2014-2015年江苏省南京市江宁区湖熟片八年级上学期期中数学试卷及参考答案
2014-2015学年苏科版八年级上期中考试数学试题及答案
(第7题)A. B. C. D.A A 1A AA(说明:本试卷满分120分,考试时间:100分钟)一、选择题(本大题共有10小题,每小题3分,满分30分)1.9的平方根是……………………………………………………………………( )A .3B .-3C .±3D .32.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ………………( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是……………………………………………………………( )A .3-9=-3 B .(-3)2=9 C . ±9=±3 D .(-2)2=-2 4.下面的图形都是常见的安全标记,其中是轴对称图形的是……………………( )5.如果等腰三角形的一个角是80°,则它的顶角度数是………………………( ) A .80° B .80°或20° C .80°或50° D .20°6.有下列说法: ①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边长是13;③近似数 1.5万精确到十分位;④无理数是无限小数.其中错误..说法的个数有………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个7. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有……………( )A .1个B .2个C .3个D .4个8.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE 的度数为………………( )A .30°B .40°C .50°D .60°9.如图,在△ABC 中,AB =AC ,AD =AE ,∠BAD =30°,∠EDC 的度数是……………( ) A .10° B .15° C .20° D .25°10.如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2015-θ2014的值为……………………( )A .180°+α22014B .180°-α22014C .180°+α22015 D .180°-α22015(第16题) (第18题)(第17题) DBQPEA CO乙甲ACE 1BD 1EDCBANM BDCA二、填空题(本大题共有8小题,每空2分,满分22分) 11.16的算术平方根是 ,-8的立方根是 .12.地球七大洲的总面积约为149480000km 2,若要把这个数据精确到百万位,用科学记数法可表示为km 2.13.若x 与2x -6是同一个正数m 的两个不同的平方根,则x = , m = . 14. (25)2 ,32 53(用“>、=、<”号连结). 15.若实数x 、y 满足x -2+(y +3)2=0,则y x = .16.如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s.17.如图,在等边△ABC 中,AB =6,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD18. 把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =18,CD =21,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为________.三、解答题:(本大题共9小题,满分68分) 19.计算题.(每题4分,共8分)(1)计算:25-(12)-2+(5-1)0; (2)3-8+(-5)2 + ||3-11.20.求出下列x 的值.(每小题4分,共8分))(1)4x 2-49=0 ; (2) 27 (x +1)3=-6421.(本题满分6分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分不可能全部地写出来,但可以用2-1来表示2的小数部分.理由:因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答,已知:3+6=x+y,其中x是整数,且0<y<1,求x-y的值.EBCA23.(本题满分5分)已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点,求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)(1)求DE 的长;(2)若AC =6,BC =8,求△ADB 的面积.25.(本题满分5分)小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?如果同意,请你给出证明,如果不同意,请说明理由.OF EA B C DD C B A图① 图 26.(本题满分12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 为△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,请判断ME 、BD 的数量关系,并给出证明.27.(本题满分12分)数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、 “AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B 是直角时,如图①,根据______定理,可得△ABC ≌△DEF .(2)第二种情况:当∠B 是钝角时,△ABC ≌△DEF 仍成立.请你完成证明.已知:如图②,△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .证明:EA ①FEB CA②FBEDCA③BCA(3)第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?(请直接写出结论.)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若∠B _________,则△ABC ≌△DEF .二、选择题(本大题共有10小题,每小题3分,满分30分)1. C 2. B 3. C 4. A 5. B 6. B 7. C 8. B 9. B 10.D 二、填空题(本大题共有8小题,每空2分,满分22分)11.4,-2 12.1.49×108 13. 2,4 14.= ,> 15. 1816.1或4 (少一个答案扣一分) 17. 3 3 (27也算对) 18.15三、解答题:(本大题共9小题,满分68分)20.求出下列x 的值.(每小题4分,共8分)) (1)4x 2-49=0x 2=494…………………………………………………………2分x =±72…………………………………………………………4分(2) 27 (x +1)3=﹣64(x +1)3 =﹣6427………………………………………………1分(x +1)=﹣43 …………………………………………………3分x =﹣73………………………………………………………4分21.(本题满分6分)由题知:x =5, ……………………………1分y =6—2, ……………………………………………………3分x -y =5-(6-2) ………………………………………5分 x -y =7-6… ………………………………………………6分 22.(本题满分6分)由题知:a —3≥0且3—a ≥0,…………………………………1分 解得a ≥3且a ≤3,所以,a =3,………………………………………………………2分所以,b=5,………………………………………………………3分①当腰为3,底为5时,周长3+3+5=11;…………………4分②当腰为5,底为3时,周长为5+5+3=13.…………………5分∴这个等腰三角形的周长为11或13……………………………6分23.(本题满分5分)(1)以D为顶点,DC为边作一个角等于∠ABC(也可画∠ABC的内错角)……………………………………………………………………2分(2)作出BD中垂线………………………………………………4分(3)标出点E ………………………………………………………5分∴点E为所求作的点.25.(本题满分5分)答:同意………………………………………………………1分理由:由第一次折叠得∠BAD=∠CAD………………………2分由第二次折叠得EF⊥AD ……………………………3分由ASA证得三角形△AEO≌△AFO…………………4分得AE=AF………………………………………………5分(此参考答案为简要思路,方法不唯一,请酌情给分)26.(本题12分)(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°……………………………………1分又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°……………………………………2分∴∠BDE=30°+30°=60°………………………………3分又易证得△ADC≌△BDC ………………………………4分得∠ACD=∠BCD=45°由外角得∠CDE=60°………………………………………5分得∠CDE=∠BDE=60°所以DE平分∠BDC ………………………………………6分(此小题证明方法不唯一,请参照给分)(2)答:ME=BD …………………………………………7分证明:连结MC ………………………………………8分证得△MCD为等边三角形……………………………9分证得△BDC≌△EMC…………………………………11分得ME=BD ……………………………………………12分27.(本题12分)3.【逐步探究】(1)HL ………………………………………………………2分(2)证明:分别作CG⊥AB,FH⊥DE ……………………3分由∠ABC=∠DEF得∠CBG=∠FEH…………………………………………4分证明△ACG≌△DFH(AAS)……………………………6分得CG=FH得Rt△ACG≌Rt△DFH(HL)…………………………7分得△ABC≌△DEF(AAS)…………………………………8分(3)如图,……………………………10分4.【深入思考】∠B≥∠A.……………………………………12分。
苏科版八年级上期中数学试卷(苏教版八年级数学上册期中考试测试卷含答案)
苏教版八年级数学上册期中考试测试卷一、选择题(每题3分,共24分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A.B.C.D.2.以下列数组为边长,能构成直角三角形的是( )A.2,3,4 B.,,C.0.3,0.4,0.5 D.,,3.估计+1的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.如图,小敏做了一个角平分仪ABCD,其中AB=CD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SSS B.ASA C.AAS D.SAS5.如图,△ABC中,AB=6,AC=8,BD,CD平分∠ABC、∠ACB,过D作平行于BC,交AB、AC于E、F,则△AEF的周长为( )A.11 B.12 C.13 D.146.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.DA=DE B.AD=AE C.BC=CE D.BE=CD7.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有( )A.1种B.2种C.3种D.4种8.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为2,则AC的长是( )A. B. C. D.二、填空题(每题3分,共30分)9.4是__________的算术平方根.10.人的眼睛可以看见的红光的波长为0.000077cm,请将数据0.000077精确到0.00001并用科学记数法可表示为__________.11.立方根和平方根都等于本身的数是__________.12.若实数x、y满足+(y﹣4)2=0,则以x、y的值为两边长的等腰三角形的周长为__________.13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是__________cm.14.如图,在△ABC中,AB=AC,边AC的垂直平分线分别交边AB、AC于点E、F,如果∠B=75°,那么∠BCE=__________度.15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.16.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).如图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=20,则S2的值是__________.17.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.18.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB 上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为__________.三、解答题(共10大题,共96分)19.(1)求下式中x的值:(x﹣1)2=25(2)计算:﹣+(﹣)2.20.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.21.如图:在长度为1个单位的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为__________;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为__________个单位长度.(在图形中标出点P)22.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.23.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CD E,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.24.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,求BE的长.25.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.26.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.27.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值28.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a 的值;若点E落在四边形OABC的外部,直接写出a的取值范围.。
2014-2015学年八年级上学期期中联考数学试题(含答案)
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
南京市江宁区八年级上期中质量数学试题有答案[精品]
第一学期期中质量调研检测试卷八年级数学一、选择题(每小题2分,计12分.将正确答案的序号填写在下面的表格中) 1.下列图案中,不是..轴对称图形的是( ▲ )2.若等腰三角形的两边长分别为3cm 和6cm ,则该等腰三角形的周长是( ▲ ) A .9cmB .12cmC .12cm 或15cmD .15cm3.如图,已知点B 、E 、C 、F 在同一直线上,且BE =CF ,∠ABC =∠DEF ,那么添加一个条件后.仍无法判定△ABC ≌△DEF 的是( ▲ ) A .AC =DF B . AB =DE C .AC ∥DFD . ∠A =∠D4.如图的方格纸中,左边图形到右边图形的变换是( ▲)质,由作图所得条件,判定三角形全等运用的方法是( ▲ ) (第3题)A .SSSB .ASAC .AASD .SAS6.下列每一组数据中的三个数值分别为三角形的三边长,构成钝角三角形的是( ▲ ) A .3、4、5 B .3、3、5 C .4、4、5 D .3、4、4二、填空题(每小题2分,共20分)∠C = ▲ °. 12如图,在Rt △ABC 中,∠ACB =90°,以AC 为边的正方形面积为12,中线CD 的长度为2,则BC 的长度为 ▲ .13. 如图,在等腰△ABC 中,AB =AC =BD ,∠BAD =70°,∠DAC = ▲ °.(第12题)(第11题)(第13题)14. 如图,△ABC中,AB = AC,DE是AB的垂直平分线,垂足为D,交AC于E.若AB = 10cm,△ABC的周长为27cm,则△BCE的周长为▲.17. (7分) 已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.(第17题)(第18题)19.(7分)如图,AC=AB,DC=DB,AD与BC相交于O.(1)求证:△ACD≌△ABD;(2)求证:AD 垂直平分BC .20. (7分)如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,D 为AB 中点, DE ⊥DF . (1)写出图中所有全等三角形,分别为 ▲ .(用“≌”符号表示) (2)求证:ED =DF .,(第19题)ODCBAAF BCDE(第20题)21. (8分)如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,AD 为△ABC 角平分线. (1)用圆规在AB 上作一点P ,满足DP ⊥AB ; (2)求:CD 的长度.(1)若∠ABD +∠C =120°,求∠A 的度数;(2)若CD =3,BC =5,求△ABC 的面积 .23. (8分)如图,在正方形ABCD 中,点E 是BC 上一点,连接AE . 请添加一条线段,使得图形是一个轴对称图形。
2014——2015学年度第一学期八年级数学期中考试卷(含答案)
2014——2015学年度第一学期 八年级数学期中考试卷(含答案)(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确1、4的算术平方根是A . 2B . 2-C . 2±D . 2±2、与数轴上的点成一一对应关系的数是A . 有理数B . 无理数C . 实数D . 整数 3、下列从左边到右边的变形,属于因式分解的是A . 1)1)(1(2-=-+x x x B . 1)2(122+-=+-x x x xC . )4)(4(422y x y x y x -+=-D . 22)3(96-=+-x x x4、下列命题中是真命题的是A .三角形的内角和为180°B .同位角相等C .三角形的外角和为180°D .内错角相等 5、使式子32+x 有意义的实数x 的取值范围是A .32>x B . 23>x C . 23-≥x D . 32-≥x6、在实数73,1+π,4,3.14,38,8,0, 11.21211211中,无理数有A . 2个B . 3个C . 4个D . 5个7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 A . 6cm B . 5cm C . 8cm D . 7cm8、计算:()20132013125.08-⨯等于A . 1-B . 1C . 2013D . 2013- 9、下列条件中,不能证明△ABC ≌△'''C B A 的是 A .''''C A AC B B A A =∠=∠∠=∠,,学校:班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分 B'C BB .''''B A AB B B A A =∠=∠∠=∠,,C .'''''C A AC A A B A AB =∠=∠=,,D .'''''C B BC B A AB A A ==∠=∠,, 10、下列算式计算正确的是A .523a a a =+B .623a a a =⋅C .923)(a a =D . a a a =÷2311、估计15的大小在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间12、若(x+a)(x-5)展开式中不含有x 的一次项,则a 的值为A . 5-B . 5C . 0D . 5± 13、如右图,△ABC ≌△EDF ,DF =BC ,AB=ED ,AF =20,EC =10,则AE 等于 A . 5 B . 8 C .10 D . 15 14、如果则的值分别是A . 2 和 3B . 2和-3C . 2和D .二、填空题:(每小题4分,共16分) 15、计算:=⨯-2016201020132________。
2015学年苏科版八年级上期中考试数学试卷及答案
2015学年苏科版八年级上期中考试练习试卷及答案(考试时间100分钟,试卷总分100分)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列图形中,不是..轴对称图形的是( )2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .6,8,10C .2,3,4D .1,1,23.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .20 C .16或20 D .18 4.9的平方根是( )A .3B .±3C .9D .±95.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定....△ABC ≌△ADC 的是( )A .∠B =∠D =90° B .CB =CDC .∠BAC =∠DACD .∠BCA =∠DCA 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .ASAC . SASD .AAS7.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③ BC =AD ; ④CD =OD .正确的有( )A .1个B .2个C .3个D .4个8.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为 E , S △ABC =8,DE =2,AB =5,则AC 长是( ) A .6 B .5C .4D .3二、填空题(本大题共10小题,每小题2分,共20分) 9.=__________. 10_______ 12. A .BD .C .ACBD(第5题图)AEBC (第8题11.若等腰三角形的一个角是80°,则其底角为_ .12.如图,长方形OABC 中,OC =2,OA =1.以原点O 为圆心,对角线OB 长为半径画弧交数轴于点D ,则数轴上点D 表示的数是 .13.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x = .14.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△C OB .你补充的条件是_____________ .(填写一个即可)15.如图,AD 是△ABC 的中线,∠ADC =60°,BC =4,把△ABC 沿直线AD 折叠后,点C 落在C ’的位置上,那么BC ’的长为 .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于 .17.把一张长方形纸片按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则重叠部分△DEF 的面积是 ___ cm 2.18.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,在直线AC 上找一点P ,使△ABP是等腰三角形,则∠APB 的度数为__________.三、解答题(本大题共6小题,每小题6分,共36分) 19.求下列各式中的x :(1) 2510x = (2)()3464x +=-20.计算:(1)(-3)2; (2(π-3)0-1AD OCBCBA(第12题A BCFEA ′ (B ')D21.已知:如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,∠ACB =∠DFE .证明:AB ∥ED .22.已知:如图,AB =AC ,BE =CE ,点D 在AE 的延长线上.求证:BD =CD .23.如图,锐角三角形ABC 的两条高BD 、CE 相交于点O ,且OB =OC .(1)证明:AB =AC ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.DEECBAOEC DBA24.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?四、操作与探究(本大题共3小题,第25题8分,其余各题10分,共28分)25.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A —C —B 向点B 运动,设运动时间为t 秒(t >0),(1)在AC 上是否存在点P ,使得P A =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 恰好在△ABC 的角平分线上,请直接..写出t 的值.27.如图(1),凸四边形ABCD ,如果点P 满足∠APD =∠APB =α.且∠BPC =∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法); (3)若四边形ABCD 有两个半等角点P 1、P 2(如图(4)),证明线段P 1P 2上任一点也是它的半等角点.2015-2016学年度第一学期期中练习卷八年级数学参考答案评分标准二、填空题(本大题共10小题,每小题2分,共20分)9.-4.10.﹥.11.50°或80°.12..13.20.14.AB≒CD 等. 15.2. 16.8. 17.5.1 . 18.15°或30°或75°或120°三、解答题(本大题共6小题,每小题6分,共36分)x=……1分(2)解:∵x+4是-64的立方根…1分19.(1)解:22∴x是2的平方根…2分∴x+4=-4 …2分∴x=……3分即x=-8 ……3分-++…2分20.(1)解:原式=9-9+3 …2分(2)解:原式=11(1=3 ……3分=1……3分21.证明:∵FB=CE∴FB+FC=CE+FC即BC=EF…………………………1分在△ABC和△DEF中BC=EF∠ACB=∠DFEAC=DF∴△ABC≌△DEF………………5分∴MD=ME………………………6分22.证明:连接BC∵AB=AC∴点A在BC的垂直平分线上…………1分同理:点E也在BC的垂直平分线上………2分∴直线AE是BC的垂直平分线………4分∵点D在直线AE上∴BD=CD………6分23.(1)证明:∵OB=OC∴∠OBC=∠OCB…………1分∵BD 、CE 是△ABC 的高 ∴∠ABC =90°-∠OCB ∠ACB =90°-∠OBC∴∠ABC =∠ACB ……2分∴AB =AC ………………3分(2)解:点O 在∠BAC 的平分线上 ……4分在△BOE 和△COD 中∠BOE =∠COD∠BEO =∠CDO =90°BO =CO∴△BOE ≌△COD ………………5分∴EO =DO又∵BD ⊥AC ,CE ⊥AB∴点O 在∠BAC 的平分线上 ………………6分24.解:根据题意:AB =DE =2.5;BC =0.7;CD =2 在Rt △ABC 中 :222AC BC AB += 即 2220.7 2.5AC +=∴AC =2.4 …………2分在Rt △DCE 中 :222CE CD DE +=即 2222 2.5CE +=∴CE =1.5 …………4分∴AE =AC -CE =2.4-1.5=0.9 …………5分 答:梯子顶端A 下滑了0.9米. …………6分25.解:(1)如图所示(要有痕迹). …………2分 (2)如图,过点A 、C 作AD ⊥3l 、CF ⊥3l ,垂足分别为D 、F ∵△ABC 是等腰直角三角形∴∠ABC =90°;AB =BC …………3分 ∵AD ⊥3l 、CF ⊥3l∴∠ADB =∠CFB =90°∵∠DAB +∠ABD =90°;∠ABD +∠CBF =90°∴∠DAB =∠CBF 在△ABD 和△BCF 中 ∠DAB =∠CBF ∠ADB =∠CFBAB =BC∴△ABD ≌△BCF ………………5分 ∴AD =BF =2;CF =BD =3 …………6分∴在Rt △BCF 根据勾股定理:BC∴在Rt △ABC 根据勾股定理:AC ………8分 26.(1)解:AC 存在这样的点P .在Rt △ABC 根据勾股定理:AC =4 ∵PA =PB =2t ∴PC =4 - 2t在Rt △PBC 根据勾股定理:()()2224232t t -+= ………3分解得: 2516t =………4分 (2)分类讨论:①当点P 在点C 、点B 时2t =、 3.5t =…………6分 ②当点P 在∠B 、∠A 的角平分线上时54t =、83t = …………………10分27.(1)所画的点P 在AC 上且不是AC 的中点和AC 的端点; ……2分 (2)画点B 关于AC 的对称点B ’,延长DB ’交AC 于点P ,点P 为所求……4分 (3)连P1A 、P 1D 、P 1B 、P 1C 和P 2D 、P 2B ,根据题意,∠AP 1D =∠AP 1B ,∠DP 1C =∠BP 1C , ∴∠AP 1B +∠BP 1C =180°.∴P 1在AC 上,同理,P 2也在AC 上. …………6分 在△DP 1P 2和△BP 1P 2中,∠DP 2P 1=∠BP 2P 1, ∠DP 1P 2=∠BP 1P 2, P 1P 2=P 1P 2∴△DP 1P 2≌△BP 1P 2. …………8分 ∴DP 1=BP 1,DP 2=BP 2, ∴B 、D 关于AC 对称.设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,∴点P是四边形的半等角点.…………10分。
2014-2015年江苏省南京市联合体八年级(上)数学期中试卷及参考答案
23. (8 分) 已知, 如图, △ABC 和△ECD 都是等腰直角三角形, ∠ACB=∠DCE=90°, D 为 AB 边上一点.求证:BD=AE.
五、操作与解释(6 分) 24. (6 分)把由 5 个小正方形组成的一字形纸板(如图 1)剪开,使剪成的若干 块能够拼成一个大正方形:如果剪 4 刀,应如何剪拼?在图 1 中画出剪的痕迹, 在图 2 中画出所拼大正方形,要求四个顶点都在格点上.
)
【解答】解:南京市常住人口总量为 818.78 万,818.78 万为近似数;八年级数 学书上册共 173 页,173 为准确数;姚明身高为 2.24m,2.24 为近似数;我国数 学家曾用 故选:B. 作为圆周率, 为近似数.
涂法有(
)
A.6 种 B.7 种 C.8 种 D.9 种
二、填空(每题 2 分,共 20 分) 9. (2 分)计算: 10. (2 分) = ; = . .
估算到 0.1 约等于
11. (2 分)如图,∠A=30°,∠B′=62°,△ABC 与△A′B′C′关于直线 l 对称,则△ ABC 中的 (10 分)已知:如图 1,射线 MN⊥AB,点 C 从 M 出发,沿射线 MN 运动, AM=1,MB=4. (1)当△ABC 为等腰三角形时,求 MC 的长; (2)当△ABC 为直角三角形时,求 MC 的长; (3) 点 C 在运动的过程中, 若△ABC 为钝角三角形, 则 MC 的长度范围 若△ABC 为锐角三角形,则 MC 的长度范围 . ;
4. (2 分)已知等腰三角形一个内角 30°,它的底角等于( A.75° B.30° C.75°或 30° D.不能确定
5. (2 分)已知:如图,AC=DF,BC=EF,下列条件中,不能证明△ABC≌DEF 的 是( )
苏科版数学八年级上册《期中测试题》含答案
【解析】
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF=2,
∵S△ABC=S△ABD+S△ACD,
∴12= ×AB×DE+ ×AC×DF,
∴24=AB×2+3×2,
∴AB=9,
故选D.
9.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()
A.35°B.40°C.45°D.60°
10.如图,四边形ABCD中,对角线AC⊥BD于点O,且AO=BO=4,CO=8,∠ADB=2∠ACB,则四边形ABCD 面积为()
A. 48B. 42C. 36D. 32
二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
26.在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上的一个动点,以AD为直角边向右作等腰Rt△ADF,使AD=AF,∠DAF=90°.
(1)如图1,连结CF,求证:△ABD≌△ACF;
(2)如图2,过A点作△ADF的对称轴交BC于点E,猜想BD2,DE2,CE2关系,并证明你的结论;
27.如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,
2014-2015学年江苏省南京市秦淮区八年级(上)期中数学试卷
2014-2015学年江苏省南京市秦淮区八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)以下四家银行的行标图中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(2分)以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13 B.8,15,16 C.9,16,25 D.12,15,203.(2分)如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.24.(2分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠B=∠D=90°B.∠BCA=∠DCA C.∠BAC=∠DAC D.CB=CD5.(2分)如图,在△ABC中,AB=AC=10,AD是角平分线,AD=6,则BC的长度为()A.6 B.8 C.12 D.167.(2分)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.8.(2分)下列说法:①角平分线上的点到角两边的距离相等;②等腰三角形的高、中线、角平分线互相重合;③三角形三边的垂直平分线交于一点且这一点到三角形三个顶点的距离相等;④等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中,所有正确说法的序号是()A.①②③B.②③④C.①③D.②④9.(2分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.3二、填空题(本大题共10小题,每小题2分,共20分)10.(2分)等腰三角形一个角等于100°,则它的一个底角是°.11.(2分)角是轴对称图形,则对称轴是.12.(2分)一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是三角形.13.(2分)如图,△ABD≌△BAC,若∠C=95°,∠ABC=50°,则∠ABD=°.14.(2分)如图,小明书上的三角形被墨迹污染了一部分,他根据所学知识画出一个与此三角形全等的三角形,他画图依据的基本事实是.15.(2分)在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为cm.16.(2分)如图,∠C=90°,∠BAD=∠CAD,若BC=11cm,BD=7cm,则点D到AB的距离为cm.17.(2分)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯米.18.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.19.(2分)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).三、解答题(本大题共5小题,共36分)20.(6分)已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.21.(8分)如图,在△ABC中,AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)若∠BAC=130°,求∠DAE的度数.22.(8分)小明发现有些轴对称图形的对称轴可以用无刻度的直尺画出,依据是“轴对称图形中,已知线段与其关于某直线对称的线段(或其延长线)的交点在对称轴上.”请利用上述知识解决下面的问题:如图,△ABC与△DEF关于直线l对称,请只用无刻度的直尺,在下面三个图中分别作出直线l.23.(8分)学过《勾股定理》后,八年级某班数学兴趣小组来到操场上测量旗杆AB的高度.小华测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),小明拉着绳子的下端往后退,当他将绳子拉直时,小凡测得此时小明拉绳子的手到地面的距离CD为1m,到旗杆的距离CE为8m,(如图2).于是,他们很快算出了旗杆的高度,请你也来试一试.24.(6分)如图,已知△ABC(AC<BC),用尺规作图,在BC上作出一点P,使PA+PC=BC,并简述理由或依据(不写作法,保留作图痕迹).四、思考与探索(本大题共3小题,共28分)25.(8分)我们在学习“§2.5等腰三角形的轴对称性”时,有一个思考:“如图,在Rt△ABC中,∠ACB=90°,如果∠B=30°,那么AC与AB有怎样的数量关系?”请你写出AC与AB所满足的数量关系并证明.26.(9分)已知:在∠ABC中,D是∠ABC平分线上一点,E、F分别在AB、BC 上,且DE=DF.试判断∠BED与∠BFD的关系并证明.下面方框中是小明的判断与证明:解:∠BED=∠BFD,证明如下:如图:过点D作DM⊥AB,DN⊥BC,垂足分别为M、N,∴△DEM和△DFN是直角三角形,∵BD是∠ABC的平分线,DM⊥AB,DN⊥BC,∴DM=DN.在Rt△DEM与Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴∠MED=∠NFD,∴∠BED=∠BFD.数学老师认为小明的判断不完整,请你认真思考给出完整的判断并证明.27.(11分)先阅读材料,再结合要求回答问题.【问题情景】如图①:在四边形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且线段BE,EF,FD满足BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.【初步思考】小王同学探究此问题的方法是:延长FD到G,使DG=BE,连结AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出∠EAF与∠BAD之间的数量关系是.【探索延伸】若将问题情景中条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②),其余条件不变,请判断上述数量关系是否仍然成立,若成立,请证明;若不成立,请说明理由.【实际应用】如图③,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处且相距210海里.试求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.2014-2015学年江苏省南京市秦淮区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)以下四家银行的行标图中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【分析】根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.【解答】解:第一个、第三个和第四个是轴对称图形,只有第二个不是轴对称图形,故选C.【点评】本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.2.(2分)以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13 B.8,15,16 C.9,16,25 D.12,15,20【分析】要构成直角三角形必须满足3个数字为勾股数,分别对每个选项的3个数字进行验证即可解题.【解答】解:A、∵52+122=132,∴A正确;B、∵82+152≠162,∴B错误;C、∵92+162≠252,∴C错误;D、∵122+152≠202,∴D错误;故选A.【点评】本题考查了勾股数的组成条件,本题中分别对每个选项进行验证是否是勾股数是解题的关键.3.(2分)如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.2【分析】根据全等三角形的对应边相等可得AB=AC,AE=AD,再由CD=AC﹣AD 即可求出其长度.【解答】解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选D.【点评】本题考查了全等三角形对应边相等的性质,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.4.(2分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠B=∠D=90°B.∠BCA=∠DCA C.∠BAC=∠DAC D.CB=CD【分析】根据图形得出AC=AC,根据全等三角形的判定定理逐个推出即可.【解答】解:A、∵∠B=∠D=90°,∴在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL),故本选项错误;B、根据AB=AD,AC=AC,∠BCA=∠DCA不能推出△ABC≌△ADC,故本选项正确;C、∵在△ABC和△ADC中∴△ABC≌△ADC(SAS),故本选项错误;D、∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故本选项错误;故选B.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.(2分)如图,在△ABC中,AB=AC=10,AD是角平分线,AD=6,则BC的长度为()A.6 B.8 C.12 D.16【分析】先根据等腰三角形的性质得出BC=2BD,再由勾股定理求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,AB=AC=10,AD是角平分线,AD=6,∴BC=2BD,AD⊥BC.在Rt△ABD中,BD2+AD2=AB2,即BD2+62=102,解得BD=8,∴BC=16.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7.(2分)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.8.(2分)下列说法:①角平分线上的点到角两边的距离相等;②等腰三角形的高、中线、角平分线互相重合;③三角形三边的垂直平分线交于一点且这一点到三角形三个顶点的距离相等;④等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中,所有正确说法的序号是()A.①②③B.②③④C.①③D.②④【分析】根据角平分线的性质判断①;根据等腰三角形三线合一的性质判断②;根据线段垂直平分线的性质判断③;根据等腰三角形的性质、三角形三边关系及周长的定义判断④.【解答】解:①角平分线上的点到角两边的距离相等,说法正确;②等腰三角形底边上的高、中线与顶角的角平分线互相重合,说法错误;③三角形三边的垂直平分线交于一点且这一点到三角形三个顶点的距离相等,说法正确;④等腰三角形的一边长为8,一边长为16,那么它的周长是40.故选C.【点评】本题考查了角平分线的性质,等腰三角形的性质,线段垂直平分线的性质,三角形三边关系定理,熟记性质与定理是解题的关键.9.(2分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S=×4×2+AC×2=7,△ABC解得AC=3.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)10.(2分)等腰三角形一个角等于100°,则它的一个底角是40°.【分析】由条件可知该角只能为顶角,再利用等腰三角形的性质和三角形的内角和可求得底角.【解答】解:∵该角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.11.(2分)角是轴对称图形,则对称轴是角平分线所在的直线.【分析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.【解答】解:角的对称轴是角平分线所在的直线.【点评】本题考查轴对称图形的定义与判断,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.12.(2分)一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是直角三角形.【分析】化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.【解答】解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.【点评】考查了勾股定理逆定理的运用,是基础知识比较简单.13.(2分)如图,△ABD≌△BAC,若∠C=95°,∠ABC=50°,则∠ABD=35°.【分析】首先由全等三角形的性质:对应角相等可求出∠D,∠DAB的度数,再利用三角形的内角和定理即可求出∠ABD的度数.【解答】解:∵△ABD≌△BAC,∴∠D=∠C=95°,∠DAC=∠ABC=50°,∴∠ABD=180°﹣95°﹣50°=35°故答案为:35.【点评】本题考查的知识点为:全等三角形的性质及三角形的内角和定理;要熟练掌握这些知识,做题时注意灵活应用.14.(2分)如图,小明书上的三角形被墨迹污染了一部分,他根据所学知识画出一个与此三角形全等的三角形,他画图依据的基本事实是两角及其夹边分别相等的两个三角形全等.【分析】根据全等三角形的判定方法解答即可.【解答】解:依据为:两角及其夹边分别相等的两个三角形全等(ASA).故答案为:两角及其夹边分别相等的两个三角形全等.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.15.(2分)在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5cm.【分析】利用勾股定理求出斜边的长度,然后根据直角三角形斜边上的中线等于斜边的一半的性质解答.【解答】解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记性质是解题的关键.16.(2分)如图,∠C=90°,∠BAD=∠CAD,若BC=11cm,BD=7cm,则点D到AB的距离为4cm.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据CD=BC﹣BD计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,∠BAD=∠CAD,∴DE=CD,∵CD=BC﹣BD=11﹣7=4cm,∴DE=4cm,即点D到AB的距离为4cm.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,是基础题,熟记性质是解题的关键.17.(2分)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯17米.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【解答】解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.【点评】本题考查了勾股定理的应用,是一道实际问题,解题的关键是从实际问题中抽象出直角三角形,难度不大.18.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.19.(2分)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为 1.3m(容器厚度忽略不计).【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2﹣0.3+AE=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1.3(m).故答案为:1.3.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题(本大题共5小题,共36分)20.(6分)已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.【分析】易证AC=BC,即可证明△ACE≌△BCD,根据全等三角形对应边相等的性质即可解题.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴∠ACE=∠BCD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ACE≌△BCD是解题的关键.21.(8分)如图,在△ABC中,AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)若∠BAC=130°,求∠DAE的度数.【分析】(1)由在△ABC中,AB、AC的垂直平分线分别交BC于D、E,根据线段垂直平分线的性质可得AD=BD,AE=CE,继而可得△ADE的周长=BC;(2)由AD=BD,AE=CE,可求得∠B=∠BAD,∠C=∠CAE,又由∠BAC=130°,即可求得∠BAD+∠CAE=∠B+∠C=50°,继而求得答案.【解答】解:(1)∵在△ABC中,AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE,又∵BC=10,∴△ADE周长为:AD+DE+AE=BD+DE+EC=BC=10;(2)∵AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,又∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAD+∠CAE=∠B+∠C=50°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=130°﹣50°=80°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.22.(8分)小明发现有些轴对称图形的对称轴可以用无刻度的直尺画出,依据是“轴对称图形中,已知线段与其关于某直线对称的线段(或其延长线)的交点在对称轴上.”请利用上述知识解决下面的问题:如图,△ABC与△DEF关于直线l对称,请只用无刻度的直尺,在下面三个图中分别作出直线l.【分析】找到每个图中的对应线段,延长找到交点,过交点作直线即可.【解答】解:延长对应线段,找到交点,过交点作直线即可.【点评】本题考查了作图﹣﹣轴对称变换,找到对应线段并连接是解题的关键.23.(8分)学过《勾股定理》后,八年级某班数学兴趣小组来到操场上测量旗杆AB的高度.小华测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),小明拉着绳子的下端往后退,当他将绳子拉直时,小凡测得此时小明拉绳子的手到地面的距离CD为1m,到旗杆的距离CE为8m,(如图2).于是,他们很快算出了旗杆的高度,请你也来试一试.【分析】根据图形标出的长度,可以知道AB和CC的长度差值是1,以及CD=1,CE=8,从而构造直角三角形,根据勾股定理就可求出旗杆的高度.【解答】解:设旗杆的高度为x米,则绳子长为(x+1)米,在Rt△ACE中,AC=x米,AE=(x﹣1)米,CE=8米,由勾股定理可得,(x﹣1)2+82=(x+1)2,解得:x=16.答:旗杆的高度为16米.【点评】此题主要考查了勾股定理的应用,表示出AE与AC长度利用勾股定理求出,善于挖掘题目的隐含信息是解决本题的关键.24.(6分)如图,已知△ABC(AC<BC),用尺规作图,在BC上作出一点P,使PA+PC=BC,并简述理由或依据(不写作法,保留作图痕迹).【分析】作出AB的垂直平分线,与BC交点即为P.【解答】解:如图所示,点P为所求.理由:连接PA.∵由作图得,点P在AB的垂直平分线上,∴PA=PB.∵PB+PC=BC,【点评】本题考查了作图﹣﹣基本作图,线段垂直平分线的性质,要灵活运用.四、思考与探索(本大题共3小题,共28分)25.(8分)我们在学习“§2.5等腰三角形的轴对称性”时,有一个思考:“如图,在Rt△ABC中,∠ACB=90°,如果∠B=30°,那么AC与AB有怎样的数量关系?”请你写出AC与AB所满足的数量关系并证明.【分析】方法一:取AB的中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半可得DB=CD=AD,再根据直角三角形两锐角互余求出∠A=60°,然后判断出△ACD是等边三角形,根据等边三角形的性质可得AC=CD=AD,从而得证;方法二:延长AC到D,使AC=DC,利用“边角边”证明△BCA和△BCD全等,根据全等三角形对应角相等可得∠ABC=∠DBC=30°,∠D=∠A=60°,然后判断出△ABD是等边三角形,AD=AB,再根据AD=2AC等量代换即可得证.【解答】解:数量关系:AB=2AC.理由如下:方法一:取AB的中点D,连接CD,∵∠ACB=90°,∴DB=CD=AD,又∵∠ACB=90°,∠B=30°,∴∠A=60°,∴△ACD是等边三角形,∴AC=CD=AD=BD,即AB=2AC;方法二:证明:延长AC到D,使AC=DC,∵∠ACB=90°,∠ABC=30°,∴∠ACB=∠DCB=90°,∠A=60°,在△BCA和△BCD中,,∴△BCA≌△BCD(SAS),∴∠ABC=∠DBC=30°,∠D=∠A=60°,即∠DBA=60°,∴△ABD是等边三角形,AD=AB,又∵AC=DC,∴AD=2AC,∴AB=2AC.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的证明,主要利用了等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,作辅助线构造出等边三角形是解题的关键.26.(9分)已知:在∠ABC中,D是∠ABC平分线上一点,E、F分别在AB、BC 上,且DE=DF.试判断∠BED与∠BFD的关系并证明.下面方框中是小明的判断与证明:解:∠BED=∠BFD,证明如下:如图:过点D作DM⊥AB,DN⊥BC,垂足分别为M、N,∴△DEM和△DFN是直角三角形,∵BD是∠ABC的平分线,DM⊥AB,DN⊥BC,∴DM=DN.在Rt△DEM与Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴∠MED=∠NFD,∴∠BED=∠BFD.数学老师认为小明的判断不完整,请你认真思考给出完整的判断并证明.【分析】分类讨论:(1)当DE和DF同侧,即可证明Rt△DEM≌Rt△DFN,可得∠MED=∠NFD,即可解题;(2)当DE与DF不同侧,同理可证Rt△DEM≌Rt△DFN,可得∠MED=∠NFD,即可解题.【解答】证明:∠BED=∠BFD 或∠BED+∠BFD=180°.过点D作DM⊥AB,DN⊥BC,垂足分别为M、N,(1)当DE与DF同侧时,如图①,∵BD是∠ABC的平分线,DM⊥AB,DN⊥BC,∴DM=DN,在Rt△DEM与Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴∠MED=∠NFD,∴∠BED=∠BFD;(2)当DE与DF不同侧时,如图②,同理可证Rt△DEM≌Rt△DFN,∴∠MED=∠NFD,又∵∠NFD+∠BFD=180°,∴∠BED+∠BFD=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证Rt△DEM≌Rt△DFN是解题的关键.27.(11分)先阅读材料,再结合要求回答问题.【问题情景】如图①:在四边形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且线段BE,EF,FD满足BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.【初步思考】小王同学探究此问题的方法是:延长FD到G,使DG=BE,连结AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出∠EAF与∠BAD之间的数量关系是∠EAF=∠BAD.【探索延伸】若将问题情景中条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②),其余条件不变,请判断上述数量关系是否仍然成立,若成立,请证明;若不成立,请说明理由.【实际应用】如图③,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处且相距210海里.试求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.【分析】【初步思考】利用△AEF≌△AGF,可得出∠EAF与∠BAD之间的数量关系;【探索延伸】首先证明△ABE≌△ADG(SAS),再得出△AEF≌△AGF(SSS),即可得出答案;【实际应用】首先得出∠OAC+∠OBC=180°,得出符合探索延伸中的条件,进而得出答案.【解答】解:【初步思考】∠EAF=∠BAD;【探索延伸】∠EAF=∠BAD仍然成立.证明:如图,延长FD到G,使DG=BE,连接AG.∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS).∴AE=AG,∠BAE=∠DAG.又∵EF=BE+DF,DG=BE,∴EF=DG+DF=GF.在△AEF和△AGF中,,∴△AEF≌△AGF(SSS).∴∠EAF=∠GAF.又∵∠GAF=∠DAG+∠DAF,∴∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD,∴∠EAF=∠BAD.【实际应用】如图,连接EF,延长AE、BF相交于点C.∵1.5小时后,舰艇甲行驶了90海里,舰艇乙行驶了120海里,即AE=90,BF=120.而EF=210,∴在四边形AOBC中,有EF=AE+BF,又∵OA=OB,且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件.∴∠EOF=∠AOB.又∵∠AOB=30°+90°+(90°﹣70°)=140°,∴∠EAF=∠AOB=70°.答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.【点评】此题主要考查了全等三角形的判定与性质,熟练应用全等三角形的判定方法是解题关键.。
苏教版八年级数学上册期中考试卷附答案
苏教版八年级数学上册期中考试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k 的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠14.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.115.若1aab+有意义,那么直角坐标系中点A(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为()A .1B .1.3C .1.2D .1.58.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21a +8a =__________.3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.=+的图象经过A (-2,-1), B (1,3)4.如图,已知一次函数y kx b两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式(2)△AOB的面积5.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、A6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、13、x(x+1)(x-1)4、﹣2<x<25、40°6、2.三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、13、(1)略(2)1或24、(1)4533y x=+;(2)525、(1)C的坐标是(﹣1,1);(2)154;(3)点P的坐标为(1,0).6、(1) 60x y--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
最新南京联合体-学年八年级上期中质量数学试题及答案
2014~2015学年度第一学期期中质量调研测试八年级数学试卷(考试时间100分钟 试卷满分100分)注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,不能答在试卷上. 一、选择题(每题2分,共16分) 1.9的平方根是( )A. 3B. ±3C. 3D. ±32.在实数 13,- 3 ,-3.14,0,2π ,3-27 中,无理数有 ( )A. 1个B. 2个C. 3个D. 4个 3.下列数据中,准确数据的是( )4.已知等腰三角形一个内角30°,它的底角等于( )A. 75°B. 30°C. 75°或30°D. 不能确定5.已知:如图,AC =DF ,BC =EF ,下列条件中,不能..证明△ABC ≌DEF 是( )6.一个钝角三角形的两边长为3、4则第三边可以为 ( )A. 4B. 5C. 6D. 7A.南京市常住人口总量为818.78万人;B.八年级数学书上册共173页;C.姚明身高为2.24m ;D.我国数学家曾用355113作为圆周率.A. AC ∥DFB. AD =BEC. ∠CBA =∠FED =90°D. ∠C =∠F(第5题)(第8题)ABCDEF7.下列命题中正确的是 ( ) A. 一边和两角分别相等的两个三角形全等; B. 顶角与底边对应相等的两个等腰三角形全等; C. 斜边上的中线对应相等的两个直角三角形全等; D. 两边和其中一边的对角对应相等的两个三角形全等.8.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正 方形涂黑,得到新的图形(阴影部分)是轴对称图形,其中涂法有...( ) A. 6种B. 7种C. 8种D. 9种二、填空(每题2分,共20分) 9. 计算:16 = ;3-27 = .10. 26 估算到0.1约等于 .11.如图,∠A =30°,∠B ′=62°,△ABC 与△A ′B ′C ′关于直线l 对称,则△ABC 中的 ∠C = .12.如图,已知BC =EC ,∠BCE =∠ACD ,要使△BCA ≌△ECD ,则应添加的一个条件为 .(答案不唯一,只需填一个)13.如图,将△ABC 放在每个小正方形面积为1的网格中,点A 、B 、C 均落在格点上,则△ABC 的面积为 .14.一个直角三角形,一直角边长为2,一边上的中线长为2,则这个直角三角形的斜边长 为 .15. 一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为 .′(第12题)16.如图,在△ACB 中,∠C =90°,AB 的垂直平分线交AB 、AC 于点M 、N ,AC =8, BC =4,则NC 的长度为 .17.如图,在△ACB 中,∠C =90°,∠CAB 与∠CBA 的角平分线交于点D ,AC =3, BC =4,则点D 到AB 的距离为 .18.如图,△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O , 将∠C 沿EF (E 在BC 上,F 在AC 上 )折叠,点C 与点O 恰好重合,则∠OEC 为 度. 三、解方程(每题5分,共10分)19. 25x 2=16. 20. (x -1)3=﹣27C ABD(第17题)(第18题)(第16题)ABCMN四、证明与求解(4小题共28分)21.(6分)已知:如图,AC =AB ,∠ACD =∠ABD 求证:CD =BD22.(6分)已知:如图,在△ABC 中, CD ⊥AB 于D ,BE ⊥AC 于E ,AD =AE .求证:AB =AC23. (8分)已知:如图,△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD ,连接DE .DCBA(第21题)ABCD E(第22题)(1)证明:△BDE 是等腰三角形; (2)若AB =2求DE 的长度.24. (8分)已知:如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:BD =AE .四、操作与解释(6分)(第23题)(第24题) (图2)26.已知:如图1,射线MN⊥AB,点C从M出发,沿射线MN运动,AM=1,MB=4. (1)当△ABC为等腰三角形时,求MC的长;(2)当△ABC为直角三角形时,求MC的长;(3)点C在运动的过程中,若△ABC为钝角三角形则MC的长度范围;若△ABC为锐角三角形则MC的长度范围.AM BN(图1)AMBN(备用图)27. 有这样的一个定理:夹在两条平行线间的平行线段相等。
江苏省初中数学八年级上册 试题(含答案)
6.下列命题中,是假命题的是()
A.在 中,若 ,则 是直角三角形
B.在 中,若 ,则 是直角三角形
C.在 中,若 ,则 是直角三角形
D.在 中,若 ,则 是直角三角形
7.如图,已知 是等边三角形,点 是 上任意一点, , 分别于两边垂直,等边三角形的高为2,则 的值为()
【详解】连接CF;
∵△ABC是等腰直角三角形, 是 边上的中点
∴∠FCB=∠A=45°,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF;
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形.
因此①正确.
由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
【解析】
【分析】
根据作图过程可得,两个三角形三条边对应相等,所以可得两个三角形全等.
【详解】由作图过程可得:AE=AF,DE=DF,AD=AD
所以△ADF≌△ADE(SSS)
故选:D
【点睛】三角形全等判定定理:
三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
4.到三角形三个顶点的距离相等的点是()
A. 1B. 3C. 2D. 4
8.如图,在等腰 中, , , 是 边上的中点,点 、 分别在 、 边上运动,且保持 .连接 、 、 .在此运动变化的过程中,下列结论:① 是等腰直角三角形;② 长度的最小值为4;③四边形 的面积保持不变;④ 面积的最大值为8.其中正确的结论是()
A.①②③B.①②④C.①③④D.②③④
故答案是:顶角平分线所在直线.
2014-2015年江苏省南京市江宁区湖熟片八年级上学期数学期中试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2014-2015学年江苏省南京市江宁区湖熟片八年级(上)期中数学试卷一、选择题(本大题共10题,每小题2分,共20分)1.(2分)下面图案中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(2分)的平方根是()A.3 B.±3 C.D.±3.(2分)在实数,﹣,﹣3.14,0,2π,中,无理数有()A.1个 B.2个 C.3个 D.4个4.(2分)下列说法正确的是()A.近似数4.60精确到十分位B.近似数5000万精确到个位C.近似数4.31万精确到0.01 D.1.45×104精确到百位5.(2分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD6.(2分)如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC7.(2分)已知△ABC的三边长分别为5,5,6,则△ABC的面积为()A.12 B.15 C.24 D.258.(2分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个9.(2分)实数a、b在数轴上的位置如图所示,则化简代数式﹣a的结果是()A.2a+b B.2a C.a D.b10.(2分)如图(1),四边形纸片ABCD中,∠B=120°,∠D=50°.如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR.若CP∥AB,RC∥AD,则∠C 为()A.110°B.95°C.80°D.85°二、填空题(本大题共10题,每小空2分,共20分)11.(4分)3的平方根是;的立方根是﹣.12.(4分)若,则x=;的相反数是.13.(2分)比较大小:.14.(2分)如图,△ABC≌△DEF,由图中提供的信息,可得∠D=°.15.(2分)如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有m.16.(2分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π,S3=π,则S2=.17.(2分)如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是.18.(2分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为.19.(2分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.20.(2分)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a=.(提示:5=,13=,…)三、解答题(共60分)21.(4分)求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.22.(8分)计算:(1)﹣(2)()2+|1﹣|+()0.23.(4分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=.24.(4分)已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)25.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.26.(6分)如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.27.(6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.28.(8分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.29.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.2014-2015学年江苏省南京市江宁区湖熟片八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题2分,共20分)1.(2分)下面图案中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.2.(2分)的平方根是()A.3 B.±3 C.D.±【解答】解:∵=3,∴的平方根是±.故选:D.3.(2分)在实数,﹣,﹣3.14,0,2π,中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:=﹣3,所给数据中无理数有:﹣,2π,共2个.故选:B.4.(2分)下列说法正确的是()A.近似数4.60精确到十分位B.近似数5000万精确到个位C.近似数4.31万精确到0.01 D.1.45×104精确到百位【解答】解:A、近似数4.60精确到百分位,故本选项错误;B、近似数5000万精确到万位,故本选项错误;C、近似数4.31万精确到百位,故本选项错误;D、1.45×104精确百位,故本选项正确;故选:D.5.(2分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.(2分)如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC【解答】解:A、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选:A.7.(2分)已知△ABC的三边长分别为5,5,6,则△ABC的面积为()A.12 B.15 C.24 D.25【解答】解:过点A作AD⊥BC.∵AB=AC=5,BC=6,AD⊥BC,∴BD=CD=3,∴AD=4,∴S=BC×AD=12.△ABC故选:A.8.(2分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个【解答】解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选:C.9.(2分)实数a、b在数轴上的位置如图所示,则化简代数式﹣a的结果是()A.2a+b B.2a C.a D.b【解答】解:∵从数轴可知:a<0<b,|a|<|b|,∴﹣a=|a+b|﹣a=a+b﹣a=b,故选:D.10.(2分)如图(1),四边形纸片ABCD中,∠B=120°,∠D=50°.如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR.若CP∥AB,RC∥AD,则∠C 为()A.110°B.95°C.80°D.85°【解答】解:因为折叠前后两个图形全等,故∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°;∴∠C=180°﹣25°﹣60°=95°;故选:B.二、填空题(本大题共10题,每小空2分,共20分)11.(4分)3的平方根是;﹣的立方根是﹣.【解答】解:3的平方根是,﹣的立方根是﹣,故答案为:,﹣.12.(4分)若,则x=16;的相反数是﹣.【解答】解:若=4,则x=16;﹣的相反数是﹣.故答案为:16;﹣.13.(2分)比较大小:>.【解答】解:∵()2=,()2=,∴>.故答案为:>.14.(2分)如图,△ABC≌△DEF,由图中提供的信息,可得∠D=70°.【解答】解:在△ABC中,∠A=180°﹣∠B﹣∠C=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴∠D=∠A=70°.故答案为:70.15.(2分)如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有8m.【解答】解:如图所示,AB=6m,AC=10m,根据勾股定理可得:BC===8m.故这条缆绳在地面的固定点距离电线杆底部8m.16.(2分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π,S3=π,则S2=2π.【解答】解:∵三角形是直角三角形,∴S2+S3=S1,∴S2+π=π,解得S2=2π.故答案为:2π.17.(2分)如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是∠B=∠E.【解答】解:添加∠B=∠E;∵BC=DE,∴CB+CD=DE+CD,即BD=CE,∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠EAC,在△ABD和△AEC中,,∴△ABD≌△AEC(AAS),故答案为:∠B=∠E.18.(2分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为1.【解答】解:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边长为4﹣3=1,∴阴影部分面积为1×1=1.故答案为1.19.(2分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.20.(2分)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= 17.(提示:5=,13=,…)【解答】解:由题意得:a2+1442=1452,a2=1452﹣1442,a=17.故答案为:17.三、解答题(共60分)21.(4分)求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.【解答】解:(1)移项4x2=9,系数化为1,x2=,x=±;(2)(x+1)3=﹣,x+1=﹣,x=﹣.22.(8分)计算:(1)﹣(2)()2+|1﹣|+()0.【解答】解:(1)原式=5﹣(﹣3)=5+3=8;(2)原式=3+﹣1+1=3+.23.(4分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=0.1;y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=1.8,若=180,则a=32400.【解答】解:(1)x=0.1,y=10;(2)①31.6,②a=32400,故答案为:0.1,10,31.6,32400.24.(4分)已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)【解答】解;如图所示:CD,AE即为所求.25.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.【解答】证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD∴∠ACD=∠ECD,∠BCE=∠ECD∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS).26.(6分)如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.【解答】(1)解:证明过程正确.推理依据:①等边对等角.②AAS.③全等三角形的对应边相等;(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一),又∵DE⊥AB于E,DF⊥AC于F,∴DE=DF(角平分线上的点到角两边的距离相等).27.(6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.【解答】解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度额14.5尺.28.(8分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=20°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.【解答】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=60°﹣40°=20°,故答案为:20;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,.∴△ABD≌△DCE(ASA);(3)当∠BAD=30°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=30°,∴∠DAE=70°,∴∠AED=180°﹣40°﹣70°=70°,∴DA=DE,这时△ADE为等腰三角形;当∠BAD=60°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=60°,∠DAE=40°,∴EA=ED,这时△ADE为等腰三角形.29.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.【解答】解:(1)根据格子的数可以知道面积为S=3×3﹣×3×2﹣×1×2×1×3=;故答案是:;(2)画图为=2×4﹣(1×2+1×4+2×2)=3;计算出正确结果S△DEF(3)①如图3,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=,两边平方得,13﹣h2+10﹣h2+2•=17,整理得•=2+h2,两边平方得,(13﹣h2)(10﹣h2)=4+4h2+h4,解得h=,∴S△PQR=PQ•RH=,同理,S△BCR=S△DEQ=S△AFP=,∴△PQR、△BCR、△DEQ、△AFP的面积相等;②利用构图法计算出S△PQR=,△PQR、△BCR、△DEQ、△AFP的面积相等,计算出六边形花坛ABCDEF的面积为S正方形PRBA +S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.。
2014上苏教版8年级数学期中测试及答案
8年级上学期数学讲义10期中测试一、选择题1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DCC.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.(2013•台湾)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm4.(2013•梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=()A.80°B.70°C.40°D.20°5.(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC 6.(2013•南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48 B.∠AED=66°C.∠A=84°D.∠B+∠C=96°7.(2013•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°8.(2012•枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()A.14 B.16 C.20 D.289.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m10.A.3B.-3 C.1D.-1二、填空题11.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD 的延长线于点F,若EF=5cm,则AE= _________ cm.12.(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E 在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_________ 度.13.(2013•广州)点P在线段AB的垂直平分线上,PA=7,则PB= _________ .14.(2012•庆阳)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= _________ .15.(2013•凉山州)已知实数x,y满足|x−4|+=0,则以x,y的值为两边长的等腰三角形的周长是______ .三、解答题16.(2013•红河州)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.17.(2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.18.(2012•肇庆)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.(2005•双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?20.(2003•烟台)设a、b、c都是实数,且满足(2-a)2++|c+8|=0,ax2+bx+c=0,求代数式x2+2x+1的值.期中测试1,解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.2,解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.3,解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∠FBD=∠CADDB=AD∠FDB =∠CDA∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.4,解:过G点作GH∥AD,如图,∴∠2=∠4,∵矩形ABCD沿直线EF折叠,∴∠3+∠4=∠B=90°,∵AD∥BC,∴HG∥BC,∴∠1=∠3=20°,∴∠4=90°-20°=70°,∴∠2=70°.故选B.5,解:A、∵∠BDC=∠BCD,∴BD=BC,根据已知AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;B、根据∠ABC=∠DAB和AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项正确;D、根据∠AOB=∠BOC,只能推出AC⊥BD,再根据AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误.故选C.6,解:A、∵DE∥BC,∠ADE=48°,∴∠B=∠ADE=48°正确,不符合题意;B、∵AB=AC,∴∠C=∠B=48°,∵DE∥BC,∴∠AED=∠C=48°,符合题意;C、∠A=180°-∠B-∠C=180°-48°-48°=84°正确,不符合题意;D、∠B+∠C=48°+48°=96°正确,不符合题意.故选B.7,解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°-30°=60°,∵BC∥DF,故选:C.8,解:根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴AB=6,图中五个小矩形的周长之和为:6+8+6+8=28.故选D.9,解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6,AB=8,所以OA=10;又OE=OB=6,所以AE=OA-OE=4.因此选用的绳子应该不>4,故选A.10,解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.故选A.11,解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,∠ECF=∠BEC=BC∠ACB=∠FEC=90°∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC-CE,BC=2cm,EF=5cm,∴AE=5-2=3cm.故答案为:3.12,解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=1/2∠BAC=1/2×54°=27°,又∵AB=AC,∴∠ABC=1/2(180°-∠BAC)=1/2(180°-54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC-∠ABO=63°-27°=36°,∵DO是AB的垂直平分线,AO为∠BAC的平分线,∴点O是△ABC的外心,∴OB=OC,∵将∠C沿EF (E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.故答案为:108.13,解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.14,解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠BED,∴△ABC≌△BDE,S1和S2之间的两个三角形可以证明全等,则S1+S2即直角三角形的两条直角边的平方和,根据勾股定理,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.15,解:根据题意得,x-4=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.16,证明:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中∠1=∠F∠A=∠2AE=EC∴△ADE≌△CFE(AAS),∴AD=CF.17,(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,∠ADE=∠EFB∠AED=∠BEFAE=BE∴△AED≌△BFE(AAS);(2)解:EG与DF的位置关系是EG⊥DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,∴GE垂直平分DF.18,证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵AB=ABAC=BD∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.19,解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC=10m,故小鸟至少飞行10m.20,。
苏教版八年级数学上册期中试卷(带答案)
苏教版八年级数学上册期中试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .75.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .116.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.比较大小:313323(1)0m n -+=,则m -n 的值为________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.6.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=____________;三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、A7、A8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、52、<3、44、20°.5、15°或60°.6、60°三、解答题(本大题共6小题,共72分)1、无解2、12x x +-,3、m >﹣24、略.5、(1)略(2)90°(3)AP=CE6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省南京市江宁区湖熟片八年级(上)期中数学试卷一、选择题(本大题共10题,每小题2分,共20分)1.(2分)下面图案中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(2分)的平方根是()A.3 B.±3 C.D.±3.(2分)在实数,﹣,﹣3.14,0,2π,中,无理数有()A.1个 B.2个 C.3个 D.4个4.(2分)下列说法正确的是()A.近似数4.60精确到十分位B.近似数5000万精确到个位C.近似数4.31万精确到0.01 D.1.45×104精确到百位5.(2分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD6.(2分)如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC7.(2分)已知△ABC的三边长分别为5,5,6,则△ABC的面积为()A.12 B.15 C.24 D.258.(2分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个9.(2分)实数a、b在数轴上的位置如图所示,则化简代数式﹣a的结果是()A.2a+b B.2a C.a D.b10.(2分)如图(1),四边形纸片ABCD中,∠B=120°,∠D=50°.如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR.若CP∥AB,RC∥AD,则∠C 为()A.110°B.95°C.80°D.85°二、填空题(本大题共10题,每小空2分,共20分)11.(4分)3的平方根是;的立方根是﹣.12.(4分)若,则x=;的相反数是.13.(2分)比较大小:.14.(2分)如图,△ABC≌△DEF,由图中提供的信息,可得∠D=°.15.(2分)如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有m.16.(2分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π,S3=π,则S2=.17.(2分)如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是.18.(2分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为.19.(2分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.20.(2分)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a=.(提示:5=,13=,…)三、解答题(共60分)21.(4分)求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.22.(8分)计算:(1)﹣(2)()2+|1﹣|+()0.23.(4分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=.24.(4分)已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)25.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.26.(6分)如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.27.(6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.28.(8分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.29.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.2014-2015学年江苏省南京市江宁区湖熟片八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题2分,共20分)1.(2分)下面图案中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.2.(2分)的平方根是()A.3 B.±3 C.D.±【解答】解:∵=3,∴的平方根是±.故选:D.3.(2分)在实数,﹣,﹣3.14,0,2π,中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:=﹣3,所给数据中无理数有:﹣,2π,共2个.故选:B.4.(2分)下列说法正确的是()A.近似数4.60精确到十分位B.近似数5000万精确到个位C.近似数4.31万精确到0.01 D.1.45×104精确到百位【解答】解:A、近似数4.60精确到百分位,故本选项错误;B、近似数5000万精确到万位,故本选项错误;C、近似数4.31万精确到百位,故本选项错误;D、1.45×104精确百位,故本选项正确;故选:D.5.(2分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.(2分)如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC【解答】解:A、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选:A.7.(2分)已知△ABC的三边长分别为5,5,6,则△ABC的面积为()A.12 B.15 C.24 D.25【解答】解:过点A作AD⊥BC.∵AB=AC=5,BC=6,AD⊥BC,∴BD=CD=3,∴AD=4,∴S=BC×AD=12.△ABC故选:A.8.(2分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A.2个 B.3个 C.4个 D.5个【解答】解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选:C.9.(2分)实数a、b在数轴上的位置如图所示,则化简代数式﹣a的结果是()A.2a+b B.2a C.a D.b【解答】解:∵从数轴可知:a<0<b,|a|<|b|,∴﹣a=|a+b|﹣a=a+b﹣a=b,故选:D.10.(2分)如图(1),四边形纸片ABCD中,∠B=120°,∠D=50°.如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR.若CP∥AB,RC∥AD,则∠C 为()A.110°B.95°C.80°D.85°【解答】解:因为折叠前后两个图形全等,故∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°;∴∠C=180°﹣25°﹣60°=95°;故选:B.二、填空题(本大题共10题,每小空2分,共20分)11.(4分)3的平方根是;﹣的立方根是﹣.【解答】解:3的平方根是,﹣的立方根是﹣,故答案为:,﹣.12.(4分)若,则x=16;的相反数是﹣.【解答】解:若=4,则x=16;﹣的相反数是﹣.故答案为:16;﹣.13.(2分)比较大小:>.【解答】解:∵()2=,()2=,∴>.故答案为:>.14.(2分)如图,△ABC≌△DEF,由图中提供的信息,可得∠D=70°.【解答】解:在△ABC中,∠A=180°﹣∠B﹣∠C=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴∠D=∠A=70°.故答案为:70.15.(2分)如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有8m.【解答】解:如图所示,AB=6m,AC=10m,根据勾股定理可得:BC===8m.故这条缆绳在地面的固定点距离电线杆底部8m.16.(2分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π,S3=π,则S2=2π.【解答】解:∵三角形是直角三角形,∴S2+S3=S1,∴S2+π=π,解得S2=2π.故答案为:2π.17.(2分)如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是∠B=∠E.【解答】解:添加∠B=∠E;∵BC=DE,∴CB+CD=DE+CD,即BD=CE,∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠EAC,在△ABD和△AEC中,,∴△ABD≌△AEC(AAS),故答案为:∠B=∠E.18.(2分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为1.【解答】解:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边长为4﹣3=1,∴阴影部分面积为1×1=1.故答案为1.19.(2分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.20.(2分)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= 17.(提示:5=,13=,…)【解答】解:由题意得:a2+1442=1452,a2=1452﹣1442,a=17.故答案为:17.三、解答题(共60分)21.(4分)求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.【解答】解:(1)移项4x2=9,系数化为1,x2=,x=±;(2)(x+1)3=﹣,x+1=﹣,x=﹣.22.(8分)计算:(1)﹣(2)()2+|1﹣|+()0.【解答】解:(1)原式=5﹣(﹣3)=5+3=8;(2)原式=3+﹣1+1=3+.23.(4分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=0.1;y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=1.8,若=180,则a=32400.【解答】解:(1)x=0.1,y=10;(2)①31.6,②a=32400,故答案为:0.1,10,31.6,32400.24.(4分)已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)【解答】解;如图所示:CD,AE即为所求.25.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.【解答】证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD∴∠ACD=∠ECD,∠BCE=∠ECD∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS).26.(6分)如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.【解答】(1)解:证明过程正确.推理依据:①等边对等角.②AAS.③全等三角形的对应边相等;(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一),又∵DE⊥AB于E,DF⊥AC于F,∴DE=DF(角平分线上的点到角两边的距离相等).27.(6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.【解答】解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度额14.5尺.28.(8分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=20°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.【解答】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=60°﹣40°=20°,故答案为:20;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,.∴△ABD≌△DCE(ASA);(3)当∠BAD=30°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=30°,∴∠DAE=70°,∴∠AED=180°﹣40°﹣70°=70°,∴DA=DE,这时△ADE为等腰三角形;当∠BAD=60°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=60°,∠DAE=40°,∴EA=ED,这时△ADE为等腰三角形.29.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.【解答】解:(1)根据格子的数可以知道面积为S=3×3﹣×3×2﹣×1×2×1×3=;故答案是:;(2)画图为=2×4﹣(1×2+1×4+2×2)=3;计算出正确结果S△DEF(3)①如图3,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=,两边平方得,13﹣h2+10﹣h2+2•=17,整理得•=2+h2,两边平方得,(13﹣h2)(10﹣h2)=4+4h2+h4,解得h=,∴S△PQR=PQ•RH=,同理,S△BCR=S△DEQ=S△AFP=,∴△PQR、△BCR、△DEQ、△AFP的面积相等;②利用构图法计算出S△PQR=,△PQR、△BCR、△DEQ、△AFP的面积相等,计算出六边形花坛ABCDEF的面积为S正方形PRBA +S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。