第7章 机械系统动力学第二版
第七章 机械系统的动力学分析
§7-2 单自由度机械系统动力学分析
3、等效动力学模型的意义
等效力学模型
等效构件 + 等效质量(转动惯量) + 等效力(力矩)
Je
Me
注意: 、、S、V是某构件的真实运动;
Me是系统的等效力矩;
Je是系统的等效转动惯量。
Fe
me
ve
Fe是系统的等效力; me是系统的等效质量。
例题:图示机构。已知z1=20,J1;z2=60,质量中心在B点,
§7-1 概 述
机构力分析的目的和方法
目的: 1)求驱动力。用以确定所需功率,选择合适的电动机。
2)求生产阻力。根据原动件上驱动力的大小,确定机
械所能克服的生产阻力。 3)求机构运动副中的反力。该力大小和性质是零件设
计计算和强度计算的重要依据。
方法:图解法和解析法
§7-1 概 述
二、机械的运转过程 机械运转中的功能关系 Wd - Wc = E2 – E1 其中:Wc = Wr+ Wf 1、 起动阶段: ω=0,↗ωm , 则:E1 =0,↗E2, W= E=E2-E1 >0 故:Wd > Wc = Wr +Wf 主动件作加速运动。
启
动
Wd-Wc=E2-E1>0
稳定运行
Wd-Wc=E2-E1=0
停
车
原动件速度从正常工作速 度值下降到零
Wd-Wc=E2-E1<0
§7-2 单自由度机械系统动力学分析
为了便于讨论机械系统在外力作用下作 功和动能变化,将整个机械系统多个构件运
动问题根据能量守恒原理转化成对某个构件
的运动问题进行研究。为此引入等效转动惯
等效力可以根据等效前后功率相等的原则求取。
《机械系统动力学》课件
数值模拟法的缺点是计算量大,计算时间长,且需要较高的数学建模 和数值计算能力。
解析法
01 02 03 04
解析法是通过数学解析的方法来求解机械系统动力学问题的方法。
解析法需要建立系统的数学模型,利用数学解析的方法求解模型的微 分方程或差分方程,以获得系统的解析解。
解析法的优点是能够获得系统的精确解,具有较高的理论价值。
实验研究法的优点是能够直接获取系统的实际动 力学行为,具有较高的真实性和可靠性。
数值模拟法
01
数值模拟法是通过计算机数值计算来模拟机械系统的动态行为的方法 。
02
数值模拟法需要建立系统的数学模型,利用数值计算方法求解模型的 微分方程或差分方程,以获得系统的动态响应。
03
数值模拟法的优点是能够模拟复杂系统的动态行为,具有较高的灵活 性和可重复性。
动能定理
总结词
描述物体动能变化的定理
详细描述
动能定理指出,一个物体动能的改变等于作用力对物体所做的功。这个定理是能 量守恒定律在动力学中的表现,是分析机械系统运动状态的重要工具。
势能定理
总结词
描述物体势能变化的定理
详细描述
势能定理指出,一个物体势能的改变等于作用力对物体所做的负功。这个定理可以帮助我们分析机械系统的运动 状态,特别是当物体受到重力的作用时。
CHAPTER 04
机械系统动力学的研究方法
实验研究法
实验研究法需要设计和搭建实验装置,对系统 施加激励并采集响应数据,通过分析数据来揭
示系统的动态特性。
实验研究法的缺点是实验成本较高,实验条件难以控 制,且实验结果可能受到实验误差和环境因素的影响
。
实验研究法是通过实验测试和观察机械系统的 动态行为,以获取系统的动力学特性和性能参 数的方法。
机械系统动力学
机械系统动力学:《机械系统动力学》是清华大学出版社出版,杨义勇编著的机械专业书籍。
全书共9章。
介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述了刚性机械系统的动力学分析与设计,含弹性构件的机械系统的动力学,含间隙副机械的动力学,含变质量机械系统动力学以及机械动力学数值仿真数学基础与相关软件。
本书可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。
目录:第1章绪论1.1 机械系统中常见的动力学问题1.2 解决机械动力学问题的一般过程1.3 机械系统的动力学模型1.3.1 刚性构件1.3.2 弹性元件1.3.3 阻尼1.3.4 流体润滑动压轴承1.3.5 机械系统的力学模型1.4 建立机械系统的动力学方程的原理与方法1.4.1 牛顿第二定律1.4.2 达朗贝尔原理1.4.3 拉格朗日方程1.4.4 凯恩方程1.4.5 影响系数法1.4.6 传递矩阵法1.5 动力学方程的求解方法1.5.1 欧拉法1.5.2 龙格?库塔法1.5.3 微分方程组与高阶微分方程的解法1.5.4 矩阵形式的动力学方程1.6 机械动力学实验与仿真研究第2章刚性机械系统动力学2.1 概述2.2 单自由度机械系统的动力学模型2.2.1 系统的动能2.2.2 广义力矩的计算2.2.3 动力学方程2.3 不同情况下单自由度系统的动力学方程及其求解方法2.3.1 等效转动惯量和广义力矩均为常数2.3.2 等效转动惯量为常数,广义力矩是机构位置的函数2.3.3 等效转动惯量为常数,广义力矩为速度的函数2.3.4 等效转动惯量是位移的函数,等效力矩是位移和速度的函数2.3.5 等效转动惯量是位移的函数2.4 基于拉格朗日方程的多自由度机械系统建模方法2.4.1 系统的描述方法2.4.2 两自由度五杆机构动力学方程2.4.3 差动轮系的动力学方程2.4.4 开链机构的动力学方程2.5 具有力约束的两自由度系统的动力学方程2.6 凯恩方法及其应用第3章刚性平面机构惯性力的平衡3.1 机械系统中构件的质量替代3.1.1 两点静替代3.1.2 两点动替代3.1.3 广义质量静替代3.2 机构平衡的基本条件与平衡方法3.2.1 机构总质心的位置3.2.2 机构的惯性力和惯性力矩在坐标轴上的分量3.2.3 平面机构惯性力和惯性力矩的平衡条件3.2.4 平面机构的惯性力的平衡方法3.3 机构惯性力平衡的质量替代法3.3.1 含转动副的机构惯性力平衡3.3.2 含移动副的广义质量替代法3.4 机构惯性力平衡的线性独立向量法3.4.1 平衡条件的建立与平衡量的确定3.4.2 用加重方法完全平衡惯性力需满足的条件3.4.3 使惯性力完全平衡应加的最少平衡量数3.5 机构惯性力的部分平衡法3.5.1 用回转质量部分平衡机构的惯性力与最佳平衡量3.5.2 用平衡机构部分平衡惯性力3.6 在机构运动平面内的惯性力矩的平衡3.6.1 机构惯性力矩的表达式3.6.2 任意四杆机构的惯性力矩3.6.3 惯性力平衡的四杆机构的惯性力矩3.6.4 惯性力矩平衡条件3.6.5 用平衡机构平衡惯性力矩第4章含弹性构件的机械系统动力学分析与设计4.1 概述4.2 考虑轴扭转变形时传动系统动力学分析4.2.1 串联传动系统的等效力学模型4.2.2 串联齿轮传动系统的动力学方程4.2.3 用振型分析法研究无外力作用时系统的自由振动4.2.4 有外力作用时的振动分析4.2.5 传递矩阵法在传动系统扭转弹性动力学分析中的应用4.3 含弹性构件的平面连杆机构的有限元分析法4.3.1 单元坐标和系统坐标4.3.2 系统力和单元力4.3.3 单元位移函数4.3.4 单元动力学方程4.4 含弹性从动件的凸轮机构4.5 含多种弹性构件机构的机械系统4.6 考虑构件弹性的机构设计4.6.1 特定运动规律下的凸轮机构设计4.6.2 高速凸轮运动规律设计4.6.3 高速平面连杆机构设计第5章挠性转子的系统振动与平衡5.1 转子在不平衡力作用下的振动5.1.1 刚性转子在弹性支承上的振动5.1.2 挠性转子在刚性支承上的振动5.1.3 挠性转子在弹性支承上的振动5.2 单圆盘挠性转子的振动5.2.1 转子的自由振动5.2.2 转子有不平衡时的不平衡响应5.2.3 圆盘运动的动坐标表示法5.3 多圆盘挠性转子的振动5.3.1 多圆盘转子的动力学方程5.3.2 多圆盘转子的临界速度和振型5.3.3 多圆盘转子的不平衡响应5.4 具有连续质量的挠性转子振动5.4.1 自由振动的自然频率和振型函数5.4.2 不平衡响应分析5.5 复杂转子系统动力学分析5.5.1 复杂转子系统的力学模型5.5.2 传递矩阵5.5.3 状态向量间的传递关系5.5.4 自然频率和振型的求解5.5.5 系统的强迫振动5.5.6 不平衡响应计算5.5.7 系统阻尼影响5.6 挠性转子平衡原理5.7 挠性转子平衡方法5.7.1 振型平衡法5.7.2 影响系数法5.7.3 平衡量的优化第6章含间隙运动副的机械系统动力学6.1 采用连续接触间隙副模型的机械运动精度分析——小位移法6.1.1 转动副和移动副中的间隙6.1.2 用小位移法确定机构位置的误差6.2 采用连续接触间隙副模型的机械动力学分析6.2.1 机构运动分析6.2.2 动力学方程6.2.3 方程的求解6.2.4 铰销力及输出角误差6.3 采用两状态间隙移动副模型的机械动力学分析6.3.1 两状态间隙移动副的力学模型6.3.2 动力学方程6.3.3 方程的求解6.4 采用两状态间隙转动副模型的机械动力学分析6.4.1 间隙转动副模型的建立6.4.2 动力学方程6.4.3 方程的求解6.4.4 计算步骤6.5 间隙对机械动力学性能的影响6.5.1 两状态间隙模型6.5.2 动力学方程6.5.3 方程求解结果与实验结果第7章含变质量构件的机械系统7.1 变质量质点运动的基本方程7.2 变质量构件的动力学方程7.2.1 变质量刚体的动力学方程7.2.2 由相对运动产生的变质量构件的动力学方程7.3 能量形式的变质量构件的动力学方程7.3.1 以能量形式表示的动力学方程7.3.2 动能的计算7.4 含变质量构件的单自由度系统的动力学分析7.4.1 含变质量构件机械系统分析7.4.2 等效力与等效转动惯量7.4.3 能量形式的动力学方程第8章机械系统动力学数值仿真算法基础8.1 概述8.2 数值积分方法8.3 常微分方程的数值解法8.4 齐次方程与非齐次方程的解8.5 矩阵迭代法8.6 算法程序第9章机械系统动力学仿真软件与实例9.1 ADAMS动力学建模与仿真9.1.1 软件简介9.1.2 动力学问题的求解方法与坐标系9.1.3 ADAMS的建模与求解过程9.1.4 ADAMS仿真分析模块9.2 Pro/E动态仿真与工程分析9.2.1 集成运动模块9.2.2 机构运动与有限元法分析9.3 机械系统仿真分析实例9.3.1 具有冗余自由度机械臂的构型优化9.3.2 粗糙表面磨削机械臂的动力学仿真图书内容:《机械系统动力学》内容是集20多年的课程教学经验,在唐锡宽和金德闻1984年编写的《机械动力学》一书的基础上进行体系变更、内容更新、扩充和改写后编著而成的。
《机械基础(少学时)(第2版)》电子教案 第7章
上一页
返回
表 7-1
返回
表 7-2
返回
图 7-1
返回
表 7-3
返回
表 7-4
返回
图 7-2
返回
图 7-3
返回
图 7-4
返回
图 7-5
返回
表 7-5
返回
表 7-6
返回
图 7-6
返回
图 7-7
返回
表 7-8
返回
表 7 - 13
返回
• (4)轴上有螺纹时,应留有退刀槽(图7-3),以便于螺纹车刀退出 ;需要磨削的台阶轴,应留有越程槽(图7-4),以便磨削用砂轮越 过工作表面。
• (5)当轴上有两个以上的键槽时,槽宽应尽可能相同,并布置在同 一母线上,以利于加工,如图7-5所示。
上一页
返回
7.2 滑动轴承
• 7.2.1 滑动轴承的类型、结构和特点
• 7.3.3 滚动轴承的类型选择
• 滚动轴承类型很多,选用时应综合考虑轴承所受载荷的大小、方向和 性质,转速高低,支承刚度以及结构状况等,尽可能做到经济合理且 满足使用要求。
上一页 下一页 返回
7.3 滚动轴承
• 1.载荷的类型 • 机器中的转动零件,通常要由轴和轴承来支撑。作用在轴承上的载荷
按方向不同,可分为沿半径方向作用的径向载荷、沿轴线方向作用的 轴向载荷和同时有径向、轴向作用的联合载荷。 • 2.滚动轴承类型的基本选用原则 • 各类滚动轴承有不同的特性,因此在选择时,必须根据轴承实际工作 情况合理选择,一般应考虑的因素包括轴承所受载荷的大小、方向和 性质,轴承的转速以及调心性等要求,具体见表7-13。
上一页 下一页 返回
7.1 轴
机械原理课程教案—机械系统动力学
机械原理课程教案—机械系统动力学一、教学目标1. 让学生了解机械系统动力学的基本概念和原理。
2. 使学生掌握刚体动力学、弹性体动力学和机器动力学的基本分析方法。
3. 培养学生运用机械系统动力学知识解决实际问题的能力。
二、教学内容1. 刚体动力学:刚体的运动方程、刚体运动的传递矩阵、刚体动力学的应用。
2. 弹性体动力学:弹性体的基本方程、弹性体的振动分析、弹性体动力学的应用。
3. 机器动力学:机器的动力学模型、机器的动态响应、机器的减振和控制。
三、教学方法1. 采用讲授法,讲解基本概念、原理和分析方法。
2. 利用多媒体演示,生动展示机械系统的动力学现象。
3. 案例分析,让学生通过实际问题理解和掌握动力学知识。
4. 课堂讨论,促进学生思考和交流。
四、教学安排1. 第一课时:刚体动力学基本概念和运动方程。
2. 第二课时:刚体动力学的传递矩阵和应用。
3. 第三课时:弹性体动力学基本方程和振动分析。
4. 第四课时:弹性体动力学的应用。
5. 第五课时:机器动力学的基本概念和动力学模型。
五、教学评价1. 课堂问答,检查学生对基本概念和原理的理解。
2. 课后作业,巩固学生对动力学知识的掌握。
3. 课程设计,培养学生解决实际问题的能力。
4. 期末考试,全面评估学生对机械系统动力学的掌握程度。
六、教学内容6. 机器的动态响应:对外力作用的反应、机器部件之间的相互作用、动态响应的计算方法。
7. 机器的减振和控制:减振原理、减振方法、控制策略、动力控制系统的设计。
8. 动力学实验:动力学实验设备、实验原理、实验方法和实验数据分析。
9. 计算机辅助动力学分析:计算机辅助动力学分析软件、动力学模型的建立、计算方法和结果分析。
10. 动力学在工程中的应用:机械系统动力学在工程设计、生产和维护中的应用案例。
七、教学方法1. 采用讲授法,讲解机器动态响应的原理和计算方法。
2. 通过案例分析,让学生了解机器减振和控制的方法及其应用。
第七章 机械的运转
• 式中,n为额定转速(r/min).
• 1.对于周期性速度波动的机器安装飞轮后,原动 机的功率可以比未安装飞轮是 小 。 • 2.若不考虑其他因素,单从减轻飞轮的重量上看, 飞轮应安装在 高速 轴上。 • 3.大多数机器的原动件都存在运动速度的波动, 其原因是驱动力所做的功与阻力所做的功 不能每 瞬时 保持相等。 • 4.机器等效动力学模型中的等效质量是根据系统 总动能 相等 的原则进行转化的,因而它的数值 除了与各构件本身的质量有关外,还与构件的 运 动规律 有关。 • 5.当机器中仅包含速比为 常数的 机构时,等效 动力学模型中的等效质量是常数,若机器中包含
max min m
• 设计时,应使δ小于其允许值, 动惯量为
δ ≤[δ ],则飞轮的转
2 [δ] J F ≥ΔWmax / Wm -J e
• 式中,△W max为最大盈 亏功, ΔWmax = Emax -Emin ; • 如果Je ≤JF,则Je可以忽略不计,则
J F ≥ΔWmax
/(W [δ]) = 900ΔW /(π n [δ])
• • • • • •
转的过程. 等效力矩Me可表示为 Me=Med-Mer=10000-100ω-8000=2000-100ω 由Me(ω)=Jedω/dt 将式中变量分离后,得 dt=Jedω/Me(ω)=8dω/(2000-100ω)=2/(50025ω)dω 2 2 100 1 • 积分得t = ω dω = dω
• 式中, αi作用在构件i上的外力Fi 与该力作用点的 速度vi间的夹角;而” ±”号的选取决定于作用在 构件i上的力偶矩Mi与该构件的角速度ωi的方向是 否相同,相同时取” ±”号,反之取”-”号. • 3.机械系统的等效动力学模型 • ⑴机械系统动力学模型的建立:机械系统真实运 动规律取决于作用机械上的外力和各构件的质量
第七章机械动力学
二、机械中作用的力 按力对机械的影响分类 驱动力(driving force)—驱使机械运动,力作用线与构 件运动速度方向夹角为锐角。与构件角速度方向一致的力矩 称为驱动力矩(driving moment)。 考虑构件惯性力的重要性 驱动力类型举例 常数 重力FdC 位移的函数 弹簧力FdFd(s)、内燃机驱动力矩MdMd(s) 速度的函数 电动机驱动力矩Md Md()
当螺母顺着力Q的方向等速向下运动时,即放松螺母, 则应在螺旋中径处施加的维持螺母等速下滑的圆周力为 PQtan()。松开螺母时的维持力矩为 考虑构件惯性力的重要性)d/2 MdPd/2Qtan( Q/2 1 R12 n Q/2
2 v21
2
P
1
Q n d
l
d1 d d2
N
N
(三)转动副中的摩擦 速度波动的有害影响 (1)径向轴颈中的摩擦
(三)转动副中的摩擦 速度波动的有害影响 (2)止推轴颈中的摩擦
(四)高副中的摩擦 速度波动的有害影响
速度波动的有害影响 (五)考虑摩擦的机构静力分析 对机构进行静力分析考虑摩擦时,转动副中的反力不是 通过回转中心,而是切于摩擦圆;移动副中的反力不是与移 动方向垂直,而是与接触面的法向偏斜一个摩擦角。对于受 力比较简单的平面连杆机构,掌握了转动副、移动副中总反 力的确定方法,就不难对平面连杆机构作计及摩擦时的静力 分析。
14
4
R32
14
R43
R23
(4)列力平衡矢量方程
d
R41 R21 R41 Fb0 Fb 大小 √ ? ? 考虑运动副摩擦的静力学分析例题2 c R21 方向 √ √ √ R43 R23 Fb= F da a b Fr Fb Fb R12 R21 21 v34 B B R41 23 2 C C 1 1 Fr Fr A A 3 3
机械原理课程教案—机械系统动力学
机械原理课程教案—机械系统动力学一、教学目标1. 让学生理解机械系统动力学的基本概念和原理。
2. 使学生掌握刚体动力学、弹性体动力学和机器动力学的基本分析方法。
3. 培养学生运用机械系统动力学知识解决实际问题的能力。
二、教学内容1. 刚体动力学:刚体的运动方程、刚体运动的合成与分解、刚体动力学的守恒定律。
2. 弹性体动力学:弹性体的基本方程、弹性体的振动、弹性体动力学的应用。
3. 机器动力学:机器的动态特性、机器的振动分析、机器的稳定性和可靠性。
三、教学方法1. 采用讲授法,讲解基本概念、原理和分析方法。
2. 利用多媒体演示,展示实例和动画,增强学生的直观感受。
3. 开展课堂讨论,引导学生主动思考和探究。
4. 布置课后习题,巩固所学知识。
四、教学准备1. 教材:机械系统动力学相关教材。
2. 多媒体课件:包括文字、图片、动画和视频等。
3. 教案:详细的教学计划和步骤。
4. 习题:用于巩固知识的练习题。
五、教学过程1. 引入:通过实例介绍机械系统动力学的重要性,激发学生的兴趣。
2. 讲解:讲解刚体动力学的基本概念和分析方法,引导学生掌握刚体运动的合成与分解。
3. 演示:利用多媒体演示刚体动力学的实例和动画,让学生更好地理解刚体动力学的原理。
4. 练习:布置刚体动力学的练习题,让学生巩固所学知识。
5. 课堂讨论:引导学生讨论刚体动力学在实际工程中的应用,培养学生的实际问题解决能力。
6. 布置作业:布置刚体动力学的课后习题,让学生进一步巩固知识。
六、教学内容(续)4. 机器动力学:机器的动态特性分析机器的振动分析与控制机器的稳定性和可靠性评估机器的故障诊断与预测七、教学重点与难点1. 教学重点:刚体动力学的基本分析方法弹性体动力学的振动分析和应用机器动力学的动态特性分析机器的振动控制和稳定性评估2. 教学难点:弹性体动力学的复杂方程求解机器动力学中的非线性问题机器的故障诊断与预测算法八、教学评价1. 课堂参与度:观察学生在课堂讨论和提问中的活跃程度。
机械原理课程教案—机械系统动力学
机械原理课程教案—机械系统动力学一、教学目标1. 理解机械系统动力学的基本概念和原理。
2. 掌握机械系统的受力分析、运动分析和动力分析方法。
3. 能够运用动力学原理解决实际机械系统的问题。
二、教学内容1. 机械系统动力学的定义和分类牛顿力学和相对论力学连续体动力学和离散体动力学2. 机械系统的受力分析力的基本概念和运算刚体和柔体的受力分析约束和自由度的概念3. 运动分析运动的基本概念和描述刚体的运动和柔体的运动运动方程和解题方法4. 动力分析动力的基本概念和运算牛顿运动定律的应用动力方程和解题方法三、教学方法1. 讲授法:通过教师的讲解,引导学生理解和掌握机械系统动力学的基本概念和原理。
2. 案例分析法:通过分析实际案例,让学生学会运用动力学原理解决实际问题。
3. 互动教学法:通过提问和讨论,激发学生的思考和兴趣,提高学生的参与度。
四、教学评估1. 课堂讨论:通过提问和讨论,评估学生对机械系统动力学的基本概念和原理的理解程度。
2. 习题练习:通过布置和批改相关的习题,评估学生对机械系统动力学的受力分析、运动分析和动力分析方法的掌握程度。
3. 课程报告:通过学生提交的课程报告,评估学生对机械系统动力学的应用能力。
五、教学资源1. 教材:推荐学生阅读《机械系统动力学》等相关教材,提供系统的知识框架和学习内容。
2. 课件:制作精美的课件,通过图文并茂的方式,展示机械系统动力学的基本概念和原理。
3. 案例资料:收集相关的案例资料,用于分析和讨论,增加学生的实践经验。
六、教学活动1. 课堂讲解:通过教师的讲解,系统地介绍机械系统动力学的理论知识,引导学生理解和掌握基本概念和原理。
2. 案例分析:选取具有代表性的机械系统案例,让学生通过分析案例来运用动力学原理,提高学生的实际问题解决能力。
3. 小组讨论:组织学生进行小组讨论,分享学习心得和解决问题的方法,促进学生之间的交流与合作。
七、教学实践1. 实验室实践:安排学生到实验室进行动力学实验,让学生亲自操作,观察和分析实验结果,增强学生对动力学理论的理解和应用能力。
§7—2机械系统的等效动力学模型
图7-5
解: e=E:Jeω22/2 = J1ω12/2 +J2ω22/2+ m3v32/2+ m4v42/2 由E ∴ Je= J1 (ω1/ω2)2 + J2+m3(v3/ω2)2 + m4(v4/ω2)2
Je= J1 (ω1/ω2)2 + J2+m3(v3/ω2)2 + m4(v4/ω2)2 用瞬心法求v3 /ω2 、 v4 /ω2 : v3 = v3P23 = v2P23 = ω2 L
∴ 当Fi、Mi是常数或位置的函数时,Me、Fe是等效构件位 置的函数或常数;当Fi、Mi是速度(或时间)的函数时, Me、Fe是等效构件位置、速度的函数。 注意:1)Me、Fe是等效动力学模型中使用的假想力或力矩,而不
是机械上各力的合力或合力矩。 2)有时为了求解的需要,我们可以分别对驱动力矩和阻力 矩求其等效驱动力矩和等效阻力矩, 即 :Md→Med 、 Mr→Mer 。则:Me= Med - Mer
§7—2 机械系统的等效动力学模型
(Dynamically Equivalent Model of a Mechanical System)
一、等效动力学模型的建立
机械系统是复杂多样的,在进行动力学研究时,通常 将复杂的机械系统按一定的原则简化为一个便于研究的等 效动力学模型。 为了研究单自由度机械系统的真实运动,可将机械系
二、等效参数(Equivalent parameter) 的确定 1、等效转动惯量(Moment of inertia) Je和质量(Mass) me ——根据Ee=E来求 对于具有n个活动构件的机械系统,构件 i 的质量为 mi,相对于质心Si的转动惯量为JSi ,质心Si的速度为vSi, 角速度为ωi。
机械原理课程教案—机械系统动力学
机械原理课程教案—机械系统动力学一、教学目标1. 理解机械系统动力学的基本概念和原理。
2. 掌握刚体动力学、弹性体动力学和多体系统动力学的基本分析方法。
3. 能够应用动力学原理解决实际机械系统的问题。
二、教学内容1. 刚体动力学:刚体的运动学方程刚体的动力学方程刚体的角动量和角加速度刚体的转动惯量2. 弹性体动力学:弹性体的基本概念和特性弹性体的振动方程弹性体的振动分析和解决方法弹性体的阻尼和弹性系数3. 多体系统动力学:多体系统的自由度和约束多体系统的动力学方程多体系统的运动分析和控制方法多体系统的动力学仿真和实验验证三、教学方法1. 讲授:通过讲解和示例,引导学生理解机械系统动力学的基本概念和原理。
2. 互动讨论:通过提问和回答,激发学生的思考和理解,巩固知识点。
3. 案例分析:通过分析实际案例,培养学生解决实际问题的能力。
4. 数值计算:通过数值计算软件,进行动力学分析和仿真,提高学生的实践能力。
5. 实验验证:通过实验操作,验证理论知识的正确性,培养学生的实验技能。
四、教学评估1. 课堂参与度:通过提问和回答,评估学生对动力学概念的理解程度。
2. 课后作业:通过布置和批改课后作业,巩固学生的知识点掌握情况。
3. 小组讨论:通过小组讨论和报告,培养学生的团队合作和表达能力。
4. 课程设计:通过课程设计项目,综合运用动力学知识解决实际问题。
5. 期末考试:通过期末考试,全面评估学生对动力学知识的掌握程度。
五、教学资源1. 教材:选用合适的动力学教材,提供系统的理论知识。
2. 课件:制作精美的课件,辅助讲解和展示。
3. 数值计算软件:使用专业的数值计算软件,进行动力学分析和仿真。
4. 实验设备:提供实验所需的设备和器材,进行实验验证。
5. 在线资源:提供相关的在线课程、论文和案例,供学生自主学习和参考。
六、教学安排1. 刚体动力学(2课时)刚体的运动学方程刚体的动力学方程2. 弹性体动力学(2课时)弹性体的基本概念和特性弹性体的振动方程3. 多体系统动力学(2课时)多体系统的自由度和约束多体系统的动力学方程4. 动力学仿真和实验验证(1课时)使用数值计算软件进行动力学分析和仿真实验操作,验证理论知识的正确性5. 动力学在实际应用中的案例分析(1课时)分析实际机械系统中的动力学问题解决实际问题的方法和技巧七、教学活动1. 刚体动力学(第1周)讲解刚体的运动学方程和动力学方程示例分析和练习2. 弹性体动力学(第2周)讲解弹性体的基本概念和特性讲解弹性体的振动方程示例分析和练习3. 多体系统动力学(第3周)讲解多体系统的自由度和约束讲解多体系统的动力学方程示例分析和练习4. 动力学仿真和实验验证(第4周)使用数值计算软件进行动力学分析和仿真实验操作,验证理论知识的正确性5. 动力学在实际应用中的案例分析(第5周)分析实际机械系统中的动力学问题解决实际问题的方法和技巧八、教学难点1. 刚体动力学中的角动量和角加速度的概念。
机械系统动力学-第16讲
第七章机械系统动力学本章学习任务:机械的机械效率,自锁现象及自锁条件,机械平衡的基本概念,刚性转子的静平衡设计与静平衡实验,刚性转子的动平衡设计与动平衡实验,平衡精度与不平衡量的计算;平面机构平衡的基本概念,质量代换方法,平面机构惯性力的部分平衡方法以及完全平衡方法。
机械系统运转过程、等效动力学模型与运动方程,机械系统波动调节。
驱动项目的任务安排:完成项目中机构动力学分析,给出平衡方法、速度波动调节方法。
7.1.2机械的自锁钢球圆自锁套(a)(b)图7-7 自锁装置有些机构由于摩擦的存在,无论施加多大的驱动力,也无法使它运动,这种现象称为机械的自锁。
自锁现象在机械工程中具有十分重要的意义。
一方面,设计机械时,为使机械能够实现预期的运动,需要避免在所需的运动方向发生自锁;另一方面,充分利用自锁特性进行安全保护或锁死。
例如,图7-7(a)所示的手摇螺旋千斤顶,当转动手把6 将物体4 举起后,应保证不论物体4 的重量多大,都不能驱动螺母5 反转,致使物体4 自行降落下来。
即要求该千斤顶在物体4 重力作用下,必须具有自锁性。
工程中多数螺纹连接就是利用自锁性防松的。
又如图7-7(b)所示的爬杆机构,为了防止机构从杆滑下,采用了一个自锁套的装置。
在设计机械时,由于未能很好地考虑到机械的自锁问题而导致失败的事例时有发生,因此自锁问题需要高度重视。
下面就自锁问题进行分析。
如图7-8 所示,滑块1 与平台2 组成移动副。
设F 为作用与滑块1 上的驱动力,它与接触面的法线nn 间的夹角为β(称为传动角),而摩擦角为。
将力F 分解为沿接触面切向和法向的两个分力Ft 、Fn。
是推动滑块Ft=F sin =Fntan 是推动滑块1 运动的有效分力;而F n只能使滑块1 压向平台2,其所能引起的最大摩擦力为Ff max =Fntan ,因此,当≤342561F上自锁套电机曲柄杆连杆下自锁套时,有F t ≤ F f max(7-12)即在≤的情况下,不管驱动力 F 增大(方向维持不变),驱动力的有效分力 F t 总小 于驱动力 F 本身所可能引起的最大摩擦力,因而总不能推动滑块 1 运动,这就是自锁现象。
第7章 机械系统动力学(第二版)
Q θ θ
F21= N21
= ( / sinθ)Q = oQ
N 21 2
②
N① 21 2
o─当量摩擦系数。
F21= o N21
ቤተ መጻሕፍቲ ባይዱ
─ 通式,适用于移动副、滑动高副、滑动轴承。
F21= o N21
根据运动副元素的几何形状,采用当量摩擦系数计算摩擦力, 为运动副元素是复杂曲面的摩擦力的计算提供了方便。
(6)利用力平衡条件确定构件的作用力;
二力平衡,三力汇交一点,力偶矩平衡 (7)选择合适的力比例尺 F(Nmm),列出力平衡矢量方程, 并根据该方程作构件受力的力封闭多边形,确定未知力的大小和 方向。
二、机械的效率与自锁
由于运动副中摩擦的存在,输入功的有效利用程度降低。
克服工作阻力所作的有益功与输入功的比值称为机械效率。 机械效率衡量机器对机械能量有效利用的程度。
c R43 b v34 R23 Fr
选力比例尺F(Nmm)作图
Fb R12
a
B 21 2
23
A
1
14
4
C
C
3
Fr R32
3
R43
Fr
R23
(5) 1构件受力分析 列力平衡矢量方程 R21 R41 Fb0 大小 √ ? ? 方向 √ √ √
d
R41
c R43 b
Fb R21 R23 a
问题: 当原动件2转到2象限、3象限、4象限时,连杆的受力又如何?
(2)止推轴颈的摩擦 轴上承受轴向载荷的部分称为轴端。 如图示,轴1的轴端和承受轴向载荷的止推轴承2构成一转 动副。当轴转动时.轴的端面将产生摩擦力矩Mf。 止推轴颈的摩擦计算自学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c R43 b v34 R23 Fr
选力比例尺F(Nmm)作图
Fb R12
a
B 21 2
23
A
1
14
4
C
C
3
Fr R32
3
R43
Fr
R23
(5) 1构件受力分析 列力平衡矢量方程
d
R21 R41 Fb0
大小 方向 √ √ ? √ ? √
R41
c R43 b
Fb R21 R23 a
B 2
A 1 4 C
3
Fr
(2)确定连杆力的作用线
Fb
R12
B 21 2
23
A
1
14
4
C
3
Fr R32
(3)分析1、3构件的受力 Fb R41 Fb R21
B
A
R12
1
B 21 2
14
v34 C Fr R23
23
A
1
14
4
C
3
Fr R32
3 R43
(4)滑块受力分析 列力平衡矢量方程 Fr R43 R23 0 大小 √ 方向 √ ? √ ? √
v12 P
(o ,v )─当量摩擦角。
摩擦锥----以R21为母线所作圆锥。
F21
2
Q
●总反力 R21与v12夹钝角(90+) R21 恒切于摩擦锥。 1 ●自锁 总外力落在摩擦锥 以内则自锁。 F21 P
R21
φ
N21
v12 90+
2
Q
2. 转动副中的摩擦与总反力
两构件形成转动副时,转轴上被支承的部份称为轴颈。
二、机械中作用的力
研究机械的真实运动规律时,必须知道作用在机械上的 力及其变化规律。
1. 作用在机械上的驱动力和生产阻力 驱动力:
常数
如重力 FdC
位移的函数 如弹簧力 Fd Fd(s) 内燃机驱动力矩 速度的函数 M d M d( s )
如电动机驱动力矩Md Md()
生产阻力: 常数 如起重机、车床的生产阻力 执行机构位置的函数 如曲柄压力机、活塞式压缩机的生产阻力 执行构件速度的函数 如鼓风机、离心泵的生产阻力 时间的函数 如揉面机、球磨机的生产阻力 驱动力和生产阻力的确定,涉及许多专业知识,本课 程认为所有外力都是已知的。
Q θ θ
F21= N21
= ( / sinθ)Q = oQ
N 21 2
②
N① 21 2
o─当量摩擦系数。
F21= o N21
─ 通式,适用于移动副、滑动高副、滑动轴承。
F21= o N21
根据运动副元素的几何形状,采用当量摩擦系数计算摩擦力, 为运动副元素是复杂曲面的摩擦力的计算提供了方便。
R12 B Md 1 A
2
23 C
G R32 3 Md D 4
B
R21 R23 G
C
3
21
1 l A
14
14
R41
R43
D
例3 已知机构各构件的尺寸、各转动副的半径r和当量摩擦系 数fv以及摩擦角 ,作用在构件 3上的工作阻力为Fr,求作用 在曲柄1上的平衡力Fb (不计各构件的重力和惯性力)。 解 (1)分析机构中各构件受力状态 Fb
F21=Qμ0 摩擦力矩Mf:
Mf=F21r =Qμ0r= - Md
设 为R21与轴的回转中心的距离
+ N21
R21
R21 ρ = Mf= Qμ0r
ρ
A
∵Q=-R21
∴ ρ = μ 0r = C
F21
半径为的园称为摩擦圆。 当轴上载荷的方向改变时,总反力R21的方向也将发生改变,但 R21与轴的回转中心距离不会改变。 结论:总反力R21始终与摩擦圆相切。
Fb= F da
Fb R12
Fr
Fb R21
B 21 2
23
A
1
14
4
C
3
Fr R32
R41
A 1
B
14
机构力分析图解法小结
(1)首先准确画出机构运动简图; (2)确定构件的受力特征; (3)应用力平衡条件,初步确定总反力的方向; 从二力构件入手,判断其受力状况 (4)判断构件之间的相对速度、相对角速度; (5)确定运动副总反力作用线方向;
5)计算反行程效率 反行程被压物体的重力和弹性恢复力Q为机构运动的驱动力。 简化计算:若构件间的接触面在正反行程中 不改变,将正行程时力关系式中摩擦角改变符 号,即为反行程时力之间的关系式。 将上式中的摩擦角用–代替得:
P Qtg( 2 )
理想生产阻力P0: P0=Qtg
P tg( 2 ) 反行程(P为阻力)的机械效率: ' P0 tg 若要保证被榨物不被松开,应使机构反行程自锁,令0得:
P Qtg( 2 )
4)计算正行程效率 令=0,得理想驱动力P0与生产阻力Q 的关系式:
P0 Qtg
R13
正行程的效率为:
P0 tg P tg( 2 )
为了避免正行程发生自锁,应使>0
R12 R32
R23 Q
<90–2
P P+R12+R32=0 R23+R13+Q=0
问题: 当原动件2转到2象限、3象限、4象限时,连杆的受力又如何?
(2)止推轴颈的摩擦 轴上承受轴向载荷的部分称为轴端。 如图示,轴1的轴端和承受轴向载荷的止推轴承2构成一转 动副。当轴转动时.轴的端面将产生摩擦力矩Mf。 止推轴颈的摩擦计算自学。
3.考虑摩擦机构受力分析
例2 已知机构各构件的尺寸、各转动副的半径r和当量摩擦系 数fv、作用在构件 3上的工作阻力G及其作用位置,求作用在 曲柄1上的驱动力矩Md(不计各构件的重力和惯性力)。 解: (1)分析各构件的受力状态 (2)根据已知条件作摩擦圆 2 C 3 Md 1 A 4 G D
简单平面移动副 V形槽移动副
o =
Q
o=/sin o=/cos
N 21 2
三角螺旋副
N 21 2
—牙形角
三角带
转动副/圆柱副
o= /sin
θ θ
o=1.57 (非跑合) o=1.27 (跑合)
Q
移动副的总反力 R21=N21+F21 tg =o 1
R21
N21
机械正常工作时,0<η<1。 如果 A d = A f , η = 0 , 机械不能输出功。机械如果原来运 动,则只能空转;如果机械原来静止,机械将保持静止。 如果 A d < A f , η <0 ,机械如果原来在运动,减速直至停 止;如果机械原来静止,则不能运动。
0 称为机械自锁。
机械发生自锁的条件: 0 机械自锁时的机械效率只表明机械自锁的程度。
B
(3)确定连杆力的作用线 连杆:二力杆
R12 B Md 1 A
2
23 C
G D 4 R32 3
21
14
C (4)分析1、3构件的受力状况 R23 G 3
R12 B Md 1 A
2
23 C
G D 4 R32 3 Md
B 1 A
R41
R21
R43
D
21
14
14
(5)列力平衡矢量方程 大小 方向
例:分析图示偏心夹具自锁条件。
作用在手柄上的P力卸掉后,偏心园盘3能将工件2继续夹紧, 工件给偏心圆盘的总反力R23应作用在偏心圆盘上转动副的摩擦圆 内,使机构自锁。
夹具设计的几何条件为:
e sin( ) r sin
arcsin
r sin e
当=0时,机械处于临界的自锁状态,此时机械可以处于 空转状态,但不能作任何的有益功;
当<0时,绝对值越大,则表示自锁越可靠。
正行程、反行程的效率和’一般不相等。 若>0,而’<0,则表示该机械的正行程不自锁,而反 行程自锁,这种机械称为自锁机械。 自锁机械常用于各种夹具、螺栓联结、楔联结、起重装置 和压榨机等机械上。
Nr 效率以功或功率的形式表达: Nd
如果机器在作匀速运转的条件下,驱动力和生产阻力均 为常数,可以把机械效率化成更便于应用的两种力或两 种力矩的比。
Af Ar 1 1 Ad Ad
图示机械传动装置示意图,设P为驱动力,Q为生产阻力,VP和 VQ分别为P和Q的作用点的速度,故机械的效率为: N r QVQ ωQ 1 N d PV p 理想机械:没有摩擦,η=1
自锁机械在正行程中效率一般都较低,在传递动力时,只 宜用于传递功率较小的场合。
传递功率较大的机械,常采用其它装置来防止其倒转或松 脱,不影响其正行程的机械效率。
例 图示楔块式压榨机,水平运动楔块的楔紧角较小为;竖直运动 楔块的楔紧角较大为90–;楔块各摩擦面的摩擦系数均为。 求:当不继续向水平运动楔块施加压力,而被榨物体不致松开时, 楔块的楔紧角应为多少? [解 ] : 1)受力分析
绝大多数机械系统运转时,其主轴的速度是波动的。 机器主轴速度过大的波动变化会影响机器的正常工作, 增大运动副中的动载荷,加剧运动副的磨损,降低机器 的工作精度和传动效率,激发机器振动,产生噪声。 本章研究内容:外力作用下机械的真实运动规律及机械 速度波动的调节。 研究目的 : 机器的真实运动;机械的转速在允许范围内 波动。
按轴颈受力状态分,轴颈可分为两种: 载荷沿直径方向作用的轴颈,称为径向轴颈。径向轴颈 是转动副最常见的结构形式。 载荷沿轴方向作用的轴颈,称为止推轴颈。
(1)径向轴颈中的摩擦