《自动检测与转换技术》第七章超声波传感器特点和应用

合集下载

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用
超声波传感器是一种基于超声波原理工作的传感器,能够将超声波转化为电信号并进
行探测和测量。

它具有测距精度高、反应速度快、不受环境光影响等优点,因此在许多领
域都有广泛的应用。

超声波传感器的工作原理是利用超声波的回波时间来计算物体与传感器的距离。

传感
器通过发射超声波信号,然后接收回波信号,并根据回波信号的延迟时间来计算距离。


声波在空气中的传播速度是已知的,因此可以根据发射和接收的时间差来计算出距离。

超声波传感器的应用非常广泛。

以下是几个常见的应用领域:
1. 距离测量:超声波传感器可以精确测量物体与传感器的距离,因此在自动化、物
流和仓储等领域广泛应用。

比如在自动门系统中,超声波传感器可以探测到人体的距离,
从而自动打开门。

4. 非接触式测量:由于超声波的特性,超声波传感器可以用于非接触式测量和探测。

比如在医学领域,超声波传感器可以用于体温测量、血压测量和心脏监测等。

5. 测厚和质检:超声波传感器可以测量物体的厚度,并用于质量检测和控制。

比如
在制造业中,超声波传感器可以检测产品的厚度和质量,从而确保产品的制造质量。

超声波传感器具有许多优点和广泛的应用领域。

随着科技的进步,超声波传感器的应
用会越来越广泛,为各行各业带来更多的便利和效益。

传感器与自动检测技术 第3版 第7章-波式传感器

传感器与自动检测技术 第3版 第7章-波式传感器

图7-3b
第7章 波式传感器
第7章 波式传感器 ➢ 有时为了使超声波能倾斜入射到被测介质中,可选用斜探头,如图7-3c所示。
压电晶片粘贴在与底面成一定角度(如30°、45°等)的有机玻璃斜楔块上。 压电片的上方用吸声性强的阻尼吸收块覆盖。当斜楔块与不同材料的被测介 质(试件)接触时,超声波产生一定角度的折射,倾斜入射到试件中去,折 射角可通过计算求得。
➢ 超声波换能器又称超声波探头。超声波换能器根据其工作原理不同,分为压电式、 磁致伸缩式、电磁式等数种。在检测技术中主要采用压电式。换能器由于其结构 的不同,又分为直探头、斜探头、双探头、表面探头、聚焦探头、水浸探头、空 气传导探头以及其它专用探头等。
第7章 波式传感器
1、以固体为传导介质的探头
➢ 用于固体介质的单晶直探头(俗称 直探头)的结构如图7-3a所示。压 电晶片采用锆钛酸铅系列压电陶瓷 (PZT)材料制作,外壳用金属制作。 保护膜用于防止压电晶片的磨损和 改善耦合条件;阻尼吸收块用于吸 收压电晶片背面的超声脉冲能量, 防止杂乱反射波的产生。
第7章 波式传感器
5、超声波在介质中的衰减
➢ 超声波在介质中传播时,由于声波的散射或漫射及吸收等会导致能量的衰减,
随传播距离的增加,声波的强度逐渐减弱。以固体介质为例,设超声波入射介
质时的强度为I0,通过厚度为δ的介质后的强度为I,衰减系数为A,如图7-2所
示,则有下列关系式 I I 0 e A (7-6)
第7章 波式传感器
7.1.1 超声波的物理基础
超声波的传播方式
纵波 横波 表面波
第7章 波式传感器
➢ 质点的振动方向与波的传播方向一致的波称为纵波。 ➢ 纵波能在固体、液体和气体中传播。

超声波传感器原理、特点及用途

超声波传感器原理、特点及用途

超声波传感器原理、特点及用途导语:常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。

小功率超声探头多作探测作用。

它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。

常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。

小功率超声探头多作探测作用。

它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。

超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。

超声波是振动频率高于20KHz的机械波。

它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。

超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。

超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。

超声波传感器广泛应用在工业、国防、生物医学等方面。

超声波传感器的应用传感器:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和“0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

在这里,主要给大家介绍一种在日常生活中运用非常广泛的,给人类社会带来很大便利的传感器——超声波传感器以及其在倒车雷达上的应用。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器,也叫超声传感器,是一种通过发射和接收超声波来检测目标物体位置、距离、反射率等物理量的电子器件。

它适用于各种环境,特别是在无法看到物体的情况下使用,如在黑暗中或在泥浆、水等浑浊液体中。

它们在自动化控制、汽车、机器人、医疗、测距等各个领域都有广泛的应用。

超声波传感器的原理是利用超声波在空气中的传递特性。

当电流通过传感器的超声波发生器时,它会生成一系列超声波。

这些超声波会在空气中扩散,直到遇到一个物体。

当超声波碰撞到物体时,部分能量会被反射回来,经过传感器的接收器,并转化为电信号。

根据反射回来的时间和传播速度,传感器可以计算出物体与传感器之间的距离。

超声波传感器的应用非常广泛。

以下是一些超声波传感器应用的例子:1. 汽车倒车雷达:超声波传感器在汽车倒车雷达中发挥着关键作用。

汽车后部的传感器将超声波发射到后方,并接收从目标物体反射回来的波。

系统可以根据这些反射波计算出目标物体与汽车的距离和方向,并发出声音或信号提示驾驶员。

2. 环境控制:超声波传感器用于实现自动化环境控制系统中的智能决策。

传感器可以检测房间的温度、湿度和空气质量等参数,并根据这些参数调整系统中的各种设备,如加热器、空调和换气扇等,以保持房间舒适和健康。

3. 医疗设备:超声波传感器是唯一用于产前检查、疾病检测和治疗的医疗工具之一。

传感器可以发送高频超声波来扫描人体内部,然后将反射回来的信号转换为显像图像。

这些图像可以用于检测器官、组织和器官系统的疾病和异常,并用于治疗疾病,如肿瘤和结石等。

4. 测距和测量:超声波传感器可以用于测量物体的距离、速度和方向。

例如,超声波传感器可以在仓库中检测货架上的物品数量。

当仓库管理员推车经过货架时,传感器可以计算每个架子上物品的数量,并将信息发送到中央数据库。

总之,超声波传感器在许多领域都有广泛的应用。

它们的高精度、可靠性和实用性使它们在控制、感应和监测应用中成为不可替代的工具。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器是一种利用声波的特性进行测量和探测的传感器。

它通过发射超声波并接收回波来测量目标物体与传感器的距离,并可以根据回波的特性来识别目标物体的性质和状态。

超声波传感器具有精度高、反应速度快、可靠性强等特点,同时也具有体积小、功耗低的优势,在工业、医疗、自动化等领域中有着广泛的应用。

超声波传感器的工作原理是利用超声波在空气中的传播速度来计算目标物体与传感器之间的距离。

传感器通过发射元件发射一束超声波,当这束超声波遇到目标物体时,一部分超声波会被目标物体反射回来,传感器通过接收元件接收到这些回波,并测量回波的时间间隔来计算出目标物体与传感器之间的距离。

超声波的传播速度在不同的介质中会有所不同,因此在不同的应用场景中需要根据实际情况进行校准和调整。

超声波传感器的应用非常广泛。

在工业领域中,超声波传感器常用于流量计、液位计、压力传感器等仪器设备中,用于测量和监控工业过程中的液体和气体的流动、压力和液位等参数。

在无人驾驶汽车和智能机器人领域,超声波传感器可以用于环境感知和障碍物检测,帮助车辆或机器人安全行驶。

在医疗领域中,超声波传感器被广泛应用于超声医学诊断设备中,用于观察和检测人体内部组织和器官的变化和病变。

超声波传感器也可以应用于矿山勘探、海洋勘测、物体测距与避障等领域。

超声波传感器的优势在于其测量范围广、精度高,并且可以在较恶劣的环境下工作。

相比于其他传感器,超声波传感器不受光学、电磁和颜色的影响,可以在黑暗或复杂的环境中正常工作并获得准确的测量结果。

超声波传感器体积小、功耗低,适合于集成到微型设备和嵌入式系统中,具有较好的可靠性和稳定性。

超声波传感器也存在一些限制和挑战。

超声波在传播过程中会受到目标物体的反射、折射和散射等影响,因此对目标物体的形状、表面质地和声波吸收特性有一定的要求。

超声波传感器在测量距离时受到传播时间的限制,因此在较大距离的测量中可能存在一定的误差。

超声波传感器的价格相对较高,一些高精度、高性能的超声波传感器的价格更是昂贵。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器的原理是利用超声波的传播和反射来测量距离或检测目标物体的性质。

超声波传感器由发射器、接收器和控制电路组成。

发射器发出超声波信号,经过空气中传播到目标物体表面,一部分被目标物体反射回来,被接收器接收到。

根据超声波发射和接收的时间间隔,可以计算出目标物体与传感器之间的距离。

超声波传感器具有测距精度高、快速响应、测量范围广、非接触测量等优点,因此在很多领域得到广泛应用。

在工业领域,超声波传感器可以用于测量液位、物体定位、检测材料的密度、粘度、厚度等参数。

在流体工程中,超声波传感器可以用于测量管道中流体的流速,从而实现自动控制和监测。

在智能家居领域,超声波传感器可以用于人体检测和距离测量。

当有人靠近传感器时,超声波传感器可以检测到,并触发家居设备进行相应的操作,如自动开关灯、调节空调温度等。

在机器人技术中,超声波传感器可以用于机器人的避障和导航。

通过测量与障碍物的距离,机器人可以避免碰撞,并根据测量结果进行路线规划,实现自主导航。

在汽车领域,超声波传感器可以用于车辆停车辅助,帮助司机判断与障碍物的距离,避免碰撞和剐蹭。

在医疗领域,超声波传感器可以用于医学成像和检测。

超声波传感器可以用于心脏超声检查,观察心脏结构和功能,帮助诊断心脏疾病。

超声波传感器还可以应用于环境监测、流量测量、物体判别等领域。

超声波传感器由于其高精度、高灵敏度和非接触测量等特点,在各个领域中都有着广泛的应用前景。

随着技术的不断发展,超声波传感器的性能将进一步提升,应用范围也将更加广泛。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用
超声波传感器是一种可以通过发射和接收超声波来测量距离或探测物体的传感器。

它通常由发射器、接收器和信号处理电路组成。

超声波传感器的工作原理是利用声波在不同介质中的传播速度不同的特性。

当超声波传感器发射器发出超声波后,它会被空气或其他介质中的物体反射回来。

接收器会接收到反射回来的超声波,并测量超声波从发射到接收所经过的时间。

通过测量时间和声速的关系,可以计算出物体与传感器的距离。

超声波传感器具有测量距离准确、抗干扰能力强、使用寿命长等优点。

它在很多领域得到广泛应用。

其中一个常见的应用是在机器人领域。

超声波传感器可以让机器人感知周围环境,避免障碍物,实现自主导航。

通过测量距离,机器人可以调整其前进方向,避开障碍物或停下来。

这对于自动仓储系统、无人驾驶汽车等需要检测距离和避免碰撞的应用非常重要。

另一个常见的应用是在工业领域的物位测量。

超声波传感器可以用来测量液体或粉体在容器中的高度,以控制液位或物料的供给。

它可以很方便地测量非接触物体的高度,无论是在液体中还是在液体上方。

超声波传感器还在智能家居、医疗设备、安防监控等领域得到应用。

在智能家居中,超声波传感器可用于测量室内温度、湿度和气压,实现智能调控;在医疗设备中,超声波传感器可用于实现医疗影像检测和超声波诊断;在安防监控中,超声波传感器可用于检测人体或物体的移动,以及测量距离。

超声波传感器是一种非常重要和广泛应用的传感器。

它在机器人、工业、智能家居、医疗设备等领域发挥着重要作用,为各种应用带来了更多可能性。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用
超声波传感器是一种利用超声波进行距离测量和物体检测的无接触式传感器。

它通过
发射超声波脉冲,测量其传播时间,从而计算出目标物体与传感器的距离。

超声波传感器
具有精度高、反应快、安装方便等特点,因此在各行各业都有广泛的应用。

超声波传感器主要应用于以下几个领域:
1.自动测距:超声波传感器可以测量目标物体与传感器之间的距离,精度高达毫米级。

它可以应用于自动化领域,例如机器人导航、自动驾驶车辆的避障等。

2.智能家居:超声波传感器可以用于监测室内环境。

可以用来测量水位,实现自动排
水功能;也可以测量空气质量,实现室内空气净化。

3.安防监控:超声波传感器可以用于建筑物的安防监控。

它可以监测墙壁的振动,检
测是否有人敲击或攀爬,进一步保护建筑物的安全。

4.车辆安全:超声波传感器可以在车辆上安装,用于检测车辆周围的障碍物。

当车辆
靠近障碍物时,传感器会发出警示信号,避免车辆碰撞。

5.无人机:超声波传感器可以用于无人机的高度测量和避障。

通过测量无人机与地面
的距离,实现精准的悬停和自动避障功能。

6.工业自动化:超声波传感器可以用于工业生产线上的物体定位和检测。

可以通过测
量物体与传感器之间的距离,判断物体是否到达正确的位置。

超声波传感器具有广泛的应用前景,可以满足不同行业的需求,提高工作效率和安全性。

随着技术的不断进步,超声波传感器的应用领域还将继续扩大。

超声波传感器的原理及应用

超声波传感器的原理及应用

超声波传感器的原理及应用超声波传感器是一种能够利用超声波进行测距和检测的设备,具有高精度、非接触、响应快等特点。

其工作原理是利用声音在介质中传播的特性进行测量。

下面将详细介绍超声波传感器的工作原理和应用。

超声波传感器的工作原理可以分为三个步骤:发射超声波、接收超声波和信号处理。

首先,超声波传感器通过振荡器将电能转化为声能,发射超声波。

超声波在空气中以声波的形式传播,穿过空气中的介质直到遇到障碍物。

当超声波遇到障碍物时,一部分超声波会被反射回传感器,传感器的接收器接收到反射回来的超声波信号。

通过测量从发射到接收所需的时间,可以计算出超声波传播的路径长度。

最后,传感器将接收到的信号经过放大和滤波处理后,将距离信息通过电信号的形式输出。

超声波传感器具有广泛的应用领域。

其最常见的应用是测距。

超声波传感器可以测量与障碍物之间的距离,因此广泛应用于地图制作、机器人导航、自动驾驶等领域。

在这些应用中,超声波传感器可以帮助设备感知周围环境,并做出相应的决策。

例如,在自动驾驶领域,车辆通过超声波传感器可以检测到前方障碍物的距离,从而实现避障和自动刹车等功能。

此外,超声波传感器还可以应用于流量测量。

超声波传感器可以通过测量液体或气体中声波的传播速度,并结合管道的几何参数,计算出流体的流速。

这种应用广泛用于工业过程控制、石油化工、环境监测等领域。

另外,超声波传感器还可以应用于液位测量。

由于超声波的能量可以穿透液体,传感器可以通过测量从发射到接收的时间,计算出液体的液位高度。

这种应用广泛用于储罐、水池、井坑等液体容器的液位监测和控制。

另一个常见的应用是超声波传感器在夜视设备和安防系统中的应用。

超声波传感器可以通过检测被监控区域内的物体的运动,来实现警报和报警功能。

例如,当有人接近某个区域时,超声波传感器会发射超声波,如果检测到超声波的反射信号发生变化,那么系统会触发报警。

综上所述,超声波传感器是一种重要的测距和检测设备,其工作原理基于超声波在介质中传播的特性。

超声波传感器的应用与研究

超声波传感器的应用与研究

超声波传感器的应用与研究超声波传感器是一种能够利用超声波进行测距、探测和检测的传感器。

它通过发射超声波并接收其回波来实现对目标物体的测距和探测,具有非接触式、高精度、快速响应和可靠性强的特点。

超声波传感器的应用十分广泛,涵盖了许多领域。

首先,超声波传感器在工业领域中有重要的应用。

它可以用于物体的检测、定位和测量。

在自动化生产线中,超声波传感器可以用于检测物体的位置、精确测量物体的距离和高度,实现对物体的自动定位和控制。

此外,超声波传感器还可以用于流体的流量测量和压力监测,例如在石油行业中用于测量管道中液体或气体的流速和压力,或者在水处理领域中用于监测水池的液位和水流情况。

其次,超声波传感器在医疗领域也有广泛的应用。

超声波传感器可以用于医学检测和诊断,例如用于超声波成像,检查身体内部器官的状况和疾病的发展情况,如心脏、肾脏、肝脏等。

此外,超声波传感器还可以用于测量血流速度和血液动力学参数,帮助医生了解血液循环情况和心脏状况,进而指导临床诊断和治疗。

此外,超声波传感器还在环境监测和安防领域中发挥着重要作用。

在环境监测中,超声波传感器可以用于探测和测量空气质量、水质、土壤湿度和大气污染物浓度等参数。

例如,在室内空气质量监测中,超声波传感器可以用于检测二氧化碳、甲醛和温湿度等参数。

在安防领域中,超声波传感器可以用于检测和报警,例如在室外用于安防监控和入侵检测,或者在汽车中用于泊车辅助和避免碰撞。

此外,超声波传感器还可以应用于机器人和自动化系统中。

在机器人领域中,超声波传感器可以用于导航和避障,帮助机器人识别周围环境并规避障碍物。

在自动化系统中,超声波传感器可以用于检测和控制,例如在自动化控制系统中用于检测物体的存在和位置,实现自动化操作和控制。

总的来说,超声波传感器在各个领域中都具有广泛的应用与研究。

随着技术的不断发展和创新,超声波传感器的性能将不断提高,应用范围也将进一步扩大。

超声波传感器

超声波传感器

超声波传感器超声波传感器是一种利用超声波进行测量和探测的设备。

它通过发射超声波并接收回弹的信号来判断目标物体的距离、位置以及其他相关信息。

超声波传感器在工业自动化、机器人技术、智能车辆、医疗设备等领域有着广泛的应用。

一、工作原理超声波传感器工作原理基于声音的传播和回声的接收。

它通过发射超声波脉冲并测量波的回弹时间来计算目标物体与传感器之间的距离。

通过不断地测量和比对回弹时间,超声波传感器可以实现对目标物体的准确测量。

二、特点与应用1. 非接触式测量:超声波传感器可以在不接触目标物体的情况下进行测量,避免了传统测量方法中接触到物体带来的误差和影响。

2. 高精度测量:超声波传感器具有较高的测量精度,可以实现毫米级的测量精确度,满足对距离和位置等信息的精确需求。

3. 多功能应用:超声波传感器可以广泛应用于测距、障碍物检测、水位检测、液体测量等不同的领域和场景。

4. 反应速度快:超声波传感器的反应速度非常快,可以实现实时的测量和控制,适用于对时间要求较高的应用场景。

5. 抗干扰性强:超声波传感器对外界环境的干扰较强,具备良好的抗干扰能力,可以在复杂的环境中稳定地工作。

超声波传感器在工业领域中被广泛应用,例如在自动化生产线中的测距与定位、机器人技术中的障碍物检测与定位,以及无人驾驶领域中的环境感知等。

此外,超声波传感器还被应用于医疗设备领域,用于测量血流速度、心脏功能以及体内器官的位置等。

在智能车辆中,超声波传感器可用于实现自动泊车功能,通过测量车辆与停车位之间的距离,准确引导车辆进行泊车操作。

同时,它也可以用于避免与其他车辆或物体的碰撞,提高行驶的安全性。

总的来说,超声波传感器凭借其高精度、快速响应和多功能应用等特点,成为了现代工业和科技领域中不可或缺的重要设备。

随着技术的不断发展和创新,相信超声波传感器在更多的领域和场景中将发挥更重要的作用。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器是一种能够利用超声波进行测距和检测物体的传感器。

它可以通过发射和接收超声波来测量物体与传感器之间的距离,广泛应用于工业、医疗、消费电子和汽车等领域。

本文将介绍超声波传感器的原理、结构和应用。

一、超声波传感器原理超声波传感器是利用超声波在空气或其他介质中传播的原理来实现测距和检测物体的传感器。

它通常由发射器、接收器和信号处理电路组成。

当发射器发射超声波时,超声波会在空气中传播,并当遇到物体时会被反射回来。

接收器接收到反射的超声波,并将接收到的信号通过信号处理电路进行处理,最终得到物体与传感器的距离。

超声波传感器工作的基本原理是利用超声波的发射和接收来实现测距和检测物体。

超声波是一种频率高于人类听觉范围的声波,通常在20kHz~200kHz的范围内。

由于超声波在空气或其他介质中的传播速度是已知的,因此可以通过发射超声波和测量超声波的反射时间来计算物体与传感器的距离。

超声波传感器的结构通常包括超声波发射器、超声波接收器和信号处理电路。

超声波发射器用于发射超声波,通常采用压电陶瓷等材料制成,当加上电压时可以产生超声波。

超声波接收器用于接收反射回来的超声波,通常也采用压电陶瓷等材料制成,可以将接收到的超声波转换为电信号。

信号处理电路用于处理接收到的电信号,通常包括放大、滤波、数字转换等功能,最终得到物体与传感器的距离。

超声波传感器的结构简单、稳定,其尺寸小、重量轻、功耗低,因此在各种应用场景中得到了广泛应用。

1. 工业领域超声波传感器在工业领域中应用广泛,主要用于测距、检测物体和流体的水平和倾斜等。

超声波传感器可以用于检测液体的液位,可以用于测量储罐内的液体高度,可以用于检测液体的流动情况等。

超声波传感器还可以用于测量物体与传感器之间的距离,可以用于检测物体的位置、形状、尺寸等。

由于超声波传感器具有非接触式测量、精度高、稳定可靠等优点,因此在工业领域中得到了广泛应用。

2. 医疗领域超声波传感器在医疗领域中应用广泛,主要用于医学成像、超声波治疗、医疗设备等。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器是一种利用超声波进行测距的传感器,其原理类似于蝙蝠通过发出超声波来识别周围环境。

它是一种广泛应用于自动控制、机器人和测量领域的传感器。

本文将介绍超声波传感器的原理、种类和应用。

超声波是一种频率高于人类能听到的声音的机械波,通常频率在20kHz以上。

超声波传感器通过发射超声波并接收反射回来的波来测量物体与传感器之间的距离。

当超声波达到物体表面时,一部分能量会被反射回来,经过传感器接收器感应到回传信号的时间差,计算出物体距离超声波传感器的距离。

市面上的超声波传感器种类较多,可分为以下几种:1. 固定式超声波传感器:用于测量固定物体与参考物之间的距离,例如仓库货物在库存的测量。

2. 双输出超声波传感器:可同时输出测量距离和超声波强度值。

3. 扩散超声波传感器:可以测量物体的形状和轮廓,常用于机器视觉领域。

4. 测量型超声波传感器:用于测量物体的距离和位置,通常应用于障碍物检测或自动停车系统。

超声波传感器有着广泛的应用领域,下面介绍一些主要的应用:1. 障碍物检测超声波传感器可以检测机器人或车辆运动中是否有障碍物,以避免碰撞。

常见应用如汽车倒车雷达和机器人导航。

2. 液位检测超声波传感器可以用于检测液体和固体的液位。

例如,在饮料生产中,超声波传感器可以检测液体在罐中的高度以调整灌装量。

3. 距离测量超声波传感器可测量物体到传感器的距离,可以应用于自动停车系统、自动驾驶车辆和机器人导航等领域。

4. 精确定位超声波传感器可用于确定物体的位置和轮廓,例如在測量物品体积和重量时,通过转换测量距离,计算出物品的体积和重量等。

总结超声波传感器是一种常用的传感器,可以用于测量物体与传感器之间的距离,已广泛应用于自动控制、机器人和测量领域。

各种类型的超声波传感器适用于不同的应用,并且可以为各种应用提供精确定位和准确的测量值。

超声波传感器及其应用

超声波传感器及其应用

超声波传感器及其应用超声波传感器是一种基于超声波原理工作的传感器,主要用于测量距离或探测物体的存在。

其工作原理是通过发射超声波信号,并接收反射回来的超声波,根据超声波的传播时间计算出距离或检测到物体的存在与否。

超声波传感器的应用非常广泛,下面将介绍一些常见的应用领域。

1. 距离测量:超声波传感器可以准确测量物体与传感器之间的距离,常见的应用场景有车辆停车辅助系统、机器人导航等。

传感器通过发送超声波信号,并计算信号的往返时间,从而得到物体与传感器的距离。

2. 高度测量:超声波传感器可以用于测量液体或固体的高度。

通过将传感器安装在容器的上方,发射超声波信号并接收反射回来的信号,可以计算出液体或固体的高度。

3. 物体检测:超声波传感器可以用于检测物体是否存在。

当物体靠近传感器时,超声波信号会被物体反射回来,传感器可以根据接收到的信号判断物体的存在与否。

这在许多自动化系统中非常有用,例如自动门、安全系统等。

4. 流量测量:超声波传感器可以用于测量液体或气体的流量。

传感器可以通过测量超声波信号的传播时间来计算流体通过的体积。

这在一些工业生产中非常重要,例如水处理、石油行业等。

5. 温度测量:超声波传感器可以用于测量温度。

通过测量超声波信号在不同温度下的传播速度,可以计算出温度的变化。

这在一些温控系统中非常常见。

6. 非接触式测量:由于超声波传感器无需接触物体即可工作,因此它可以用于一些需要非接触式测量的应用。

通过将传感器安装在机器人手臂上,可以实现对物体的非接触式抓取和操作。

超声波传感器是一种非常重要和常用的传感器,可以用于距离测量、高度测量、物体检测、流量测量、温度测量和非接触式测量等领域。

随着科技的发展,超声波传感器的应用领域还将继续扩大。

7.2.3 超声波传感器的应用_自动检测与转换技术_[共3页]

7.2.3 超声波传感器的应用_自动检测与转换技术_[共3页]

自动检测与转换技术距离的增加,声强逐渐衰减,其衰减的程度与声波的扩散、散射及吸收等因素有关。

介质中的声强衰减与超声波的频率及介质的密度、晶粒粗细等因素有关。

晶粒粗细或密度越小,衰减越快;频率越高,衰减也越快。

气体的密度很小,因此衰减较快,尤其在频率高时衰减更快。

因此,在空气中传导的超声波的频率选得较低,约数10kHz,而在固体、液体中则选用频率较高的超声波。

7.2.2 超声波传感器1.超声波传感器的含义超声波传感器是将声信号转换成电信号的声电转换装置,习惯上又称为超声波换能器或超声波探头,它是利用超声波产生、传播及接收的物理特性工作的。

超声波传感器已广泛应用于超声清洗、超声加工、超声检测、超声医疗等多个方面。

2.超声波传感器的类型超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。

电陶瓷,这种传感器统称为压电式超声波传感器。

它是利用压电材料的压电效应来工作的。

正压电效应是将超声振动波转换成电信号,可作为接收传感器;而逆压电效应将高频电振动转换成高频机械振动,从而产生超声波,可作为发射传感器。

压电式超声波传感器结构如图7.13所示,它主要由压电晶片、吸收块(阻尼块)、保护膜、引线等组成。

压电晶片多为圆板形,厚度为δ。

超声波频率f与其厚度δ成反比。

压电晶片的两面镀有银层,作为导电图7.13 压电式超声波传感器结构的极板。

阻尼块的作用是降低晶片的机械品质,吸收超声能量。

如果没有阻尼块,当激励的电脉冲信号停止时,晶片将会继续振荡,加长超声波的脉冲宽度,使分辨率变差。

目前在金属、复合材料和焊接结构中应用得最为重要、最为广泛的无损检测方法就是超声波探伤。

利用超声波可以检测出复合材料结构中的分层、脱黏、气孔、裂缝、冲击损伤和焊接结构中的未焊透、夹杂、裂纹、气孔等缺陷。

7.2.3 超声波传感器的应用根据超声波的出射方向,超声波传感器的应用有投射型和反射型两种基本类型,如图7.14所示。

超声波传感器的研究和应用

超声波传感器的研究和应用

超声波传感器的研究和应用超声波传感器是基于声波产生回声的原理,能够对物体进行非接触式的测量和检测。

由于其具有测距、物体识别和图像处理等多种功能,因此在自动化、医疗、工业制造、交通、安防等领域都有广泛的应用。

一、超声波传感器的工作原理超声波传感器的工作原理是利用超声波在介质中的传播特性,将其发射至被测物体,经过物体表面的反射后回到传感器,通过回波时间和反射强度来确定被测物体的位置和性质。

超声波传感器主要包括发射器、接收器、信号处理电路和控制电路等部分。

发射器会向被测物体发射超声波,在物体表面反射后接收器接收到返回的波信号。

通过测量波信号的时间差和强度,即可确定物体与传感器的距离和其它参数。

二、超声波传感器的应用1. 自动化领域在自动化领域中,超声波传感器主要应用于工厂生产线上的物料检测、物品的识别、物料定位等方面。

比如,在汽车制造中,传感器可以用来检测车身板件之间的距离和错位程度,实时调整机器的钢板变形量,从而保证整个生产过程的准确性。

2. 医疗领域超声波传感器在医疗领域中的应用十分广泛,在超声波诊断、血流测量、剖腹产、胚胎等领域都有广泛的应用。

比如,在超声波诊断中,测量被观察物体反射的超声波的强度和时间差,通过分析进行人体内部的组织结构和病变情况的诊断。

3. 工业生产领域在工业生产领域,超声波传感器可以应用于工厂生产线上的物料检测、物品的识别、物料定位等方面。

比如,在空调制造中,传感器可以来测量制造过程中管道位置、缺陷检测等工作。

4. 安防领域在安防领域,超声波传感器主要应用于入侵报警、烟雾检测等方面。

比如,在入侵报警中,传感器可以通过监测空间的声波反射效果来判断是否有人闯入区域内,从而进行报警。

5. 交通领域在交通领域中,超声波传感器主要应用于车辆的定位、停车管理等方面。

比如,在停车场管理中,传感器可以通过监测车辆的停放位置和距离来实现自动计费和限时停车管理。

三、超声波传感器的发展趋势目前,随着科技的不断发展,超声波传感器也不断升级和改进。

自动检测技术及应用ppt课件第7 章超声波传感器

自动检测技术及应用ppt课件第7 章超声波传感器

传感器及检测技术
• 细长棒中的纵波声速CLb 在细长棒中(棒径d≤λ)轴向传播的纵波声速与无限大 介质中纵波声速不同,细长棒中的纵波声速为:
• 声速与温度、应力、均匀性的关系 1)一般固体中的声速随介质温度升高而降低。 2)固体介质的应力状况对声速有一定的影响,一般应 力增加,声速增加,但增加缓慢。 3)固体材料组织均匀性对声速的影响在铸铁中表现较 为突出。铸铁表面与中心,由于冷却速度不同而具有不 同的组织,表面冷却快,晶粒细,声速大;中心冷却慢, 晶粒粗,声速小。此外,铸铁中石墨含量和尺寸对声速 也有影响,石墨含量和尺寸增加,声速减少。
传播衰减小、距离远。在大自然的许多活动中伴随着次声波的发生,例如地 震、火箭起飞等。次声波近似平面波,沿着与地球表面平行的方向传播。 超声波:高于2×104 Hz的机械波 微波:频率在3×108~3×1011 Hz之间的波
传感器及检测技术
次声波、声波和超声波都是在弹性介质中传播的 机械波,在同一介质中的传播速度相同。
传感器及检测技术
横波S(T)(切变波) 1)介质中质点的振动方向与波的传播方向互相垂直的 波。 2)特点:当介质质点受到交变的剪切应力作用时,产 生切变形变,从而形成横波。 3)传播介质:固体介质 表面波R(瑞利) 1)定义:当介质表面受到交变应力作用对,产生沿介 质表面传播的波。 2)特点:表面波在介质表面传播时,介质表面质点作 椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于 波的传播方向。椭圆运动可视为纵向振动与横向振动的 合成,即纵波与横波的合成。表面波的能量随传播深度 增加而迅速减弱。当传播深度超过两倍波长时,质点的 振幅就已经很小了。因此,一般认为,表面波探伤只能 发现距工件表面两倍波长深度内的缺陷。 3)传播介质:沿固体的表面传播。

超声波式传感器的原理特点及应用

超声波式传感器的原理特点及应用

超声波式传感器的原理特点及应用1. 原理介绍超声波式传感器是一种利用超声波进行测量和探测的设备。

其工作原理是利用超声波在介质中传播的特性进行测距或检测目标物体的存在。

以下是超声波式传感器的原理解析:•发射超声波信号:超声波式传感器通过压电材料产生高频超声波信号,并将其发送到目标物体。

•接收反射信号:当发射的超声波信号遇到目标物体时,会发生反射。

传感器会接收到反射的超声波信号。

•测量时间差:传感器会测量超声波信号从发射到接收的时间差,并利用速度和时间来计算距离。

•信号处理:传感器会对接收到的超声波信号进行放大、滤波和分析等处理,以提取有用的信息。

2. 特点与优势超声波式传感器具有以下特点与优势,使其得到广泛应用:•非接触测量:超声波传感器可以在不接触物体的情况下进行测量,避免了与目标物体的物理接触,减少了磨损和损坏的可能性。

•高精度测量:超声波传感器具有较高的测量精度,可以实现毫米级或亚毫米级的精确测量。

•宽测量范围:超声波传感器可以适应不同测量距离的需求,从几毫米到几十米的范围都可以覆盖。

•快速响应:超声波传感器的测量速度较快,响应时间通常在毫秒级别,适合对快速变化的目标进行实时监测。

•抗干扰能力强:超声波传感器对环境光线、温度等外界因素的影响较小,具有良好的抗干扰能力。

•易于集成:超声波传感器的体积较小,重量较轻,易于集成到各种设备和系统中,便于应用。

3. 应用领域由于其特点和优势,超声波式传感器在多个领域得到了广泛的应用,主要包括以下几个方面:3.1 距离测量超声波式传感器可以用于测量目标物体与传感器之间的距离,常见的应用场景包括:•工业自动化中的物体定位、测距和位置检测。

•智能车辆和机器人的障碍物避免和跟踪。

•清洁设备中的无人驾驶,如扫地机器人等。

3.2 液位检测超声波式传感器对于液体的测量和检测也具备出色的能力,常见应用包括:•水处理行业中的液位监测和控制。

•油罐和化学液体罐中的液位检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚焦探头原理及外形
水浸聚焦探头
超声波探头中的压电陶瓷芯片
将数百伏的超声电脉冲加到压电晶片上,利用 逆压电效应,使晶片发射出持续时间很短的超声振 动波。当超声波经被测物反射回到压电晶片时,利 用压电效应,将机械振动波转换成同频率的交变电 荷和电压。
超声波探头不能直接在被测物表面摩擦, 必须在探头和被测物表面之间加入耦合剂
气泡
清洗物
波浪
超声换能器
第一节 超声波物理基础
频率高于20kHz的机械振动波称为超 声波。它的指向性很好,能量集中,因此 穿透本领大,能穿透几米厚的钢板,而能 量损失不大。在遇到两种介质的分界面 (例如钢板与空气的交界面)时,能产生 明显的反射和折射现象,超声波的频率越 高,其声场指向性就愈好。
超声波的波型分类
常用频率范围:0.5~10MHz, 常见晶片直径:5~30mm
接触式直探头 (纵波垂直入射 到被检介质)
保护膜
外壳用金属制 作,保护膜用硬度 很高的耐磨材料制 作,防止压电晶片 磨损。
接插件
接触式 直探头原理
超声脉冲电压
输入端
接地端
保护膜 被测物上表面
接触式斜探头(横波、瑞利波或兰姆波探头)
接插件 底部耐磨材料
空气超声探头
1—外壳 5—引脚
a) 超声发射器 b)超声接收器 2—金属丝网罩 3—锥形共振盘 4—压电晶片 6—阻抗匹配器 7—超声波束
空气超声探头(续)
空气超声探头外形
空气超声探头外形(续)
空气传导超声波电脉冲发生器
第三节 超声波传感器的应用
当超声发射器与接收器分别置于被测物两 侧时,这种类型称为透射型。透射型可用于遥 控器、防盗报警器、接近开关等。超声发射器 与接收器置于同侧的属于反射型,反射型可用 于接近开关、测距、测液位或物位、金属探伤 以及测厚等。
2
概述: 声波的分类 1.次声波
次声波炸弹
次声波是频率低于20赫兹的声波,人耳听 不到,但可与人体器官发生共振,7~8Hz的次 声波会引起人的恐怖感,动作不协调,甚至导 致心脏停止跳动。
2.可闻声波 (20Hz~20kHz)
美妙的音乐可使人陶醉。
280Hz~2560 Hz频率段称 为中高频。 小提琴约有 四分之一的 较高音域在 此频段。
超声波的传播波型主要可分为纵波、
横波、表面波等几种。
纵 波
横波
表面波
第二节 超声波换能器及耦合技术
1
a)单晶直探头 b)双晶直探头 c)斜探头 1-接插件 2-外壳 3-阻尼吸收块 4-引线 5-压电晶体 6-保护膜 7-隔离层 8-延迟块 9-有机玻璃斜楔块 10-耦合剂 11-试件
超声波换能器(超声探头)的外形
双晶探头的结构虽 然复杂些,但检测精度 比单晶直探头高,且超 声信号的反射和接收的 控制电路简单。
各种双晶直探头
焦距范围:5~40mm, 频率范围:2.5~5MHz, 钢中折射角:45 ~70
接触法双晶斜探头(续)
水浸探头
(可用自来水作为耦合剂)
选择声透 镜形状,可决 定聚焦形式为 点聚焦或线聚 焦。
聚焦探头
由于超声波的波长很短(毫米数量级), 所以它也类似光波,可以被聚焦成十分细的 声束,其直径可小到1mm左右,可以分辨试 件中细小的缺陷,这种探头称为聚焦探头。
聚焦探头采用曲面晶片来发出聚焦的超 声波;也可以采用两种不同声速的塑料来制 作声透镜;也可以利用类似光学反射镜的原 理制作声凹面镜来聚焦超声波。
3.超声波
蝙蝠 能发出和 听见超声 波。
蝙蝠依靠超声波捕食
超声波与可闻声波不 同,它可以被聚焦,具有 能量集中的特点。
超声波加湿器
超声波雾化器
压电陶瓷或磁致 伸缩材料在高电压窄 脉冲作用下,可得到 较大功率的超声波, 可以被聚焦,能用于 集成电路及塑料的焊 接。
超声波塑料焊接机
超声波金丝 焊接机
耦合剂 的
种类和选择
超声探头与被测物体接触时,探头与被 测物体表面间存在一层空气薄层,空气将引 起三个界面间强烈的杂乱反射波,造成干扰, 并造成很大的衰减。为此,必须将接触面之 间的空气排挤掉。
在工业中,经常使用耦合剂,使之充满 在接触层中,起到传递超声波的作用。常用 的耦合剂有自来水、机油、甘油、胶水、化 学浆糊等。
每个气泡的破裂会象被称之为“空 化作用”,超声波清洗正是利用液体中气泡 破裂所产生的冲击波来达到清洗和冲刷工件 内外表面的作用。
超声清洗多用于半导体、机械、玻璃、 医疗仪器等行业。
超声波清洗原理及清洗器
(参考湖南省浏阳市医用仪具厂 、北京德泰隆科技发展有限责任公司资料)
超声波换能器又称超声波探头。超声波换能器的工 作原理有压电式、磁致伸缩式、电磁式等数种,在检 测技术中主要采用压电式。超声波探头又分为直探头、 斜探头、双探头、表面波探头、聚焦探头、冲水探头、 水浸探头、高温探头、空气传导探头以及其他专用探 头等。
各种超声波探头
(以下参考常州市常超检测设备有限公司资料)
压电晶片粘贴在与底面成一定角度(如30、 45等)的有机玻璃斜楔块上,当斜楔块与不同材 料的被测介质(试件)接触时,超声波将产生一 定角度的折射,倾斜入射到试件中去,可产生多 次反射,而传播到较远处去。
各种接触式斜探头
常用频率范围:1~5MHz
接触法双晶直探头
发射晶片 接收晶片
将两个单晶探头组 合装配在同一壳体内, 其中一片发射超声波, 另一片接收超声波。两 晶片之间用一片吸声性 能强、绝缘性能好的薄 片加以隔离。
《自动检测与转换技术》
第七章 第七章 超声波传感器
特点和应用
12.卡卡要给大家介绍超声波的
物理特性、超声波传感器的结构、探头耦合 技术和超声波传感器的应用,也集中讲一讲 在工业领域里比较常见的无损探伤。
超声波传感器的最大特点是量程范围比较大, 多用于定性测量。
12.05.2020
超声波被聚焦后,具有较好的方向性,在 遇到两种介质的分界面时,能产生明显的反射 和折射现象,这一现象类似于光波。
便携式超声波 探鱼器
超声波在医学检查 中的应用
胎儿的 B超影像
大功率超声波用于高效清洗
当强的声波信号作用于液体时,则会对 液体产生一定的正压,即液体体积被压缩减 小,液体中形成的微小气泡被压碎。
相关文档
最新文档