中考数学试题分类综合型问题
中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题
综合题
综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。
前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。
1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。
【答案】4或119
2
。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。
1. 已知关于x 的方程x 2
-(m +2)x +(2m -1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。 【答案】解:∵此方程的一个根是1,
∴12
-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。
吉林省农安县新农乡中考中考数学二轮专题复习教案%3A专题十综合型问题
专题10——综合型问题题型特征:综合型试题是将所学的知识在一定的背景下进行优化组合,找到解决问题的方案,在解决问题的时候所用到的知识不再是单一的知识点,而是相关的知识,可能同时用到方程、函数,也有可能是三角形与多边形,也有可能是相关学科的知识,这类题目对学生综合能力的要求较高,同时这类题目有相对新颖的背静环境,数学综合题是初中数学中覆盖面最广、综合性最强的题型.解题思路:
解数学综合题必须要有科学的分析问题的方法,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.
具体策略:
类型之一代数类型的综合题
代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.
类型之二几何类型的综合题
几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.
类型之三几何与代数相结合的综合题
几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力.
(河南省)聚焦中考数学复习课件:专题9-综合型问题(含答案)
解:(1)AE=CE.理由:连接 AE,DE,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE =90°.∵AD=DC,∴AE=CE
(2)连接 AE,ED,∵∠ABE=90°,∴AE 是⊙O 的直径.∵EF 是⊙O 的切线,∴∠AEF=
90°,∴∠ADE=∠AEF=90°.又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴AAEF=AADE ,∴AE2=
点拨:作∠DAE=∠BAD 交 BC 于 E,作 DF⊥AE 交 AE 于 F,作 AG⊥BC 交 BC 于 G.∵∠C+∠BAD=∠DAC,∴∠CAE=∠ACB,∴AE=EC,∵tan∠BAD=47,∴设 DF= 4x,则 AF=7x,在 Rt△ADF 中,AD2=DF2+AF2,即( 65)2=(4x)2+(7x)2,解得 x1=-1(不 合题意,舍去),x2=1,∴DF=4,AF=7,设 EF=y,则 CE=7+y,则 DE=6-y,在 Rt△ DEF 中,DE2=DF2+EF2,即(6-y)2=42+y2,解得 y=53,∴DE=6-y=133,AE=236,∴设 DG=z,则 EG=133-z,则( 65)2-z2=(236)2-(133-z)2,解得 z=1,∴CG=12,在 Rt△ADG 中,AG= AD2-DG2=8,在 Rt△ACG 中,AC= AG2+CG2=4 13.故答案为:4 13
【点评】 本题考查了一次函数的图象与性质、 相似三角形的判定与性质、解方程等知识点.
中考数学 专题九 综合型问题复习1
几何型综合题
【例2】 (2015·乐山)已知Rt△ABC中,AB是⊙O的弦,斜边AC 交⊙O于点D,且AD=DC,延长CB交⊙O于点E. (1)图①的A,B,C,D,E五个点中,是否存在某两点间的距离等 于线段CE的长?请说明理由; (2)如图②,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表 示,直接写出结果)
∴△ADE∽△AEF,∴AAEF=AADE,∴AE2=AD·AF.①当 CF=CD 时,AD= DC=CF,AF=3DC,∴AE2=DC·3DC=3DC2,∴AE= 3DC.∵EC=AE,
∴ EC =
3 DC.∴sin ∠ CAB = sin ∠ CED = DECC =
DC = 3DC
3 3
;②
当
点拨::设 OA=3a,则 OB=4a,设直线 AB 的解析式是 y=kx+b,则
根据题意得:3ba=k+4ab,=0,解得:kb= =4-a43,,则直线 AB 的解析式是 y=-43x
+4a,直线 OD 是∠AOB 的平分线,则 OD 的解析式是 y=x.根据题
意得:yy= =x-,43x+4a,解得:yx==117722aa,,则 D 的坐标是(172a,172a),OA
3.(2015·天津)已知抛物线 y=-16x2+32x+6 与 x 轴交于点 A, 点 B,与 y 轴交于点 C.若 D 为 AB 的中点,则 CD 的长为( D )
中考数学真题分类汇编(150套)专题四十六 综合型问题
一、选择题 1.(2010江苏苏州)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标
为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是 A .2 B .1 C
.22
-
D
.2
【答案】C 2.(2010湖北十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、
F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )
【答案】C
3.(2010 重庆江津)如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边
长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )
(第10题) C
D
E F
A
B
(第10题分析图) C
D
E
F A
B P
【答案】A 二、填空题
1.(2010浙江宁波) 如图,已知⊙P 的半径为2,圆心P 在抛物线2112
y x =-上运动,当
⊙P 与x 轴相切时,圆心P 的坐标为 ▲ .
【答案】)2,6(或)2,6(-(对一个得2分)
三、解答题
1.(2010安徽芜湖)(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO ,
其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-43
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题
【方法归纳】
新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】
【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.
备战中考数学专题训练---一元二次方程的综合题分类及答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.
(1)求k 的取值范围;
(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-
34 ;(2)k=﹣1 【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.
试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,
∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.
∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.
解得k <-34
; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.
则x 1+x 2=2k-1,x 1•x 2=k 2+1,
∵=== 32
-, 解得:k=-1或k= 13
-(舍去),
∴k=﹣1
2.已知为正整数,二次方程的两根为,求下式的值:
【答案】
【解析】
由韦达定理,有,.于是,对正整数,有
原式=
3.关于x的方程(k-1)x2+2kx+2=0
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.
中考数学代数综合型问题试题整理汇集(带)学科试卷
中考数学代数综合型问题试题整理汇集(带)学科试卷以下是__()为您推荐的中考数学代数综合型问题试题整理汇集(带答案),希望本篇文章对您学习有所帮助。
中考数学代数综合型问题试题整理汇集(带答案)
11.(____山东莱芜,11,3分)以下说法正确的有:
①正八边形的每个内角都是135_deg;
②与是同类二次根式
③长度等于半径的弦所对的圆周角为30_deg;
④反比例函数,当__lt;0时,y随的_增大而增大
A.1个
B.2个
C.3个
D.4个
正八边形的每个内角度数:180_deg;,①正确
=,=,与是同类二次根式,②正确
一条非直径的弦对两个圆周角,分别是一个锐角和一个钝角,长度等于半径的弦所对的圆周角为30_deg;错误
反比例函数,当__lt;0时,y随的_增大而增大,④正确
C.
掌握基础知识,记住当用的结论如正多边形的各个内角的计算、同类二次根式的识别判断、反比例函数的图象的性质。对于一些多解问题,要做到思考问题全面.
7.(____山东日照,7,3分)下列命题错误的是()
A.若a_lt;1,则(a-1)=-
B.若=a-3,则a_ge;3
C.依次连接菱形各边中点得到的四边形是矩形
D.的算术平方根是9
解析:因为a_lt;1,所以1-a_gt;0,所以(a-1)=(a-1)==-,故A正确;B 中有a-3_ge;0,a_ge;3,故B正确;因为菱形的对角线互相垂直,所以连接其各边中点得到的四边形是矩形,C也正确.=9,9的算术平方根是3,所以D错误.
解答:选D.
点评:本题考查的知识点有的性质、算术平方根和中点四边形,运用时,先得=|a|,再根据a得符号去掉绝对值符号,这样会有效减少错误.另外,中点四边形主要与原四边形的对角线有关,原四边形的对角线相等,则中点四边形是棱形;原四边形的对角线互相垂直,则中点四边形是矩形;原四边形的对角线互相垂直且相等,则中点四边形是正方形.反之也成立.
中考数学试题分类及答案
中考数学试题分类及答案
一、选择题
选择题是中考数学试卷中的常见题型,它要求考生从几个选项中选
择一个正确答案。
1. 简单选择题
简单选择题通常是考察数学基础知识和运算能力,例如:
x + 5 = 9,则 x 的值是:
A) 2 B) 3 C) 4 D) 5
答案:C) 4
2. 多项选择题
多项选择题考察的是考生运用已学知识解决实际问题的能力,例如:下列数字中,不是整数的是:
A) -3 B) 0.5 C) 1/2 D) √9
答案:B) 0.5
二、填空题
填空题要求考生根据题目给出的条件和要求,在空格处填写正确的
数值或符号。
1. 简单填空题
简单填空题通常是考察数学基础运算和推理能力,例如:
已知 2x = 16,求 x 的值:__。
答案:8
2. 复杂填空题
复杂填空题要求考生综合运用多个概念、方法进行解题,例如:已知甲数是乙数的2倍,乙数是丙数的3倍,而丙数是10。则甲数是__。
答案:60
三、解答题
解答题是中考数学试卷中较为复杂的题型,要求考生运用所学的数学知识和解题方法进行详细的解答和说明。
1. 计算题
计算题是解答题中最常见的题型之一,考察考生的运算能力和解题速度。
示例题目:计算下列各式的值:(2x-3)÷5当x=7时。
解答过程:将 x=7 代入原式,得到:
(2*7-3)÷5 = (14-3)÷5 = 11÷5 = 2余1
答案:2余1
2. 应用题
应用题要求考生根据实际问题,综合运用数学知识进行分析和解答。
示例题目:某商场举办“满减活动”,购买满200元减20元,购买满500元减50元。小明购买了一批商品,总价为600元。他能享受到多
历年初三数学中考分类讨论题型整编及答案
中考数学分类讨论题型整编
【知识整合创新】
整体感悟:分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在各地中考试题中多以压轴题出现,对考生的能力要求较高,具有选拔性。目前,中考试卷中,觉见的需分类讨论的知识点有三大类:
1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等.
2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.
3.综合类:代数与几何类分类情况的综合运用.
特例探究:以性质、公式、定理的使用条件为标准分类的题型.
中考高分解密:
题型1.考查数学概念及定义的分类
规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。
考题1.求函数25
1()(3)22
y k x k x =-+-+的图象与x 轴的交点? 名师点拔:二次项系数中含有参数k ,此函数可能是二次函数,也可能是一次函数,故应对
52k -分类讨论.
解:(1)当
502k -=时,即52k =时,此函数为1122
y x =-+,故其与x 轴只有一个交点(1,0) (2)当5502
2k k -≠≠
,即时,此函数为二次函数,2251(3)4()(2)22
k k k ∆=--⨯-⨯=-.①当2k =时,Δ=0.抛物线与x 轴的交点只有一个.212110,122
x x x x -+===,交点坐标为(1,0)②当2k ≠时,Δ>0,函数与x 轴有两个不同的交点.1(1,0)(,0)52k
中考数学压轴题归类复习(十大类型附详细解答)
中考数学压轴题辅导(十大类型)
目录
动点型问题................................................................ . (3)
几何图形的变换(平移、旋转、翻折) (6)
相似与三角函数问题9
三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)
与四边形有关的二次函数问题 (16)
初中数学中的最值问题 (19)
定值的问
存在性问题(如:平行、垂直,动点,面积等) (25)
与圆有关的二次函数综合题 (29)
其它(如新定义型题、面积问题等) (33)
参考答案 (36)
中考数学压轴题辅导(十大类型)
数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动
平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),
变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题
【方法归纳】
新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】
【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.
中考数学综合题集锦(完善版)
中考数学综合题集锦(完善版)
近三年中考数学综合题集锦一、知识网络梳理数学综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以数学综合题的形式出现.解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤.解数学综合题必须要有科学的分析问题的方法.数学思想是解数学综合题的灵魂,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.题型1方程型综合题这类题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程、解不等式、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.题型2函数型综合题函数型综合题主要有:几何与函数相结合型、坐标与几何方程与函数相结合型综合问题,历来是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象及性质、方程的有关理论的综合.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;
点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力和较好的区分度,因此是各地中考的热点题型,压轴题的主要来源,并且长盛不衰,年年有新花样.题型3几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:
中考数学综合题集锦(完善版)
中考数学综合题集锦(完善版)
近三年中考数学综合题集锦一、知识网络梳理数学综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以数学综合题的形式出现.解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤.解数学综合题必须要有科学的分析问题的方法.数学思想是解数学综合题的灵魂,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.题型1方程型综合题这类题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.题型2函数型综合题函数型综合题主要有:几何与函数相结合型、坐标与几何方程与函数相结合型综合问题,历来是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象及性质、方程的有关理论的综合.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与某轴交点的横坐标即为相应方程的根;
(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2)注意推理和计算相结合,力求解题过程的规范化.(3)注意掌握常规的证题思路,常规的辅助线添法.(4)注意灵活地运用数学的思想和方法.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.二、知识运用举例例1(安徽省六安市)已知关的一元二次方程有实数根.(1)求的取值范围(2)若两实数根分别为和,且求的值.分析与解答本题目主要综合考查一元二次方程根的判别式、根
2024中考数学复习 重难题型分类 综合与实践 (含答案)
2024中考数学复习重难题型分类综合与实践
类型一实践操作型试题
1.综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
(1)操作判断
操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
根据以上操作,当点M在EF上时,写出图①中一个30°的角:___________________________;
(2)迁移探究
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
①如图②,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;
②改变点P在AD上的位置(点P不与点A,D重合),如图③,判断∠MBQ与∠CBQ的数量关系,并说明理由;
(3)拓展应用
在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.
第1题图
2.数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.
转一转:如图①,在矩形ABCD中,点E,F,G分别为边BC,AB,AD的中点,连接EF,DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF,GH和CE的位置和长度也随之变化.
当△BEF绕点B顺时针旋转90°时,请解决下列问题:
(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第46章 综合型问题
一、选择题
1. (2011 浙江湖州,10,3)如图,已知A 、B 是反比例面数k
y x
=
(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C .过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形0MPN 的面积为S ,P 点运动时
间为t ,则S 关于t 的函数图象大致为
【答案】A
2. (2011台湾全区,19)坐标平面上,二次函数362
+-=x x y 的图形与下列哪一个方程式的图形没有交点? A . x =50 B . x =-50 C . y =50 D . y =-50 【答案】D
3. (2011广东株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4(单位:米)的一部分,则水喷出的最大高度是( ) A .4米 B .3米 C .2米
D .1米
【答案】D
4. (2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A .50m
B .100m
C .160m
D .200m
【答案】C
5. (2011河北,8,3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:
61t 5h 2
+--=)(,则小球距离地面的最大高度是( )
A .1米
B .5米
C .6米
D .7米
【答案】C 二、填空题
1. (2011湖南怀化,16,3分)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大. 【答案】4
2. (2011江苏扬州,17,3分)如图,已知函数x
y 3-=与bx ax y +=2
(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2
x
3
+
=0的解为
【答案】-3 三、解答题
1. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。点A 、B 在抛物线造型上,且点A 到水平面的距离AC =4O 米,点B 到水平面距离为2米,OC =8米。 (1) 请建立适当的直角坐标系,求抛物线的函数解析式;
(2)
为了安全美观,现需在水平线OC 上找一点P ,用质地、规格已确定的圆形钢管制作两根支柱P A 、PB
对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P ?(无需证明) (3)
为了施工方便,现需计算出点O 、P 之间的距离,那么两根支柱用料最省时点O 、P 之间的距离是多
少?(请写出求解过程)
【答案】
解:(1)以点O 为原点、射线OC 为y 轴的正半轴建立直角坐标系………………1分 设抛物线的函数解析式为2
y ax =,………………2分
由题意知点A 的坐标为(4,8)。且点A 在抛物线上,………………3分 所以8=a×2
4,解得a=
12,故所求抛物线的函数解析式为2
12
y x =………………4分 (2)找法:延长AC,交建筑物造型所在抛物线于点D, ………………5分 则点A 、D 关于OC 对称。
连接BD 交OC 于点P ,则点P 即为所求。………………6分 (3)由题意知点B 的横坐标为2,且点B 在抛物线上, 所以点B 的坐标为(2,2)………………7分
又知点A 的坐标为(4,8),所以点D 的坐标为(-4,8)………………8 设直线BD 的函数解析式为 y=kx+b ,………………9 则有22
48
k b k b +=⎧⎨
-+=⎩ (10)
解得k=-1,b=4.
故直线BD 的函数解析式为 y=-x+4,………………11 把x=0代入
y=-x+4,得点P 的坐标为(0,4)
两根支柱用料最省时,点O 、P 之间的距离是4米。 (12)
2. (2011四川重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:
月份x
1
2
3
4 5 6 7 8 9 价格y 1(元/件) 560 580 600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
【答案】(1)y1 与x之间的函数关系式为y1=20x+540,
y2与x之间满足的一次函数关系式为y2=10x+630.
(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)
=(0.1x+1.1)(1000−50−30−20x−540)
=(0.1x+1.1)(380−20x)=-2x2+160x+418
=-2( x-4)2+450,(1≤x≤9,且x取整数)
∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)
=(-0.1x+2.9)(1000-50-30-10x-630)
=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),
当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,
∴当x=10时,w最大=361(万元),∵450>361,
∴去年4月销售该配件的利润最大,最大利润为450万元.
(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),
今年原材料的价格为:750+60=810(元),
今年人力成本为:50×(1+20﹪)=60(元),