ⅱ)若当[]0,1x ∈时,不等式()1f x ≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5:DABCB 6-10:DABCB 11、12:CA二、填空题 13.9 14.3π15.5- 16.1-三、解答题17.解:(Ⅰ)()()()sin cos ,cos f x a b x x x x =⋅+=⋅-+r r21sin cos sin 22sin 223x x x x x x π⎛⎫=⋅-+=-=- ⎪⎝⎭ 令232x k πππ-=+,得()5122kx k Z ππ=+∈ 即()y f x =的对称轴方程为5122kx ππ=+,()k Z ∈ (Ⅱ)由条件知121sin 2sin 20333x x ππ⎛⎫⎛⎫-=-=> ⎪ ⎪⎝⎭⎝⎭,且12520123x x ππ<<<<易知()()11,x f x 与()()22,x f x 关于512x π=对称,则1256x x π+=()1211111551cos cos cos 2cos 2sin 2663233x x x x x x x πππππ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=--=-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦18.(Ⅰ)由条件知,抽取的男生105人,女生18010575-=人。

合肥市2017高三第二次教学质量检测数学试题(理)(含答案)

合肥市2017高三第二次教学质量检测数学试题(理)(含答案)

合肥市2017(年)高三第二次教学质量检测数学试题理参考答案及评分标准本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求做答。

二、填空题:本大题共4小题,每小题5分.(13) 9 (14) (15) -5 (16)-1.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)解:(Ⅰ)…………4分令即y=f(x)的对称轴方程为…………6分 (Ⅱ)由条件知易知…………12分(18)解:(Ⅰ)由条件知,抽取的男生105人,女生180-105=75人。

男生选择社会科学类的频率为 ,女生选择社会科学类的频率为.由题意,男生总数为人,女生总数为人所以,估计选择社会科学的人数为700×37+500×35=600人.…………6分(Ⅱ)根据统计数据,可得列联表如下:与关 于对 称 , 则> 0 , 且< < < <, (, 得(>5.024所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.…………12分(19)解:(Ⅰ)由条件,点P 在平面BCDE 的射影O 落在BE 上平面PBE ⊥平面BCDE ,易知BE ⊥CECE⊥平面PBE ,而BP ⊂平面PBE考虑到二B P ⊥C E… … … … 5 分( Ⅱ ) 以 O 为 坐 标 原 点 , 以 过 点 O 且 平 行 于C D 的 直 线 为 x 轴 , 过 点 O 且 平 行 于B C的 直 线为 y轴, 直线 P O 为 z 轴 , 建 立 如 图 所示直 角 坐标 系. 则 B设平面 PC D 的 法 向 量 为 则, 即, 令, 可 得设 平 面 PB C 的 法 向 量 为 则, 即, 令, 可 得面角B-PC-D为钝二面角,则二面角B-PC-D的余弦值为. …………12分(20)解:(Ⅰ)由点A的横坐标为2,可得点A的坐标为(2,2),代入…………4分(Ⅱ)设C ,D ,y1≠0,y2≠0.切线: ,代入联立联立方程代入…………9分代入考虑到,知得可知满足得,则C D方程为,其中满足, ,解得方程为,同理方程为得,由解得,解得动点M 的轨迹方程为…………12分(21)解:(Ⅰ),无减区间;<0, (5)分Ⅱ Ⅰ,当时, ﹥0 , 即 的 单 调 递 增 区 间 为当> 0 时 , , 由得时 , ﹥ 0 , 时, ∴ m > 0 时 , 易知的 单 调 递 增 区 间 为, 单调 递 减 区 间 为 ( ) 由 ( ) 知的 单 调 递 增 区 间 为, 单 调 递 减 区 间 为不 妨 设 - m<<, 由 条 件 知, 即构 造 函 数,与图 像 两 交 点 的 横 坐 标 为== 0 可 得< 0 ,.由而m 2>ln m (m >1) ∴-l m n m ∈(-m ,+∞)知上单调递减,在区间 上单调递增,可知-m <<欲证 <0,只需证考虑到 在由令,则-知 , 只 需 证<上 递 增 , 只 需 证<<, 即 证<∈ ( - l n m m + ∞ )<在 区 间m,结合-m << <0,即 成立, 即<0成立 …………12分(22)解:(Ⅰ)由 ,即圆 的标准方程为 . …………4分 (Ⅱ)l :关于点M(0,m)的对称直线 的方程为 ,而AB 为圆的直径,故直线 上存在点P 使得∠APB=90°的充要条件是直线 与圆 有公共点,故 ,于是,实数 的最大值为 . …………10分(23)解:(Ⅰ),得, 即<知即单 增 , 又;当 时,函数 的定义域为. …………5分 ,所以需且只需 0,所 以,…………10分 当时 , 函 数的 定 义 域 为( Ⅱ ) 1, 记, 因 为, 又且0 .。

(2021年整理)合肥市2017年高三第二次教学质量检测试卷及答案

(2021年整理)合肥市2017年高三第二次教学质量检测试卷及答案

(完整)合肥市2017年高三第二次教学质量检测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)合肥市2017年高三第二次教学质量检测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)合肥市2017年高三第二次教学质量检测试卷及答案的全部内容。

合肥市2017年高三第二次教学质量检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i为虚数单位,若复数()()12mi i++是纯,则实数m=( )A.1 B.1- C.12- D.22.已知[)1,A=+∞,1|212B x x a⎧⎫=∈≤≤-⎨⎬⎩⎭R,若A Bφ≠,则实数a的取值范围是()A.[)1,+∞ B.1,12⎡⎤⎢⎥⎣⎦C.2,3⎡⎫+∞⎪⎢⎣⎭D.()1,+∞3.已知变量x,y满足约束条件241x yx yy-≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y=-的最小值为()A.1- B.1 C.3 D.74.若输入4n=,执行如图所示的程序框图,输出的s=()A .10B .16C 。

20D .355。

若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( ) A .y x =± B .2y x =±C.2y x =± D .12y x =± 6。

等差数列{}n a 的前n 项和为n S ,且36S =,63S =,则10S =( ) A .110B .0 C.10- D .15- 7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A .283B .2823。

【全国市级联考word】安徽省合肥市2017届高三第二次教学质量检测理数试题

【全国市级联考word】安徽省合肥市2017届高三第二次教学质量检测理数试题

C. 1 2
D. 2
2.已知
A

1,



B

x

R
|
1 2

x

2a

1
,若
A

B


,则实数
a
的取值范围是(

A. 1,
B.

1 2
,1
C.

2 3
,


D. 1,
x y 2
3.已知变量 x , y 满足约束条件 x y 4 ,则目标函数 z x 2y 的最小值为(
选择自然科学类
选择社会科学类
合计
男生
女生
合计
附:
K2

a

n ab bc 2 bc d a c b

d

,其中
n

a

b

c

d
.
P K 2 k0
K0
0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
10.828 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879
8.对函数 f x ,如果存在 x0 0 使得 f x0 f x0 ,则称 x0 , f x0 与 x0 , f x0 为函数图像的一组
奇对称点.若 f x ex a ( e 为自然数的底数)存在奇对称点,则实数 a 的取值范围是(
D. y 1 x 2
6.等差数列 an 的前 n 项和为 Sn ,且 S3 6 , S6 3 ,则 S10 (

2017年安徽省高考数学试卷及答案解析(理科)(全国新课标ⅰ)

2017年安徽省高考数学试卷及答案解析(理科)(全国新课标ⅰ)

2017年安徽省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年安徽省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N),数列{a n}的前N项和为数列{b n}的前n项和,+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2017年高三-安徽-合肥-二模-理数

2017年高三-安徽-合肥-二模-理数

A. (0,
3 )
B.
(0,
2 )
C 。 (0,
5).
D.
3
2
5
6 (0, )
6
第二卷(满分 100 分) 二、填空题(本大题共 5 小题,每小题 5 分,共 25 分。把答案填在答题卡的相应的位置)
11. 已知集合 A { a1,a2, a3, a4 ,a5, a6 , a7} , A B { a1, a2 , a3, a4,a5 , a6, a7 , ,a100} , 则所
③函数 y f ( x) 可以是奇函数;
④函数 y f ( x) 如果是偶函数,则值域是 [ 1,0) 或(0,1] ;
⑤函数 y f ( x) 值域是 ( 1,1) ,则一定是奇函数。
其中正确的命题的序号是 _______(填上所有正确的序号) 三、解答题(本大题共 6 小题,共 75 分。解答应写出文字说明、证明过程或演算步骤。解
若A
, b 1, ABC 的面积为 3 ,则 a 的值为( )
3
2
A. 1
B.
2
C.
3
D.
3
2
2
2
11 第5题
开始
i 1, S 1, A 2
i
i1
S
SA
1
A
1
A
i 20 12 ? 是
输出 S
结束
否 第6 题
9. 中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了
50 台完全相
同的校车, 准备发放给 10 所学校, 每所学校至少 2 台,则不同的发放方案的种数有 ( )(提
4. 在 ABC 中, AB 4, ABC 30 , D 是边 BC 上的一点,且 AD AB AD AC,则

2017安徽合肥市高考数学二模试题(理科)(解析版)

2017安徽合肥市高考数学二模试题(理科)(解析版)

2016年安徽省合肥市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合为自然数集,则下列选项正确的是()A.M⊆{x|x≥1}B.M⊆{x|x>﹣2} C.M∩N={0} D.M∪N=N2.若i是虚数单位,复数z满足(1﹣i)z=1,则|2z﹣3|=()A.B.C.D.3.已知等差数列{a n}的前n项和为S n,a9=1,S18=0,当S n取最大值时n的值为()A.7 B.8 C.9 D.104.若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.105.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A.B.C.±1D.6.点G为△ABC的重心,设=, =,则=()A.﹣B. C.﹣2D.27.由棱锥和棱柱组成的几何体的三视图如图所示,则该几何体的体积为()A.14 B.C.22 D.8.执行下面的程序框图,则输出的n的值为()A.10 B.11 C.1024 D.20489.在三棱锥P﹣ABC中,PA⊥平面ABC,,则三棱锥P﹣ABC的外接球的表面积为()A.20π B.24π C.28π D.32π10.已知实数x,y满足,若z=kx﹣y的最小值为﹣5,则实数k的值为()A.﹣3 B.3或﹣5 C.﹣3或﹣5 D.±311.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A.B.C.D.12.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)﹣f(1)<x2﹣1成立的实数x的取值范围为()A.{x|x≠±1}B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,1)D.(﹣1,0)∪(0,1)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“”的否定是______.14.双曲线的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为______.15.已知各项均为正数的数列{a n}前n项和为S n,若,则a n=______.16.若函数f(x)=x2(x﹣2)2﹣a|x﹣1|+a有4个零点,则a的取值范围为______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数为偶函数,(1)求b;(2)若a=3,求△ABC的面积S.18.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)附:.19.如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3(1)求证:EG⊥DF;(2)求BE与平面EFGH所成角的正弦值.20.已知椭圆经过点,且离心率为,F1,F2是椭圆E的左,右焦点(1)求椭圆E的方程;(2)若点A,B是椭圆E上关于y轴对称两点(A,B不是长轴的端点),点P是椭圆E上异于A,B的一点,且直线PA,PB分别交y轴于点M,N,求证:直线MF1与直线NF2的交点G在定圆上.21.已知函数g(x)=ax3+x2+x(a为实数)(1)试讨论函数g(x)的单调性;(2)若对∀x∈(0,+∞)恒有,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD (1)求证:∠ACB=∠ACD;(2)若PA=3,PC=6,AM=1,求AB的长.23.在直角坐标系xOy中,曲线(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m(1)若m=0,判断直线l与曲线C的位置关系;(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.24.已知函数f(x)=|x﹣4|+|x﹣a|(a∈R)的最小值为a(1)求实数a的值;(2)解不等式f(x)≤5.2016年安徽省合肥市高考数学二模试卷(理科)答案与解析一、选择题1.若集合为自然数集,则下列选项正确的是()A.M⊆{x|x≥1} B.M⊆{x|x>﹣2} C.M∩N={0} D.M∪N=N解:∵=[﹣2,1),N为自然数集,故M⊆{x|x≥1}错误;M⊆{x|x>﹣2}错误;M∩N={0}正确;M∪N=N错误;选C2.若i是虚数单位,复数z满足(1﹣i)z=1,则|2z﹣3|=()A. B. C. D.解:设z=a+bi,则(1﹣i)z=(1﹣i)(a+bi)=1,∴(a+b)+(b﹣a)i=1,∴a+b=1,a﹣b=0,∴a=b=,则|2z﹣3|=|2(+i)﹣3|=|﹣2+i|=,选B3.已知等差数列{a n}的前n项和为S n,a9=1,S18=0,当S n取最大值时n的值为()A.7 B.8 C.9 D.10解:设等差数列{a n}的公差为d,∵a9=1,S18=0,∴a1+8d=1,18a1+d=0,可得:a1=17,d=﹣2.∴a n=17﹣2(n﹣1)=19﹣2n,由a n≥0,解得,∴当S n取最大值时n的值为9.选C4.若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.10解:∵a,b都是正数,则=5++≥5+2=9,当且仅当b=2a>0时取等号.选C5.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A. B.C.±1 D.解:抛物线的焦点为F(,0),准线方程为x=﹣.∵点M到焦点F的距离等于2p,∴M到准线x=﹣的距离等于2p.∴x M=,代入抛物线方程解得y M=±p.∴k MF==.选D6.点G为△ABC的重心,设=, =,则=()A.﹣ B. C.﹣2 D.2解:由题意知,+=,即+=,故=﹣2=﹣2选C7.由棱锥和棱柱组成的几何体的三视图如图所示,则该几何体的体积为()A.14 B. C.22 D.解:由三视图可知:该几何体的体积V=4+×2=14.选A8.执行下面的程序框图,则输出的n的值为()A.10 B.11 C.1024 D.2048解:模拟执行程序框图,可得n=1,S=1满足条件S≤2016,n=2,S=1+2=3满足条件S≤2016,n=4,S=3+4=7满足条件S≤2016,n=8,S=7+8=15满足条件S≤2016,n=16,S=15+16=31满足条件S≤2016,n=32,S=31+32=63满足条件S≤2016,n=64,S=63+64=127满足条件S≤2016,n=128,S=127+128=255满足条件S≤2016,n=256,S=255+256=511满足条件S≤2016,n=512,S=511+512=1023满足条件S≤2016,n=1024,S=1023+1024=2047不满足条件S≤2016,退出循环,输出n的值为1024.选C9.在三棱锥P﹣ABC中,PA⊥平面ABC,,则三棱锥P﹣ABC的外接球的表面积为()A.20π B.24π C.28π D.32π解:∵AB=AC=2,∠BAC=60°,∴由余弦定理可得BC=2,设△ABC外接圆的半径为r,则2r==4,∴r=2,设球心到平面ABC的距离为d,则由勾股定理可得R2=d2+22=22+(2﹣d)2,∴d=1,R2=5,∴三棱锥P﹣ABC的外接球的表面积为4πR2=20π.选A10.已知实数x,y满足,若z=kx﹣y的最小值为﹣5,则实数k的值为()A.﹣3 B.3或﹣5 C.﹣3或﹣5 D.±3解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(﹣2,﹣1),化z=kx﹣y为y=kx﹣z,由图可知,当k<0时,直线过A时在y轴上的截距最大,z有最小值为k﹣2=﹣5,即k=﹣3;当k>0时,直线过B时在y轴上的截距最大,z有最小值﹣2k+1=﹣5,即k=3.综上,实数k的值为±3.选D11.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的概率为()A. B. C. D.解:方法一:“学生A和B都不是第一个出场,B不是最后一个出场”的出场顺序为:分为两类.第一类:A最后一个出场,从除了B之外的3人选1人安排第一个,其它的任意排,故有A31A33=18种,第二类:A不是最后一个出场,从除了A,B之外的3人选2人安排在,第一个或最后一个,其余3人任意排,故有A32A33=36种,故学生A和B都不是第一个出场,B不是最后一个出场的种数18+36=54种,“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的”的出场顺序为:分为两类第一类:学生C第一个出场,A最后一个出场,故有A33=6种,第二类:学生C第一个出场,A不是最后一个出场,从除了A,B之外的2人选1人安排在最后一个,其余3人任意排,故有A21A33=12种,故在“学生A和B都不是第一个出场,B不是最后一个出场”的前提下,学生C第一个出场的种数6+12=18种,故学生C第一个出场的概率为=,方法二:先排B,有A31(非第一与最后),再排A有A31(非第一)种方法,其余三个自由排,共有A31A31A33=54这是总结果;学生C第一个出场,先排B,有A31(非第一与最后),再排A有A31,C第一个出场,剩余2人自由排,故有A31A31A22=18种,故学生C第一个出场的概率为=,选A12.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)﹣f(1)<x2﹣1成立的实数x的取值范围为()A.{x|x≠±1}B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,1) D.(﹣1,0)∪(0,1)解:当x>0时,由2f(x)+xf′(x)﹣2<0可知:两边同乘以x得:2xf(x)﹣x2f′(x)﹣2x<0设:g(x)=x2f(x)﹣x2则g′(x)=2xf(x)+x2f′(x)﹣2x<0,恒成立:∴g(x)在(0,+∞)单调递减,由x2f(x)﹣f(1)<x2﹣1∴x2f(x)﹣x2<f(1)﹣1即g(x)<g(1)即x>1;当x<0时,函数是偶函数,同理得:x<﹣1综上可知:实数x的取值范围为(﹣∞,﹣1)∪(1,+∞),选B二、填空题13.命题“”的否定是.解:因为全称命题的否定是特称命题,所以,命题“”的否定是:14.双曲线的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为.解:坐标原点O为圆心,c为半径的圆的方程为x2+y2=c2,由,解得x2=,由|PF1|=c+2,由双曲线的定义可得|PF2|=|PF1|﹣2a=c+2﹣2=c,在直角三角形PF1F2中,可得c2+(c+2)2=4c2,解得c=1+,由c2=a2+b2=1+b2,可得b2=3+2,可得P 的横坐标为=.答案:.15.已知各项均为正数的数列{a n }前n 项和为S n ,若,则a n = .解:由S 1=2,得a 1=S 1=2,由,得,又a n >0,∴2S n =S n +a n+1,即S n =a n+1, 当n≥2时,S n ﹣1=a n ,两式作差得:a n =a n+1﹣a n ,即,又由,求得a 2=2,∴当n≥2时,.验证n=1时不成立,∴,16.若函数f (x )=x 2(x ﹣2)2﹣a|x ﹣1|+a 有4个零点,则a 的取值范围为 .解:函数f (x )=x 2(x ﹣2)2﹣a|x ﹣1|+a 有4个零点,转化为:x 2(x ﹣2)2﹣a|x ﹣1|+a=0由4个根,即y=x 2(x ﹣2)2;y=a|x ﹣1|﹣a=两个函数的图象有4个交点,在同一个直角坐标系中画出两个函数的图象,如图:当a <0时,如图中蓝色的折线,函数有4个零点,可得﹣1<a <0; 当a >0时,如图中的红色折线,此时函数有4个零点.满足题意. 综上:a∈(﹣1,0)∪(0,+∞)三、解答题17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数为偶函数,(1)求b;(2)若a=3,求△ABC的面积S.解:(1)在△ABC中,由f(x)为偶函数可知,所以又0<B<π,故所以…(2)∵,b=,∴由正弦定理得sinA==,∴A=或,当A=时,则C=π﹣﹣=,△ABC的面积S==当时,则C=π﹣﹣==,△△AB C的面积S===18.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%(1(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)附:.解:(1)根据表中数据,计算=×(1+2+3+4+5)=3,=×(0.02+0.05+0.1+0.15+0.18)=0.1;∴==0.042,∴=0.1﹣0.042×3=﹣0.026,所以线性回归方程为;…(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加1个月,市场占有率都增加0.042个百分点;由,解得x≥13;预计上市13个月时,市场占有率能超过0.5%.…19.如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3(1)求证:EG⊥DF;(2)求BE与平面EFGH所成角的正弦值.解:(1)连接AC,∵四边形ABCD为菱形,∴AC⊥BD,∵BF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BF,又BD⊂平面BDF,BF⊂平面BDF,BD∩BF=B,∴AC⊥平面BDF,∵AE∥CG,AE=CG,∴四边形AEGC是平行四边形,∴EG∥AC,∴EG⊥平面BDF,又DF⊆平面BDF,∴EG⊥DF.(2)设AC∩BD=O,EG∩HF=P,∵四边形ABCD为菱形,AE⊥平面ABCD,BF⊥平面ABCD,∴AD∥BC,AE∥BF,∴平面ADHE∥平面BCGF,∴EH∥FG,同理可得:EH∥HG,∴四边形EFGH为平行四边形,∴P为EG的中点,又O为AC的中点,∴OP∥AE,AE=OP,∴OP⊥平面ABCD,又OA⊥OB,所以OA,OB,OP两两垂直,∵OP=(BF+DH),∴BF=2.以O为原点建立空间直角坐标系O﹣xyz,∵△ABD是等边三角形,AB=4,∴OA=2.∴E(2,0,3),P(0,0,3),F(0,2,2),B(0,2,0).∴=(2,﹣2,3),=(2,0,0),=(0,2,﹣1).设平面EFGH的一个法向量为,则,∴,令y=1,得.设BE与平面EFGH所成角为θ,则.20.已知椭圆经过点,且离心率为,F1,F2是椭圆E的左,右焦点(1)求椭圆E的方程;(2)若点A,B是椭圆E上关于y轴对称两点(A,B不是长轴的端点),点P是椭圆E上异于A,B的一点,且直线PA,PB分别交y轴于点M,N,求证:直线MF1与直线NF2的交点G在定圆上.解:(1)∵椭圆经过点,且离心率为,∴由条件得,解得,∴椭圆C的方程证明:(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0)直线PA的方程为,令x=0,得故,同理可得,,∴=∴F1M⊥F2N,∴直线F1M与直线F2N交于点G在以F1F2为直径的圆上.21.已知函数g(x)=ax3+x2+x(a为实数)(1)试讨论函数g(x)的单调性;(2)若对∀x∈(0,+∞)恒有,求实数a的取值范围.解:(1)g'(x)=3ax2+2x+1(i)当a=0时,g(x)在单调减和单调增;(ii)当a≠0时,△=4﹣12a,当时,g'(x)=3ax2+2x+1≥0恒成立,此时g(x)在R单调增;当时,由g'(x)=3ax2+2x+1=0得,,g(x)在(x1,x2)单调减,在(﹣∞,x1)和(x2,+∞)单调增;当a<0时,g(x)在(x2,x1)单调增,在(﹣∞,x2)和(x1,+∞)单调减;(2)令,则因此,f(x)在(0,1)单调减,在(1,+∞)单调增∴f min(x)=f(1)=1当a>﹣1时,g(1)=a+2>1=f(1),显然,对∀x∈(0,+∞)不恒有f(x)≥g(x);当a≤﹣1时,由(1)知,g(x)在(0,x1)单调增,在(x1,+∞)单调减,,即所以,在(0,+∞)上,,又所以,即满足对∀x∈(0,+∞)恒有f(x)≥g(x)综上,实数a∈(﹣∞,﹣1].22.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD (1)求证:∠ACB=∠ACD;(2)若PA=3,PC=6,AM=1,求AB的长.(1)证明:∵P A为切线,∴∠PAB=∠ACB.∵PA∥BD,∴∠PAB=∠ABD=∠ACD,∴∠ACB=∠ACD…(2)解:已知PA=3,PC=6,AM=1,由切割线定理PA2=PB•PC得:,∵PA∥BD,得又知△AMB~△ABC,所以所以AB2=AM•AC=4,所以AB=223.在直角坐标系xOy中,曲线(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m(1)若m=0,判断直线l与曲线C的位置关系;(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.解:(1)曲线(α为参数),曲线C的直角坐标方程为:(x﹣1)2+(y﹣1)2=2,是一个圆;圆心(1,1),半径为:.直线l:ρsinθ+ρcosθ=0,可得直线l的直角坐标方程为:x+y=0圆心C到直线l的距离,所以直线l与圆C相切(2)由已知可得:圆心C到直线lx+y=m的距离,解得﹣1≤m≤524.已知函数f(x)=|x﹣4|+|x﹣a|(a∈R)的最小值为a(1)求实数a的值;(2)解不等式f(x)≤5.解:(1)f(x)=|x﹣4|+|x﹣a|≥|4﹣a|=a,从而解得a=2…(2)由(1)知,f(x)=|x﹣4|+|x﹣2|=,综合函数y=f(x)的图象知,解集为。

安徽2017年高考理科数学试题及答案解析(完整版)

安徽2017年高考理科数学试题及答案解析(完整版)
安徽 2017年高考理科数学试题及答案解析 (完整版 )
2017年高考全国卷1理科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
猜你喜欢:
2017年热点
店铺频道整理

高考结束后大家迫切的想知道高考答案出国留学网高考频道第一时间为您提供安徽2017年高考理科数学试题及答案解析完整版希望给大家提供帮助
安徽 2017年高考理科数学试题及答案解析(完整版)
高考结束后,大家迫切的想知道高考答案,店铺高考频道第一时间为您提供[安徽2017年高考理科数学试题及答案解析(完 整版)],希望给大家提供帮助!更多高考分数线、高考成绩查询、高考志愿填报、高考录取查询信息等信息请关注我们网站的更 新!

2017年高考真题全国2卷理科数学(附答案解析)

2017年高考真题全国2卷理科数学(附答案解析)

说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因
为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲
是优,则丁是良,丁肯定知道自已的成绩了
故选:D.
【点睛】
本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,
属于中档题. 8.B
2x + 3y − 3 ≤ 0 作出 2x − 3y + 3 ≥ 0 表示的可行域,如图,
y + 3 ≥ 0
2x + 3y − 3 =0 x = −6

可得

2x − 3y + 3 =0 y = −3
将=z 2x + y 变形为 y =−2x + z , 平移直线 y =−2x + z ,
由图可知当直 y =−2x + z 经过点 (−6, −3) 时,
4 − 2i
=2-i.
2
参考答案
故选 D. 【点睛】 这个题目考查了复数的除法运算,复数常考的还有几何意义,z=a+bi(a,b∈R)与复平面上
uuur 的点 Z(a,b)、平面向量 OZ 都可建立一一对应的关系(其中 O 是坐标原点);复平面内,实
轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地, 当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数 z 的共轭
a2 b2

得的弦长为 2,则 C 的离心率为
()
A.2
B. 3
C. 2
D. 2 3 3
10.已知直三棱柱 ΑΒC − Α1Β1C1 中, ∠ΑΒC = 120o, ΑΒ = 2 , ΒC= CC=1 1,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.等比数列 { an} 满足 an>0,且 a2a8=4,则 log2a1+log2a2+log2a3+…+log2a9= .
14.不共线向量 , 满足
,常数项为

16.已知关于 x 的方程( t+1)cosx﹣tsinx=t+2 在( 0,π)上有实根.则实数 t 的最大值是 .
5.若中心在原点,焦点在 y 轴上的双曲线离心率为 ,则此双曲线的渐近线方程为(

A .y=±x B.
C.
D.
6.等差数列 { an} 的前 n 项和为 Sn,且 S3=6,S6=3,则 S10=( )
A . B. 0 C.﹣ 10 D.﹣ 15
1
7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为(
3
(Ⅱ )求动点 M 的轨迹方程.
21.已知 f(x)=ln(x+m)﹣ mx. (Ⅰ )求 f(x)的单调区间; (Ⅱ )设 m>1,x1,x2 为函数 f( x)的两个零点,求证: x1+x2<0.
[ 选修 4-4:坐标系与参数方程 ] 22.在直角坐标系 xOy 中,以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系,圆 C 的 极坐标方程为 ρ=4cos.θ (1)求出圆 C 的直角坐标方程; (2)已知圆 C 与 x 轴相交于 A ,B 两点,直线 l:y=2x 关于点 M(0,m)(m≠ 0)对称的直线 为 l'.若直线 l'上存在点 P 使得∠ APB=90°,求实数 m 的最大值.
K0
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
19.如图 1,矩形 ABCD 中, AB=1 ,AD=2 ,点 E 为 AD 中点,沿 BE 将△ ABE 折起至△ PBE,
如图 2 所示,点 P 在面 BCDE 的射影 O 落在 BE 上.
进行分层抽样,抽取了 180 名学生对社会科学类,自然科学类这两大类校本选修课程进行选课
意向调查,其中男生有 105 人.在这 180 名学生中选择社会科学类的男生、女生均为 45 人.
(Ⅰ )分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,
估计实际选课中选择社会科学类学生数;
2017 年安徽省合肥市高考数学二模试卷(理科)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一 项是符合题目要求的 . 1.i 为虚数单位,若复数( 1+mi)(i +2)是纯虚数,则实数 m=( ) A .1 B.﹣ 1 C. D.2
2.已知 A= [ 1,+∞),
[ 选修 4-5:不等式选讲 ]
23.已知函数

(1)求函数 f(x)的定义域;
(2)若当 x∈[ 0, 1] 时,不等式 f( x)≥ 1 恒成立,求实数 a 的取值范围.
4
2017 年安徽省合肥市高考数学二模试卷(理科)
参考答案与试题解析
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一 项是符合题目要求的 . 1.i 为虚数单位,若复数( 1+mi)(i +2)是纯虚数,则实数 m=( )
﹣b)sinC,若
,则 b2+c2 的取值范围是(

A .(5,6] B.( 3, 5) C.( 3, 6] D.[ 5, 6] 12.已知函数 f (x)=xlnx ﹣aex(e 为自然对数的底数)有两个极值点,则实数
a 的取值范围是
()
A.
B.(0,e) C.
D.(﹣∞, e)
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
(Ⅰ )求证: BP⊥ CE; (Ⅱ )求二面角 B﹣ PC﹣ D 的余弦值. 20.如图,抛物线 E:y2=2px(p>0)与圆 O:x2+y2=8 相交于 A ,B 两点,且点 A 的横坐标为 2.过劣弧 AB 上动点 P( x0,y0)作圆 O 的切线交抛物线 E 于 C,D 两点,分别以 C,D 为切 点作抛物线 E 的切线 l 1,l 2,l 1 与 l2 相交于点 M . (Ⅰ )求 p 的值;
三、解答题(本大题共 5 小题,共 70 分 .解答应写出文字说明、证明过程或演算步骤 .)
2
17.已知

,函数 f (x)=

(Ⅰ )求函数 y=f (x)图象的对称轴方程;
(Ⅱ )若方程 f (x)= 在( 0,π)上的解为 x1,x2,求 cos(x1﹣ x2)的值.
18.某校计划面向高一年级 1200 名学生开设校本选修课程,为确保工作的顺利实施,先按性别
,若 A ∩B≠ ?,则实数 a 的取值范围是(

A .[ 1,+∞) B.
C.
D.(1,+∞)
3.已知变量 x,y 满足约束条件
,则目标函数 z=x﹣ 2y 的最小值为(

A .﹣ 1 B. 1 C.3 D.7 4.若输入 n=4,执行如图所示的程序框图,输出的 s=( )
A .10 B. 16 C.20 D.35
9.若平面 α截三棱锥所得截面为平行四边形,则该三棱锥与平面 α平行的棱有(

A .0 条 B. 1 条 C.2 条 D.1 条或 2 条
10.已知 5 件产品中有 2 件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为 ξ,
则 Eξ=( )
A .3 B. C. D.4
11.锐角△ ABC 中,内角 A ,B, C 的对边分别为 a,b,c,且满足( a﹣b)( sinA+sinB)=(c

A . B.
C. 28 D.
8.对函数 f( x),如果存在 x0≠0 使得 f(x0)=﹣f(﹣ x0),则称( x0,f(x0))与(﹣ x0,f(﹣ x0))为函数图象的一组奇对称点.若 f( x) =ex﹣ a( e 为自然数的底数)存在奇对称点,则实
数 a 的取值范围是(

A .(﹣∞, 1) B.(1,+∞) C.(e,+∞) D. [ 1,+∞)
(Ⅱ )根据抽取的 180 名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超
过 0.025 的前提下认为科类的选择与性别有关?
选择自然科学类 选择社会科学类
合计
男生
女生
合计
附:
,其中 n=a+b+c+d.
P(K 2≥k0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
相关文档
最新文档