第01讲 函数的定义域常见求法-高中数学常见题型解法归纳反馈训练 Word版 含解析

合集下载

必修一专题:定义域、值域解析式求法(经典题型全面)

必修一专题:定义域、值域解析式求法(经典题型全面)

专题:函数的定义域、值域、解析式的求法一、定义域 128)(2++=x x x f 43-)(2++=x x x f 143)(2+--=x x x x fx y 311l o g 7-= 抽象函数的定义问题1. 设函数f x ()的定义域为[]01,,则函数()12+x f 的定义域为2.已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是二、值域1、直接法:1y =+12+=x yy =2.二次函数223y x x =+- ()x R ∈ 223y x x =+-[1,2]x ∈242y x x =-++[1,1]x ∈-3.分离常数法:132x y x -=- 4.换元法:2y x =+0()f x =)2(log 221x y -=1x x y -+=三.解析式的求法1、配凑法23)1(2+-=+x x x f 221)1(xx x x f +=+ 2.换元法x x x f 2)1(+=+ 11)11(2-=+xx f 3.待定系数法例1.已知:f(x) 是二次函数,且f(2)=-3, f(-2)=-7, f(0)=-3,求f(x)。

例2:设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .4.赋值(式)法例1:已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;(2)求)(x f 的解析式。

例2:已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .5、构造方程组法1.已知函数()f x 满足2()()34f x f x x +-=+,则()f x2.设,)1(2)()(x xf x f x f =-满足求)(x f .。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

函数的定义域和常见求解方法

函数的定义域和常见求解方法

函数的定义域和常见求解方法函数的定义域(domain)是指函数能够接受的实际输入值的集合。

换句话说,定义域是使函数有意义的所有可能的输入值的集合。

在数学中,函数一般表示为f(x),其中x是函数的自变量,而f(x)则是自变量x所对应的函数值。

常见的函数定义域包括实数域(-∞,+∞),有理数集,整数集,自然数集,以及其他特定的定义域,如正数集,三角函数等。

在确定函数的定义域时,我们需要注意以下几点:1.分式函数的定义域:分式函数的定义域由分母不等于零的值所构成。

我们需要找出使分母不等于零的x的值,将这些值作为定义域的一部分。

2.平方根函数的定义域:平方根函数的定义域要求被开方数非负,即要求根号内的数大于等于零。

3.对数函数的定义域:对数函数的定义域要求底数大于零,并且对数函数的参数值必须大于零。

常见的函数求解方法包括图像法、方程法、函数变量代换法、函数性质法等。

1.图像法:图像法是通过绘制函数的图像来找出函数的解。

我们将函数的图像与坐标系结合起来,寻找函数与x轴的交点,即函数的解。

2.方程法:方程法是通过将函数等式转化为方程的形式,然后通过解方程来找出函数的解。

在方程法中,我们可以使用各种方法来解方程,如因式分解法、配方法、根号消去法等。

3.函数变量代换法:函数变量代换法是通过引入新的变量来转化函数,从而简化函数的形式。

通过选择适当的变量代换,我们可以将原函数转化为更简单的函数,进而求解出函数的解。

4.函数性质法:函数性质法是通过利用函数的性质来求解函数的解。

例如,通过函数的奇偶性、单调性、周期性、对称性等性质,我们可以得到函数的一些特殊解。

在实际问题中,常常需要综合运用以上多种方法来求解函数的解。

根据具体的函数形式和问题的要求,选择最合适的方法进行求解。

同时,在进行函数求解时,我们也需要注意函数定义域的范围,以保证求解出的函数解在定义域内有效。

函数的定义域和常见求解方法

函数的定义域和常见求解方法

函数的定义域和常见求解方法一、函数的定义域在一般的函数定义中,常见的定义域包括实数、有理数和整数等。

例如,函数$f(x)=\sqrt{x}$的定义域为非负实数集合即$[0,+\infty)$,因为负数的平方根是没有意义的。

又如,函数$g(x)=\dfrac{1}{x}$的定义域为除0以外的所有实数,即$(-\infty, 0) \cup (0, +\infty)$,因为0不能作为除数。

当给定一个复合函数时,可以通过多个函数的定义域的交集得到整个函数的定义域。

例如,对于函数$h(x)=\sqrt{\log(x)}$,先看到内层函数$\log(x)$的定义域是正实数,而外层函数$\sqrt{x}$的定义域是非负实数。

所以整个函数$h(x)$的定义域即正实数集合$[0,+\infty)$。

二、常见的求解方法1.方程求解法方程求解法是指通过解方程的方式求解函数的取值范围。

常见的方程求解法包括代数法和计算法。

代数法是通过对方程进行变形或利用数学性质来求解,而计算法是通过运算符和数值的计算来求解。

举例来说,对于函数$f(x)=\dfrac{1}{(x-3)^2}$,要求函数的定义域,需要解方程$(x-3)^2\neq 0$。

通过解这个方程,可以得到$x \neq 3$,即函数的定义域为整个实数集合除去32.不等式求解法不等式求解法是通过对不等式进行变形或运算,得出函数的定义域。

常见的不等式求解法包括分段法和绝对值法。

对于分段函数,可以对每一段函数的定义域进行求解,然后将这些定义域的并集作为整个函数的定义域。

对于函数$f(x) = \sqrt{a-x}$,当$a>x$时,根式内部大于等于0,所以函数的定义域为$(-\infty, a]$。

3.图像法图像法是通过观察函数的图像来确定函数的定义域。

对于一元函数,可以通过绘制函数的图像来判断函数在何种区间内有定义。

例如,为了求解函数$f(x) = \sqrt{x^2-4}$的定义域,可以考虑到根式内部的取值不能小于0。

专题:函数定义域的求法及常见题型-(定稿)

专题:函数定义域的求法及常见题型-(定稿)

专题一:函数定义域的求法及常见题型一、函数定义域求法(一)常规函数函数解析式确定且已知,求函数定义域。

其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。

例1.求函数的定义域。

解:要使函数有意义,则必须满足由①解得或。

③由②解得或④③和④求交集得且或x>5。

故所求函数的定义域为(-∞,-11)U(-11,-3] U(5,+∞)。

注意点:分母、偶次方根被开方数,多条件求交集,定义域写法,仅可写成区间或集合形式,不能写成不等式。

例2.求函数的定义域。

解:要使函数有意义,则必须满足由①解得③由②解得④由③和④求公共部分,得故函数的定义域为(-4,-π] U(0,π]。

提示点:③和④怎样求公共部分?(二)抽象函数1.有关概念定义域:函数y=f(x)的自变量x的取值范围,可以理解为函数y=f(x)图象向x轴投影的区间;凡是函数的定义域,永远是指自变量x的取值范围;对应法则:通过“工厂”或“模具”观点进行类比,以此深入理解函数()y f x=的对应法则“f”。

把函数()y f x=的对应法则“f”看作“工厂”或“模具”,把自变量“x”的取值看作“原料”,把相应函数值“y”看作“成品”。

该观点注重“原料”以怎样的形式组装成“成品”,而不管“原料”是否为“初级产品”,从而避免了当所给函数的“原料”不是某个单一字母的情形时,找不到或不好找函数的对应法则。

如(1)已知函数f(x)的定义域是[0,4],求函数f(2x+1)的定义域;(2)已知函数f(2x+1)的定义域是[0,4],求函数f(x)的定义域。

可以把f(x)看成工厂的生产加工,f是加工工序,x是原料。

(1)中f(x)的原料就是初级产品,所以原料或初级产品满足的条件就是[0,4];在f(2x+1)中,初级产品是2x+1,它必须满足[0,4],由此求出f(2x+1)的原料x满足的条件(即自变量)。

因为(2)中f(2x+1)的定义域是[0,4],即原料x满足[0,4],变成初步产品2x+1,那么初步产品的限制条件就成了[1,9], 所以f(x)的原材料就是 [1,9],这样好不好理解?值域:函数y=f(x)的因变量y的取值范围,可以理解为函数y=f(x)图象向y轴投影的区间;显函数:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5;隐函数:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的;复合函数:如果说y=f(x)是一个简单的抽象函数,那么把自变量x用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。

函数的定义域及常见求解方法

函数的定义域及常见求解方法
求 y f log2x 的定义域;
⑸已知 y f x 的定义域为 1,1 ,
求 F x f x2 3 f 2sin 2x 1
的定义域;
4、实际问题中的函数的定义域
_______除使解析式有意义外,还要保证
a 问题有实际意义。
例4:如图,在边长为
的正 ABC 的边
BC, CA, AB 上各取一点P、Q、R,使
y f x的 定义域指的是自变量 的x
取值范围,实质上是指被法则 f直接作 用的对象的取值范围。故要用集合表示.
(二).常见函数定义域的类型及求解
1.基本函数的定义域________熟记(理解记忆) 2.合成函数的定义域: (1)定义:合成函数______由若干个基本函数通过
四则运算所形成的函数,其定义域为使得每一 部分都有意义的公共取值范围。 (2)求解:求解过程中坚持以下几个原则: (1)分式的分母不能为0; (2)偶次方根 内部必需非负 即大于等于零。
解法:解不等式 g x D1
例2:已知 y f x 的定义域 D1 1,2

,求 y f x2 2 的定义域D2
(Ⅱ)已知 y f g x 的定义域
,D求1 y f的x定 义域 。D2
解法:令 u g x, xD1,求函数
g x 的值域。
例3:已知 y f 2x 1 的定义域为 1,2
,求 y f x 的定义域。
练习:
⑴已知 y f x 的定义域为 1, 2
,求 f x2 2 的定义域;
⑵已知 y f x 的定义域为 ,0
,求
f
log
2
x2
2

的定义域;
⑶已知 y f x2 2x 3 的定义域为

高中数学根据函数定义域解题技巧整理

高中数学根据函数定义域解题技巧整理

高中数学根据函数定义域解题技巧整理在高中数学中,函数的定义域是解题过程中一个非常重要的概念。

定义域指的是函数可以接受的输入值的范围,也就是使函数有意义的自变量的取值范围。

在解题过程中,我们需要根据函数的定义域来确定自变量的取值范围,从而解决问题。

本文将介绍一些根据函数定义域解题的技巧,并通过具体的题目进行说明。

一、分段函数的定义域确定对于分段函数,我们需要根据每个分段的定义域来确定整个函数的定义域。

例如,考虑函数$f(x) = \begin{cases} x+1, & x < 0 \\ 2x, & x \geq 0 \end{cases}$,我们需要确定函数$f(x)$的定义域。

对于第一个分段$x < 0$,函数$f(x)$的定义域为负无穷到0,即$(-\infty, 0)$。

对于第二个分段$x \geq 0$,函数$f(x)$的定义域为0到正无穷,即$(0, \infty)$。

因此,整个函数$f(x)$的定义域为$(-\infty, 0) \cup (0, \infty)$。

二、有理函数的定义域确定有理函数是指由多项式函数相除得到的函数。

在确定有理函数的定义域时,我们需要注意分母不能为零。

例如,考虑函数$f(x) = \frac{1}{x-2}$,我们需要确定函数$f(x)$的定义域。

由于分母$x-2$不能为零,所以$x$不能等于2。

因此,函数$f(x)$的定义域为$x \neq 2$,即$(-\infty, 2) \cup (2, \infty)$。

三、指数函数和对数函数的定义域确定对于指数函数和对数函数,我们需要注意底数和真数的取值范围。

例如,考虑函数$f(x) = 2^x$,我们需要确定函数$f(x)$的定义域。

由于指数函数的底数为正数,真数可以是任意实数,所以函数$f(x)$的定义域为$(-\infty, \infty)$。

对于对数函数,底数必须大于0且不等于1,真数必须大于0。

求函数定义域(知识点+例题+习题)精编word版

求函数定义域(知识点+例题+习题)精编word版

求函数的定义域
1.常见函数的定义域和值域:
2.函数的定义域的求法
函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合. (1)求定义域注意事项:★
①分式分母不为0; ②偶次根式的被开方数大于等于0;
③零次幂底数不为0; ④对数的真数大于0; ⑤tan x 中,{|,}2
x x k k π
π≠+
∈Z ; ⑥实际问题对自变量的限制;
⑦若函数由几个式子构成,定义域要满足各式都有意义(取交集).
(2)抽象函数的定义域:
①定义域是x的取值范围★
②括号内范围等同★
练习题:
答案解析:
当0a ≠时,则2
40a a a >⎧⎨∆=-≤⎩
,得04a <≤成立 综上04a ≤≤. 答案:C
5
解析:由已知得1210x -<+<,解得1
12x -<<-
故函数(21)f x +的定义域为1
(1,)2
--.
答案:B
6
解析:21log 2x ≤≤,24x ∴≤≤
故()g x 满足2
224
24
x x ≤≤⎧⎨≤≤⎩,解得22x ≤≤.
答案:A
7
解析:由240x -≥得22x -≤≤,故(2)f x -括号内范围为[0,4] 则在()f x 中,04x ≤≤,得016x ≤≤. 答案:B
数学浪子整理制作,侵权必究。

函数定义域的求法整理整理详细版

函数定义域的求法整理整理详细版

函数定义域的求法整理(整理详细版) 函数定义域的求法是数学中一个重要的主题。

函数的定义域是函数中自变量的取值范围,它是函数能够正确运算的基础。

下面是求函数定义域的一些常见方法和步骤:一、理解基本的求定义域的方法1.常见初等函数的定义域:对于一些常见的初等函数,如二次函数、反比例函数、正比例函数等,我们需要了解它们的定义域是如何求解的。

例如,对于二次函数 f(x) = x^2,它的定义域是实数集。

2.抽象函数的定义域:对于较为抽象的函数,我们需要根据函数的解析式和性质来确定其定义域。

例如,对于函数 f(x) = 1/x,它的定义域是除了0以外的所有实数。

二、求定义域的步骤1.确定函数的类型:首先需要确定所给函数的类型,如一次函数、二次函数、对数函数等,这将有助于我们确定定义域的求解方法。

2.观察解析式:解析式是求函数定义域的关键。

我们需要观察解析式中有哪些部分,如常数、幂函数、指数函数、三角函数等。

3.根据解析式和性质确定定义域:根据所给函数的解析式和性质来确定定义域。

例如,对于幂函数 f(x) = x^a,当 a > 0 时,它的定义域是所有正实数;当 a < 0 时,它的定义域是所有负实数。

4.注意特殊情况:在确定函数的定义域时,需要注意一些特殊情况。

例如,对于含有开方的函数,它的定义域可能是大于等于0的实数或者复数。

5.特殊符号:有时候解析式中会出现特殊符号,如对数符号、平方根符号等,这些符号会对定义域产生影响。

需要了解这些符号的定义域。

6.根据实际应用确定定义域:在某些情况下,函数的定义域可能需要根据实际应用来确定。

例如,对于三角函数的定义域,通常取一切实数;但是对于某些特定的函数,如正弦函数和余弦函数的变种,它们的定义域可能只取一段区间。

7.训练方法和思维:除了掌握求定义域的基本步骤,还需要通过大量的训练来提高解题的速度和准确性,并逐渐形成科学合理的思维方式。

通过对各种题型进行分类整理,深入分析问题中的知识点和求解方法。

函数的定义域与值域知识点及题型总结

函数的定义域与值域知识点及题型总结

函数的定义域与值域知识点及题型总结函数的定义域与值域知识点及题型总结知识点精讲一、函数的定义域求解函数的定义域应注意:1) 分式的分母不为零;2) 偶次方根的被开方数大于或等于零;3) 对数的真数大于零,底数大于零且不等于1;4) 零次幂或负指数次幂的底数不为零;5) 三角函数中的正切$y=\tan x$的定义域是$x\neqk\pi+\frac{\pi}{2}$,其中$k\in Z$;6) 已知$f(x)$的定义域求解$f(g(x))$的定义域,或已知$f(g(x))$的定义域求解$f(x)$的定义域,遵循两点:①定义域是指自变量的取值范围;②在同一对应法则下,括号内式子的范围相同;7) 对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域。

二、函数的值域求解函数值域主要有以下十种方法:1) 观察法;2) 配方法;3) 图像法;4) 基本不等式法;5) 换元法;6) 分离常数法;7) 判别式法;8) 单调性法;9) 有界性法;10) 导数法。

需要指出的是,定义域或值域的结果必须写成区间或集合的形式。

题型归纳及思路提示题型1 函数定义域的求解思路提示:对求函数定义域问题的思路是:1) 先列出使式子$f(x)$有意义的不等式或不等式组;2) 解不等式组;3) 将解集写成集合或区间的形式。

二、给出函数解析式求解定义域例 2.10 函数$y=\frac{\ln(x+1)-x}{-3x+4}$的定义域为()。

A。

$(-4,-1)$ B。

$(-4,1)$ C。

$(-1,1)$ D。

$(-1,1]$分析本题考查对数、分式根式有关的函数定义域的求解。

解:$x+1>0$,$-3x+4\neq 0$,即$x\neq\frac{4}{3}$。

解不等式$\ln(x+1)>x-4$,得$-1<x<1$。

故选C。

变式1 函数$y=x\ln(1-x)$的定义域为()。

A。

高中函数定义域题型及解题方法

高中函数定义域题型及解题方法

高中函数定义域题型及解题方法高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。

在高考数学中,定义域的求解也是一个重要的题型。

本文将介绍高中函数定义域的题型及解题方法。

一、定义域的概念定义域是指函数的取值范围,即函数的自变量可能取值的集合。

例如,函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。

二、常见定义域的题型1. 直接求解定义域有些函数的定义域是可以直接求解的,例如函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。

2. 求解函数的定义域在求解函数的定义域时,我们需要根据函数的符号和函数的表达式来确定自变量的取值范围。

例如,函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1。

3. 求解函数的值域有些函数的定义域和值域是一致的,例如函数 f(x) = x^2 + 1 的值域是 R。

而有些函数的定义域和值域是不同的,例如函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1,但函数的值域是 [-1,1]。

4. 求函数的定义域或值域在求解函数的定义域或值域时,我们需要根据函数的符号、表达式和定义域来确定自变量的取值范围。

例如,函数 h(x) = x^2 + 1 的定义域是 x 不等于 0,但函数的值域是 [1,+∞),因为 x 的取值可以任意增大。

三、解题方法1. 观察函数的符号和表达式,确定自变量的取值范围。

2. 根据函数的定义域和值域,结合函数的符号和表达式,求解定义域或值域。

3. 熟练掌握常见的函数定义域的求解方法,例如求解函数的定义域需要根据函数的符号和表达式来确定自变量的取值范围。

4. 学会分析函数的性质,例如奇偶性、单调性等,从而帮助求解定义域。

高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。

1函数定义域值域求法总结

1函数定义域值域求法总结

1函数定义域值域求法总结函数的定义域和值域是数学中常用的概念,在解析函数的性质和特点时非常重要。

下面将总结函数定义域和值域的求法。

首先,我们来看函数的定义域。

定义域是函数中自变量的取值范围,即能使函数有意义的输入值的集合。

对于不同类型的函数,求解定义域的方法也有所不同。

1.有理函数的定义域:有理函数是指多项式函数与多项式函数的商,即f(x)=p(x)/q(x),其中p(x)和q(x)是多项式函数。

求有理函数的定义域,需要考虑到分母q(x)不能为0,因此需要排除使得q(x)=0的x值。

将q(x)=0的方程求解,即可得到定义域。

2.根式函数的定义域:根式函数包括平方根函数、立方根函数等。

根式函数的定义域需要满足根式内部的表达式有意义,即根式内部不能为负数或使得分母等于0。

因此,将根式内部的表达式求解,使其不小于0,并且将整个根式函数形式中分母为0的情况排除,即可得到定义域。

3.指数函数和对数函数的定义域:指数函数的定义域为实数集,即所有实数都可以作为指数函数的输入。

对数函数的定义域需要满足对数底数大于0且不等于1,因此需要排除底数小于等于0或等于1的情况。

4.三角函数和反三角函数的定义域:三角函数的定义域为实数集,即所有实数都可以作为三角函数的输入。

反三角函数的定义域需要使得其在该区间内有定义,即反三角函数的取值范围在[-1,1]之间。

接下来,我们来看函数的值域。

值域是函数的输出值的范围,即函数在定义域内的取值集合。

求函数的值域有不同的方法。

1.分析法:通过对函数的性质进行分析,可以大致确定函数的值域。

例如,对于多项式函数,根据函数的最高次项的系数和项数的奇偶性,可以确定其值域的范围。

2.增减法:通过求解函数的导数,找出函数的极值点和增减区间,可以确定函数的值域的范围。

函数在增减区间内递增或递减,可以推断函数的值域的变化。

3.图像法:通过绘制函数的图像,观察函数在定义域内的变化情况,可以确定函数的值域的范围。

高一数学求函数解析式定义域与值域的常用方法(含答案)(K12教育文档)

高一数学求函数解析式定义域与值域的常用方法(含答案)(K12教育文档)

高一数学求函数解析式定义域与值域的常用方法(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学求函数解析式定义域与值域的常用方法(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学求函数解析式定义域与值域的常用方法(含答案)(word版可编辑修改)的全部内容。

高一数学求函数的定义域与值域的常用方法一。

求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g (x )]的表达式,求f(x )的表达式时可以令t =g (x ),以换元法解之;(4)构造方程组法:若给出f (x )和f(-x ),或f (x )和f (1/x)的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f(-x )(或f (1/x))即可求出f(x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定.(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x)求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

高中数学函数专题:定义域、值域求法汇总,考试常考,趁早掌握

高中数学函数专题:定义域、值域求法汇总,考试常考,趁早掌握

高中数学函数专题:定义域、值域求法汇总,考试常考,趁早
掌握
函数的定义域和值域是高中的重要考点,几乎逢考必有。

在高中阶段数学主要讲的是函数,在函数的内容中,最基本的就是函数的定义域和值域以及单调性奇偶性了。

如果这些基础知识点没有学好,那么接下来的学习会相当吃力,直接影响了后期学习。

所以,定义域和值域的重要性不言而喻。

所以,要想拿高分,就先从基础知识开始掌握。

所以,接下来小编老师给同学们整理了一套高中数学函数定义域、值域的求法总结和例题,算是函数的基础内容了,但同时也是不容忽视的知识,需要同学们去掌握。

注:文末有完整版电子打印资料的获取方式。

(完整word版)函数定义域、值域求法总结,推荐文档

(完整word版)函数定义域、值域求法总结,推荐文档

函数定义域、值域求法总结一、定义域是函数 yf x 中的自变量 x 的范围。

求函数的定义域需要从这几个方面下手: (1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于 0。

(4)指数、对数的底数大于 0,且不等于 1(5)y=tanx 中 x ≠k π+π/2; y=cotx 中 x ≠k π等等。

( 6 ) x 0 中 x 0二、值域是函数 yf x 中 y 的取值范围。

常用的求值域的方法: ( 1)直接法 (2)图象法(数形联合) (3)函数单一性法( 4)配方法 (5)换元法 (包含三角换元) (6)反函数法(逆求法)( 7)分别常数法 (8)鉴别式法 (9)复合函数法( 10)不等式法 (11)平方法等等这些解题思想与方法贯串了高中数学的一直。

三、典例分析1、定义域问题例 1 求以下函数的定义域:① f ( x)1f ( x) 3x 2 ;③ f ( x)x 11;②2 xx 21解:①∵ x-2=0 ,即 x=2 时,分式无心义,1 x 2而 x 2 时,分式存心义,∴这个函数的定义域是x | x2 .2x②∵ 3x+2<0 ,即 x<-2时,根式3x 2 无心义,3而 3x 20 ,即 x2 2 才存心义,时,根式 3x32 ∴这个函数的定义域是{ x | x}.31③∵当 x1 0且2 x 0 ,即 x1 且 x2 时,根式 x1 和分式同时存心义,{ x | x 1 且 x 2 }2x∴这个函数的定义域是另解:要使函数存心义,一定:x 1 0 x 12 xx 2例 2 求以下函数的定义域:① f ( x)4 x 21② f (x)x 2 3x 4x 1 2③ f ( x)1 1111x⑤ yx2313x 73解:①要使函数存心义,一定:( x1) 0④ f ( x)x x4 x 2 1即:3x 3∴函数 f (x)4 x 21 的定义域为: [3, 3 ]②要使函数存心义,一定: x 23x 4 0x 4或 x 1x 1 2x3且 x 1x3或 3 x1或 x 4∴定义域为: { x| x3或 3 x1或 x 4}x1x③要使函数存心义,一定:1 0 x 1xx111 0211x1}∴函数的定义域为:{ x | x R 且 x 0, 1,2④要使函数存心义,一定:x 1 0x 1xxx 0∴定义域为:x | x1或 1xx 2 3 0x R⑤要使函数存心义,一定:x73x737 或x>7 ∴定义域为: { x | x 7}即 x<333例 3若函数 yax 2ax 1 的定义域是 R ,务实数 a 的取值范围a解:∵定义域是R,∴ ax 2ax1 0恒建立,a∴ 等价于a 010 a2a 24aa例 4 若函数 yf (x) 的定义域为 [ 1, 1],求函数 yf (x1) f ( x 1 ) 的定义域44解:要使函数存心义,一定:1 x15 314x33441 3 5 x41 x41 4x44∴函数 y f (x1) f ( x1) 的定义域为:x | 3x 3444 4例 5 已知 f(x) 的定义域为 [-1,1],求 f(2x -1)的定义域。

函数定义域求法及练习题含答案

函数定义域求法及练习题含答案

函数定义域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、抽象函数的定义域1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为__ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】
一、函数的定义域的定义
函数的定义域是指使函数有意义的自变量的取值范围.
二、求函数的定义域的主要依据
1、分式的分母不能为零.
2、偶次方根的被开方数的被开方数必须大于等于零,即中
奇次方根的被开方数取全体实数,即中,.
3、指数函数的底数必须满足.
4、对数函数的真数必须大于零,底数必须满足.
5、零次幂的底数不能为零,即中.
6、正切函数的定义域是.
7、复合函数的定义域的求法
(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.
(2)已知复合函数的定义域为,求原函数的定义域:只需根据
求出函数的值域,即得原函数的定义域.
8、求函数的定义域
一般先分别求函数和函数的定义域和,再求,则
就是所求函数的定义域.
9、求实际问题中函数的定义域
不仅要考虑解析式有意义,还要保证满足实际意义.
三、函数的定义域的表示
函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.
四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.
五、函数的问题,必须遵循“定义域优先”的原则.
研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便.
【方法讲评】
【例1】求函数的定义域.
【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域.
【反馈检测1】求函数的定义域.
函数是由一些函数四则运算得到的,即函数的形式为
一般先分别求函数和的定义域再求就是函数【例2】求函数+的定义域.
【解析】由题得
所以函数的定义域为
【点评】(1)求函数的定义域,一般先求和函数
的定义域和,再求,则就是所求函数的定义域.(2)该题中要考虑偶次方根的被开方数是非负数,对数函数的真数大于零,列不等式求函数的定义域时,必须考虑全面,不能漏掉限制条件.(3)解不等式时,主要是利用余弦函数的图像解答.(4)
求的解集时,只需给参数赋几个整数值,再通过数轴求交集.(5)注意等号的问题,其中只要有一个错误,整个解集就是错误的,所以要仔细认真.
【例3】求函数的定义域.
【点评】(1)该题中要考虑真数大于零,分式的分母不能为零,零次幂的底数不能为零,考虑要全面,不要遗漏.(2)求不等式的交集一般通过数轴完成.
【例4】求函数的定义域.
【解析】由题得
【点评】(1)求含有参数的函数的定义域时,注意在适当的地方分类讨论.(2)对于指数函数和对数函数,如果已知条件中,没有给定底数的取值范围,一般要分类讨论.
【反馈检测2】求函数的定义域.
的定义域为
的定义域:只需解不等式
的定义域为
求原函数
的定义域:只需根据
求出函数
的值域,即得原函数
的定
【例5】求下列函数的定义域: (1)已知函数的定义域为
,求函数
的定义域; (2)已知函数的定义域为
,求函数
的定义域;
(3)已知函数
的定义域为
,求函数
的定义域.
【点评】(1)已知原函数
的定义域为
,求复合函数
的定义域:只需。

相关文档
最新文档