24.1.1圆
24.1.1圆的性质ppt
2写.请出半还任圆是这是劣选条优弧一弦弧?条所弦对,劣弧:小于半圆的弧叫做劣弧.
的弧.
用两个字母表示,如
直径的两个端点间的弧叫半圆.
判断下列说法的正误 .
√ (1)直径是弦 √ (2)直径是最长的弦 × (3)过圆心的线段是直径 √ (4)弧是圆上两点间的部分 × (5)弧分为优弧、劣弧两种 × (6)半圆是最长的弧
点的集合叫做圆.
圆中有几条半径,它们都相等吗?
D
A
弦:连接圆上任意两点间的线段.
经过圆心的弦叫直径,是圆中最长的弦.
O
弧:圆上任意两点间的部分叫做圆弧,
简称弧.
B
C 以B、C为端点的弧记作 ,
1.请半写圆出图中所 有的弦;
读作“圆弧BC”或“弧BC”. 优弧:大于半圆的弧叫优弧.
用三个字母表示,如
D .可作无数个圆
如何才能确 定一个圆?
★半径不同、圆心相同 的两个圆叫同心圆.
★半径相同、圆心不同 的两个圆叫等圆.
如何才能确 定一个圆?
B
D
A
C
★半径不同、圆心相同
★半径相同、圆心不同
的两个圆叫同心圆.
的两个圆叫等圆.
确定圆的要素是:圆心、半径. 圆心:决定圆的位置.
半径:决定圆的大小.
在同圆或等圆中,能够 互相重合的弧叫做等弧.
请在练习本上画一个半径为2cm的圆.
A
定点O叫做圆心.
r
线段OA叫做圆的半径.
· O
表示以O为圆心的圆,
记做“⊙O”,读做“圆O”.
运动论 在同一平面内,线段OA绕它固定的一个端点O 旋转一周,另一端点A所形成的图形叫做圆.
1.圆上各点到定点(圆心O)的距离都等于定长(半径r) 2.到定点(圆心O)的距离都等于定长(半径r)的点都 在同一个圆上. 集合论 在同一平面内,到定点的距离等于定长的所有
24.1.1《圆的基本概念》ppt课件
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆.
B
O·
A
C
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的A⌒C) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的A⌒CB)
B
O·
A
C
1.如何在操场上画一个半径是5m的圆? 说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
议一议
小明和小强为了探究 ⊙O 中有没有最长的弦,经过 了大量的测量,最后得出一致结论,直径是圆中最 长的弦,你认为他们的结论对吗?试说说你的理由.
A
O
B
C
D
A
O
B
C
D
请将自己所画的圆与同伴所画的 圆进行比较, 它们是否能够完全重 合?并思考什么情况下两个圆能够完 全重合?半径相等的两个圆叫做等圆。
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
从画圆的过程可以看出什么呢?
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点的集合.
一端栓在柱子
上,另一端栓
着一只羊,请
6
画出羊的活动
区域.
圆是生活中常见的图形,许多物体都给我们以圆的形象.
硬
币
人民币
美元
英镑
如图,观察画圆的过程,你能由此说出圆的形成过程吗?
人教版九年级数学上册24.1.1《圆》说课稿
人教版九年级数学上册24.1.1《圆》说课稿一. 教材分析《圆》是人民教育出版社出版的九年级数学上册第24.1.1节的内容。
这部分内容是学生在学习了平面几何的基础上,进一步深入研究圆的性质和圆的方程。
本节内容主要包括圆的定义、圆的性质、圆的标准方程和圆的一般方程。
这部分内容在数学学习中占有重要的地位,不仅是中考的热点,也是学生进一步学习高中数学的基础。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何中的线段、角度等概念有一定的了解。
但是,圆作为一个特殊的几何图形,其性质和方程的推导对students 来说是一个挑战。
因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,理解和掌握圆的性质和方程。
三. 说教学目标1.知识与技能:学生能够理解圆的定义,掌握圆的性质,推导圆的标准方程和一般方程。
2.过程与方法:学生通过观察、思考、实践等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够体验到数学的美感,培养对数学的兴趣和热情。
四. 说教学重难点1.圆的性质的推导和理解。
2.圆的标准方程和一般方程的推导和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、实践等方式,自主学习和探索。
2.教学手段:利用多媒体课件,进行动画演示和实例分析,帮助学生直观地理解和掌握圆的性质和方程。
六. 说教学过程1.引入:通过展示生活中的圆形物体,引导学生思考圆的特点和性质。
2.圆的定义:引导学生通过观察和思考,得出圆的定义。
3.圆的性质:引导学生通过实践和观察,推导出圆的性质。
4.圆的方程:引导学生通过思考和实践,推导出圆的标准方程和一般方程。
5.应用:通过实例分析,引导学生运用圆的性质和方程解决实际问题。
七. 说板书设计板书设计主要包括圆的定义、圆的性质、圆的标准方程和一般方程。
通过板书,帮助学生理解和记忆圆的相关知识。
八. 说教学评价教学评价主要包括对学生知识的掌握程度、能力的培养程度和情感态度的培养程度。
九年级数学人教版(上册)24.1.1圆课件
D
F
O
B
I
E
A
⌒ ⌒ ACD ACF
⌒⌒
AC AE
C
⌒⌒
ADE ADC
⌒
AF
⌒
A
D
课堂小结
课堂小结
1.圆的定义、圆的表示方法及确定一个圆的两个基本要素. 2.掌握圆的相关概念: (1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧.
重点: 1.直径是最长的弦! 2.等圆:两个圆能够完全重合 3.等弧:能够完全重合的弧。(所在的圆的半径相等!) 4.劣弧长度<半圆长度<优弧长度 5.圆上各点到定点(圆心O)的距离都等于定长(半径r) 6.到定点的距离等于定长的点都在同一个圆上.
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋
转一周,另一个端点A所形成的图形叫做圆.
Oo rr AA
固定的端点O叫做圆 心 线段OA叫做半径
确定圆心 确定半径大小
以点O为圆心的圆,记“⊙O”, 读作“圆O”.
确定一个圆的 两个要素
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都 AA
作业布置
如图,在Rt△ABC和Rt△ABD中,∠C=90°, ∠D=90°, 点O是AB的中点.
求证:A、B、C、D四个点在以点O为圆心的 同一圆上.
A O
C
BDBiblioteka 等于定长(半径r);r
(2)到定点的距离等于定长的点
都在同一个圆上.
r OO r
BC
CB
判断几个点是否在同一个圆上。
归纳:圆心为O、半径为r的圆可以看成是: 所有到定点O的距离等于定长r的点组成的图形.
圆的两种定义
24.1.1圆的定义与相关概念
24.1.1圆的定义及有关概念 一、学习目标1、探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别;2、体会圆的不同定义方法,感受圆和实际生活的联系二、自学指导问题一:你接触过圆吗?生活中哪些物品是圆形的呢?你知道有关于圆的哪些知识呢?总结:(1)圆的描述性定义:在一个平面内,线段绕它的固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作⊙O ,读作“圆O”.说明:“圆”指的是“圆周”,而不是“圆面”.(2)圆的集合性定义: 圆可以看作是到定点的距离等于定长的所有点的集合.问题二:等圆和同心圆等圆:半径相等的圆叫做等圆同心圆:圆心相同半径不等的圆叫做同心圆问题三:弦、弧、直径弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆. 优弧:大于半圆的弧叫作优弧,用三个字母表示,如上图中的ABC ;劣弧:小于半圆的弧叫作劣弧,如上图中的BC .三、互动研讨:☆☆1. 如图,请用正确的方式表示出以点A 为端点的优弧及劣弧.FE DC B AO IA B C O☆☆☆2.矩形ABCD 的对角线AC 、BD 相交于点O ,求证:A 、B 、C 、D 四个点都在以点O 为圆心的圆上.☆☆3.如下图所示,回答问题:(1)请写出图中所有的弦;(2)请任选一条弦,写出这条弦所对的弧;(3)若∠ABC=30°,你能求出哪些角的度数?四、课堂练习:☆☆4. 判断:(1)直径是弦. ( )(2)弦是直径. ( )(3)半圆是弧,但弧不一定是半圆.( )(4)半径相等的两个半圆是等弧. ( )☆☆5.下列说法中,结论错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧☆☆☆6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC的度数为( )A .15° B. 30° C. 45° D .60° ☆☆☆7. 平面上一点P 到⊙O 上一点的距离最长为6 cm ,最短为2 cm ,则⊙O 的半径为 .☆☆☆8. 如图,在⊙O 中,AB 是⊙O 的直径,点P 是OB 上的任一点(不与O 、B 两点重合),CD 、EF 是过点P 的两条弦,则图中的弦和以点B 为端点的劣弧分别有( ) A.3条,4个 B.4条,4个 C.5条,5个 D.5条,6个 A B C D E F P O。
24.1.1 圆
24.1.1 圆
课堂小结
ቤተ መጻሕፍቲ ባይዱ
同心圆
旋转定义
定义
圆
同圆
有关 概念
等圆
集合定义
弦(直径) 劣弧
弧 半圆 优弧
等弧
能够互相重合的两段弧
要画一个确定的 圆,关键是 确定圆心和半径
同圆半径相等
直径是圆中 最长的弦
半圆是特殊的弧
谢 谢 观 看!
D
B
F
O
E
A
C
24.1.1 圆 思维拓展
如图,C是以点O为圆心,AB为直径的半圆上一点,且 CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且 点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发 现连接图中已知点得到两条线段,便可证明IG=FD.请回 答:小云所作的两条线段分别是___O_H____和__O__E____.
(2)到定点的距离等于定长的点都在同一个圆上. 动态:在一个平面内,线段OA绕它固定的一个端点O旋转一周,
另一个端点A所形成的图形叫做圆. 静态:圆心为O、半径为r的圆可以看成是所有到定点O的距离等
于定长r的点组成的图形.
24.1.1 圆
小组交流:请解释车轮为什么设计成圆形.
圆的半径相等
.
圆心到地面的距离相等
端点的弧记作 AB ,读作“圆弧AB”或“弧AB”.
➢半圆 圆的任意一条直径的两个端点把圆分成 两条弧,每一条弧都叫做半圆.
➢劣弧与优弧 小于半圆的弧叫做劣弧.如图中的AC ; 大于半圆的弧叫做优弧.如图中的ABC.
B ·O
A
C
B ·O
A
C
24.1.1 圆
圆心O
半径OO′
24.1.1圆(1)圆的概念课件人教版数学九年级上册
同心圆:圆心相同,半径不同的两个 圆叫做同心圆
半径是弦吗?
连接圆上任意两点的线段
圆 弦: (如图中的AC)叫做弦.
A
的 经过圆心的弦(如图中的AB)叫做直径. 有
关 注意 1.弦和直径都是线段.
概 2.直径是弦,是经过圆心的特殊弦,是圆中
念 最长的弦,但弦不一定是直径.
·O
C
B
((
(
圆弧: 的
圆上任意两点间的部分叫做圆弧,简弧.
探究:走进圆
1、请同学们用圆规在草稿纸上画一个圆 2、量一量自己刚才所画的圆上任意一
点到定点的距离是否相等?
看 视 频 找 发 现
通过观看该视 频发现了什么?
发现马在吃草的 过程中所运动的 轨迹是一个圆
归
圆的形成性定义(动态定义):如图,在一个平面内,线段 OA 绕它
固定的一个端点 O 旋转一周,另一个
A.1个 B.2个 C.3个 D.4个
重要结论:确定圆的 两要素:圆心和半径 (即确定一个圆必须 有两个条件,即圆心 和半径,只满足一个 条件或不满足任何一 个条件的圆都有无数 个)
1、下列说法错误的是( B )
A.直径是圆中最长的弦
B.长度相等的两条弧是等弧
C.面积相等的两个圆是等圆 D.半径相等的两个半圆是等弧
·O C
的
合的弧叫做等弧.
有
关
注意 1.等弧只能出现在同圆或等圆中;
概
2.等弧是全等的,而不仅仅是弧的长
念 度相等.
·O1 C
题型:利用圆的有关概念判断命题的正确性
例题3 下列语句中正确的有( C )
①直径是弦; ②弦是直径; ③半径相等的两个半圆是等弧; ④长度相等的两条弧是等弧; ⑤半圆是弧,弧不一定是半圆.
24.1.1圆的概念(优秀课件)
如图,已知CD是⊙O 的直径,∠EOD=78° , AE交⊙O于点B,且 AB=OC,求∠A的度数 。
E B D O O C A
反思总结
本节课你有哪些收获?
课堂小结
形成性定义: 在一个平面内,线段OA绕它固定的一个端点O旋 转一周,另一个端点A所形成的图形叫做圆. 圆的定义 集合性定义: 圆心为O、半径为r的圆可以看成是所有到定点O 圆 的距离等定长r的点的.
1 OB=OD= BD 2
2
又
∵AC=BD ∴OA=OB=OC=OD
∴A、B、C、D在以O为圆心以OA为半径的圆上。 矩形--四点共圆.
综合应用
1.已知:如图,在△ABC中,∠C=90°
,求证:A、B、C三点在同一个圆上.
证明:作AB的中点O,连接OC. ∵△ABC是直角三角形. ∴OA=OB=OC=
1 2 AB.
∴A、B、C三点在同一个圆上.
2.已知:如图,在⊙O中,AB为弦,C、
D两点在AB上,且AC=BD. 求证:OC=OD.
拓展延伸
3.求证:直径是圆中最长的弦.
证明:如图,在⊙O中,AB是⊙O的直径,
半径是r.
CD是不同于AB的任意一条弦. 连接OC、OD, 则OA+OB=OC+OD=2r,即AB=OC+OD.
6 如图,半径有:______________ OA 、 OB 、 OC B
若∠AOB=60°,
O
●
等边 则△AOB是 _____三角形.
7 如图,弦有:______________ AB BC AC
C
在圆中有长度不等的弦,
直径是圆中最长的弦。
⌒ ⌒ BC AB (8)如图,弧有:______________
人教版九年级上24.1.1圆(教案)
其次,在讲解切线和割线时,我发现学生们对这两个概念容易混淆。为了帮助学生区分,我计划在下节课中增加一些图示和实物操作,比如用绳子模拟切线和割线,让学生亲自感受两者的不同。通过这样的实践活动,我相信学生们能够更清晰地理解这些几何关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对圆的概念和性质掌握得还不错,但在圆的方程和切线割线的理解上存在一些困难。这让我意识到,需要从以下几个方面进行反思和调整。
我还注意到,在小组讨论环节,有些学生参与度不高,可能是由于主题不够吸引他们或者他们对自己的观点不够自信。为了提高学生的参与度,我打算在下次讨论前,先给学生提供一些背景资料和思考问题,激发他们的兴趣,并在讨论过程中给予更多的鼓励和支持。
另外,实践活动虽然能够帮助学生加深对圆的理解,但我也发现有些学生在操作过程中关注了操作本身,却忽略了背后的数学原理。因此,我计划在下次实践活动中,增加一些引导性的问题和任务,让学生在动手操作的同时,思考这些操作与圆的性质和公式之间的联系。
-圆的面积与周长计算:掌握面积和周长的公式,是实际应用中必不可少的技能。
举例:圆以及如何根据实际问题的条件建立圆的方程。
2.教学难点
-圆的方程理解:学生需要理解方程背后的几何意义,以及如何将实际问题转化为方程求解。
人教版初中数学九年级上册精品教学课件 第24章 圆 24.1.1 圆
快乐预习感知
1成的图形叫做 圆 .其固定的端点O叫做 圆心 ,线
段OA叫做 半径 .以点O为圆心的圆,记作 ☉O ,读作
“ 圆O ”.
无数
2.以2 cm为半径可以画 无数
个圆;以O为圆心可以画_____
1
个圆;以O为圆心,以2 cm为半径可以画
快乐预习感知
4.下列说法:①直径是弦;②弧是半圆;③经过圆内一点可以作无
数条弦;④等弧的长度相等;⑤半径相等的圆是等圆,其中正确的
是 ①③④⑤ .(填序号)
5.如图,在☉O中,AB是☉O的直径,点P是OB上的任一点(不与O,B
重合),CD,EF是过点P的两条弦,则图中的弦有 AB,CD,EF ,以B为
)
A.2
B.3
C.4
D.5
关闭
B
答案
快乐预习感知
1
2
3
4
5
3.已知圆的半径为3,则弦AB长度的取值范围是
.
关闭
0<AB≤6
答案
快乐预习感知
1
2
3
4
5
4.如图,AB,CD是☉O的弦,OC,OD是☉O的半径,则以A为端点的劣
弧是
;若 与 是等弧,则 =
.
关闭
, ,
相等的特征来说明.
快乐预习感知
1
2
3
4
5
1.在平面直角坐标系中,以原点O为圆心,5为半径作圆,下列各点一
定在该圆上的是(
)
A.(2,3) B.(4,3)
C.(1,4) D.(2,-4)
关闭
B
答案
快乐预习感知
1
2
24.1.1 圆
4.顺次连接圆内两条相交直径的4个端点,围成的四边形一定是( )
(A)梯形 (B)菱形 (C)矩形 (D)正方形 C
5.如图,AB是☉O的直径,点C,D在☉O上,∠BOC=110°,AD∥OC,则∠AOD等于( D )
(A)70°(B)60°
(C)50°(D)40°
6.下列语句中,正确的有( ) ①相等的圆心角所对的弧相等A ;
类型二:圆的定义应用 例2 如图,四边形ABCD是正方形,对角线AC,BD交于点O. 求证:点A,B,C,D在以O为圆心的圆上.
证明:∵四边形ABCD是正方形, ∴OA=OB=OC=OD, ∴点A,B,C,D在以O为圆心的圆上.
【方法技巧】 圆可以看作是到定点的距离等于定长的点的集合.
1.下列命题中,其中正确的有( A )
(2)圆的静态定义:到
的距离等于
的点的集合.
定点
定长
2.与圆的有关概念
(1)弦:连接圆上任意两点的 线段 叫做弦,
直径:经过圆心的 弦 叫做直径.
直径:经过圆心的 弦 叫做直径.
(2)弧:
任意两点间的部分叫做圆弧,简称弧.半圆:圆的任意一条
半圆.
弧
的两 直径
优弧: 大于 半圆的弧叫做优弧.用 三 个点表示,如图中 是优弧.
⑦等弧的长度相等
【规律总结】 直径是圆中经过圆心的特殊的弦,是最长的弦,并且等于半径的2倍, 是在研究圆的问题中出现次数最多的重要线段,但弦不一定是直径,过圆上一点和圆 心的直径有且只有一条;半圆是弧,而弧不一定是半圆;“同圆”是指圆心相同,半径 相等的圆,“同心圆”“等圆”指的是两个圆的位置、大小关系;判定两个圆是否是 等圆,常用的方法是看其半径是否相等,半径相等的两个圆是等圆;“等弧”是能够 互相重合的两条弧,而长度相等的两条弧不一定是等弧.
人教版九年级数学上册24.1.1《圆》教学设计
人教版九年级数学上册24.1.1《圆》教学设计一. 教材分析人教版九年级数学上册24.1.1《圆》是学生在学习了直线、射线、平面图形等知识的基础上,进一步学习圆的相关概念、性质和运算。
本节课的内容包括圆的定义、圆心和半径、圆的直径、弧、弦等概念,以及圆的周长和面积的计算。
这些知识是学生今后学习圆的进一步应用和解决实际问题的重要基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于平面图形的性质和运算有一定的了解。
但是,对于圆的相关概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对于圆的周长和面积的计算公式记忆不牢,需要在课堂上进行强化训练。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径、圆的直径、弧、弦等概念,学会计算圆的周长和面积。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:圆的定义,圆心和半径、圆的直径、弧、弦等概念,圆的周长和面积的计算。
2.难点:圆的周长和面积的计算公式的记忆和应用。
五. 教学方法1.情境教学法:通过实物和图形的观察,引导学生发现圆的性质和特点。
2.问题驱动法:通过提问和讨论,激发学生的思考,引导学生自主探究。
3.合作学习法:分组进行讨论和实践,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:圆规、直尺、圆形的实物和图片。
2.课件:圆的相关概念和性质的图片,圆的周长和面积的计算公式的动画演示。
七. 教学过程1.导入(5分钟)教师通过展示圆形的实物和图片,引导学生观察和描述圆的特点,从而引出圆的定义。
2.呈现(10分钟)教师通过课件展示圆心和半径、圆的直径、弧、弦等概念的图片,引导学生理解和记忆这些概念。
3.操练(10分钟)教师提出问题,引导学生用圆规和直尺进行实际的操作,如画圆、测量圆的直径和半径等,巩固对圆的概念的理解。
24.1.1圆
一、圆的概念
在一个平面内,线段OP绕它固定的一个端点O旋转 一周,另一个端点P所形成的图形叫做圆.
固定的端点O叫做圆心 线段OP叫做半径
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
确定一个圆的要素:
一是圆心, 圆心确定其位置,
二是半径,
半径确定其大小.
O
A
问题:
1、圆上各点到定点(圆心O)的距
圆是一种基本的几何图形, 圆形物体在生活中随处可见。 圆也是一种和谐、美丽的图形,无 论从哪个角度看,它都具有同一形状。 十五的满月、圆圆的月饼都象征着圆满、 团圆、和谐。 古希腊的数学家毕达 哥拉斯认为:“一切立体图 形中最美的是球,一切平面 图形中最美的是圆”。
24.1.1 圆
莲塘中心学校 李金红
谈谈你的收获?
1、圆的概念: 2、与圆有关的概念: 弦: 弧: 等圆(弧):
你还有什么收获?
作业
一、必做题
1、教材80页练习第2题 2、87页习题24.1第1题
二、选做题
如 图 , 一 根 5m 长的绳子,一 端栓在柱子上 , 另一端栓着一 头牛,请画出 牛的活动区 域 。
5
O
·
C
A
等圆
能够重合的两个圆是等圆。 容易看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
等弧
E O1
F
·
B
O2
·
D
A
C
在同圆或等圆中,能够互相重合的弧叫做等弧。
同心圆
同心圆:圆心相同而半径不等的两个圆或多个圆。
练一练
一、判断下列说法的正误:( Nhomakorabea)弦是直径;( (2)半圆是弧;
第一课时24.1.1圆的概念
已知:⊙O的半径OA、OB分别交弦CD 于点E、F, 且CE=DF 求证:△OEF是等腰三角形.
已知:CD为⊙O的直径,∠EOD=72。 AE交⊙O于点B,且AB=OC
求:∠2的度数 240
利用圆的半径都相等,连接圆心与圆周上的点,构造 等腰三角形是解题的关键。
如图,AB是⊙O的弦,过圆心O
作OC⊥AB于C,OC有什么特点?
(1)过圆心; (2)垂直弦。 A C B O
弦心距的定义: 归纳:
圆心到弦的距离叫做弦心距。
A C
B
O
与圆有关的概念:弧
圆上任意两点间的部分叫做圆弧,简称
弧.以 A、B 为端点的弧记作 AB ,读作 “圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成 两条弧,每一条弧都叫做半圆. B
。 ● ● ●。
O
B
判 断:
(1)半圆是弧,但弧不是半圆。( (2)过圆上任意一点只能作一条弦, 且这条弦是直径。( ) ) )
(3)弦是直径,但直径不是弦。(
(4)直径是圆中最长的弦。(
)
九年级
上册
24.1 圆的概念与有关性质
观察画圆的过程,你能由此说出圆的形成 过程吗?
A
动手画一画:
请你用圆规画一个圆
r · O
圆的概念
在一个平面内,线段OA绕它固定的一个端 点O旋转一周,另一个端点A所形成的图形叫做 圆.固定的端点O叫做圆心,线段OA叫做半径.
以点O为圆心的圆,记作“⊙O”,读作“圆 O”.
连接圆上 任意 两点的线段叫做弦,经过 圆心的 弦 叫做直径。
凡直径都是弦,是圆中最长的弦,但弦 不一定是直径.
(1)下列说法中,正确的是( B )。 ①线段是弦; ②直径是弦; ③经过圆心的弦是直径;
人教版九年级数学上册24.1.1《圆》教学设计
c.画一个直径为8cm的圆,并标出圆心、半径、弦和弧。
-通过这些基础题目的练习,使学生熟练掌握圆的周长和面积的计算方法。
2.应用拓展题:
-设计一道实际生活中的问题,让学生运用圆的知识解决:
例如:某公园要建一个直径为10米的圆形花坛,花坛的边缘要用一条宽度为0.5米的道路包围。求这条道路的面积。
-教师进行点评,强调重点知识,指出学生在学习过程中需要注意的问题。
-鼓励学生将所学知识运用到实际生活中,激发学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学的圆的相关知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据教材课后练习,完成以下题目:
a.求半径为5cm的圆的周长和面积。
4.小组合作题:
-分成小组,共同完成以下任务:
a.收集并分享生活中的圆形物体及其应用。
b.讨论圆的性质在实际问题中的应用,如圆形建筑设计、圆形交通标志等。
-通过小组合作,培养学生的团队协作能力和交流表达能力。
作业要求:
1.学生需独立完成作业,要求字迹清楚、步骤齐全。
2.家长需关注学生的学习情况,鼓励学生主动思考和解决问题。
-圆的周长和面积的计算公式。
2.教学活动设计:
-通过动态演示和实物操作,让学生直观地理解圆的基本概念。
-结合几何画板等教学工具,引导学生探究圆的性质,并用自己的语言进行描述。
-讲解圆的周长和面积计算公式,通过例题讲解,让学生掌握计算方法。
(三)学生小组讨论
1.教学内容:
-探讨圆在实际生活中的应用,如圆形建筑、圆形交通标志等。
3.教师将对作业进行批改和反,关注学生的进步和存在的问题,为下一步教学提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O1
判断题
圆心相同,半径相等的两个圆是同心圆;
半径相等的两个圆是等圆.
用一用
如图,一 根5m长的绳子, 一端栓在柱子 上,另一端栓 着一只羊,请 画出羊的活动 区域.
5
5m
4m
o
5m
4m
o
正确答案
用一用
如图,一 根6m长的绳子, 一端栓在柱子 上,另一端栓 着一只羊,请 画出羊的活动 区域.
6
静态:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.
把车轮做成圆形,车轮上各点到车 轮中心(圆心)的距离都等于车轮的半 径,当车轮在平面上滚动时,车轮中心 与平面的距离保持不变,因此,当车辆 在平坦的路上行驶时,坐车的人会感觉 到非常平稳,这也是车轮都做成圆形的 数学道理.
议一议
小明和小强为了探究 ⊙O 中有没有最长的弦,经过 了大量的测量,最后得出一致结论,直径是圆中最 长的弦,你认为他们的结论对吗?试说说你的理由.
A
O
B
A
O
B
C
D
C
D
请将自己所画的圆与同伴所画的 圆进行比较, 它们是否能够完全重
合?并思考什么情况下两个圆能够完
全重合? 半径相等的两个圆叫做等圆。 r r O2
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆.
B O
·
C
A
劣弧与优弧 小于半圆的弧叫做劣弧.
大于半圆的弧叫做优弧.
(如图中的AC)⌒来自⌒ (用三个字母表示,如图中的ACB)
B O
·
C
A
1.如何在操场上画一个半径是5m的圆? 说出你的理由 首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
知识剖析
鼎屏镇中:熊建兵
学习目标 了解圆的有关概念,理 解垂径定理并灵活运用 垂径定理及圆的概念解 决一些实际问题.
二、指导自学
认真看课本P78-P79练习前的内容: 回答 1.举出生活中的圆三、四个. 2.你能讲出形成圆的方法有多少种? 3:图上各点到定点(圆心O)的距 离有什么规律? 4:到定点的距离等于定长的点又有 什么特点?
B
I
D F A O
E C
⌒ ⌒ ⌒ ACD,ACF,ADE,ADC
⌒ ⌒ ⌒⌒ AC,AE,AF,AD
⌒
1、请写出图中所有的弦; 2、请任选一条弦,写出这条弦所对的弧;
A
B
O D
C
想一想
判断下列说法的正误:
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦;
圆是生活中常见的图形,许多物体都给我们以圆的形象.
硬
币
人民币
美圆
英镑
如图,观察画圆的过程,你能由此说出圆的形成过程吗?
三、圆的概念
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
O
r
·
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
线段OA叫做半径
以点O为圆心的圆,记作“⊙O”, 读作“圆O”.
从画圆的过程可以看出什么呢?
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的图 形叫做圆.
根据圆的形成定义
2 你见过树木的年轮吗?从树木的年轮,可以很清楚 的看出树木生长的年龄,如果一棵20年树龄的红杉 树的树干直径是23cm,这棵红杉树的半径每年增加 多少?.
解: 23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增加0.575cm
如图,请以正确的方式表示出以点A为端点的优弧及劣弧.
与圆有关的概念
弦
连接圆上任意两点的线段(如图AC) 叫做弦, 经过圆心的弦(如图中的AB)叫做直径.
B
注意:
1、弦和直径都是线段。 2、直径是弦,是经过圆心的特殊 弦,是圆中最长的弦但弦不一定 是直径.
O
·
C
A
弧
圆上任意两点间的部分叫做圆弧,简称弧.以A、B ⌒ 为端点的弧记作 AB ,读作“圆弧AB”或“弧 AB”.