五年级下册奥数试题
五年级下册奥数题数学
五年级下册奥数题数学一、填空题1. 能同时被 2、3、5 整除的最小三位数是()。
解析:能同时被 2、3、5 整除的数必须是2×3×5 = 30 的倍数,最小的三位数是 120。
2. 把 5 米长的绳子平均剪成 8 段,每段长是()米,每段是全长的()。
解析:每段长5÷8 = 5/8 米,每段是全长的1÷8 = 1/8 。
3. 一个数的最大因数是 18,这个数是(),它的所有因数有()。
解析:一个数的最大因数是它本身,所以这个数是 18。
18 的因数有 1、2、3、6、9、18 。
4. 一个最简真分数,分子和分母的积是 8,这个分数是()。
解析:分子和分母的积是 8 的真分数有 1/8 和 2/4,最简真分数是 1/8 。
5. 有两个质数,它们的和是 20,积是 51,这两个数分别是()和()。
解析:将 51 分解因数可得51 = 3×17,且 3 + 17 = 20,所以这两个数是 3 和 17 。
6. 把 3 千克苹果平均分给 5 个小朋友,每个小朋友分得()千克苹果,每个小朋友分得这些苹果的()。
解析:每个小朋友分得3÷5 = 3/5 千克苹果,每个小朋友分得这些苹果的1÷5 = 1/5 。
7. 一个正方体的棱长总和是 72 厘米,它的表面积是()平方厘米,体积是()立方厘米。
解析:正方体有 12 条棱,每条棱的长度为72÷12 = 6 厘米。
表面积= 6×6×6 = 216 平方厘米,体积= 6×6×6 = 216 立方厘米。
8. 用 0、1、2 三个数字组成一个同时是 2、3、5 的倍数的最小三位数是()。
解析:同时是 2、3、5 的倍数的数个位必须是 0,且各位数字之和是 3 的倍数。
所以这个三位数是 120 。
9. 分数单位是 1/7 的最大真分数是(),最小假分数是()。
人教版【精选】小学五年级下册数学奥数题带答案
人教版【精选】小学五年级下册数学奥数题带答案一、拓展提优试题1.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.2.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.3.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…4.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.5.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)6.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.7.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.8.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.9.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.10.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.11.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.12.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.13.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.14.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.2.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.3.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.4.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四5.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.6.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.7.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.8.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.9.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.10.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103411.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2912.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.故答案是:2.13.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.14.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.15.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。
小学五年级下册奥数题精选
小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
五年级数学下册奥数50题、附解析及参考答案
五年级数学下册奥数50题、附解析及参考答案一、工程问题1.甲乙两个水管单独开,注满一池水需要20小时和16小时。
丙水管单独开,排一池水要10小时。
如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答:甲水管每小时注入1/20的水量,乙水管每小时注入1/16的水量,丙水管每小时排出1/10的水量。
在5小时内,甲乙两水管共注入了5/20+5/16=19/40的水量,水池中水量为19/40.再打开丙水管后,每小时水池中的水量减少1/10-1/20-1/16=3/80,所以注满整个水池还需要(1-19/40)/(3/80)=16小时。
2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低。
甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答:设甲队合作x天,乙队合作XXX,则有以下两个方程:20x/(5/4)+30y/(10/9)=1.(甲、乙两队合作完成1个单位的工程)20x/(5/4)+(30-y)/(1/3)=16.(甲、乙两队合作16天完成工程)解得x=8,y=6,所以两队需要合作8天。
3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。
现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?答:设甲、乙、丙每小时完成的工作量分别为a、b、c,则有以下三个方程:2(a+c)+6b=1.(甲、乙、丙合作完成1个单位的工作)4(a+b)=1.(甲、乙合作完成1个单位的工作)5(b+c)=1.(乙、丙合作完成1个单位的工作)解得a=1/20,b=1/60,c=1/12,所以乙单独做完这件工作需要6b=6/60=1/10小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
五年级下册奥数题
五年级下册奥数题1、简算。
4544×37 2004×200367 73151×8141×39+43×25+426×133 353×2552+37.9×6522000÷200020012000199419921993119941993⨯⨯+- 〔972+792〕÷〔75+95〕练:20112010×2012 71×5761 5983÷1961×35+65×17 2003÷2003200420039696969618181818×351186548362362361548-⨯+⨯2、计算。
〔1〕〔1+21+31+41〕×〔21+31+41+51〕-〔1+21+31+41+51〕×〔21+31+41〕〔2〕211⨯+321⨯+431⨯+……+200920081⨯+201020091⨯+201120101⨯〔3〕20081+20082+20083+20084+……+20082006+20082007盈亏问题根本数量关系:〔盈+亏〕÷两次所分之差=人数〔盈-盈〕÷两次所分之差=人数〔亏-亏〕÷两次所分之差=人数1、一些铅笔奖给三好学生,每人分5支还多4支;每人分6支那么少4支。
有多少个三好学生?有多少支铅笔?2、一些铅笔奖给三好学生,每人分4支还多10支;每人分6支那么多2支。
有多少个三好学生?有多少支铅笔?3、一些铅笔奖给三好学生,每人分9支那么少21支;每人分7支那么少7支。
有多少个三好学生?有多少支铅笔?4、一筐桃子,每只猴子分6个,余12个;每只猴子分7个,少11个。
有几只猴子、几个桃子?5、一叠本子发给同学们,每人发4本还差2本,每人发6本就差20本。
求一共有多少个同学、多少个本子?6、一篮苹果分给小朋友,如果减少一人,每人正好分5个;如果增加一人,每人正好分4个。
五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版
五年级奥数题问题+答案1、一块草地,可供24匹马吃6天;20匹马吃10天。
多少马12天吃尽?2、一块草地,可供5只羊吃40天;6只羊吃30天。
如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?3、每小时有3000人到书店买书。
如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。
那么如果设4个口,多长时间后就没有人排队了?4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。
那么5部同样的抽水机,多少分钟可以抽干?5、一个水池,池内除原有的水外,每天都流入同样多的水。
如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。
那么,用这些水浇多少亩地,正好可用25天?6、一个大水坑,每分钟从四周流掉一定数量的水。
如果用5台水泵,6小时抽干;用10台,4小时抽干。
现在要2小时抽干,要多少水泵?7、仓库装满水泥时,可用30天。
现在仓库是空的,用大车运水泥,除每天供工地使用外,要装5天才可装满;用小车,除每天供工地使用外,要装10天才可装满。
如果大车小车一起用,除每天供工地使用外,要装几天才可装满?8、甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。
又知乙每小时加工27个零件,丙每小时加工23个零件。
那么,丁每小时加工零件多少个?答案1、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。
60/12+14=19 19马12天吃尽2、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)3、30分钟{每分钟有100人来,3000/(200-100)}4、20分钟{3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}5、44亩地{45*20-50*10=400 400/10=40 500-40*10=100100/25+40=44}8、21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}五年级奥数题有关行程问题的答案一环行跑道周长为240米,甲乙同向,丙与他们背向,都从同地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了多少圈?解:由题得知:甲比乙快8-5=3米/秒,也就是240/3=80秒后,甲会比乙多跑1圈且追上乙第一次相遇;要使甲、乙、丙同时相遇,则三者所用的时间必须是80秒的位数。
五年级下册数学最难的奥数题
五年级下册数学最难的奥数题1、一个筐子放进4篮苹果后,连筐共重28千克,当倒出3篮苹果后再称,连筐共重10千克,一个筐子重(4)千克2、一块正方形菜地,边长是12米。
如果要把它的面积扩大到原来的2倍,其中一条边增加4米,另一条边增长多少米?(写出过程)3、学校卖3把椅子和4张桌子共用元,未知卖2张桌子的钱可以卖5把椅子,一把椅子多少元?一张桌子多少元?(写下过程)4.一条路长米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?5、12棵柳树排列成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?6、一根厘米长的木条,要锯成10厘米长的小段,需要锯几次?7、.蚂蚁爬到树枝,每上时一节须要10秒钟,从第一节爬到至第13节须要多少分钟?8.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?9、从发电厂至闹市区一共存有根电线杆,每相连两根电线杆之间就是30米。
从发电厂至闹市区存有多离?10、.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?11.一个人沿着小骗走了全长的一半后,又跑了剩的一半,还剩1千米,问:小加全长多少千米?12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?13.一条毛毛虫由幼虫短至成虫,每天短一倍,16天能长至16厘米。
反问它几天可以短至4厘米?14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出千克,桶中还剩下80千克。
桶里原来有水多少千克?15、甲、乙两书架共计图书本,甲书架的图书数比乙书架的3倍太少16本。
甲、乙两书架上各存有图书多少本?16、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?17.小明、小华捉住完鱼。
小学五年级精选奥数题及解析
小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
五年级下册数学奥数题
12 道五年级下册数学奥数题题目一:一个数既是 3 的倍数又是 5 的倍数,这个数最小是多少?解析:求既是 3 的倍数又是 5 的倍数的最小数,就是求 3 和 5 的最小公倍数。
因为3 和 5 互质,所以它们的最小公倍数是3×5 = 15。
题目二:有三根铁丝,长度分别是12 米、18 米和24 米,现在要把它们截成同样长的小段,每段最长是多少米?解析:求每段最长是多少米,就是求12、18 和24 的最大公因数。
12 的因数有1、2、3、4、6、12;18 的因数有1、2、3、6、9、18;24 的因数有1、2、3、4、6、8、12、24。
它们的最大公因数是6,所以每段最长是6 米。
题目三:一个长方体的长、宽、高分别是8 厘米、6 厘米和 4 厘米,这个长方体的表面积是多少平方厘米?解析:长方体表面积=(长×宽+ 长×高+ 宽×高)×2。
代入数值可得:(8×6 + 8×4 + 6×4)×2 =(48 + 32 + 24)×2 = 104×2 = 208(平方厘米)。
题目四:一个分数,分子与分母的和是48,如果分子加上6,这个分数就等于1。
原来的分数是多少?解析:设分子为x,则分母为48 - x。
分子加上 6 等于分母,即x + 6 = 48 - x,移项可得2x = 42,解得x = 21。
分母为48 - 21 = 27。
所以原来的分数是21/27。
题目五:有一筐苹果,平均分给 5 个人多 2 个,平均分给 6 个人也多 2 个。
这筐苹果最少有多少个?解析:这筐苹果平均分给 5 个人和 6 个人都多 2 个,说明苹果总数减去 2 后是5 和 6 的公倍数。
5 和 6 的最小公倍数是30,所以苹果最少有30 + 2 = 32 个。
题目六:一个正方体的棱长总和是48 厘米,它的体积是多少立方厘米?解析:正方体有12 条棱,且每条棱长相等。
五年级奥数题下册
五年级奥数题下册一、数的整除特征1. 题目一个六位数23□56□是88的倍数,这个数除以88所得的商是多少?解析:因为88 = 8×11,所以这个数既是8的倍数又是11的倍数。
- 是8的倍数的特征:一个数的末三位如果是8的倍数,这个数就是8的倍数。
所以56□是8的倍数,那么□ = 0或8。
- 是11的倍数的特征:奇数位数字之和与偶数位数字之和的差是11的倍数。
当末位是0时,奇数位数字之和为2 + □+6 = 8+□,偶数位数字之和为3+5 + 0=8,(8 + □)-8 = □,要使它是11的倍数,□ = 0。
此时这个六位数是230560,230560÷88 = 2620。
当末位是8时,奇数位数字之和为2+□ + 6=8+□,偶数位数字之和为3 + 5+8 = 16,(16-(8 + □))=8 - □,要使它是11的倍数,□ = 8。
此时这个六位数是238568,238568÷88 = 2711。
二、质数与合数1. 题目已知三个质数的和是80,这三个质数的积最大是多少?解析:质数中除2以外都是奇数。
三个奇数的和是奇数,而80是偶数,所以这三个质数中必有一个是2。
另外两个质数的和为80 - 2=78。
要使乘积最大,另外两个数要尽量接近,78 = 37+41。
所以这三个质数的积最大是2×37×41 = 3034。
三、因数与倍数1. 题目有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段?解析:- 每隔3厘米作记号:180÷3 - 1 = 59(个)(减1是因为绳子一端不用作记号)- 每隔4厘米作记号:180÷4 - 1 = 44(个)- 3和4的最小公倍数是12,重复的记号有:180÷12 - 1 = 14(个)总共的记号数为59 + 44 - 14 = 89(个)所以绳子共被剪成了89+1 = 90段。
五年级下册,奥数题
五年级下册奥数题:
1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,
同向而行,小明每秒跑3.5米,小华每秒跑5.5米。
经过多少秒,两人第三次相遇?
2.一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站,已知前6
个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有多少人。
3.在1997后面补上三个数字,组成一个七位数1997□□□,如果这七位数能
被4、5、6整除,那么补上的三个数字的和的最小可能值是多少?
4.已知两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一
个数是多少?
5.定义新运算a△b=ab-(a+b),则(4△3)+(3△4)=多少。
苏教版小学五年级下册数学奥数题带答案图文百度文库
苏教版小学五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.如图所示,P为平行四边形ABDC外一点。
已知PCD∆的面积等于5平方厘米,PAB∆的面积等于11平方厘米。
则平行四边形ABCD的面积是CADBP2.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.3.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.4.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.5.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.6.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.7.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).8.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.9.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?10.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?11.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.14.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.12[解答]作PF AB ⊥,由于//AB DC ,所以PF CD ⊥。
人教版五年级下册数学奥数题带答案图文百度文库
人教版五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.2.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.3.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.4.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.5.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)6.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.7.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.8.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.9.用0、1、2、3、4这五个数字可以组成个不同的三位数.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.12.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.13.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.14.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.15.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).16.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.17.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.18.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.19.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.20.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.21.数一数,图中有多少个正方形?22.(15分)如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB ,CD ,EF 的中点,那么三角形PQR的边长是 .23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A ,B ,C 满足:①A +B +C =79②A ×A =B ×C 那么,这个自然数是 .24.已知13411a b -=,那么()20132065b a --=______。
五年级奥数题及答案通用13篇
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
五年级数学下册奥数50题、附解析及参考答案
练习题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
五年级下册奥数题
五年级下册奥数题目录第一讲图形的变换图形的分割与拼接………………………………3-5第二讲因数与倍数数的整除特征一………………………………6-10第三讲因数与倍数数的整除特征二……………………………11-12第四讲因数与倍数奇数与偶数……………………………13-17第五讲因数与倍数最小公倍数与最大公因数……………………18-20第六讲因数与倍数最小公倍数与最大公因数……………………21-26第七讲长方体和正方体巧算表面积………………………………27-30 第八讲长方体和正方体巧算体积……………………………………31-35 第九讲分数的意义和性质……36-40 第十讲分数的加法和减法……41-44 第十一讲平均数问题……………45-49 第十二讲教学广角追及问题…………………………………50-54 第十三讲数学广角还原问题…55-58 第十四讲容斥原理………………59-62 第十五讲抽屉原理和最不利……63-67 第十六讲综合练习…………… 68-98 五年级下册奥数题第一讲图形的变换图形的分割与拼接1、把右图分成形状、大小都相同的四块,并且每个图形中要有一个“·”;2、把下图分成大小、形状相同的三块,使每一块都有一颗星,该怎么分割3、下图是由一个正方形和一个等腰直角三角形组成的,请把它分成大小、形状相同的四块;45、将图中五个图形拼成一个正方形6、将图中长方形切成两块,拼成一个正方形;97、将下图缺两角的长方形分割成两块,然后拼成一个正方形;8、将下图“T”字剪成四块,然后拼成一个正方形;第二讲因数与倍数数的整除特征一1、五位数73 28能被9整除, 里应该是几2、一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底,此问题解的组数为多少3、A8919B能被66整除,这个六位数是多少4、期末考试六年级一班数学平均分是90分,总分是 95 ,这个班有多少名学生5、任意一个三位数连着写两回得到一个六位数,这个六位数一定能被7,11,13整除;为什么6、求无重复数字被75整除的五位数3A6B5有多少个7、已知一个两位数恰好是它的两个数字之和的6倍,求这个两位数;8、四位数能被2和3整除中应填 ;9、把789连续写次,所组成的数能被9整除,并且这个数最小;10、四位数36ab能同时被2,3,4,5,9整除,则36ab= ;11、把1,2,3这三个数字任意排列,可组成若干个三位数,在这些三位数中,能被11整除的是多少12、七位数22A333A能被4整除,且它的末两位数字组成的两位数3A是6的倍数,那么A等于多少13、同时能被3,4,5整除的最小的四位数是多少14、在十进制数中,各位数均是0或1,并且能被225整除的最小自然数是多少15、有一个1994位数a能被9整除,它的各位数字之和为b,b的各位数之和为c,则c多少16、从3、5、0、1这四个数字中任选出3个组成没有重复数字且同时能被3,5整除的三位数有那些第三讲因数与倍数数的整除特征二1、有一类数,每个数都能被11整除,并且各位数字之和是20,问这类数中,最小的数是多少2、在1~200这200个自然数中,能被6或8整除的数共有几个3、在小于5000的自然数中,能被11整除,并且各数位的数和为13的数,共有多少个4、一个六位数,它能被9和11整除,去掉这个六位数的首、尾两个数字,中间的四个数字是1997,问这个六位数是多少5、一个三位数被9除余7,被7除余5,被5除余3.问:这样的三位数有哪些6、从0~9这9个数字中选出4个数字,使它能被3,5,7,11整除;第四讲因数与倍数奇数与偶数1、1+2+3+4+…+2001+2002是奇数还是偶数2、有一列数:1,1,2,3,5,8,13,21,34,55……从第三个数开始,每个数都是前两个数的和;那么在前1000个数中,有多少个奇数3、用0~9这10个数组成5个两位数,每个数只用一次,要求它们的和是奇数,那么这5个两位数的和最大是多少4、两个四位数相加,第一个四位数的每个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置;某同学做出的答数是16246.试问该同学的答数正确吗如果正确,写出这两个四位数;如果不正确,请说明理由;5、若5×3×a×9×b是奇数,则整数a、b的奇偶性适合 ;奇b偶奇b奇偶b偶偶b奇6、a+b+c =奇数,a×b×c =偶数,则a、b、c的奇偶性适合 ;A.三个数都是奇数B.两个奇数一个偶数 C.一个奇数两个偶数 D.三个都是偶数7、a、b、c是任意给定的三个整数,那么乘积a+bb+c c+a的奇偶性为 ;A.奇数B.偶数C.不能肯定,取决于a、b、b的奇偶性D.能肯定,取决于a、b、c的具体数值8、有四个互不相同的自然数,最大的数与最小的数之差是4,最大数与最小数之积是奇数,而这四个数的和是最小数之积是奇数,而这四个数的和是最小的两位数奇数,则这四个数的乘积是多少9、七个连续质数从大到小排列为a,b,c,d,e,f,g,已知它们的和是偶数,那么c等于多少10、A、B、C、E、F、G七盏灯各自装有一个拉线开关,开始B、D、F亮着,一个小朋友按从A到G,再从A到G,再从A到G的顺序依次拉开关,一共拉了2000次,这时亮着的灯是开着还是闭着第五讲因数与倍数最小公倍数与最大公因数1、求42,70和105的最小公倍数;2、能同时被2,3,5整除的最小的三位数是多少3、能同时被2,3,4,5,6,7,8,9整除的四位数有多少个4、求下面每组数的最小公倍数54和81 35和36 26和78 5、求下面每组中三个数的最小公倍数180,150和240 42,168和2526、求能被2,3,5整除的最小四位数;7、能同时被3,5,7除余1的最小的数是多少8、有一个数,同时能被9,10,15整除,满足条件的最大三位数是多少第六讲因数与倍数最小公倍数与最大公因数1、把长120厘米、宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块2、用某数去除3705余9,去除4759余13,去除5079少3;求某数最大是几3、把长132厘米、宽60厘米、厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不许有剩余耗损不计,能锯成多少块4、有一批书分给三个小组,平均每人正好分6本;如果只分给第一组,则平均每人分10本;如果只分给第三组,平均每人分得21本;第二组人数接近10人,每组各有多少人5、有一列数5,10,15…,5995,6000共1200个;其中12的倍数有多少个6、25和54的最大公约数是 ,于是,我们称这两个数互为;最小公倍数是 ;7、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有多少朵花8、7月6日,宝柱从避暑山庄打电话给乾隆问好,贾六来看望乾隆,春喜在打扫房间;如果春喜每隔3天打扫一次,宝柱每隔6天打一次电话,贾六每隔5天看望一次,则至少经过几天问好、看望、打扫这三件事才能同时发生9、65,42,120的最小公倍数是 ;10、为了搞科学种田的实验,需要将一块长为75米,宽为60米的长方形土地划分为面积相当的小正方形土地,那么小正方形土地的面积最大是多少平方米11、两个数的最大公约数是18,最小公倍数180,两个数相差54,求这两个数各是多少12、有一种新型的电子钟,每到正点和半点都响一次铃,每过9分亮一次,如果中午12点时,它既响了铃,又亮了灯,那么下一次既响铃又亮灯要到什么时间13、爷爷现在的年龄是明明现在年龄的7倍,过几年之和是他的6倍,再过几年就分别是明明年龄的5倍,3倍,2倍,你能算出爷爷现在的年龄是多少吗第七讲长方体和正方体巧算表面积1、一个长方形铁箱,长12分米,宽8分米,高6.5米;如果把它的内外涂上油漆外底面不涂,每平方米用油漆0.25千克,涂这个铁箱要用油漆多少千克厚度忽略不计2、一个正方形木块,棱长是15厘米,从它的八个顶点处各截去棱长分别为1,2,3,4,5,6,7,8厘米的小正体,这个木块剩下部分的表面积最少是多少平方厘米3、建造一个长方体的游泳池,长30米,宽10米,深1.6米,池的四壁和底面用瓷砖铺砌,如果每平方米用瓷砖25块,共需多少块4、一个火柴盒长4.5厘米,宽3.5厘米,高2厘米,如果材料厚度不计,做这样一个火柴盒外壳和内芯共需多少平方厘米纸板5、油漆4根柱子,柱子截面是边长0.3米的正方形,柱子长5米,每平方米油漆费元,共要多少元6、一个长方体是宽的倍,宽是高的2倍,棱长总和是96厘米,这个长方体的表面积是多少平方厘米7、在一个棱长是3分米的正方体一个面的正和一个顶点处,各挖去一个棱长为1分米的正方体如下图,剩下形体的表面积是多少第八讲长方体和正方体巧算体积1、如下图,有一块土地,A地的面积是25平方米,B地的面积是15平方米,A地比B地高4米;现要把A地的土推到B地,使A,B两地同样高,这样B地可升高多少米2、一块长方形铁皮长24厘米,四角剪去边长3厘米的正方形后,然后通过折叠、焊接,做成一个无盖的长方体铁盒,铁盒的容积是486立方厘米;求原来长方形铁皮的面积;3、木工师傅用2厘米厚的木板做成一只有盖的长方体报箱,从外面量长64厘米,宽34厘米,高39厘米,这只报箱的容积是多少4、一根方钢长5米,它的横截面是一个边长2厘米的正方形,已知1立方米钢重7.8千克,一吨这样的钢材约有多少根保留整数5、底面是正方形的长方体,所有棱长之和是80厘米,已知高10厘米,求体积;6、长方体棱长之和是60分米,长是7分米,高是3分米,求长方体体积;7、如下图,有一堆土,甲处比乙处高50厘米,现在要把这堆土推平整,使甲处和乙处一样高,要从甲处取多少厘米厚8、一正方体木箱,从外面量得棱长52厘米,箱壁厚1厘米,求木箱容积;9、在一个棱长为3厘米的大立方体的顶部中央挖去一个棱长为1厘米的小立方体,求这个立方体的表面积和体积;第九讲分数的意义和性质1、一个分数,分子加上1后,其值为错误!,分子减1后,其值为错误!,求这个分数的值;2、有三个分数,错误!,错误!,错误!,这三个分数中最大的是哪一个分数最小的是哪一个分数3、分母是91的最简真分数一共有多少个这些最简真分数的和是多少4、一个分数是错误!,分子、分母同时加上多少后,可得错误!5、错误!的分母加上56,要使分数的大小不变,分子应加上多少6、下列分数中哪些能化成有限小数错误!,错误!,错误!,错误!,错误!,错误!,错误!7、把错误!,错误!,错误!,错误!按从大到小的顺序排列;8、错误!>错误!>错误!, 中可以填的最大数是多少9、分母是85的最简真分数一共有多少个这些真分数的和是多少10、比较分数错误!和错误!的大小;11、分数错误!,错误!,错误!,错误!,错误!中哪一个最大12、比较下列每组数中两个分数的大小:⑴错误!和错误!;⑵错误!和错误!;⑶错误!和错误!.第十讲分数的加法和减法1、计算错误!+错误!+错误!+…+错误!+错误!+错误!+错误!;1错误!-错误!+错误!-错误!+错误!-错误!+错误!- 错误!错误!+ 错误! +错误!+…+错误!;1- 错误!- 错误!- 错误!- 错误!- 错误!错误!×12+错误!×14+错误!×16+错误!×18 错误!×4+错误!×6+错误!×8+…+错误!×50错误!+错误!+错误!+错误!+错误!错误!+错误!+错误!+错误!+错误!+错误!+…+错误! +错误!+错误!+…错误!错误!+错误!+…+错误!第十一讲平均数问题1、小羽6次数学测验的平均成绩是分,第7次得了96分;小羽7次数学测验的平均成绩是多少分2、某校体育馆购买排球、篮球和足球共87只,共花去元,已知排球的数量是足球的4倍,排球每只元,足球每只34元,篮球每只元;问:学校体育馆购买排球、篮球、足球各多少只3、小羽前四次数学考试平均成绩是91分,为了使平均分达到96分,小明要连续几次考100分4、超市用每千克元奶糖45千克、每千克14元的巧克力糖57千克和若干每千克元的水果糖混合成每千克元的什锦糖;问:应放入水果糖多少千克5、小林读一本故事书,他前6天每天读25页,后3天共读120页;小林平均每天读多少页6、本学期,小亮数学前四个单元测验的平均成绩是85分,他是使前五个单元的平均成绩上升到87分,那么他第五单元必须要考多少分7、有三个数,甲数和乙数的平均数是82,甲数和丙数的平均数是,乙数和丙数的平均数是;甲、乙、丙三个数各是多少8、甲、乙、丙、丁四个数的平均数是10,甲、乙两数的平均数是8,求丙、丁两数的平均数9、A,B,C,D四个数,每次去掉一个数,求出其余三个数的平均数,得到下面四个数:23,26,30,33,那么A,B,C,D四个数的平均数是多少10、学校足球队18人合影留念,照6寸底片印3张价格是元的照片,另外还有加印让每人有一张,加印每张元;平均每人要付多少钱第十二讲教学广角追及问题1、甲骑自行车,乙骑摩托车,两人都要从东城到西城,自行车每小时行16千米,摩托车每小时行40千米;甲先出发小时,乙沿着同一条路线去追赶甲,多少时间后能追上甲2、小明和爸爸同时出门散步,小明向东走,每分钟行60米,爸爸向西走,每分钟行80米,5分钟后,爸爸调转方向去追赶小明;爸爸追上小明时一共走了多少米3、面包车以每小时60千米的速度从甲城开出,30分钟后,小轿车以每小时84千米的速度从甲城开出沿着同一行驶线路追赶面包车,多少小时后追上4、一列队伍长100米,以每分钟80米的速度前进,随队老师因有事从队尾赶到队首,以每分钟100米的速度追赶,经过几分钟才能赶到队首5、家离学校1.8千米,弟弟从家出发以每分钟60米的速度步行,哥哥在15分钟后骑自行车从家出发去追赶弟弟,自行车的速度是每分钟240米,哥哥在离家多远的地方追上弟弟哥哥追上弟弟后继续前行,到达学校后立即返回,不久与弟弟相遇,那么相遇处离学校多远6、兄妹两人同时从家出发去上学,哥哥每分钟走90米,妹妹每分钟走60米;哥哥到校门口时,发现未带课本,立即沿原路回家去取,在离学校180米处遇到妹妹;问:家距学校有多远7、龟兔赛跑,全程2000米;龟每分钟爬25米,兔每分钟跑320米;兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米;兔在途中睡了多少时间8、小华、小丽和小霞三人都要从甲地到乙地,早上6时,小华和小丽两人一同从甲地出发,小华每小时走5千米,小丽每小时4千米;小霞上午8时才从地出发,傍晚6时,小华和小霞同时到达乙地;小霞是在什么时间上小丽的第十三讲数学广角还原问题1、甲、乙、丙三个修路队合修一条公路,甲队修的是乙队的3倍,丙队修的是乙队的4倍;如果丙队每天修700米,3天可以超出任务500米;甲队修了米;2、粮食仓库里的粮食第一次运走它的一半少10吨,第二次运走剩下的一半6吨,第三次运走30吨后仓库里还剩下40吨粮食;求仓库原有粮食多少吨3、南南今年9岁,当他问爷爷今年有多少岁时,爷爷风趣地说:“把我的岁数加上5再乘以3,然后缩小10倍再减去12,正好与你的岁数相同;”问南南的爷爷有多少岁4、甲、乙两个化肥仓库共贮存化肥360吨;由于甲仓库修理空调设备,移走了100吨化肥放入乙仓库,待修好设备后,又从乙仓库拉回60吨化肥;这时甲仓库的化肥是乙仓库化肥的2倍;求甲、乙仓库原有化肥多少吨5、甲、乙、丙三个同学共有120张邮票;甲给乙13张邮票,乙给丙23张邮票,丙给甲3张邮票,这时,甲、乙、丙三人的邮票数正好相等;甲原来有邮票多少张6、1枝钢笔,所用的钱比所带的总钱数的一半多元;买了1枝圆珠笔,所用的钱比买钢笔后余下的钱的一半少元;又买了元的本子,最后还剩元;小明带了多少元钱7、一个数缩小10倍后再增加80,然后扩大3倍,再减去85得200.求这个数;8、红星彩印厂2005年对2004年的税后利润进行了统计,利润的一半将用作全厂职工的工资,剩下的要拿出350万扩建厂房,再用剩下的一半为职工建住房,2005年春节又要支出20万给职工过节,最后还剩下480万元;红星彩印厂2004年的税后利润是多少万元第十四讲容斥原理1、甲班和乙班共有83人,乙班和丙班共有86人,丙班和丁班共有88人;问甲班和丁班共有多少人2、在1至100的整数中,能被2整除或能被3整除的整除共有多少个3、在1~100的整数中,不是5的倍数也不是6的倍数有多少个4、某班共有45人,其中35人会中国象棋,30人会国际象棋,38人会围棋,40人会跳棋,可以肯定这个班至少有多少人以上四种棋都会5、有50个学生,他们穿的裤子是白色的或黑色的,上衣是蓝色的或红色的;若有14人穿的是蓝色上衣、白裤子,31人穿黑裤子,18人穿红上衣、黑裤子的学生有多少个;6、五年级一班共有45人,其中有35人会用电脑打字;这个班有男生23名,女生中有6人不会用电脑打字,那么男生有多少人会用电脑打字7、有36人参加田径运动会,每人至少参加两项比赛,已知有10人没有参加跳的项目,参加投掷项目的人数与同时参加跑和跳两个比赛项目的人数都是22人;问仅参加跳和投资两项的人数有多少8、在1~500中,不能被2整除,也不能被3整除,又不能被7整除的数有多少个;9、育才小学组织一次数学竞赛,共出了A、B、C三大题,至少做对一道题的有40人,其中做对A题的有15人,做对B题的有20人,做对C题的25人;如果三道题都做对的只有两人,那么只做对两道题的有多少人只做对一道题的又有多少人第十五讲抽屉原理和最不利原则1、有12个小朋友,阿姨至少要拿多少只苹果分给小朋友,方能保证至少有一个小朋友能得到两只或两只以上的苹果2、一个班里有59名同学,说明其中至少有两名同学在同一个星期里过生日;3、有5个小朋友,没人都从装有许多黑白围棋子的布袋里随意摸出3枚棋子;试证明这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的;4、学校体育用品仓库里有许多足球、排球和篮球;现有66名同学来仓库拿球,要求每人至少拿一个球,至多拿2个球;问:至少有多少名同学所拿的球种类是完全一样的5、为了迎接外宾来学校参观,学校准备了红、黄、绿三种小旗,每个同学都左右两手各拿一面彩旗列队迎接外宾;至少有多少位同学才能保证其中至少有两个人不但所拿小旗颜色一样,而且左、右顺序也相同6、从10到20这11个自然数中,任取7个数,证明其中一定有两个数之和是29;7、“华杯”赛获奖的87名学生来自12所小学,证明:至少有8名学生来自同一所学校;8、52张扑克牌有红桃、黑桃、方块、梅花4种花色各13张,问:⑴至少从中取出多少张牌,才能保证有花色相同的牌至少2张;⑵至少从中取出几张牌,才能保证有花色相同的牌至少5张;⑶至少从中取出几张牌,才能保证有4种花色的牌;⑷至少取出几张牌,才能保证至少有2张梅花牌和3张红桃牌;⑸至少从中取出几张牌,才能保证至少有2张牌的数码或字母相同;第十六讲综合练习1.将下图分割成五个大小相等,形成相同的图形2.将下图分割成两块,然后拼成一个正方形;3.有一块长4.8米、宽3米的长方形地毯,现在把它铺到长4米、宽3.6米的房间中;请将它裁成形状相同、面积相等的两块,使其正好铺满房间;4.四块相同的不等腰的直角三角板,拼成一个外面是正方形,里面有正方形孔的图形;5.在□里填上适当的数字,使78□□既能被9整除,又能被2整除;6.在□内填上适当的数,使六位数32787□能被4或25整除;7.五年级有72名学生,课间加餐共交□□元,每人交了多少元8.在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽量可能的大;9.根据能被11整除的数的特征,判断下列数中哪几个能被11整除:3434 3443 52019 6886810.根据能被7,11,13整除的数的特征,判断能否被7,11,13整除;11.把三位数3AB接连重复地写下去,共写5个3AB,所得的数3AB3AB3AB3AB3AB恰好是91的倍数, 应是多少12.求一个最小的自然数A,使A×13的积的末四位数字组成的四位数是1999.13.1+2+3+…+1993的和是奇数还是偶数;14.元旦前夕,同学们相互送贺年卡;每人只能接到对方贺卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数为什么15.小华买了一本共有96张纸练习本,并依次将每张纸的正反两面编号即由第1页一直编到192页,小丽从这本练习本中撕下25张纸,并将写在它们上的50个编号相加;试问:小丽所加得的数能不能为199416.有1993个孩子,每人胸前有一个号码,号码从1到1993各不相同;能不能将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和并说明理由;17.用一个数去除30,60,75,都能整除,这个数最大是多少18.一个数用3,4,5除都能整除,这个数最小是多少19.有三根铁丝,长度分别是120厘米、180厘米和300厘米;现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米一共可以截成多少段20.加工某种机器零件,要经过三道工序;第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人21.甲数是36,甲、乙两数的最大公因数是4,最小公倍数是288,求乙数;22.已知两数的最大公因数是21,最小公倍数是126,求这两个数的和是多少23.已知两个自然数的和是50,它们的最大公因数是5,求这两个自然数;24.已知两个自然数的积为240,最小公倍数为60,求这两个数;25.在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体有图,求这个立体图形的表面积;26.在一个棱长为4厘米的正方体的上底面正中挖去一个棱长为1厘米的小正方体,求所得的立体图形的表面积;27.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形;求这个立体图形的表面积;28.一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5个块,共得到大大小小的长方体60块,如右图;这60块长方体表面积的和是多少平方米29.一个长方体的体积是288立方米,底面积是36平方厘米,它的高是多少30.把一块棱长123分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少31.一个长方体模型,表面积是160平方厘米;这个长方体恰好能割成两个完全一样的正方体,那么,①其中一个正方体的体积是多少② 原来长方体的体积是多少32. 一只长15分米,宽12分米的长方体玻璃缸中,有10分米深的水,放入一块棱长为3分米的正方体铁块,铁块全部侵没在水中,并且没溢出,这时水面升高了多少厘米33. ⑴ 比较83和115的大小; ⑵ 比较83和187的大小; 34. ⑴比较125和169的大小 ⑵比较20062005和20082007的大小; 35. ⑴比较1111111和111111111的大小⑵比较87873232和878787323232的大小; 36. 在下面四个算式中,哪一个结果最小①15×1991 ②15÷43×32 ③÷54 ④ ×7473 37. 将61拆成两个不同的分数单位之和,你能找到几种不同的分拆方法38. 计算下面各题:21+41= ; 21+41+81= 21+41+81+161= 21+61+121+201+…+901 39. 计算:311⨯ +531⨯+751⨯+…+199519931⨯+199719951⨯40.甲、乙、丙三个村共同开山建路,甲村带了5箱炸药,乙村带了4箱炸药,丙村末带炸药;三村经协商后决定炸药共用,钱款平摊;经过计算,丙村应付给甲、乙两村炸药费共360元,甲、乙两村各应分得多少钱41.下面三个数的平均数是140,请将内的数字填上: , 8 27. 42.数学考试的满分是100分,六位同学的平均分是91分,这六个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得多少分43.有1500人报考的某学院入学考试,录取了300人,录取者的平均成绩。
(word完整版)五年级奥数题100题(附答案)
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
五年级下册简单奥数题
五年级下册简单奥数题一、工程问题。
1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。
如果两队合作,多少天可以完成这项工程?- 解析:把这项工程的工作量看作单位“1”。
甲队单独做20天完成,那么甲队每天的工作效率是1÷20=(1)/(20);乙队单独做30天完成,乙队每天的工作效率是1÷30=(1)/(30)。
两队合作每天的工作效率就是(1)/(20)+(1)/(30)。
- 计算:(1)/(20)+(1)/(30)=(3 + 2)/(60)=(5)/(60)=(1)/(12),工作时间 = 工作量÷工作效率,所以1÷(1)/(12)=12(天)。
2. 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?- 解析:把这条路的工作量看作单位“1”。
甲每天的工作效率是1÷16=(1)/(16),乙每天的工作效率是1÷24=(1)/(24)。
乙先修9天,完成的工作量是(1)/(24)×9=(3)/(8),剩下的工作量是1-(3)/(8)=(5)/(8)。
甲乙合作每天的工作效率是(1)/(16)+(1)/(24)=(3+2)/(48)=(5)/(48)。
- 计算:剩下工作量除以甲乙合作工作效率(5)/(8)÷(5)/(48)=(5)/(8)×(48)/(5)=6(天)。
二、分数问题。
3. 有一个分数,分子加3可约简为(5)/(6),分子减3可约简为(1)/(3),求这个分数。
- 解析:设这个分数的分子为x,分母为y。
根据题意可得(x + 3)/(y)=(5)/(6),即6(x + 3)=5y;(x-3)/(y)=(1)/(3),即3(x - 3)=y。
将y = 3(x - 3)代入6(x + 3)=5y中,得到6(x + 3)=5×3(x - 3)。
- 计算:6x+18 = 15x-45,15x-6x=18 + 45,9x=63,x = 7。
小学五年级下册数学必考奥数题型汇总带答案(共10题)
1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。
现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。
现在甲丙合作2小时,剩下的乙7小时完成。
甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王…… 王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。
王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。
王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。
所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册奥数试题
一、填空。
(每小题5分,共50分)
(1)一个整数a与1080的乘积是一个完全平方数,a的最小值是________。
(2)边长为自然数,面积为105的形状不同的长方形共有______种。
(3)甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,乙数______。
(4)已知两数的最大公约数是21,最小公倍数是126,这两个数的和最大是______。
(5)兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次.再过______天兄弟三人再次见面。
(6)父亲现年50岁,女儿现年14岁,______年前父亲年龄是女儿的5倍。
(7)将长25分米,宽20分米,高15分米的长方体木块锯成完全一样的尽可能大的立方体,不能有剩余,一共可锯______块。
(8)某人从甲地到乙地,先骑车走完全程的一半,每一小时行12千米;剩下的路程步行,每小时行4千米。
他走完全程的平均速度是______。
(9)1×2×3×…×50,这个乘积的末尾共有____个连续的0。
(10)四个连续自然数的积是3024,这四个数的和是______。
二、图形计算
(1)如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
五年级下册奥数试题
(2)如下图.在图中三角形ABE、ADF和四边形AECF的面积相等,求三角形AEF的面积。
五年级下册奥数试题
三、解答下面的应用题。
(1)妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?
(2)两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨.几天后两堆煤剩下吨数相等?
(3)体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?
(4)晶晶每天早上步行上学,如果每分钟走60米,则要迟到5分钟,如果每分钟走75米,则可提前2分钟到校.求晶晶到校的路程?
(5)3袋大米和4袋黄豆共重425千克,6袋大米和3袋黄豆共重600千克,问每袋大米和每袋黄豆各重多少千克?
(6)小玲每分行100米,小平每分行80米,两人同时从学校到少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?。