Friction Stir
无针搅拌摩擦点焊技术
无针搅拌摩擦点焊技术褚强;李文亚;杨夏炜;王卫兵【摘要】为了消除搅拌摩擦点焊固有的"匙孔"缺陷,采用无针搅拌摩擦点焊(probeless friction stir spot welding, P-FSSW)工艺,在不同的焊接参数下对新型铝锂合金2198-T8进行了点焊试验,并分析了点焊接头的金相组织及其力学性能.结果表明,无针搅拌摩擦点焊工艺可以有效消除"匙孔"缺陷,但受工艺限制,无针搅拌摩擦点焊焊接工艺较适用于低熔点合金及薄板焊接.%In order to eliminate the keyhole which appeared normally in conventional friction stir spot welding(FSSW)joints, 2198-T8 Al-Li alloy had been taken spot welding by probeless friction stir spot welding (P-FSSW), and metallographic structure and mechanical property of welded joint were analyzed.The results showed that P-FSSW process could effectively eliminated the keyhole defect, but limited to the process, P-FSSW process applied to low-melting-point alloy and sheet welding.【期刊名称】《焊管》【年(卷),期】2017(040)011【总页数】7页(P12-17,21)【关键词】焊接;搅拌摩擦点焊;微观组织;力学性能【作者】褚强;李文亚;杨夏炜;王卫兵【作者单位】西北工业大学材料学院,西安710072;西北工业大学材料学院,西安710072;西北工业大学材料学院,西安710072;中国搅拌摩擦焊中心,北京100024【正文语种】中文【中图分类】TG453.9轻量化设计与制造已成为航空航天、汽车船舶、高速列车等工业制造领域的主要发展方向。
A joined structure of two members joined by a fric
专利名称:A joined structure of two members joined bya friction stir welded welding portion发明人:Aota, Kinya,Ezumi, Masakuni,Ishimaru,Yasuo,Okamura, Hisanori,Funyuu, Isao,Satou,Akihiro申请号:EP04002653.6申请日:19980218公开号:EP1442821B1公开日:20090729专利内容由知识产权出版社提供摘要:PURPOSE: An extruded frame member for friction stir welding is provided to prevent the dent in the joint portion in spite of gap between members in bonding metal members such as aluminum alloy by forming the thick portion protruded for a rotating tool in the joint portion. CONSTITUTION: Hollow frame members(50,60) formed by extruding aluminum alloy are composed of plates(51,52,61,62) and ribs(53,63) connected to the plates. The end of the hollow frame member is inserted to the end of the other hollow frame member, and a vertical plate(54) for bonding the plates is placed near the end of the hollow frame member. Protruded parts(56,66) are formed by thickening the ends of the hollow frame members to be jointed, and extended in parallel to the plates for the end of the frame member. The outside of the protruded part is flattened, and inclined for the outside of the plate. Rotating tools(70) for friction stir welding are arranged in upper and lower parts of the joint portion of the hollow frame members, and small round rods(72) are inserted to the joint portion by turning the rotating tools. The end of the protruded part is extended in parallel to the end of the hollow framemember, and the protruded part is bonded by inserting the rotating tool in friction stir welding.申请人:HITACHI LTD地址:JP国籍:JP代理机构:Paget, Hugh Charles Edward更多信息请下载全文后查看。
【技术帖】汽车车身钢-铝搭接连接技术的研究现状
【技术帖】汽车车身钢-铝搭接连接技术的研究现状摘要:目前汽车车身钢-铝搭接的连接方式有机械连接、焊接和粘铆复合连接三种方式。
为适应汽车轻量化的趋势,单一的连接方法已经满足不了钢-铝搭接接头性能的要求,其连接技术亟待创新。
突破传统的工艺局限,在钢-铝中添加夹层(或粘结剂),采用特制的搅拌头进行热致搅拌摩擦点焊或是激光点焊。
钢-铝接头的连接机理、过程形成特征以及接头受力、力学响应特征是当前研究的主要发展趋势。
论文概述了其搭接连接的研究现状及成果,并展望了前景。
关键词:搭接;点焊;轻量化;钢-铝;接头性能前言随着石油能源危机和汽车废气排放污染问题的日益突出,汽车轻量化已成为必然趋势,为保证汽车综合性能,寻求总体最优化,车身常选用高强钢,以及高比强度高比刚度的铝合金、镁合金和复合材料等新材料,而高强钢-铝合金搭接(后文简称“钢-铝搭接”)是车身结构中常见的结构形式之一。
钢-铝搭接的连接部位通常是应力集中区,其受力情况复杂且高度非线性,直接影响车身整体结构的碰撞性能,从而成为失效的发源地,并带来异种金属间的电偶腐蚀问题。
因此,钢-铝搭接的连接技术,是汽车车身轻量化的难题之一。
目前适于汽车车身钢-铝搭接的连接技术主要有:机械连接、焊接和粘铆复合连接技术。
1钢-铝搭接的机械连接技术自穿孔铆接和冲铆连接是常用于钢-铝搭接的机械连接技术。
1.1自穿孔铆接(Self-piercing rivet,SPR)自穿孔铆接是一种通过半管型铆钉穿透上层工件,扩张到下层工件内,形成机械互锁的低温成形工艺。
其连接过程如图1所示。
该技术适用于同种和异种材料的双层和多层连接,而且可以克服铝、镁、钛等合金材料难以实现电阻点焊的缺点,实现铝-镁、钢-铝、钢-镁之间的连接。
目前已广泛应用于奥迪A8、捷豹XJ全铝车身,宝马新5系/7系钢-铝车身,以及欧洲“超轻汽车(SLC)”项目中的铝-铝、镁-铝、钢-铝间的连接。
1.2冲铆连接(Clinch joint)亦称冲压连接或锁接,它在凸模、压边圈和凹模的共同作用下,通过局部塑性变形形成自锁点实现连接,其工艺过程如图2所示。
焊接相关英文缩写及常用焊接词汇
焊接相关英文缩写收集整理:John Zhang 2007-7-18AW——ARC WELDING——电弧焊AHW——atomic hydrogen welding——原子氢焊BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊CAW-G——gas carbon arc welding——气保护碳弧焊CAW-S——shielded carbon arc welding——有保护碳弧焊CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊FCAW——flux cored arc welding——药芯焊丝电弧焊FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊SMAW——shielded metal arc welding——焊条电弧焊SW——stud arc welding——螺栓电弧焊SAW——submerged arc welding——埋弧焊SAW-S——series——横列双丝埋弧焊RW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊DS——dip soldering——浸沾钎焊FS——furnace soldering——炉中钎焊IS——induction soldering——感应钎焊IRS——infrared soldering——红外钎焊INS——iron soldering——烙铁钎焊RS——resistance soldering——电阻钎焊TS——torch soldering——火焰钎焊UUS——ultrasonic soldering——超声波钎焊WS——wave soldering——波峰钎焊B——BRAZING——软钎焊BB——block brazing——块钎焊DFB——diffusion brazing——扩散焊DB——dip brazing——浸沾钎焊EXB——exothermic brazing——反应钎焊FB——furnace brazing——炉中钎焊IB——induction brazing——感应钎焊IRB——infrared brazing——红外钎焊RB——resistance brazing——电阻钎焊TB——torch brazing——火焰钎焊TCAB——twin carbon arc brazing——双碳弧钎焊OFW——OXYFUEL GAS WELDING——气焊AAW——air-acetylene welding——空气乙炔焊OAW——oxy-acetylene welding——氧乙炔焊OHW——oxy-hydrogen welding——氢氧焊PGW——pressure gas welding——气压焊OTHER WELDING AND JOINING——其他焊接与连接方法AB——adhesive bonding——粘接BW——braze welding——钎接焊ABW——arc braze welding——电弧钎焊CABW——carbon arc braze welding——碳弧钎焊EBBW——electron beam braze welding——电子束钎焊EXBW——exothermic braze welding——热反应钎焊FLB——flow brazing——波峰钎焊FLOW——flow welding——波峰焊LBBW——laser beam braze welding——激光钎焊EBW——electron beam welding——电子束焊EBW-HV——high vacuum——高真空电子束焊EBW-MV——medium vacuum——中真空电子束焊EBW-NV——non vacuum——非真空电子束焊ESW——electroslag welding——电渣焊ESW-CG——consumable guide eletroslag welding——熔嘴电渣焊IW——induction welding——感应焊LBW——laser beam welding——激光焊PEW——percussion welding——冲击电阻焊TW——thermit welding——热剂焊THSP——THERMAL SPRAYING——热喷涂ASP——arc spraying——电弧喷涂FLSP——flame spraying——火焰喷涂FLSP-W——wire flame spraying——丝材火焰喷涂HVOF——high velocity oxyfuel spraying——高速氧燃气喷涂PSP——plasma spraying——等离子喷涂VPSP-W——vacuum plasma spraying——真空等离子喷涂TC——THERMAL CUTTING——热切割OC——OXYGEN CUTTING——气割OC-F——flux cutting——熔剂切割OC-P——metal powder cutting——金属熔剂切割OFC——oxyfuel gas cutting——氧燃气切割CFC-A——oxyacetylene cutting——氧乙炔切割CFC-H——oxyhydrogen cutting——氢氧切割CFC-N——oxynatural gas cutting——氧天然气切割CFC-P——oxypropanne cutting——氧丙酮切割OAC——oxygen arc cutting——氧气电弧切割OG——oxygen gouging——气刨OLC——oxygen lance cutting——氧矛切割AC——ARC CUTTING——电弧切割CAC——carbon arc cutting——碳弧切割CAC-A——air carbon arc cutting——空气碳弧切割GMAC——gas metal arc cutting——熔化极气体保护电弧切割GTAC——gas tungsten arc cutting——钨极气体保护电弧切割PAC——plasma arc cutting——等离子弧切割SMAC——shielded metal arc cutting——焊条电弧切割HIGH ENERGY BEAM CUTTING——高能束切割EBC——electron beam cutting——电子束切割LBC——laser beam cutting——激光切割LBC-A——air——空气激光切割LBC-EV——evaporative——蒸气激光切割LBC-IG——inert gas——惰性气体激光切割LBC-O——oxygen——氧气激光切割焊接英文词汇收集整理:John Zhang 2007-7-18电阻焊resistance welding (RW)点焊spot welding; resistance spot welding凸焊projection welding缝焊seam welding滚点焊roll-spot welding连续点焊stitch welding多点焊multiple spot welding手压点焊push welding; poke welding脉冲点焊pulsation spot welding; multiple-impulse welding 双面点焊direct spot welding单面点焊indirect spot welding串联点焊series spot welding多点凸焊multiple projection welding频道进缝焊step-by-step seam welding压平缝焊mash seam welding串联缝焊series seam welding对接缝焊butt seam welding; foil-butt seam电阻对焊upset butt welding闪光对焊flash butt welding (FBW)储能焊stored energy welding电容储能点焊condenser discharge spot welding高频电阻焊high frequency resistance welding冲击电阻焊percussion welding胶接点焊spot weld-bonding; weld-bonding闪光flashing; flash过梁bridge; lintel顶锻upsetting; upset夹紧力clamping force顶锻力upsetting force; upset force电极压力electrode force; electrode pressure电极滑移electrode skid焊接循环welding cycle预压时间squeeze time锻压时间forge-delay time; forge time焊接通电时间(电阻焊)welding time (resistance welding) 预热时间preheat time加热时间heat time冷却时间cool time间歇时间quench time; chill time回火时间temper time维持时间hold time休止时间off time闪光时间flash time; flashing time顶锻时间upset time; upsetting time有电顶锻时间upset current time无电顶锻时间upset current-off time闪光速度flashing speed闪光电流flashing current; flash current顶锻电流upset current预热电流preheat current回火电流temper current调伸长度initial overhange; extension总留量total allowance闪光留量flash allowance顶锻留量upset allowance顶锻速度upset speed电极接触面electrode contact surface贴合面faying surface焊点welding spot熔核nugget熔核直径diameter of nugget塑性金属环区corona bond焊透率penetration rate压痕indentation压痕深度depth of indentation压深率indentation ratio翘离sheet separation缩孔shrinkage cavity胡须intrusion电极粘损electrode pick up喷溅splash/ expulsion毛刺fin飞边upset metal/ fin焊点距weld spacing/ spot weld spacing边距edge distance分流shunt current接触电阻contact resistance电阻焊机resistance welding machine点焊机spot welding machine多点焊机multiple spot welding machine移动式点焊机portable spot welding machine 缝焊机seam welding machine纵横两用缝焊机universal seam welder对焊机butt resistance welding machine凸焊机projection welding machine三相低频焊机three phase low frequency welder二次整流电阻焊机direct current resistance welder secondary rectification电容储能电阻焊机condenser discharge resistance welder电容储能点焊机condenser type spot welder/ capacitor spot welding machine 工频电阻焊机mains frequency resistance welding machine低频电阻焊机frequency converter resistance welding machine高频焊机high frequency induction welder逆变式电阻焊机inverter type resistance welding machine全波阻焊电源full wave resistance welding power source斩波阻焊电源chopped wave resistance welding power source旋转焊接变压器rotary welding transformer点焊钳spot welding headC形点焊钳C-type welding head/ C-type gunX形点焊钳pincer spot welding head/ pliers spot welding head断续器contactor同步断续器synchronous contactor异步断续器non-synchronous contactor程序控制器sequencer程序时间调节器sequencer timer电极臂arm电极握杆electrode holder电极台板backup die/ bolster电极水冷管electrode cooling tube电极头electrode tip电极帽electrode cap锥头电极truncated tip electrode平头电极flat tip electrode尖头电极pointed tip electrode球面电极radius tip electrode偏心电极offest electrode直电极straight electrode弯电极cranked electrode双弯电极double cranked (swannecked) electrode滚轮电极circular electrode/ welding wheel斜棱滚轮电极bevelled wheel顶锻机构upsetting mechanism电极总行程total electrode stroke工作行程operational stroke辅助行程electrode travel/ electrode stroke臂间距离horn spacing/ throat opening电极臂伸出长度arm extension摩擦焊friction welding (FW)转速friction speed摩擦压力friction pressure/ heating pressure摩擦转矩friction torque摩擦时间friction time摩擦变形量burn-off length摩擦变形速度burn-off rate停车时间stopping time顶锻变形量forge length顶锻变形速度forge rate摩擦表面friction surface储能摩擦焊fly-wheel type friction welding径向摩擦焊radial friction welding扩散焊diffusion welding (DW)过渡液相扩散焊transient liquid phase diffusion welding 热等静压扩散焊hot isotatic pressure diffusion welding热轧扩散焊roll diffusion welding扩散缝焊seam diffusion welding超塑成形扩散焊supperplastic forming diffusion bounding 隔离剂buttering material爆炸焊explosive welding (EW)爆炸点焊explosive spot welding爆炸线焊explosive line welding多层板爆炸焊explosive welding of multiplayer plates多层管爆炸焊explosive welding of multiplayer tubes覆板(覆管)cladding plat (tube)/ flyer plate (tube)基板(基管)base plate(tube)/ parent plate (tube)保护层buffer/ protector基础base预置角preset angle间距initial stand-off/ spacing装药量explosive load装药密度charge density/ loading density质量比mass ratio平行法parallel plate configuration角度法preset angle configuration均匀布药average arranging explosive梯形布药gradient arranging explosive爆炸焊参数explosive welding parameters初始参数initial parameters动态参数dynamic parameters界面参数interface parameters爆轰速度detonation velocity覆板速度cladding plate velocity碰撞点impact point碰撞点速度velocity of the impact point弯折角bending angle碰撞角collision angle碰撞压力impact pressure格尼能Gurney energy垂直碰撞normal impact倾斜碰撞oblique impact/ inclined impact对称碰撞symmetrical impact来流upper stream出流down stream再入射流re-entrant jet自清理oneself cleaning结合区bond zone平面结合plane bond波状结合wave-like bond界面波长length of the interfacial wave界面波幅amplitude of the interfacial wave熔化层molten layer熔化袋molten pocket雷管区detonator zone边界效应edge effect焊接性窗口weldability windows焊着率ratio of welding area起爆方法method of initiation内爆法internal explosion process外爆法external explosion process半圆柱试验法semi-cylinder experiment method 超声波焊ultrasonic welding (UW)超声波点焊ultrasonic spot welding超声波缝焊ultrasonic seam welding超声波点焊机ultrasonic spot welder超声波缝焊机ultrasonic seam welder冷压焊cold pressure welding (CPW)热压焊hot pressure welding热轧焊hot roll welding旋弧压力焊rotating arc pressure welding埋弧压力焊submerged arc pressure welding电渣压力焊electroslag pressure welding气压焊gas pressure welding锻焊forge-welding/ blacksmith welding磁力脉冲焊magnetic-pulse welding硬钎焊brazing软钎焊soldering烙铁钎焊iron soldering火焰钎焊torch brazing/ torch soldering热风钎焊hot gas soldering感应钎焊induction brazing电阻钎焊resistance brazing接触反应钎焊contact-reaction brazing电弧钎焊arc brazing浸渍钎焊dip brazing/ dip soldering盐浴钎焊saltbath dip brazing (soldering)金属浴钎焊molten metal bath dip brazing炉中钎焊furnace brazing/ furnace soldering保护气氛钎焊brazing in controlled atmosphere真空钎焊vacuum brazing蒸气钎焊vapor phase soldering超声波钎焊ultrasonic soldering扩散钎焊diffusion brazing波峰钎焊flow soldering/ wave soldering分级钎焊step brazing/ step soldering不等间隙钎焊brazing with the unparalleled clearance红外线钎焊infra-red brazing (soldering)光束钎焊light soldering (brazing)激光钎焊laser brazing (soldering)电子束钎焊electron beam brazing钎接焊braze-welding钎料brazing filler metal/ solder硬钎料brazing filler metal软钎料solder (m)自钎剂钎料self-fluxing brazing alloy/ self-fluxing filler metal 活性钎料active filler metal/ active metal brazing alloy成形钎料preformed filler metal/ solder preform非晶态钎料amorphous filler metal粉状钎料powdered filler metal钎料膏braze cream/ braze paste/ solder cream/ solder paste药皮钎料flux coated brazing(soldering)rod层状钎料sandwich filler metal药芯钎料丝flux-cored colder wire敷钎料板clad brazing sheet钎剂brazing flux; soldering flux气体钎剂gas flux反应钎剂reaction flux松香钎剂colophony flux; rosin flux钎剂膏flux paste阻流剂stopping-off agent钎剂活性flux activity钎剂活性温度范围activation temperature range of flux钎剂热稳定性thermal stability of flux钎焊过程brazing (soldering) process钎焊操作brazing (soldering) operation工艺镀层technological coating钎焊面faying face钎缝间缝joint gap; joint clearance钎焊参数brazing process variables钎焊温度brazing temperature钎焊时间brazing time钎焊保温时间holding time of brazing钎缝brazing seam; soldering seam钎缝界面区interfacial region钎缝金属brace metal钎角fillet钎焊接头braced joint; soldered joint平面搭接头joggled lap joint; flush lap joint搭接对接接头butt and lap joint搭接T形接头lapped T-joint; flanged T-joint锁缝接头folded joint平面锁缝接头lick side seam joint; flat lock seam joint 锁缝角接接头lock corner joint; corner double seam 嵌入T形接头inset T jointT形管接头branch T saddle joint套管接头socket joint外喇叭口套管接头flare tube fitting扩口套管接头spigot joint钎焊性brazability; solderability润湿性wettability润湿角wetting angle; contact angle铺展性spreadability铺展系数spread factor; coefficient of spreading钎着率brazed rate脱钎de-brazing; de-soldering润湿称量试验wetting balance test铺展性试验spreadability test填缝性试验clearance fillability test未钎透incomplete penetration虚钎cold soldered joint钎料熔析liquation of filler metal溶蚀erosion钎料流失brazing filler metal erosion钎剂夹杂flux inclusion晶间渗入intergranular penetration波峰钎焊机wave soldering machine冷壁真空钎焊炉cold wall type vacuum brazing热壁真空钎焊炉hot wall type vacuum brazing furnace 钎焊盒brazing retort钎剂涂敷器fluxer钎炬brazing (soldering) blowpipe喷灯brazing lamp烙铁solder iron热喷涂thermal spraying火焰喷涂flame spraying电弧喷涂electric arc spraying等离子喷涂plasma spraying高频感应喷涂high frequency spraying气体爆燃式喷涂detonation flame spraying金属喷涂metal spraying; metallizing塑料喷涂plastic spraying陶瓷喷涂ceramic spraying喷熔spray-fusing表面粗糙化处理surface roughening电火花拉毛electrospark roughening抛锚效应anchoring喷涂层spray-fused coating喷熔层spray-fused coating结合层bond coating; under coating工作层work coating结合强度adhesive strength涂层强度strength of coating封孔处理sealing封孔剂sealant喷涂率spray rate沉积效率deposition efficiency孔隙率porosity喷涂材料spraying material自熔剂合金粉末self-fluxing alloy powder喷炬(枪)spray torch;热切割thermal cutting (TC)气割gas cutting; oxygen cutting氧溶剂切割powder cutting氧-石英砂切割quartz powder cutting电弧切割arc cutting氧气电弧切割oxy-arc cutting空气电弧切割air arc cutting等离子弧切割plasma arc cutting (PAC)空气等离子弧切割air plasma arc cutting氧等离子切割oxygen plasma arc cutting水再压缩空气等离子弧切割air plasma water injection arc cutting双层气流等离子弧切割dual gas plasma arc cutting; shielded gas plasma arc cutting 激光切割laser cutting(LC); laser beam cutting电子束切割electron beam cutting喷气激光切割gas jet laser cutting碳弧切割carbon arc cutting水下切割underwater cutting喷水式水下电弧切割waterjet method underwater arc cutting氧矛切割oxygen lancing; oxygen lance cutting溶剂氧切割powder lancing手工气割manual oxygen cutting自动气割automatic oxygen cutting仿形切割shape cutting数控切割NC (numerical-control) cutting快速切割high-speed cutting垂直切割square cut叠板切割stack cutting坡口切割beveling; bevel cutting碳弧气割carbon arc air gouging火焰气刨flame gouging火焰表面清理scarfing氧熔剂表面修整powder washing预热火焰preheat flame预热氧preheat oxygen切割氧cutting oxygen/ cutting stream切割速度cutting speed切割线lone of cut/ cut line切割面face of cut/ cut face切口kerf切口上缘cutting shoulder切口宽度kerf width后拖量drag切割面平面度evenness of cutting surface/ planeness of cutting surface割纹深度depth of cutting veins/ stria depth切割面质量quality of cut face上缘熔化度shoulder meltability/ melting degree of shoulder切口角kerf angle缺口notch挂渣adhering slag结瘤dross割炬cutting torch/ cutting blowpipe/ oxygen-fuel gas cutting torch割枪cutting gun割嘴cutting nozzle/ cutting tip快速割嘴divergent nozzle/ high-speed nozzle表面割炬gouging blowpipe水下割炬under-water cutting blowpipe水下割条electrode for under-water cutting粉剂罐powder dispenser数控切割机NC cutting machine门式切割机flame planer光电跟踪切割机photo-electric tracing cutting火焰切管机pipe flame cutting machine磁轮式气割机gas cutting machine with magnetic wheels 焊接结构welded structure/ welded construction焊件weldment焊接部件weld assembly组装件built-up member接头设计joint design焊接应力welding stress焊接瞬时应力transient welding stress焊接残余应力welding residual stress热应力thermal stress收缩应力contraction stress局部应力local stress拘束应力constraint stress固有应力inherent stress固有应变区inherent strain zone残余应力测定residual stress analysis逐层切割法Sach’s methodX射线衍射法X-ray stress analysis小孔释放法Mathar method固有应变法inherent strain method消除应力stress relieving局部消除应力local stress relieving应力重分布stress redistribution退火消除应力stress relieving by annealing温差拉伸消除应力low temperature stress relieving机械拉伸消除应力mechanical stress relieving应力松弛stress relaxation焊接变形welding deformation焊接残余变形welding residual deformation局部变形local deformation角变形angular distortion自由变形free deformation收缩变形contraction deformation错边变形mismatching deformation挠曲变形deflection deformation波浪变形wave-like deformation火焰矫正flame straightening反变形backward deformation焊接力学welding mechanics断裂力学fracture mechanics弹塑性断裂变形elasto-plastic fracture mechanics线弹性断裂力学linear elastic fracture mechanics延性断裂ductile fracture脆性断裂brittle fracture应力腐蚀开裂stress corrosion cracking热应变脆化hot straining embrittlement临界裂纹尺寸critical crack size裂纹扩展速率crack propagation rate裂纹张开位移(COD)crack opening displacement拘束度restraint intensity拘束系数restraint coefficient应变速率strain rate断裂韧度fracture toughness应力强度因子stress intensity factor临界应力强度因子critical stress intensity factors应力腐蚀临界应力强度因子critical stress intensity factor of stress corrosion cracking J积分J-integration罗伯逊止裂试验Robertson crack arrest testESSO试验ESSO test双重拉伸试验doucle tension test韦尔斯宽板拉伸试验Well’s wide plate test帕瑞斯公式Paris formula断裂分析图fracture analysis diagram焊接车间welding shop焊接工作间welding booth焊接工位welding post/ welding station焊接环境welding surroundings焊工welder电焊工manual arc welder气焊工gas welder焊接检验员weld inspector焊工培训welders training焊工模拟训练器trainer of synthetic weld焊工考试welder qualification test焊工合格证welder qualification/ welder qualified certification钢板预处理steel plate pretreatment喷沙sand blast喷丸shot blast矫正straighten开坡口bevelling (of the edge)/ chanfering装配assembly/ fitting安装erect刚性固定rigid fixing装配焊接顺序sequence of fitting and welding 焊接工艺评定welding procedure qualification 焊接工艺规程welding procedure specification 焊接工艺试验welding procedure test焊接工艺卡welding procedure card工序operational sequence焊接材料消耗定额welding consumables quota 焊接工时定额welder-hour quota清渣slag removal清根back gouging/ back chipping锤击peening返修次数number of rewelding焊接工作台welding bench装焊平台welding platen电磁平台electromagnetic platen焊接翻转机welding tilter焊接回转台floor turnable positioner焊接变位机positioner焊接滚轮架turning rolls焊接操作机manpulator焊工升降台welder’s lifting platform焊接夹具welding jig/ fixture磁力夹紧器magnetic jig螺旋推撑器screw operated tensioning unit焊丝盘绕机welding wire coiler焊条压涂机welding electrode extrusion press 红外线加热器infra-red heater干燥箱dryer焊条保温筒thermostat for electrode流量计flow meterCO2预热器CO2 heaterCO2干燥器CO2 desiccator焊接电缆welding cable电缆夹头welding connector地线earth lead地线夹头earth clamp焊接参数记录仪welding parameter recorder 焊缝检测规weld gauge喷嘴通针tip cleaner测温笔tempil stick敲渣锤chipping hammer焊接衬垫backing/ welding backing保留垫板fusible backing/ permanent backing临时垫板temporary backing焊剂垫flux backing惰性气体衬垫inert-gas backing引弧板run-on tab/ end tab/ starting weld tab引出板run-off tab/ end tab定位板strong-back加强勒stiffener嵌条insert套环ferrule面罩helmet滤光镜片filter glass/ welding glass防护镜片cover glass/ plain glass气焊眼镜welding goggles焊接机器人welding robot点焊机器人spot welding robot弧焊机器人arc welding robot切割机器人cutting robot焊接机器人生产线robot line for welding焊接机器人工作站welding robot station机器人运动自由degree of free for robot机器人工作空间robot working space轨迹重复精度path repeatability点位重复精度PTP repeatability焊接专家系统welding expert system焊接机器人示数welding robot play back焊接图象识别pattern recognition for welding焊接图象处理welding image processing计算机辅助焊接工艺设计computer-aided welding process programming (CAWPP) 计算机辅助焊接结构设计computer-aided design for welding structure焊接烟尘weld fume焊接发尘量total amount of fumes焊接烟尘浓度weld fume concentration焊接烟尘容限浓度threshold limit values of weld fume (TLV)焊接发尘速率weld fume emission rate焊接有害气体welding toxic gases/ weld harmful gases标定卫生空气需要量nominal hygienic air requirement焊工尘肺pheumocomsis of welder焊工锰中毒chronic occupational manganese poisoning of welder焊工氟中毒fluorosis of welder焊工金属烟热metal fume fever of welder电光性眼炎eye-flash (arc eye)电光性皮炎electro-photo dermatitis电弧紫外线灼伤ultraviolet ray burn防电击装置voltage reducing device除尘装置dust collection device焊工手套welding gloves护脚welding spats防护鞋shielding shoes焊接欠缺welding imperfection焊接缺陷weld defect气孔blowhole/ gas pore针尖状气孔pinhole密集气孔porosity条虫状气孔wormhole裂纹crack表面裂纹surface crack咬边undercut焊瘤overlap凹坑pit烧穿burn through塌陷excessive penetration未焊透incomplete penetration/ lack of penetration未熔合lack of fusion/ incomplete fusion未焊满incompletely filled weld根部凹陷root concavity电弧擦伤arc scratch夹渣slag inclusion夹杂物inclusion夹钨tungsten inclusion白点fish eye/ flake错边misalignment/ dislocation试件test piece试样test specimen无损检验nondestructive test破坏检验destructive test外观检查visual examination超声波探伤ultrasonic inspection直射法超声波探伤straight beam method斜射法超声波探伤angle beam method液浸法超声波探伤immersion method射线探伤radiographic inspection/ radiographyX射线探伤X-ray radiographic inspectionγ射线探伤gamma-ray inspectionX射线工业电视探伤X-ray industrial television inspection 磁粉探伤magnetic particle inspection电磁探伤electromagnetic inspection/ eddy current test探伤灵敏度flaw detection sensitivity渗透探伤penetration inspection荧光探伤flurescent penetrant inspection 着色探伤dye penetrant inspection密封性检验leak test气密性检验air tight test枕形气密检验pillow test耐压检验pressure test水压检验hydraulic test气压检验pneumatic test液晶检验liquid crystal test声发射检测acoustic emission testing面弯试验face bend testing背弯试验root bend test侧弯试验side bend test横弯试验horizontal bend test纵弯试验axial bend test压扁试验squeezing test。
完整的焊接方法代号(数字+字母)
焊接方法代号分类焊接代号AW——ARC WELDING——电弧焊AHW——atomic hydrogen welding——原子氢焊BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊CAW-G——gas carbon arc welding——气保护碳弧焊CAW-S——shielded carbon arc welding——有保护碳弧焊CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊FCAW——flux cored arc welding——药芯焊丝电弧焊FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊SMAW——shielded metal arc welding——焊条电弧焊SW——stud arc welding——螺栓电弧焊SAW——submerged arc welding——埋弧焊SAW-S——series——横列双丝埋弧焊RW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency ——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊DS——dip soldering——浸沾钎焊FS——furnace soldering——炉中钎焊IS——induction soldering——感应钎焊IRS——infrared soldering——红外钎焊INS——iron soldering——烙铁钎焊RS——resistance soldering——电阻钎焊TS——torch soldering——火焰钎焊UUS——ultrasonic soldering——超声波钎焊WS——wave soldering——波峰钎焊B——BRAZING——软钎焊BB——block brazing——块钎焊DFB——diffusion brazing——扩散焊DB——dip brazing——浸沾钎焊EXB——exothermic brazing——反应钎焊FB——furnace brazing——炉中钎焊IB——induction brazing——感应钎焊IRB——infrared brazing——红外钎焊RB——resistance brazing——电阻钎焊TB——torch brazing——火焰钎焊TCAB——twin carbon arc brazing——双碳弧钎焊OFW——OXYFUEL GAS WELDING——气焊AAW——air-acetylene welding——空气乙炔焊OAW——oxy-acetylene welding——氧乙炔焊OHW——oxy-hydrogen welding——氢氧焊PGW——pressure gas welding——气压焊OTHER WELDING AND JOINING——其他焊接与连接方法AB——adhesive bonding——粘接BW——braze welding——钎接焊ABW——arc braze welding——电弧钎焊CABW——carbon arc braze welding——碳弧钎焊EBBW——electron beam braze welding——电子束钎焊EXBW——exothermic braze welding——热反应钎焊FLB——flow brazing——波峰钎焊FLOW——flow welding——波峰焊LBBW——laser beam braze welding——激光钎焊EBW——electron beam welding——电子束焊EBW-HV——high vacuum——高真空电子束焊EBW-MV——medium vacuum——中真空电子束焊EBW-NV——non vacuum——非真空电子束焊ESW——electroslag welding——电渣焊ESW-CG——consumable guide eletroslag welding——熔嘴电渣焊IW——induction welding——感应焊LBW——laser beam welding——激光焊PEW——percussion welding——冲击电阻焊TW——thermit welding——热剂焊THSP——THERMAL SPRAYING——热喷涂ASP——arc spraying——电弧喷涂FLSP——flame spraying——火焰喷涂FLSP-W——wire flame spraying——丝材火焰喷涂HVOF——high velocity oxyfuel spraying——高速氧燃气喷涂PSP——plasma spraying——等离子喷涂VPSP-W——vacuum plasma spraying——真空等离子喷涂TC——THERMAL CUTTING——热切割OC——OXYGEN CUTTING——气割OC-F——flux cutting——熔剂切割OC-P——metal powder cutting——金属熔剂切割OFC——oxyfuel gas cutting——氧燃气切割CFC-A——oxyacetylene cutting——氧乙炔切割CFC-H——oxyhydrogen cutting——氢氧切割CFC-N——oxynatural gas cutting——氧天然气切割CFC-P——oxypropanne cutting——氧丙酮切割OAC——oxygen arc cutting——氧气电弧切割OG——oxygen gouging——气刨OLC——oxygen lance cutting——氧矛切割AC——ARC CUTTING——电弧切割CAC——carbon arc cutting——碳弧切割CAC-A——air carbon arc cutting——空气碳弧切割GMAC——gas metal arc cutting——熔化极气体保护电弧切割GTAC——gas tungsten arc cutting——钨极气体保护电弧切割PAC——plasma arc cutting——等离子弧切割SMAC——shielded metal arc cutting——焊条电弧切割HIGH ENERGY BEAM CUTTING——高能束切割EBC——electron beam cutting——电子束切割LBC——laser beam cutting——激光切割LBC-A——air——空气激光切割LBC-EV——evaporative——蒸气激光切割LBC-IG——inert gas——惰性气体激光切割LBC-O——oxygen——氧气激光切割。
摩擦焊的类型
摩擦焊的类型
摩擦焊是一种固态焊接方法,常见的摩擦焊类型包括:
1. 摩擦搅拌焊(Friction Stir Welding,FSW):通过一个旋转的焊接工具,将塑性变形施加在工件接触区域,使两个工件材料发生塑性流动并连接在一起。
2. 摩擦搅拌摩擦焊(Friction Stir Friction Welding,FSFW):类似于摩擦搅拌焊,但在焊接过程中,施加一个额外的力,以增加摩擦热。
3. 摩擦摩擦焊(Friction Friction Welding,FFW):摩擦热产生于两个固体材料之间的直接接触,并通过柔软的套筒施加焊接压力,将两个工件连接在一起。
4. 线性摩擦焊(Linear Friction Welding,LFW):通过线性往复运动的摩擦焊接工具,将工件的材料加热并施加挤压力,实现焊接。
5. 摩擦摩擦搅拌焊(Friction Stir Friction Stir Welding,FSFSW):结合了摩擦搅拌焊和摩擦摩擦焊的特点,通过旋转和线性运动的复合工具,实现焊接。
这些摩擦焊的类型形式不同,但本质上都是利用摩擦热和机械力来实现材料的固态连接。
这些焊接方法在汽车、航空航天、船舶等行业中得到广泛应用。
(完整版)无机非金属材料专业英语单词
无机非金属材料专业英语单词abrasive [ ə'breisiv ]n. 磨料a. 磨蚀的,磨损的agate [ 'æɡət ]n. 玛瑙alite [ 'eilait ]n. 硅酸三钙石(C3A)alkali resistance [ 'ælkəlai ri'zistəns]耐碱性,抗碱能力alumina [ ə'lju:minə ]n. 氧化铝amorphous phase [ ə'mɔ:fəs feiz]无定形相,非晶相ampoule [ 'æmpju:l ]n. 小玻璃瓶,筒,安瓿anhydrite [ æn'haidrait ]n. 硬(无水)石膏,CaSO4 anion [ 'ænaiən ]n. 阴离子anisotropic [ æn,aisəu'trɔpik ] a. 各向异性的,非均质的anneal [ ə'ni:l ]n. & v. 退火anomaly [ ə'nɔməli ]n. 反常现象,不规则anorthite [ æ'nɔ:θait ]n. 钙长石CaO·Al2O3·2SiO2 apatite [ 'æpətait ]n. 磷灰石apparent porosity [ ə'pærənt pɔ:'rɔsiti]显气孔率asbestos [ æz'bestɔs ]n. 石棉asphalt [ 'æsfælt ]n. 沥青basicity [ bə'sisəti ]n. 碱度,碱性batch bin [ bætʃ bin]配合料料仓batch feeder [ bætʃ 'fi:də]投料机,加料器bauxite [ 'bɔ:ksait ]n. 矾土,铝矾土belite [ 'bi:lait ]n. 二钙硅酸盐(水泥)binder [ 'baində ]n. 粘胶剂,粘结剂biocompatibility [ 'baiəukəm,pætə'biləti ]n. 生物相容性biological [ ,baiəu'lɔdʒik,-kəl ] a. 生物学的,用生物(如病菌等)对付敌人的bisque firing [ bisk 'faiəriŋ]素烧(初次焙烧)body [ 'bɔdi ]n. 坯体body-centered lattice[ 'bɔdi 'sentəd 'lætis]体心格子borate [ 'bɔ:reit ]n. 硼酸盐borax [ 'bɔ:ræks ]n. 硼砂Na2B4O7·10H2Ocalcine [ 'kælsain ]v. & n. 烧结,烧成calcite [ 'kælsait ]n. 方解石calcium [ 'kælsiəm ]n. 钙capillary [ kə'piləri, 'kæpi- ] a. 细作用(的)n. 毛细管catalyst [ 'kætəlist ]n. 催化剂cation [ 'kætaiən ]n. 阳离子cellular [ 'seljulə ] a. 细胞的,由细胞组成的,多孔的cellulose [ 'seljuləus ]n. & a. 纤维素,含纤维素的ceramic [ si'ræmik ] a. 陶瓷、陶器checker [ 'tʃekə ]n. 格子砖checker chamber [ 'tʃekə 'tʃeimbə]蓄热室chemical durability [ 'kemikəl ,djuərə'biləti]化学稳定性chemical vapour deposition (CVD) [ 'kemikəl 'veipə ,depə'ziʃən]化学气相沉积cleavage [ 'kli:vidʒ ]n. 解理clinker[ 'kliŋkə ]n. 熟料、熔块coagulation[ kəuæɡju'leiʃən ]n. 凝结、凝固作用,聚集、角凝coating [ 'kəutiŋ ]n. 涂层,涂料,涂盖层collagen [ 'kɔlə,dʒen ]n. 骨胶原combustion flue [ kəm'bʌstʃən flu:]烟道complex [ 'kɔmpleks ]n. & a. 复合物,络合物;复杂的configuration [ kən,fiɡju'reiʃən ]n. 构形;(电子)排布constituent [ kən'stitjuənt ]n. 成分,组分contamination [ kən,tæmi'neiʃən ]n. 污染,杂质convection [ kən'vekʃən ]n. 对流,传递coordination numbers [ kəu,ɔ:di'neiʃən 'nʌmbəs]配位数coordination polyhedron [ kəu,ɔ:di'neiʃən ,pɔli'hi:drən]配位多面体cord [ kɔ:d ]n. 条纹,条痕(玻璃缺陷)cordierite [ 'kɔ:diərait ]n. 堇青石2MgO·2Al2O3·5SiO2 corrosion-resistant [ kə'rəuʒən ri'zistənt] a. 抗腐蚀的corundum [ kə'rʌndəm ]n. 刚玉α-Al2O3covalent [kəuˈveilənt] a. 共价的crazing[ 'kreiziŋ ]n. 细裂,龟裂,碎纹裂creep [ kri:p ]n. 蠕变cristobalite [ kris'təu,bəlait ]n. 方石英critical value [ 'kritikəl 'vælju:]临界值cross-fired glass melting furnace [ krɔ:s 'faiəd ɡlɑ:s'meltiŋ 'fə:nis]横火焰池窑crown [ kraun ]n. 炉顶,窑拱crown flint glass [ kraun flint ɡlɑ:s]冕火石玻璃crucible [ 'kru:sibl ]n. 坩埚crystallinity [kristəˈlinəti]n. 结晶度,结晶性crystallization [ ,kristəlai'zeiʃən ]n. 结晶(作用),晶化cubic [ 'kju:bik ] a. 立方晶系的cubic body-centered [ 'kju:bik 'bɔdi 'sentəd]体心立方(晶格)cubic face-centered[ 'kju:bik feis 'sentəd]面心立方(晶格)cullet [ 'kʌlit ]n. 碎玻璃,废玻璃(料)curing [ 'kjuəriŋ ]n. 固化,熟化,养护damper [ 'dæmpə ]n. 挡板,烟道闸板deflocculant [ di'flɔkjulənt ]n. 反絮凝剂,解凝剂deformation [ ,di:fɔ:'meiʃən ]n. 变形degrade [ 'di'ɡreid ]v. 降(裂,分)解,降低,衰变dendrite [ 'dendrait ]n. 树枝石,树枝状结晶densification [ ,densifi'keiʃən ]n. 密实化desiccator [ 'desikeitə ]n. 干燥器(皿)deteriorate [ di'tiəriəreit ]v. 1、(使)变坏,(使)恶化;2、损坏,消耗devitrify [ di:'vitrifai ]vt. 析晶devitrite [di:ˈvitrait]n. 失透石dielectric constant [ ,daii'lektrik 'kɔnstənt]介电常数differential thermal analysis (DTA) [ ,difə'renʃəl 'θə:məl ə'næləsis]差热分析diffraction [ di'frækʃən ]n. 衍射diffusion [ di'fju:ʒən ]n. 扩散dilatation [ ,dailə'teiʃən, dilə- ]n. 膨胀,扩展dilatometer [ ,dilə'tɔmitə ]n. 膨胀仪diode [ 'daiəud ]n. 二极管dipole moment [ 'daipəul 'məumənt]偶极矩dislocation [ ,disləu'keiʃən ]n. 位错,位移dispersion [ dis'pə:ʃən ]n. 色散,分散displacement [ dis'pleismənt ]n. 位移,易位,取代distortion [ dis'tɔ:ʃən ]n. 扭曲,变形dolomite [ 'dɔləmait ]n. 白云石MgCO3·CaCO3 domain [ dəu'mein ]n. 畴,域,范围,铁电体的均一极化区donor level [ 'dəunə 'levəl]施主能级dopant [ 'dəupənt ]n. 掺杂剂dotted line [ 'dɔtid lain]虚线drawability [ ,drɔ:ə'biləti ]n. 可纺性(玻璃纤维),可拉伸性ductile [ 'dʌktail, -til ] a. 可延展的,易变形的earthenware [ 'ə:θənwεə ]n. 陶(瓦)器eddy [ 'edi ]n. 涡流,漩涡,螺旋efflorescence [ ,eflɔ:'resəns ]n. 粉化、风化elastic modulus [ i'læstik 'mɔdjuləs]弹性模量electronegativity [ i'lektrəu,neɡə'tivəti ]n. 电负性electrophoretic [ i,lektrəfə'retik ] a. 电泳的electrostatic [ i,lektrə'stætik ] a. 静电的,静电学的embossing [ im'bɔsiŋ ]n. 浮雕,压花,压纹emulsifier [ i'mʌlsifaiə ]n. 乳化剂enamel [ i'næməl ]n. 搪瓷endothermic [ ,endəu'θə:mik,-məl ] a. 吸热的end-port furnace [ end pɔ:t 'fə:nis] (或horseshoe-fired furnace) 马蹄焰窑enstatite [ 'enstətait ]n. 顽火辉石enzyme [ 'enzaim ]n. 酶epitaxy [ 'epitæksi ]n. 外延,(晶体)取向生长epoxy [ ep'ɔksi ] a. 环氧的n. 环氧树脂erode [ i'rəud ]v. 腐蚀,受侵蚀ethylene[ 'eθili:n ]n. 乙烯eucryptite [ju:ˈkripˌtait]n. 锂霞石eutectic [ ju:'tektik ] a. 低共熔的,共晶的exothermic [ ,eksəu'θə:mik,-'θə:məl ] a. 放热的extrude [ ek'stru:d ]v. 挤压extrusion [ ek'stru:ʒən ]n. 挤出,挤压feldspar [ 'feldspɑ: ]n. 长石ferrite [ 'ferait ]n. 铁氧体ferroelectric [ ,ferəui'liktrik ] a. & n. 铁电体(性,的)filament [ 'filəmənt ]n. 细丝,灯丝filter press [ filtə pres]压滤机fineness [ 'fainnis ]n. 细度、精度、纯度fireclay [ 'faiəklei ]n. 耐火(粘)土,(耐)火泥firing [ 'faiəriŋ ]n. 烧成flaw [ flɔ: ]n. 裂纹,裂痕,瑕疵flexural strength [ˈflekʃərəl streŋθ]抗弯强度flexible [ 'fleksibl ] a. 挠性的,易柔曲的,韧性的float glass [ fləut ɡlɑ:s]浮法(平板)玻璃fluorescence [ fluə'resns ]n. 荧光,荧光性fluoride [ 'flu(:)əraid ]n. 氟化物fluorspar [ 'fluəspɑ: ]n. 萤石,氟石CaF2 fracture toughness [ 'fræktʃəˈtʌfnis]n. 断裂韧性frit [ frit ]n. 熔块、釉料garnet [ 'ɡɑ:nit ]n. 石榴石,石榴红色gel [ dʒel ]n. 凝胶germanium [ dʒə:'meiniəm ]n. 锗(Ge)glass fiber reinforced plastics[ɡlɑ:s'faibə,ri:in'fɔ:sd 'plæstiks ]玻璃纤维增强塑料(GFRP)glaze [ ɡleiz ]v. 上釉glost [ ɡlɔst ]n. 釉grain boundary [ ɡrein 'baundəri]n. 颗粒界面,晶界granulate [ 'ɡrænjuleit ]v. 粒化,成粒graphite [ 'ɡræfait ]n. 石墨green body [ ɡri:n 'bɔdi]n. 生坯,未烧坯grinding [ 'ɡraindiŋ ]n. 研磨,磨碎grit [ ɡrit ]n. 磨料gypsum [ 'dʒipsəm ]n. 石膏halide [ 'hælaid ] a. 卤化物(的),卤族的heterogeneous [ ,hetərəu'dʒi:njəs ] a. 异种的,非均质的hexagonal [ hek'sæɡənəl ] a. 六方的,六方晶系的host [ həust ]n. 基质,晶核homogeneity [ ,hɔməudʒe'ni:əti, ,həu- ]n. 均匀性,均一(性)homogeneous [ ,hɔmə'dʒi:niəs, ,həu- ] a. 均匀的,均一的humidity [ hju:'midəti ]n. 湿气,湿度hydrolysis [ hai'drɔlisis ]n. 水解(作用),加水分解immiscibility [ i,misə'biləti ]n. 不混溶性impediment [ im'pedimənt ]n. 妨碍,阻碍,障碍物impermeable [ im'pə:miəbl ] a. 不可渗透的,不透水的impurity [ im'pjuərəti ]n. 杂质,不纯物inclusion [ in'klu:ʒən ]n. 夹杂(物),掺杂index of refraction [ 'indeks ɔv ri'frækʃən]折射率inertness[iˈnə:tnis]n. 惰性infra-red spectrum [ 'inflə red 'spektrəm]红外光谱ingot[ 'iŋɡət ]n. 块料interferometer [ ,intəfə'rɔmitə ]n. 干涉仪interphase [ 'intəfeiz ]n. 界面,中间相a. 相间的interstitial [ ,intə'stiʃəl ] a. 间隙的intrinsic(al) [ in'trinsik,-kəl ] a. 内在的,固有的,本质的intrude [ in'tru:d ]v. 渗入isomorphic [ ,aisəu'mɔ:fik ] a. 同晶型的isostatic pressing [ ,aisəu'stætik 'presiŋ]n. 等静压成型isotherm [ 'aisəuθə:m ]n. 等温isotropic [ ,aisəu'trɔpik ] a. 各向同性的,均质的jiggering [ 'dʒiɡəriŋ ]n. 旋坯kaolinite [ 'keiəlinait ]n. 高岭土kiln [ kiln, kil ]n. 窑,炉lime [ laim ]n. 石灰,氧化钙limestone [ 'laimstəun ]n. 石灰石lithium [ 'liθiəm ]n. 锂lubrication [ ,lu:bri'keiʃən ]n. 润滑作用luster [ 'lʌstə ]n. 光泽v. 发光,使有光泽,给……上釉magnesium [ mæɡ'ni:ziəm, -ʃi- ]n. 镁magnesite [ 'mæɡnəsait ]n. 菱镁矿manganese[ 'mæŋɡə,ni:s]n. 锰(Mn)marls [ mɑ:l s ]n. 石灰泥matrix [ 'meitriks ]n. 基体,基质metallurgical [ ,melə'lə:dʒik,-kəl ] a. 冶金学的,冶金术的metastable [ ,metə'steibl ] a. 亚稳的,介稳的methane[ 'mi:θein ]n. 甲烷mica [ 'maikə ]n. 云母microcrack [ 'maikrəukræk ]n. 微裂纹microprobe [ 'maikrəuprəub ]n. 显微探针microstructure [ 'maikrəu,strʌktʃə ]n. 显微结构migrate [ mai'ɡreit, 'maiɡ- ]vi. 迁移mineralogy [ ,minə'rælədʒi ]n. 矿物学mineralizer [ 'minərəlaizə ]n. 矿化剂miscible [ 'misəbl ] a. 可混(合)的,可混(溶)的mixer [ 'miksə ]n. 混合机,混料机modification [ ,mɔdifi'keiʃən ]n. 更改,修改,变体modifier [ 'mɔdifaiə ]n. 调整体modulus [ 'mɔdjuləs, -dʒu- ]n. 模数,模量moldable [ˈməuldəbl] a. 可塑的,可模制的monoclinic [ ,mɔnəu'klinik ] a. 单斜的monolithic [ ,mɔnəu'liθik ]n. 单片(块)a. 整体的,单块的mortar [ 'mɔ:tə ]n. 砂(灰、泥)浆mullite [ 'mʌlait ]n. 莫来石multicomponent[ˌmʌltikəmˈpəunənt] a. 多成分的,多元的multiplicity [ ,mʌlti'plisəti ]n. 多样(性),多重性,大量mutrual orientation [ 'mju:tʃuəl ,ɔ:rien'teiʃən]相互取向needle-like [ 'ni:dl laik]针状neutralisation [ ,nju:trəlai'zeiʃən ]n. 中和(作用,法)nitridation [ ,naitri'deiʃən ]n. 氮化notch [ nɔtʃ ]n. 凹口,槽口observable [ əb'zə:vəbl ] a. 可观察到的,可以察觉的octahedral [ ,ɔktə'hedrəl, -'hi:- ] a. 八面体的octahedron [ ,ɔktə'hedrən, -'hi:- ]n. 八面体olivine [ ,ɔli'vi:n, 'ɔlivi:n ]n. 橄榄石opacity [ əu'pæsiti ]n. 乳浊,不透光性,浑浊度,不透明度opaque [ əu'peik ] a. 不透明的,模糊的optical flint [ 'ɔptikəl flint]火石光学玻璃optical crown [ 'ɔptikəl kraun]冕牌光学玻璃optics [ 'ɔptiks ]n. 光学optimum [ 'ɔptiməm ]n. 最佳条件orbital hybridation [ 'ɔ:bitəl haibriˈdeiʃən]轨道杂化organosilane [ 'ɔ:ɡənəu'silein]n. 有机硅烷orient [ 'ɔ:riənt, 'əu-, 'ɔ:rient ]n. 东方vt. 定……的方位orthorhombic [ ,ɔ:θə'rɔmbik ] a. 正交(晶)的,斜方(晶)的orthosilicate [ˌɔ:θəˈsiləkeit]n. 正(原)硅酸盐oscillate [ 'ɔsileit ]v. 振荡,振动overlap [ ,əuvə'læp, 'əuvəlæp ]vt. 与……重叠,与……部分一致overview [ 'əuvəvju: ]n. 综述,概述,概观oxalate [ 'ɔksəleit ]n. 草酸盐pelletization [ ,pelitai'zeiʃən ]n. 造球,球粒化作用particle size distribution [ 'pɑ:tikl saiz ,distri'bju:ʃən]粒径分布particulate [ pə'tikjulit ]n. & a. 粒子,细粒(的)peel [ pi:l ]v. 剥,削,剥落pellet [ 'pelit ]n. 片,粒化(料),丸permeation[ˌpə:miˈeiʃən]n. 渗入,透过permissible [ pə'misibl ] a. 容许的,许可的perpendicular [ ,pə:pən'dikjulə ] a. 垂直的petrochemical [ ,petrəu'kemikəl ] a. & n. 化工的,化工产品phase transition [ feiz træn'siʒən]相变phosphate [ 'fɔsfeit ]n. 磷酸盐photonic [ fəu-'tɔnik ] a. 光子的,光电子的piezoceramic [ pi:'eizəu si'ræmik ]n. 压电陶瓷pigment [ 'piɡmənt ]n. 颜(色)料pitch [ pitʃ ]n. 沥青placement [ 'pleismənt ]n. 放置,布局plasma [ 'plæzmə ]n. 等离子体,等离子区platinum [ 'plætinəm ]n. 铂plotter [ 'plɔtə ]n. 绘图器,测绘仪;制图员plunger [ 'plʌndʒə ]n. 活塞,园柱,插棒polarization [ ,pəulərai'zeiʃən, -ri'z- ]n. 极化,偏振polycrystalline [ ,pɔli'kristəlain, -lin ] a. 多晶的polyhedron [ ,pɔli'hi:drən, -he- ]n. 多面体polymorphic [ ,pɔli'mɔ:fik ] a. 多形的,多态的,多晶的porosity [ pɔ:'rɔsiti, pəu- ]n. 气孔率,多孔性postulate [ 'pɔstjuleit, -tʃə- ]n. 假定,假设potash [ 'pɔtæʃ ]n. 碳酸钾pottery [ 'pɔtəri ]n. 陶器厂,陶器(制造术)precursor [ pri:'kə:sə, pri- ]n. 前驱物premise [ pri'maiz, 'premis ]n. 前提vt. 预述(条件),提出……为前提prism [ 'prizm ]n. 棱镜prismatic [ priz'mætik ] a. 斜方晶系的probe [ prəub ]v. & n. 探针,探测器,(以探针等)探察,查明progressively [ prəu'ɡresiv li ]ad. 日益增多地,逐渐projection [ prəu'dʒekʃən ]n. 喷射prolong [ prə'lɔŋ, 'lɔ:ŋ ]vt. 拉长,延长prospective [ prəu'spektiv ] a. 预期的,有希望的prototype [ 'prəutətaip ]n. 原型,样品pseudomorph [ 'psju:dəumɔ:f ]n. 假象,假晶quarry [ 'kwɔri ]n. 采石场quartzite [ 'kwɔ:tsait ]n. 石英岩,硅岩quench [ kwentʃ ]vt. 1、把……淬火;2、熄灭ram [ ræm ]v. 猛击,填塞,撞reagent [ ri:'eidʒənt ]n. 试剂rearrangement [ 'ri:ə'reindʒmənt ]n. 重排reciprocal [ ri'siprəkəl ]n. 倒数reciprocate [ ri'siprəkeit ]v. 往复运动,上下移动,来回recycle [ ,ri:'saikl ]v. & n. 再循环,反复利用refining[riˈfainiŋ]n. (玻璃液)澄清reflectivity [ ,ri:flek'tiviti ]n. 反射性,反射系数refraction [ ri'frækʃən ]n. 折射refractive index [ ri'fræktiv 'indeks]n. 折射率refractoriness[ ri'fræktərinis]n. 耐火度refractory [ ri'fræktəri ]n. & a. 耐火材料,耐熔的,难熔的rigorous [ 'riɡərəs ] a. 严厉的,严酷的replica [ 'replikə ]n. 复制品,拷贝resonator [ 'rezəneitə ]n. 谐振器,共振器retract [ ri'trækt ]vt. 缩进,收缩retrieve [ ri'tri:v ]vt. 1、取回,恢复;2、补偿,弥补retrogression [ ,retrəu'ɡreʃən ]n. 逆反应rheology [ ri:'ɔlədʒi, ri- ]n. 流变性rhombohedral [ˌrɔmbəuˈhi:drəl] a. 菱形的,菱面体的ruby [ 'ru:bi ]n. 红宝石rupture [ 'rʌptʃə ]n. 断裂rutile [ 'ru:tail, -ti:l ]n. 金红石sagger [ 'sæɡə ]n. 闸体sanitaryware[ˈsænitəriwɛə]n. 卫生洁具schematically[ski:ˈmætikəli]ad. 用示意图,示意地,大略地scrap [ skræp ]n. 碎片,废料screw dislocation [ skru: ,disləu'keiʃən]螺旋位错cullet [ 'kʌlit ]n. 碎玻璃seam [ si:m ]n. 缝,接缝segregation [ ,seɡri'ɡeiʃən ]n. 分层sensor [ 'sensə, -sɔ: ]n. 传感器setting time[ 'setiŋ taim]硬化时间setup [ 'setʌp ]n. 1、组织,构造;2、装置,装配,创立shear [ ʃiə ]n. 剪切shrinkage [ 'ʃriŋkidʒ ]n. 收缩(性,量,率)shutdown [ 'ʃʌtdaun ]n. 关闭,熄灭sieve [ siv ]vt. & n. 筛分silicate [ 'silikit, -keit ]n. 硅酸盐silo [ 'sailəu ]n. 料仓,简仓sintering [ 'sintəriŋ ]n. 烧结skid [ skid ]n. 1、滑动,打滑;2、滑橇,划板slab [ slæb ]n. 板皮,石板岩,厚平板,厚片slag [ slæɡ ]n. (炉)渣slip casting [ slip 'kɑ:stiŋ]n. 注浆成型,泥浆浇注slurry [ 'slə:ri, 'slʌ- ]n. 稀泥浆,水泥浆soda ash [ 'səudə æʃ]苏打灰Na2CO3sodium [ 'səudiəm ]n. 纳(Na)solder [ 'sɔldə ]n. & vt. 焊料,焊接spall [ 'spɔ:l ]v. 研碎,散裂spark plug [ spɑ:k plʌɡ]n. 火花塞spatial orientations [ 'speiʃəl ,ɔ:rien'teiʃəns]空间取向spherically [ 'sferikəli]ad. 球地,球形地spindle [ 'spindl ]n. 1、轴,心轴;2、锭子,纺锤spine [ spain ]n. 脊柱spinel [ spi'nel, 'spinəl ]n. 尖晶石spodumene [ 'spɔdjumi:n ]n. 锂辉石Li2O·Al2O3·4SiO2 spray-drying[ sprei 'draiiŋ]n. 喷雾干燥sputter deposition [ 'spʌtə ,depə'ziʃən]溅射沉积stochastic [ stɔ'kæstik, stəu- ] a. 随机的,机遇的,推测的stoichiometric [ ,stɔikiə'metrik ] a. 化学计量的stoneware [ 'stəunwεə ]n. 石制品,粗陶瓷(器)stress-strain curve [ stres strein kə:v]应力-应变曲线subjective [ səb'dʒektiv ] a. 主观的submicrometer [ sʌb 'maikrəu mi:tə ]n. 亚微米suffice [ sə'fais ]v. 足够,使满足superconductor [ ,sju:pəkən'dʌktə ]n. 超导体superfine [ ,sju:pə'fain ] a. 特级的supersaturation [ 'sju:pə,sætʃə'reiʃən ]n. 过饱和(现象)surfactant [ sə:'fæktənt ]n. 表面活化剂suspension [ sə'spenʃən ]n. 悬浮液symmetry [ 'simitri ]n. 对称,匀称symposium [ sim'pəuziəm ]n. 1、专题讨论会;2、专题论文集talc [ tælk ]n. & vt. 滑石,用滑石处理tantalum [ 'tæntələm ]n. 钽tar [ tɑ: ]n. 焦油temporal [ 'tempərəl ] a. 1、暂时的,转瞬间的;2、时间的tensile strength [ 'tensail streŋθ]抗张强度ternary [ 'tə:nəri ] a. & n. 三元(的),三重(的)tetragonal [ te'træɡənəl ] a. 四方晶系的tetrahedron [ ,tetrə'hi:drət, -'he- ]n. 四面体tetravalent [ ,tetrə'veilənt, te'trævə- ] a. 四价的texture [ 'tekstʃə ]n. 织构,质地,结构thermalcouple [ 'θə:məl 'kʌpl]n. 热电偶thermal expansion coefficient[ 'θə:məl ik'spænʃən ,kəui'fiʃənt ]热膨胀系数thermal shock resistance[ 'θə:məl ʃɔk ri'zistəns ]抗热震(性)thermoplastic[ ,θə:məu'plæstik ] a. 热塑性的throwing[ 'θrəuiŋ ]n. 手工拉坯titania [ tai'teiniə, ti- ]n. 二氧化钛titanate [ 'taitəneit ]n. 钛酸盐tolerance [ 'tɔlərəns ]n. 公差,容许限度toughness[ tʌfnis ] n. 韧性toxicity [ tɔk'sisəti ]n. 毒性translucent [ trænz'lju:sənt, træns-, trɑ:n- ]n. 半透明的tridymite [ 'tridimait ]n. 磷石英trigonal [ 'triɡənəl, trai'ɡəunəl ] a. 三方的valency [ 'veilənsi ]n. 化合价,价,原子价varistor [ və'ristə ]n. 压敏电阻,可变电阻versatile [ 'və:sətail ] a. 1、通用的,万能的;2、活动的,万向的vertebra [ 'və:tibrə ]n. 椎骨,脊椎(pl. vertebrae)vinylalcohol [ 'vainil 'ælkəhɔl]n. 乙烯醇vitreous [ 'vitriəs ] a. 玻璃质的,玻璃态的vitrification [ ,vitrifi'keiʃən ]n. 玻璃化vitrify [ 'vitrifai ]v. 玻璃化,(使)成玻璃volatilization [ vɔ,lætilai'zeiʃən ]n. 挥发wetting[ 'wetiŋ ]n. (变、润、浸)湿whisker [ 'hwiskə ]n. 晶须whiteware [ 'hwaitwεə ]n. 白色(卫生)陶瓷wollastonite [ 'wuləstənait ]n. 硅灰石workability [ ,wə:kə'biləti ]n. 成型性zeolite [ 'zi:əlait ]n. 沸石zinc[ ziŋk ]n. 锌zirconia [ 'zə:kɔniə]n. 氧化锆zircon [ 'zə:kɔn ]n. 锆石,锆英石。
A method of manufacturing a structual body with fr
专利名称:A method of manufacturing a structual body with friction stir welding发明人:Masakuni, Ezumi,Kazusige, Fukuyori,Akihiro, Satou申请号:EP00304563.0申请日:20000530公开号:EP1057576B1公开日:20031112专利内容由知识产权出版社提供摘要:Rotary tools 340A and 340B are provided to correspond to two joining lines. Into a portion where the two joining lines are necessary to join, by inserting the two rotary tools and they are moved at the same time. At a position P1 of a portion of a window 210 the rotary tool 340A is retreated from the joining portion and a friction stir joining is made to stop. At a position P3, by retreating gradually the rotary tool 340B and the rotary tool 340B is moved to join. At a position P4, the moves of the rotary tools 340A and 340B is stopped, the rotary tool 340B is made to retreat and the joining is made to stop. Next, the rotary tools 340A and 340B are inserted and the move are started again. An insertion amount of the rotary tool 340B is larger than an insertion amount during the stop of the move of the rotary tool. In a case where plural line joining lines are carried out the friction stir joining and in a case of a portion which is unnecessary to carry out the friction stir joining, the good friction stir joining can be obtained.申请人:HITACHI LTD地址:JP国籍:JP代理机构:Paget, Hugh Charles Edward 更多信息请下载全文后查看。
stir的过去式和用法例句
stir的过去式和用法例句stir做动词有激起;惹起;搅和等意思,那么你知道stir的过去式是什么吗? 接下来跟着店铺来学习一下吧。
stir的过去式和其他时态:过去式: stirred过去分词: stirred现在分词: stirringstir的用法:stir的用法1:stir的基本意思是“微动”,也可指“颤动”“搅动”“波动”等程度或幅度不大的动作。
引申可作“骚动”“感动”“激起”“煽动”解。
stir的用法2:stir可用作及物动词,也可用作不及物动词。
用作及物动词时接名词或代词作宾语,也可接以动词不定式充当补足语的复合宾语。
stir的用法3:stir后接介词in〔into〕表示“把…搅拌进混合物中”; 后接介词to表示激起或煽动某人去做某事; 后接副词up表示“激起,鼓动,煽动”。
stir的用法4:stir的现在分词可用作形容词,在句中作定语。
stir的用法5:stir的过去式和过去分词均为stirred。
stir的过去式例句:1. Small things stirred in the grass around the tent.一些小东西在帐篷四周的草丛里窸窸窣窣地动着。
2. The voice, less coarse now, stirred her as it had then.现在那声音已不那么刺耳,它又如当年一样让她怦然心动。
3. Amy remembered the anger he had stirred in her.埃米还记得他曾怎样惹自己生气。
4. Not a breath of fresh air stirred the long white curtains.连一丝风也没有,白色的长窗帘一动不动。
5. He sat down and sugared and stirred his coffee.他坐下来,在咖啡中加糖并搅拌。
6. She had not stirred from the house that evening.她那天晚上没有离开过那座房子。
钢铝异种金属搅拌摩擦焊背景及问题
钢与铝焊接存在的主要问题
1.钢的熔点比铝的高,焊接过程中,铝完全熔化为液态时,钢仍处于固 态,且两者密度相差很大,液态铝浮在钢表面上,冷却结晶后焊缝成分 不均匀; 2.焊接过程中,铝母材表面形成难熔的Al2O3氧化膜,阻碍液态金属 的结合,并且容易产生夹渣; 3.热导率、线膨胀系数相差很大,焊后接头变形严重,并且存在有很 大的残余应力,易产生裂纹; 4.铁在铝中固溶度几乎为零,且铁与铝可以产生多种硬而脆的金 属间化合物,如FeAl,FeAl2,FeAl3,Fe2Al5,Fe2Al7及Fe4Al3等, 增加了焊接接头的脆性,降低了其塑性和韧性。
但是陶瓷材料价格昂贵,且供应源不足,故采用焊接前预热钢板的方法,
以降低钢板的硬度,提高搅拌头的使用寿命,节约成本。
搅拌摩擦焊的优点
1.搅拌摩擦焊是一种固相连接技术,焊前不需要开坡口,节省工时; 2.焊接过程中不需要保护气,也不需要填充材料 3.焊接热输入小,从而导致焊接变形小、接头残余应力水平低,是一种 低应力、小变形焊接技术
4.焊接过程中无飞溅、无弧光、无辐射,是一种绿色焊接技术
5.焊接效率高、能耗低,是一种高效焊接技术
焊接速度
下压力
搅拌头的类型
搅拌针的发展过程:光面圆柱体 大沟槽螺纹 普通圆柱螺纹 其他更复杂的形状 锥形螺纹
圆锥螺纹型搅拌头
带螺旋槽的搅拌头
钢/铝搅拌摩擦焊的背景
基于搅拌摩擦焊的优点 1.焊接接头力学性能好、焊后变形小、残余应力小、焊接成本低、效 率高及适用范围广等特点。
基于钢/铝焊接件的使用需求 2.铝合金密度低、耐蚀性好、可焊接加工;钢铁材料资源丰富,稳 定性好;钢/铝焊接件可使交通运输工具轻量化,具有很好的经济效 益。
搅拌摩擦焊的应用领域
stirring翻译
stirring翻译
Stirring 是指通过搅拌、搅动、或使物质混淆彼此的过程。
它可以
是机械的,如使用搅拌器;也可以是物理的,如转动容器的底部,或者产
生湍流甚至涡流。
Stirring 的目的是使物质之间尽可能地均匀混合,以达到期望的理
想性能。
搅拌也可以在物质中溶解和混合有效成分,或分散悬浮物,以达
到净化或稳定液体的目的。
搅拌过程中还可以以变化不同物质之间的接触面积,加速物质在反应
中的变化,或者加快混合物中物质的传递。
搅拌也可以加速液体传热,从
而提高反应的速度。
有很多种不同的搅拌器可以用来搅拌,其中包括底部搅拌器、搅拌器、搅拌棒和混合器,每种器都有其特定的用处。
大多数情况下,搅拌使用转
速控制的调节器进行控制,以确保正确的混合质量。
Stirring 是大多数化学反应和物理变化的基础,它可以用来改变液
体的粘度和稠度,加快化学反应,甚至影响最终产品的性能和质量。
因此,Stirring 对于工业生产而言是十分重要的过程。
content
Optimization of the Process Parameters for Controlling Residual Stress and Distortionin Friction Stir WeldingCem C. Tutum*, Henrik B. Schmidt, Jesper H. HattelTechnical University of Denmark, Department of Mechanical Engineering, Process Modeling Group, 2800 Kgs. Lyngby, Denmark*Email: cctu@mek.dtu.dkSummaryIn the present paper, numerical optimization of the process parameters, i.e. tool rotation speed and traverse speed, aiming minimization of the two conflicting objectives, i.e. the residual stresses and welding time, subjected to process-specific thermal constraints in friction stir welding, is investigated. The welding process is simulated in 2-dimensions with a sequentially coupled transient thermo-mechanical model using ANSYS. The numerical optimization problem is implemented in modeFRONTIER and solved using the Multi-Objective Genetic Algorithm (MOGA-II). An engineering-wise evaluation or ranking between alternatives of the trade-off solutions is dicussed briefly.KeywordsFriction stir welding, residual stress, thermal constraints, multi-objective optimization IntroductionFriction Stir Welding (FSW) is an efficient solid-state, i.e. without melting, joining technique that is invented especially for aluminum alloys which are difficult to weld with traditional welding techniques [1]. Improved mechanical properties, reduced distortion and residual stresses, and environment friendliness are some of its advantages. The requirement for lighter and load resistant structures, especially in aerospace and automotive industries, emphasizes the need for investigating the important parameters to control the FSW process more efficiently [2-4].Heat dissipation due to the friction and material deformation causes the material to soften and allows traversing of the tool along the joint line. Despite relatively low heat generation in FSW, the rigid clamping used in FSW causes higher reaction forces on the plates avoiding the shrinkage of the weld center region and as a result, generating longitudinal and transverse stresses. These residual stresses act as pre-stresses on the structures which is critical for the fatigue performance during the service [2,4].Thermo-Mechanical ModelThe friction stir welding process is simulated in 2-dimensions by using ANSYS Parametric Design Language (APDL). Transient thermal and mechanical models are coupled sequentially (Figure 1,2). The thermo-pseudo-mechanical (TPM) heat source [5,6] is applied, in which the temperature dependent yield stress is the driver for the heat generation, as a volume flux given by()()3T thk r 602RPM T r,yield q σπ⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=, for shoulder R 0≤≤r (1)where RPM is the tool rotation per minute, r is the radial position, thk is the thickness of the plate (3mm) and R shoulder is the tool shoulder radius (10mm). The temperature dependent yield stress σyield is defined by()⎟⎟⎠⎞⎜⎜⎝⎛=ref melt ref ref yield,T -T T -T -1T σσyield (2)where σyield,ref is the yield stress at the room temperature (200 MPa), T is the solution depentent temperature, T ref is the reference room temperature (20°C) and T melt is the solidus temperature (500°C). The mechanical model consists of an elasto-plastic material model using the yield stress given by equation (2). The behavior of the residual stresses obtained after the solution of the mechanical model is shown in Figure 3 for different tool traverse and rotational speeds. It can be clearly seen that the residual stresses increase aslong as the traverse welding speed increases and they are less sensitive to the tool rotational speed.Figure 1. Schematic view of theprescribed heat source Figure 2. Thermal and mechanical models Figure 3. Residual stresses at the middle of the plate Optimization ModelThe optimization problem here is stated as the goal of finding the friction stir welding process parameters, i.e. tool rotation speed and traverse welding speed, which provide a set of trade-off solutions for the minimization of two conflicting objectives [7], i.e. residual stresses, which are measured at the middle of the plate along the transverse direction, and welding time. The design variable RPM (Revolution Per Minute) is defined as varying from 100 to 1000 rpm in 100 rpm increments and welding speed, the design variable for the traverse welding speed, is defined as 1mm/s to 10mm/s in 1 mm/s increments. The flow chart of the optimization procedure is shown in Figure 4. The initial population of the MOGA-II algorithm is chosen as Full Factorial Design with 4-levels (RPM: 100, 400, 700, 1000 rpm and welding speed: 1, 4, 7, 10mm/s) resulting in 16 designs. MOGA-Adaptive Evolution is chosen for running 20 total numbers of generations. The optimization problem is constrained by process-specific thermal constraints, which are given as the upper and the lower bounds on the peak temperatures. The lower bound of 420°C on the peak temperature represents the need for easy traversing of the tool, i.e. to minimize the tool loads, along the weld line by contributing thermal softening of the workpiece material. The upper bound of 490°C is defined in order to consider the tool life and the workpiece properties which are affected by hot weld conditions. The modeFRONTIER model is represented in Figure 5.Figure 4. Flow chart of the optimization problemFigure 5. Workflow representation of modeFRONTIER model Results and DiscussionThe solution of the optimization problem, which is defined in the previous section, is presented in both design and criterion space in the following figures. Some of the designs out of 320 total numbers of designs are overlapping due to the selection operator which lies in the nature of the genetic algorithm and ensures the survival of some designs without evolution. Figure 6 and 7 represent feasible and unfeasible designs with dark and fair colors, respectively. It can be clearly seen from Figure 7 that the feasible region, which can be called as the robust process parameter region in this case, is defined by RPM values in the region between 200 and 400 rpms.Figure 6. Residual stress vs. design variables Figure 7. Contour plot of residual stress vs. inputsThe objective space that is constructed by minimization of the residual stresses and maximization of the welding speed is shown in Figure 8. Most of the designs lie close to the Pareto-front, which is shown in Figure 9, due to the low sensitivity of the RPM parameter defined in the underlying thermal model, i.e. the TPM model [5,6] for a given welding speed on the residual stresses.Figure 8. Objective Space of the solution Figure 9. Pareto Set of the solutionThe Pareto-front gives an idea of ranking the alternative trade-off designs depending on the available working conditions. If a manufacturer is able to use a standard milling machine instead of an advanced FSW machine and can afford using simple tool designs with low welding speed, he would probably not dare to go from 1 to 2mm/s or 2 to 3 mm/s welding speed because the residual stresses yielded per unit increment in welding speed would cost higher comparing to those at higher welding speeds. The amount of sacrifice of the manufacturer highly depends on the welding speed while one can keep the rotation speed between 200 and 400 rpms.ConclusionsIn conclusion, a multi-objective optimization application in the friction stir welding process has been presented. Minimization of the residual stresses and maximization of the welding speed have been considered simultaneously using the tool rotation speed and the traverse welding speed as the design variables. In addition to the description of the process goals, process-specific thermal limitations, i.e. lower and upper bounds on the peak temperature, have been added to the optimization problem in order to take the tool loads and tool life issues into account. At the end of the optimization study, feasible and unfeasible solutions are discussed and the Pareto solutions are presented. The results show that a tool rotation speed of 200 to 400 rpm can be considered as robust working conditions for almost all possible welding speeds. Depending on the Pareto designs, ranking of the trade-off solution alternatives has been discussed in addition to looking to the optimization problem from a manufacturer point of view. Acknowledgements: Authors would like to thank David Richards from Manchester Materials Science Centre, Manchester University, UK, for valuable discussion on residual stresses in friction stir welding; Esteco Nordic, Sweden, for their continuous technical support on modeFRONTIER as well as EnginSoft, Italy, for their University Program and interest in our research activities.References[1] Mishra, R.S., Ma, Z.Y.: “Friction stir welding and processing”, Materials Science and Engineering R, Vol. 50, 2005, pp. 1-78[2] Richards, D.G., Pragnell, P.B., Williams, S.W., Withers, P.J.: “Global mechanical tensioning for the management of residual stresses in welds”, Materials Science and Engineering A, Vol. 489, 2008, pp. 351-362[3] Tutum, C.C., Schmidt, H., Hattel, J., Bendsøe, M.: “Estimation of the Welding Speed and Heat Input in Friction Stir Welding using Thermal Models and Optimization”, 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, May 2007, pp. 2639-2646[4] Tutum, C.C., Schmidt H.B. Hattel, J: “Assesment of Benchmark Cases for modeling of Residual stresses and Distortions in Friction Stir Welding”, 7th International Symposium Friction Stir Welding, TWI, May 2008.[5] Schmidt, H., Hattel, J.: “Thermal modelling of friction stir welding”, Scripta Materialia, 58, 2008, pp. 332-337[6] Schmidt, H.B., Hattel, J.H.: ”A thermal-pseodu-mechanical model for the heat generatin in Friction Stir Welding” 7th International Symposium Friction Stir Welding, TWI, May 2008.[7] Deb, K.: “Multi-Objective Optimization Using Evolutionary Algorithms”, John Wiley & Sons, 2001。
搅拌摩擦焊英文作文
搅拌摩擦焊英文作文Stir friction welding is an advanced technique that has revolutionized the way metals are joined together. It's a process where frictional heat is generated by the relative motion of two parts to be welded, creating a solid-state bond without the need for filler materials.This method is particularly favored in industries such as aerospace and automotive for its ability to join dissimilar materials and achieve high-quality welds with minimal distortion. The precision and efficiency of stir friction welding make it an ideal choice for high-volume production lines.One of the key advantages of this technique is its environmental friendliness. Unlike traditional welding methods that can produce harmful fumes and require extensive post-weld cleaning, stir friction welding is a cleaner process that generates less waste.Moreover, the strength and integrity of the welds produced by stir friction welding are often superior to those made by other methods. This is due to the uniformdistribution of heat and pressure, which minimizes the risk of defects such as porosity and cracking.Despite its many benefits, stir friction welding also presents some challenges. The process requires specializedequipment and skilled operators to ensure consistent results. Additionally, the initial investment in equipment can be significant, although the long-term cost savings in material and labor can offset this.As technology continues to advance, the applications of stir friction welding are expanding. It is now being explored for use in joining materials for renewable energy technologies, such as wind turbines and solar panels, further highlighting its versatility and potential for future growth.In conclusion, stir friction welding is a powerful tool in the field of materials engineering, offering a range of benefits that make it an attractive option for various industries. As more companies recognize its advantages, it is likely that its adoption will continue to increase, leading to even more innovative applications in the years to come.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.IntroductionThe use of zinc-coated steels for the automotive body construction has increased significantly in the last 2 decades to enhance the durability of vehicle structures. The automotive industries are currently working to develop lighter and more fuel-efficient vehicles. A significant proportion of this effort is currently being directed toward the substitution of aluminum for steel in the body structure. Aluminum is considerably lower in strength and stiffness than steel, and the design of the spaceframe coupled with the use of thicker material sections, successfully compensates for this1).Nevertheless, the replacement of material presents a vital challenge with respect to the methods of joining to be used for fabrication in volume production. Over the last decade, friction stir welding (FSW) has offered excellent welding quality to the joining of aluminum, magnesium2 3), titanium4), copper5), and Fe alloys6 8). Recently, some trials have been made to join the dissimilar materials, for examples dissimilar Al alloys9)and aluminum to steel joints10 13). However, most of the FSW efforts to date have not involved joining aluminum to zinc-coated steel. From an industrial point of view, there seems to be considerable interest in extending the process to this joint. Therefore, this research has been aimed at investigating the performance of aluminum-to-zinc coated steel (Al/Zn-coated steel) lap joint by friction stir welding and metallurgical factors controlling the performance.2.Experimental DetailsThe materials used were a plate of commercially pure aluminum A1100H24 2.0 mm thick and a plate of low carbon Zn-coated steel 1.0 mm thick. The steel had Zn coating of 10 m thickness. The chemical compositions of base metals are shown in Tables 1 and 2. The microstructures of the base metals are shown in Fig. 1. The aluminum base metal presented grains elongated in the rolling direction, and the steel base metal showed ferritic structure due to its very low carbon content. The base metals were cut into specimens of 250mm x 100mm for welding. Lap welding was made by a FSW machine as schematically shown in Fig. 2. Rotation and travel speeds of the tool employed are listed in Table 3. The depth of the pin tip from the upper surface of the aluminum plate was fixed at 2.0 or 2.1 mm (0.0 and 0.1mm from the surface of the zinc-coated steel plate).The tool of steel SKD61 was comprised of a shank, shoulder and pin as shown in Fig. 3. The tool axis was tilted by 3 with respect to the vertical axis of the plate surface. The FSW tool, fixed to the holder, was slowly pushed into the aluminum plate to the specified pin depth and then forcibly traversed along the joint until the end of the weld was reached. The welding tool was then[ 23 p. 186-193 (2005)]Friction-Stir-Welded Lap Joint of Aluminum to Zinc-Coated Steelby ELREFAEY Ahmed**, TAKAHASHI Makoto*** and IKEUCHI Kenji*** This paper has dealt with the feasibility of friction-stir welding a zinc-coated steel plate to a pure aluminum plate in a lap joint configuration (the aluminum plate was top and the steel bottom). The friction stir welding was carried out at rotation speeds of 16.7-41.7 s 1and travel speeds of 3.3-5 mm/s. It was found that the performance of the joint depended strongly on the depth of the pin tip of the FSW tool relative to the steel surface; when the pin depth did not reach the steel surface the joint showed quite weak fracture loads, while the penetration of the pin tip to a depth of 0.1 mm under the steel surface significantly increased the joint strength. The joint strength tended to increase with rotation speed and slightly decrease with the increase in the traveling speed. As compared with the similar joints of an aluminum to a steel without Zn-coating, joints of aluminum to the Zn-coated steel exhibited high strength at all bonding parameters employed in this investigation, which suggested the beneficial effect of the Zn coating on the bond strength.Key Words: Friction stir welding, Lap joint, Aluminum, Zinc-coated steel, Intermetallic compoundTable 1Chemical composition of the aluminum base metal 1100H24 (mass %).Table 2Chemical composition of the Zn-coated steel base metal (mass %).retracted while the tool continued to turn.The surface for the observation of microstructure was etched by 3% Nital to reveal the steel microstructure and subsequently by 1% HF aqueous solution to reveal the aluminum microstructure.The microstructure was observed with an optical microscope and SEM (Scanning Electron Microscope) for closer observations. A peel test was employed to estimate the fracture load of the obtained joint. The schematic view of the specimen for the peel test is shown in Fig. 4.Temperature measurements at positions close to the zinc-coated steel surface (0.3 mm down from the surface) were carried out by using a thermocouple (K -type) percussion-welded to the bottom of holes drilled from the back surface of the steel specimen. X-ray diffraction analyses were carried out to identify phases present on the fracture surfaces of joint after peel tests.23 2005 2 187Fig. 1Microstructures of the base metals of aluminum (a) and Zn-coated steel (b).Fig. 2Schematic illustration of the FSW of an aluminum plate to a Zn-coated steel plate.Table 3Welding parameters.Fig. 3Schematic illustration of the tool used for FSW.Fig. 4Schematic view of the specimen used for peel test.3.Experimental Results and Discussion3.1Characteristics features of jointsThe macroscopic views of traverse sections of joints welded at pin depth of 2.1 mm are shown in Fig. 5. It should be noted that a great change in the steel microstructure was observed in the area below the pin tip when the rotation speed was not less than 25.0 s 1. Meanwhile, at a rotation speed of 16.7 s 1the change in steel microstructure at the interface was quite small, but a remarkable change was observed in the aluminum stir zone to the direction of advancing side. The figure showed no clear onion ring structure or thermo-mechanically affected zone in contrast to the general stir zone reported in many previous papers 14 16) about FSW of aluminum alloys.A few characteristic regions can be identified in both aluminum side and zinc-coated steel side of the joints as shown in Fig. 6 (a). The microstructure of the aluminum corresponding to the stir zone was characterized by equiaxed fine grains as shown in Figs. 6 (b) and 6 (c). The grain size near the bond interface (area II) was slightly coarser than the upper surface of aluminum (area I), suggesting the effect of heat generated by friction between the pin tip and Zn-coated steel on the grain size of the aluminum. Several authors suggested that the equiaxed fine grainin the stirred zone was formed through the dynamicrecrystalization followed by the static grain growth for a shortperiod during the cooling process 17 19).Between the stir zone and the base metal, narrow heat-affected-zones (areas III and IV) were observed which were characterized by slightly coarse grain size as shown in Figs. 6 (d)and 6 (e). Area V in the zinc-coated steel side was characterized by much finer equiaxed-grains than the base metal as shown in Fig. 6 (f). The average grain size of this zone was approximately 3 m at a rotation speed of 25.0 s 1at a traveling speed of 3.3mm/s, while it was 7 m at a rotation speed of 41.7 s 1. The grain size was reduced with an increase in traveling speed from 3.3mm/s to 5.0 mm/s. In the transition zone between area V and zinc-coated steel substrate, as shown in Fig. 6 (g), a coarser grain structure representing the Zn-coated steel HAZ was observed (area VI).The very fine grain size in the steel close to the Al/Zn-coated steel interface (area V) can be attributed to the recrystalization of the area deformed heavily by the friction with the rotating pin,since the maximum temperature measured with thermocouples, at points 0.3 mm down from the steel surface was about 779 K ,much lower than transformation of the steel. The size of the recrystalized grains depends mainly on the strain which took place in the grains and the temperature relative to the melting point of the material. It can be expected that the deformation of the steel fine grain zone was smaller than that of aluminum, since the tool pin tip does not reach this zone. Therefore, the much smaller grains size of the steel fine grain zone can be attributed to the higher melting point of the steel than the aluminum.In the aluminum stir zone close to the interface, some iron-a ELREFAEY Ahmed et al. Friction-Stir-Welded Lap Joint of Aluminum to Zinc-Coated Steel188Fig. 5Macrostructures of the transverse sections of welds: (a) Weld No. 2, (b) Weld No. 8, (c)Weld No. 14, and (d) Weld No. 20 (welding parameters are listed in Table 3).Fig. 6Characteristic microstructures of different areas in Al/Zinc-coated steel FSW joint (Weld No. 14): (a)macrostructure of the joint, (b) fine equiaxed grains zone of aluminum (area I), (c) fine equiaxed grains zone of aluminum (area II), (d) aluminum HAZ on the advancing side (area III), (e) aluminum HAZ on the retreating side (area IV), (f) fine equiaxed grains zone of steel (area V), and (g) steel HAZ (area VI).rich particles were observed as shown in Fig. 6 (a). These particles were separated from the steel surface by the stirringeffect of the pin which pulled them from the zinc-coated steel surface and scattered in the aluminum substrate.With an increase in the rotation speed, grains of both aluminum and zinc-coated steel in all characteristic areas were coarsened. This is probably due to the increase in heat input which increases the maximum temperature of the area and decreases the cooling rate. This result agrees with many previous papers 3 14 20). In contrast to the rotation speed, increasing the travel speed decreased the heat input, which in turn decreased the grain size and decrease the steel fine grain zone area as obviously seen in Fig. 7.Close observations with a SEM of the Al/Zn-coated steel interface revealed that layered structures containing high percentage of aluminum, from 20 to 40 %, formed in the Zn-coated steel fine-grain zone adjacent to the weld interface at rotation speeds higher than 16.7 s 1. The layer structure was more developed in size and thickness at higher rotation speeds as shown in Fig. 8. Meanwhile, at a rotation speed of 16.7 s 1, a layer involving Al, Fe, and Zn was formed at the interface as shown in Fig. 9, and it extended to the advancing side. The chemical composition of this Al-Fe-Zn layer was well above the solid solubility of Fe in Al, as shown in Table 4. This suggests that theAl-Fe-Zn layer involved Al-Fe or Al-Fe-Zn intermetallic compounds.The hardness value of the aluminum was almost constant ( 30 Hv) in the equiaxed fine grain zone, HAZ, and base metal.The hardness of the zinc-coated steel showed the highest value in the layer structure, reaching 584 Hv. This could be related to the formation of intermetallic compounds within this structure as23 2005 2189Fig. 7Effect of travel speed on fine grain area of Zn-coated steel: (a) Weld No. 20, (b) Weld No.22, and (c) Weld No. 24.Fig. 9layer of deformed Al/Fe/Zn observed at the Al/Zn-coated steel interface. Weld No. 2.Fig. 8Layered structure observed at the Zn-coated steel interface: (a) weld No. 20and (b) weld No. 14.Table 4Chemical analyses at points 1 to 5indicated in Fig. 9 (at %).suggested by EDX analyses and X-ray diffraction analyses of the fracture surfaces of the joints (see Fig.16). The very fine grain area in the steel close to interface was higher in hardness than the base metal. Hardness values of different areas at Al/Zn-coated steel interface are shown in Fig. 10.At a rotation speed of 16.7 s 1, as shown in Fig. 11, the Al-Fe-Zn layer observed at the interfacial region (see Fig.9) showed hardness higher than the aluminum and zinc-coated steel base metals, suggesting the presence of intermetallic compounds. The extension of this layer to the advancing side in the aluminum stir zone showed a similar hardness level to those at the interface.The extension of this layer was surrounded by areas diluted with aluminum showing hardness of 34 Hv.The fracture load of joints on peel test is shown in Fig. 12. It seems that increasing travel speed from 3.3 to 5.0 mm/s slightly decreased the fracture load. Meanwhile, increasing the rotation speed from 16.7 to 25.0 s 1raised significantly the fracture load,while further increase from 25.0 to 41.7 s 1exhibited a slight positive effect on the fracture load.For most joints bonded at rotation speeds of 25.0 to 41.7 s 1,the fracture on the peel test occurred along the path as shown in Fig. 13 (a). Iron-rich fragments stuck to the fractured surface of the aluminum side which contained mainly layer structure, similar to those observed in Fig. 8. Results from point analyses of thelayered structure are listed in Table 5. The Fe and Al contents of the layered structure suggest the presence of intermetalicELREFAEY Ahmed et al. Friction-Stir-Welded Lap Joint of Aluminum to Zinc-Coated Steel190Fig. 10Hardness values of different structures at Al/Zn-coated steel interface. (Weld No. 20).Fig. 13Cross section of fracture surface of aluminum and zinc-coated steel sides (Weld No.22): (a)iron-rich fragment on the fractured surface, and(b) closer view of the rectangular area in (a).Fig. 11Hardness value of the Al-Fe-Zn Intermetallic compound layer: (a) traverse section, (b) Al/Zn-coated steel interface, (c) extension of the Al-Fe-Znlayer to the stir zone of aluminum.Fig. 12Relation between travel speed and fracture load at various rotation speeds.Table 5Chemical analyses at points 1 to 5indicated in Fig. 13 (b) (at %).Fig. 14Fracture path through aluminum at both sides of fracture surface of the joint. (Weld No.22)compounds. It can be considered that the crack propagated either in the aluminum substrate or layer structure.It was frequently noted that the fracture path developed into the aluminum substrate in the areas indicated by arrows in Fig 14. These joints achieved higher fracture loads than others.SEM micrographs of the fracture surfaces corresponding tothe fracture path shown in Fig. 13 are shown in Fig. 15. The fracture surfaces were mainly ductile with some brittle areas. The ductile morphology was more prominent in joints that showed higher fracture loads. Meanwhile, ductile fracture morphologies were observed in the area where the crack propagated in the aluminum substrate as shown in Fig. 14.In order to identify the intermetallic compounds formed in the layered structure of the joint bonded at higher rotation speeds (25.0-41.7 s 1), X-ray diffraction patterns from fractured surfaces of the aluminum and steel sides were analyzed as shown in Figs.16 (a) and 16 (b). As can be seen from these, diffraction lines thatwere attributable to intermetallic compounds of Al13Fe4and Al5Fe2were detected from both aluminum side and steel side. This suggests that these intermetallic compounds were involved in the layer structure and responsible for the brittle fracture on peel test.The pin depth of 2.0 mm was not deep enough to penetrate the pin tip to the zinc-coated steel side. It only reached the top surface of zinc layer and hence, there was no evidence for fine grain zone and layered structure in the zinc-coated steel.3.2Comparison with joint of aluminum to ste e l withoutzinc coatingThe fracture loads of Al/Zn-coated steel joint at 2.1 mm pin depth were higher than those of similar joints of aluminum to steel without Zn coating (Al/steel)13)in spite of similarity in microstructure of joints. It should be also mentioned that while the Al/Zn-coated steel joint exhibited considerable fracture load at pin depth of 2.0 mm, Al/steel joints were so week that they fractured during preparation of the specimen for metallugraphy at the same pin depth. In fact, the zinc-coated layer is the only reason for this improvement in the fracture load of the joint.There were two main factors controlling the performance of the solid-state bonded joint of dissimilar metals21). One of them is the intimate contact between aluminum and steel, and the other is the microstructure, particularly the formation of brittle intermetallic compounds. In regard to the microstructure, the amounts of the layer structure and intermetallic compounds in Al/Zn-coated steel joints decreased in comparison with those observed in the Al/steel joint. According to Al-Fe-Zn ternary phase diagram22), Zn increases the solid solubility of Fe in Al, which probably contributed to decrease the intermetallic compounds in the layer structure. Moreover, it is conceivable that the zinc layer acted as lubricant during the FSW process because zinc itself is softer than aluminum and steel. Moreover, aluminum becomes softer by alloying with zinc owning to the decrease in its melting point (the lowest melting point in the Al-Zn system is 654 K much lower than the peek temperature of the fine grain23 2005 2 191Fig. 15Fracture surfaces of joint after peel test (Weld No. 8): (a) and (b) ductile morphologies on thesteel side and aluminum side respectively.Fig. 16X-ray diffraction patterns from fracturesurfaces of the aluminum (a) and Zn-coatedsteel sides (b) (Weld No.20), where diffractionlines from aluminum, iron, Al13Fe4, and Al5Fe2 were indicated by , , , andrespectively.zone 780 K). It is expected that the softer zone formed in the interfacial region plays a role of lubricant in the friction between the harder aluminum and steel substrates. The area of the steel fine grain zone was significantly smaller when it was bonded to the Zn-coated steel. This support the conclusion that the friction between the tool and steel was reduced by the zinc coating, since the zone was considered to be heavily deformed by the friction between the tool and steel. Practically, the sound and vibration of the tool during FSW were weaker when the zinc coated steel was welded to aluminum. This observation indicated the effect of zinc as lubricant in the joint. The lubricant effect of zinc decreased the shear stress imposed on the steel surface. This effect of the zinc layer probably contributes to the reduction of the formation of layer structure, since the shear stress ca be considered to be the driving force to incorporate the aluminum into the steel to form the layer structure.The intimate contact will be enhanced by increasing the heat input, viz. increasing the rotation speed or decreasing the traveling speed, since it facilitates the materials flow in the stir zone through lowering the flow stress, and increases the period held at high temperatures. On the other hand, it enhances the formation of intermetallic compounds, through the promotion of the mechanical mixing of the two metals and the diffusion of elements forming the intermetallic compound. In the present investigation, as shown in Fig. 12, the bond strength was increased with the heat input. The bond strength of the joint of aluminum to steel without Zn coating was also increased with the heat input. These results suggest that the bond strength of these joints was controlled mainly by the attainment of intimate contact at the interface. Therefore, the effect of Zn coating on the bond strength can be attributed mainly to the enhancement of the intimate contact at the bond interface. As mention above in the explanation of the effect of zinc coating on the layer structure, the zinc coating can be considered to introduce a softened zone in the interfacial region which contributes to the enhancement of the intimate contact similar to the increase in the heat input. However, the formation of the intermetallic compounds in the layer structure limited the rise in the bond strength of the joint.These effects of the Zn coating on the attainment of intimate contact and the formation of layer structure are probably responsible for the improvement of the bond strength observed in the Al/Zn-coated steel joint. This result also suggests that further improvement can be obtained by applying a zinc intermediate layer to the joining of aluminum to steel.4.Conclusions1. The feasibility of the FSW lap joint of a commercially purealuminum plate to a zinc-coated steel plate was exhibited.The Al/zinc-coated steel joint showed higher fracturestrength than the Al/steel joint, suggesting that the zinc coating had a beneficial effect on the bond strength.2. The Al/zinc-coated steel joint welded at 2.1 mm pin depthwere much stronger than that welded at 2.0 mm pin depth, and its fracture strength showed a general tendency to decrease with an increase in traveling speed.3. The aluminum microstructure of the joint consisted of the stirzone and the heat affected zone on the retreating and advancing sides of the stir zone. The stir zone consisted of equiaxed fine-grains, and the heat affected zone was characterized by coarser grains than the base metal and stir zone. Meanwhile, the steel just under the tool pin showed a very fine grain zone that involved a hard layer structure in the area close to the weld interface.4. Fracture of joints bonded at rotation speeds of 25.0 - 41.7 s 1occurred mainly in the aluminum substrate and the layer structure where intermetallic compounds such as Al13Fe4andAl5Fe2were formed. The joints having higher fracture strength showed more ductile fracture morphology which corresponds to the fracture in the aluminum substrate.References1)T. A. Barnes, and I.R. Pashby, Joining Techniques for AluminumSpaceframes used in Automobiles, Part I - solid and liquid phase welding, Journal of Material Processing Technology, 99-1(2000), 62-71.2)S. H. C. Park, Y. S. Sato and H. Kokawa, Mechanical Properties andMicrostructure in Friction-Stir-Weld of Magnesium alloy AZ61, Proceedings of the 7th International Symposium, JWS, Kobe, Japan, (2001), 639-644.3)W. B. Lee, Y. M. Yeon, and S. B. Jung, Joint Properties of FrictionStir Welded AZ31B-H24 Magnesium Alloy, Material Science and Technology, 19-1 (2003), 785-790.4)M. C. Juhas, G. B. Viswanathan and H. L. Fraser, MicrostructuralEvolution in a Titanium Alloy Friction Stir Weld, Proceedings of the 2nd Annual Symposium on Friction Stir Welding, Gothenburg, Sweden, June, (2000).5)Won-Bae Lee, and Seung-Boo Jung, The Joint Properties of Copperby Friction Stir Welding, Material Letters, 58-6 (2004), 1041-1046.6)W. M. Thomas, P.L. Threadgill, and E. D. Nicholas, Feasibility ofFriction Stir Welding Steel, Science and Technology of Welding and Joining, 4-6 (1999), 365-372.7)T. J. Lienert, W. L. Stellwag, JR., B. B. Grimmett, and R.W. Warke,Friction Stir Welding Studies on Mild Steel, Welding Journal, 82-1 (2003), 1-9.8) A.P. Reynolds, Wei Tang, T. Gnaupel-Herold, and H. Prask,Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds, Scripta Meterialia, 48-9 (2003), 1289-1294. 9)Ying Li, L. E. Murr, and J. C. McClure, Flow Visualization andResidual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum, Material Science and Engineering A, 271-1 (1999), 213-223.10)K. Yoshikawa, and T. Harano, Numerically Controlled Friction StirWelding in Layered Dissimilar Metal Materials of Aluminum and Steel, Proceedings of the third symposium on friction stir welding,ELREFAEY Ahmed et al. Friction-Stir-Welded Lap Joint of Aluminum to Zinc-Coated Steel 19223 2005 2 193Kobe, Japan, (2001).11)T. Watanabe, A. Yanagisawa, and H. Takayama, Bonding of Steeland Aluminum Alloy by Interfacial Active Adhesion Bonding Method -Interfacial Active Adhesion Bonding of Dissimilar Materials with a Rotationg Needle-, Preprints of the National Meeting of J.W.S., 71 (2002), 446-447. (in Japanese)12)M. Tsubak, M. Fukumoto, and T. Yasui, Evaluation of JoiningProperty between Steel and Aluminum by Friction Stirring, Preprints of the National Meeting of J.W.S., 72 (2003), 30-31. (in Japanese)13) A. Elrefaey, M. Takahashi, and K. Ikeuch, Friction Stir Welding ofAluminum-to-Steel Lap Joint, 175th Meeting of the Technical Commission on Welding Metallurgy, JWS, Feb., (2004), Doc. WM-1891-04,.14)G. Oertelt, S. S. Babu, S. A. David, and E. A. K enik, Effect ofThermal Cycling on Friction Stir Welds of 2195 Aluminum Alloy, Welding Research Supplement, 3 (2001), 71-79.15)W. D. Lockwood, B. Tomaz, and A. P. Reynolds, MechanicalResponse of Friction Stir Welded AA 2024: Experiment and Modeling, Material Science and Engineering A, 323-2 (2002), 348-353.16)M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes,Flow Patterns during Friction Stir Welding, Material Characterization, 49-2 (2002), 95-101.17)Y.S. Sato, H. K okawa, K. Ikeda, M. Enomoto, S. Jogan, and T.Hashimoto, Microtexture in the Friction-Stir Weld of an Aluminum Alloy, Metallurgical and Metals Transactions A, 32-4 (2001), 941-948.18)K.V. Jata, and S.L. Semiatin, Continuous Dynamic Recrystallizationduring Friction Stir Welding of High Strength Aluminum Alloys, Scripta Materialia, 43-8 (2000), 743-749.19)J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, MicrostructralInvestigation of Friction Stir Welded 7050-T651 Aluminum, Acta Materialia, 51-3 (2003), 713-729.20) C. G. Rhodes, M. W. Mahoney, W. H. Bingel, and M. Calabrese,Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scripta Materialia, 48-10 (2003), 1451-1455.21)K. K obayashi, K. Nishimoto, and K. Ikeuchi, Zairyo SetsugoKogaku No Kiso (Introduction to Joining Engineering of Materials), Sampo, 2002, 182-188. (in Japanese)22)P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary AlloyPhase Diagram, ASM International, 1995, 3660-3673.。