湖北省黄冈市2014届九年级上学期四科联赛数学C试题 Word版含答案
初中四科联赛试题及答案

初中四科联赛试题及答案一、语文试题1. 请解释下列词语的意思:(1)栩栩如生(2)昙花一现2. 阅读以下古文,回答后面的问题:《出师表》节选先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
(1)“先帝”指的是谁?(2)“此诚危急存亡之秋也”中的“秋”是什么意思?3. 请写出“草长莺飞二月天,拂堤杨柳醉春烟”的作者和出处。
二、数学试题1. 计算下列表达式的值:(1)\((3x - 2)^2\)(2)\(\frac{3}{4} \div \frac{2}{3}\)2. 解方程:(1)\(2x + 3 = 11\)(2)\(5x - 7 = 8\)3. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求其体积。
三、英语试题1. 根据所给词的适当形式填空:(1)He often ________ (read) books in the library.(2)There ________ (be) many people in the park yesterday.2. 将下列句子翻译成英文:(1)他每天骑自行车上学。
(2)她喜欢在周末去购物。
3. 阅读下面的短文,回答问题:My name is Tom. I am a student. I like playing football. I often play football with my friends on weekends.(1)What is Tom's hobby?(2)When does Tom usually play football?四、科学试题1. 列举三种常见的可再生能源。
2. 解释光合作用的过程。
3. 描述水循环的三个主要阶段。
答案:一、语文试题1. (1)栩栩如生:形容画作或雕塑等艺术作品形象逼真,如同活的一样。
2014湖北黄冈中考数学

黄冈市2014年初中毕业生学业水平考试数学试题(满分120分,考试时间120分钟)一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(2014湖北黄冈市,1,3分)-8的立方根是()A.-2 B.2±C.2 D.-1 2【答案】A2. (2014湖北黄冈市,2,3分)如果α与β互为余角,则()A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°【答案】D3. (2014湖北黄冈市,3,3分)下列运算正确的是()A.x2x3=x6 B.x6÷x5=x C.(-x2)4=x8 D.x2+x3=x5【答案】B4. (2014湖北黄冈市,4,3分)如图所示的几何体的主视图是()【答案】D5(2014湖北黄冈市,5,3分).函数y=x中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【答案】B6. (2014湖北黄冈市,6,3分)若α,β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A.-8 B.32 C.16 D.40【答案】C7. (2014湖北黄冈市,7,3分)如图,圆柱体的高h r=2cm,则圆锥体的全面积为()cm2A .π B .8π C .12π D .()π【答案】C8. (2014湖北黄冈市,8,3分)已知,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 边上一点,连接DE ,DF ,设点E 到BC 的距离这x ,则△DEF 的面积s 关于x 的函数图象大致为( )【答案】D二、填空题(共7小题,每小题3分,共21分) 9. (2014湖北黄冈市,9,3分)计算:13-= 【答案】1310. (2014湖北黄冈市,10,3分)分解因式:(2a +1)2-a 2= 【答案】(3a +1)(a +1)11. (2014湖北黄冈市,11,3-=【答案】212. (2014湖北黄冈市,12,3分)如图,若AD ∥BE ,且∠ACB =90°,∠CBE =30°,则∠CAD = °.ABCE F D【答案】6013. (2014湖北黄冈市,13,3分)当x-1时,代数式222111x x x x x x x-+-÷+++的值是 . 【答案】3-14. (2014湖北黄冈市,14,3分)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD = . 【答案】15. (2014湖北黄冈市,15,3分)如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm . 【答案】252或或10三、解答题(本大题共10小题,满分共75分)16. (2014湖北黄冈市,16,5分)(5分)解不等式组:2153112x x x -⎧⎪⎨+-≥⎪⎩,并在数轴上表示出不等式组的解集.【答案】解:解不等式①得x >3,解不等式②得x ≥1∴原不等式组的解集为x >3,不等式组的解集在数轴上表示如下:17. (2014湖北黄冈市,17,6分)(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,问购买一块电子白板和一台投影机各需要多少元? 【答案】解:设购买一块电子白板需x 元,设购买一台投影机需y 元,依题意列方程组:BCDAEB第12题图第14题图第15题图2340004344000x y x y -=⎧⎨+=⎩ / 解之得:40004000x y =⎧⎨=⎩答:购买一台电子白板需8000元,一台投影机需4000元18.(6分)已知,如图所示,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .【答案】证法一:连接AD ∵AB =AC ,BD =CD ,AD =AD∴△ABD ≌△ACD ∴∠BAD =∠CAD∴AD 是∠EAF 的平分线 又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF 证法二:证△ABD ≌△ACD 得∠ACD =∠ABD ∴∠DCF =∠DBE又∵∠DFC =∠DEB =90°,DC =DB .∴△DFC ≌△DEB ∴DE =DF19. (2014湖北黄冈市,19,6分)红花中学现要从甲、乙两位男生和丙丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率. 【答案】解:树形图:ABEDCF共有12种选派方案(2)恰有一男一女参赛共有8种可能,所以P 一男一女=12320. (2014湖北黄冈市,20,7分)(7分)如图,在Rt △ABC 中 ,∠ACB =90°,C 以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于点E (1)求证:EB =EC ;(2)若以点O 、D 、E 、C 、为顶点的四边形是正方形,试判断△ABC 的形状,并说明理由.【答案】证法一:(1)如图,连接CD . ∵AC 为⊙O 的直径,∠ACB =90°∴CB 为⊙O 的切线 又∵DE 切⊙O 于D ,∴ED =EC .∴∠CDE =∠DCE . ∵AC 为⊙O 的直径,∴∠ADC =90° / ∴∠CDE +∠EDB =90°,∠DCE +∠CBD =90°∴∠EDB =∠CBD . ∴ED =EB .∴EB =EC . 证法二:如图连接OD .∵AC 为⊙O 的直径,∠ACB =90°,∴CB 为⊙O 的切线.开始①号选手甲乙丙丁②号选手 甲 乙 丙丁 甲 乙 丙丁 甲 乙 丙丁 选派方案B又∵DE 切⊙O 于D ,∴ED =EC ,∠ODE =90°. ∴∠ODA +∠EDB =90° / .∵OA =OD ,∴∠ODA =∠OAD . 又∵∠OAD +∠DBE =90°∴∠EDB =∠DBE . ∴ED =EB .∴EB =EC (2)△ACB 为等腰三角形.理由:∵四边形ODEC 为正方形. ∴OC =CE ,∠ACB =90°. ∵OC =12AC ,CE =EB =12BC , / ∴AC =BC .∴△ACB 为等腰直角三角形21. (2014湖北黄冈市,21,7分)(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味,草莓味,菠萝味,香橙味,核桃味五种口味的牛奶供学生饮用,海马中学为了了解学生对不同味的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同.,绘制了如下两张不完整的人数统计图)(1)本次被调查的学生有 名(2)[补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数. (3)该校共有1200名学生订购了该品牌的牛奶。
年湖北省黄冈市中考数学试题及答案

黄冈市2014年初中毕业生学业水平考试数学试题(考试时间】20分钟满分120分)注密事项:1. 善毎前*琴生齐必需自己的旌名、准才注号堆寄在试题峑和答題卡上•幷牌色寿证号春僉碣君贴在答题卡上的控屯位JL2. 选擇罐令小题选出當第后,用2B搐笔杷苓题卡上对竝题目的答素标号涂黑•如需效眾用橡皮樓千净后*耳逸涂其他答案标号。
答准以姻卷上无效。
.1菲產择題的作答:用0. 5走来黑色晏水签字笔直接答圧答題卡止对应的答題(4域內。
塞在试趙卷上无4.考生必须保持答题卡的楚洁.考试结束后,请將本试題惠舸学题卡一并上丈。
一、选择题芾列备题A t HA.\E四个选项中上且仅有-个是正确的•每小題3分,共创分)】.一8的立方根赴A.-2B■二22.如果。
与0互为余角,则C2 D一*L* 2A. 口+卩—180" K 180° C. 口一加财D。
+皆9L3.下列运算止确的是/V jr2*文‘ ▼ j-!i B,.护十H‘=ar C. (-z®r-x e D* .r s+卡=J4.如图所示的几何休的主视图是5. 函数y 中*自变虽区的取(fl范国是A.丄HQB.^2Gx>2 且 hMO D山孑2 且.详06. 若6尸足—•元二次方程工叶2工一6=0的两根,则小+卩* =A. -K B, 32 C. 16 IA U)7*如图*师徳体的高h^2、陌rm*底面圆半輕r—2cm*则圆锥体的全面积为()cm fA+4V3ff B.瓯 C I2»r D. (4/3 + 4)^ 〔第了收圈)(站融砂8*巳知:&/MBC中,也:=10・BC边上的高A-5,点E在边Aii上•过点E柞EF/BC,交DAC边于点F”点D为边上一点,连接DE. DF.设点E到BC:的距离为丁•则ADEF的黄冈*数学试题殆I页(其4呢}面枳吕关于丁的函数用酸尢致为JO*分稱因式江如十】尸一沪1<如團、在@0中屉GJ 垂直于威轻AB 于点&若ZBAD=30\K 旳22侧C7>= ___________________ . 15. 如图,在一张快:为計E 宽为6cm 的审形纸片上,現要剪下一个腰长为5cm 的等腰三角形 〈要求:等腰三角形的一个顶点与矩形的一个頂点重合•其余的两个顶点在矩形的边上)•则 列下的等腰三角形的面积为 _________________ rm\ 三.解答鬆(本大題共10小題,满分共75分)16. ( 5分)解不等式组』3工卡1 X ” 并在数轴上表示曲不等武组的解栗・—亍—_ ]耳不 W17. (6分】漏州县为r •改善全县中、小学办学条件,计划集中采购1批电子白槪和投影机,已知 购买2块电子白板比购买3台投彭机多4000元,购买4块电子白板和3台投影机共需 44000云问购买一块电子白板和一台投膨机备需要筝少元?1& (6分尼知,如图所示,AR^AC t Bl )^CD, DE r [. A B 于点 E t DF 丄AC于点F *求证’ DE=DK】9. (6分)红花中学现護从甲、乙两位男牛和丙、「两位女生 中,选派两位同学分别作为①号选手和②号选手代衷学控 參加全且Ct 字听写大钱+(1)<用裤形图或列表袪列举出各种可能选潦的结果*V )求恰好选派一男一女两位同学参赛的概率*度.二、填空題(共了小懸,毎小融3分,共昭分》9・计 If ; I —y| = __________11,计算:y T?- 12* 如图•若 AD//BE,且£AC3=9冗ZG3E=3y 侧黄冈•数学试题第2页(共斗页》20. (7 分)如图•.在 RtAAfiC 中,AC 为 直径的QD 与AB 边交于点D,过点DftQO 的切 线*交于点E. (1) 求证:EB = EC ;(2) 若以点O,D,E*C 为匝点的四边影是正方形*试 判新△ABC 的形状,井说明理由.21* (7分〉某市为了增强学生体质•全面实施“学生饮用奶”價养工程.臬品牌牛奶供应商捉供了原味■草偉味,菠萝味、香橙味、核桃味五种口昧的 牛奶供学生饮用•淆马中学为了了解学生对不同II 味牛奶的喜好'对全校订购牛奶的学生 进行了随机调査(毎盘各种口味牛奶的体积相同几绘制了如下两张不完整的人数统计图:(1)本次被個叠的学生看 ___________ 名.⑵补全上面的条形统计图■并计命岀喜好“疲鸭?T 牛奶的学生人數在唏形统计图中所占 圆心角的度数.(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商馮天只为笹名订购牛奶的学生 配送一盒牛奶.娈使学生每只祁能喝到自己喜好的口味的牛奶,中奶供应廊每天送往该 按的牛奶中*草無味要比原味多送多少盒?22.(9分)如图,已知取曲线与两直线叶一士”=一虹(心0,且 &¥)分别相交JC4 4于儿E£QPq 点.-(1) 当点C 的坐标为<-bl)时忍上山三点坐标井拥是DC__,_).(2) 证明;以点A.D,H,C 为頂点的四边形是平行四边形 ⑶当h 为何值时t UADBC.是矩形.黄冈•数学试聽第3页]共4页)A<^20MS )瓯(7分)如图准南北方向的海岸线MN 上,有A,B 两艘巡逻船,现均收到故障船C 的求救 信号.已知儿B 两麗相距100(73 +1)海里,SJ 匚崔船A 的北偏东抄方向上,船C 在船E 的东隋方向上,上有一观测点测得船匚正好在观测点D 的南偏东7节方向上.(1〉分别求出A 与匚人与D 间的距WAC 和AD (如果运算结果有根号*晴保留根号X (2)已知距观测点D 处100海里范围内有暗礁.若巡逻船人沿宜线AC 去营救船C,在去 营救的途中有无触施危险?(参考数据,V2^L 41 .鹿41. 73 )21. (9分)某地卖行医疗保险(以下简称“医保”)制度.医保机构规定:一、每位居民年初撤纳医保基金70元'二民每卜人当年治病所花的医疗费(戌定点医院的治疗发票为椎儿年底按卜列方 式(见表一)报销所治病的医疗费用、 表亠:如果设-位居民当年治病花费的医疔费为工元,他个人实际承担的医疗费用(包括医 疗费中个人承担部分和年初墩纳的任保辜金)记为y 元.⑴当OWC 挖时了 = 70;当«<x<6000时』一 _____________ ©用含n t k^的式子表示).表二是该地A,乩(;三位居民2Q13年治病所花费的厌疗费和个人实际承担的医疗费 用,根据表中的数据,求出n.k 的值. •表二*饭(13分)已知:如图所示,在四边形OABC 中# AR//OC, BC± x 轴于点 C, 4 < 1t - l>t B (乳一 1儿动点P 从点0出发,沿着工轴正方 向以毎秒2个单位长度的速度移动+过点P 作 PQ 垂宜于直线0A ,垂足为点Q 设点P 移动 的时间为r 秒(0</<2), AOFQ 与四边形 OABC$®部分的面积为S.(1) 求经过O, A 用三点的抛物线的解析式*并确定顶点M 的坐标卡(2) 用含t 的代数式表示点尸、点Q 的坐标; (3) 如果将△OPQ 绕着点P 按逆时针方简废转90°,是否存在4使得△OPQ 的顶点O 或顶点Q 在抛物线上?若存在•请求出t 的 值:若不存在,请说明理由;(4》求出S 与f 的函数关系式.居民个人当年治病所花费的医疗费F医疗费的报销办法不超过n 元的都分全部由匿保基金承担(即全玮报悄)超过«元但不超过60CO 元的部分 个人承担h%,其余部井由医保基金吸担超过6000元的部分牛人服担20% '其余部分由医保墓金感担層民A r BC 棊次恰爛所花费的洁疗猜用巩元)400 800 1500 个人实际承押的医疗丸用jK 元)7019047Q(仍该地居民周大爷2S3年洽病所花费的厌疗费共3ZQ00元,那么这-年他个人宾际承担 的医疗费用是參少元?黄冈•数学试题第4贡(共4页〉参考答案—泄择题侮頼分,共24分)1.A II) IB 4.D 氐C 7X SJ)一填邸題(毎題3分拱21分)9.|j 10, (3a-l)(a+l)? IL^J 12* 6叫11 3-2^2;14「1 為1需或5励10•他答对一个盘丨分)Li三JS答题(共75分)血(5分)解播不等式①得x>3f解不等式②得无鼻匕爲原不竽式组的解集为£>乱不等式组的解集莖数轴匕表示如下:C 1 2 3 1Il C6 分)解:设购买•块电子tl板需工元,购买哈投影机需y元■依题意列方程组: :2T_3J_4000・3y= 44'I J W).羽购买哈电子匕板需8000元败买哈投母机蛊個)0元IS. (6 分)证法一琏接加丄TAK-AC,刃)一口入加)一加入r^A^i^AAcaAZB4D=/CAD, 咒是ZEAF的平分线.又':DELABd)FlAC, A DE- DK 证法二uEAABI^ZiACD,fgZACD-ZABa ;.ZDCF=ZDBE_ 乂':ZDFC=ZD£B=90rt< DC=DB, 化△DJTPZV)刖•二DE—DE 11 (6 分)化共有12种选派方案或解法:』俵法:、◎驅手②揃、、乙肉T甲、、甲乙甲丙甲厂乙内乙甲内耳、'、乙丙乙丁内丁丁丁甲丁乙丁丙、乙丙丁甲丙丁甲乙丁甲己丙⑵檢冇•男女參赛共冇8种可能・・P•• J< 训如 _ 12 一3,20. (7 分)(I)证法一:如图■连接CUTAC为£0^直径上址另一笫二门3为©0的切统X7DEW)于D.:.KD-EC.・:4DE=4)CE・VAC为00的施•'也ADC—9化:./CC£+Z^DB-30%ZDC'f;+ZCBP-9讥/*ED=£B,:.E/i-比证法二;如图'连接0D.为@0的直徐/MB—9心二CB为00的切我又TDE切®。
2014黄冈中考数学解析版

4.方茴说:“可能人总有点什么事,是想忘也忘不了的。
”5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2014年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.1.“噢,居然有土龙肉,给我一块!”2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。
4.方茴说:“可能人总有点什么事,是想忘也忘不了的。
”5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
2014年湖北省黄冈市中考数学试卷(附答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前湖北省黄冈市2014年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的立方根是( ) A .2-B .2±C .2D .12- 2.如果α与β互为余角,则( ) A .180αβ+=︒B .180αβ-=︒C .90αβ-=︒D .90αβ+=︒ 3.下列运算正确的是( )A .236x x x =B .65x x x ÷=C .246()x x -=D .235x x x +=4.如图所示的几何体的主视图是( )ABC D 5.函数y =,自变量x 的取值范围是( ) A .0x ≠B .2x ≥C .20x x ≠>且D .20x x ≠≥且 6.若α、β是一元二次方程0622=-+x x 的两根,则22αβ+=( ) A .8-B .32C .16D .407.如图,圆锥体的高cm h =,底面圆半径2cm r =,则圆锥体的全面积为( )A.2cm B .28πcm C .212πcm D.24)πcm8.已知,在ABC △中,=10BC ,BC 边上的高5h =,点E 在边AB 上,过点E 作EF BC ∥,交AC 边于点F .点D 为BC 边上一点,连接DE ,DF .设点E 到BC 的距离为x ,则DEF △的面积S 关于x 的函数图象大致为( )ABCD第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.把答案填写在题中的横线上)9.计算:1||3-= .10.分解因式:22(21)a a +-= . 11.. 12.如图,若AD BE ∥,且90ACB ∠=︒,30CBE ∠=︒,则CAD ∠= 度.13.当12-=x 时,代数式222111x x x x x x x-+-÷+++的值是 .14.如图,在O 中,弦CD 垂直于直径AB 于点E ,若30BAD ∠=︒,且2BE =,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)CD = .15.如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm .三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分5分)解不等式组:215,311.2x x x -⎧⎪⎨+-⎪⎩>①≥②并在数轴上表示出不等式组的解集.17.(本小题满分6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需多少元?18.(本小题满分6分)已知,如图所示,AB AC =,BD CD =,DE AB ⊥于E ,DF AC ⊥于点F ,求证:DE DF =.19.(本小题满分6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率.20.(本小题满分7分)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 与AB 交于点D ,过点D 作O 的切线,交BC 于点E .(1)求证:EB EC =;(2)若以点O ,D ,E ,C 为顶点的四边形是正方形,试判断ABC △的形状,并说明理由.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)21.(本小题满分7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味的牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如下两张不完整的人数统计图.(1)本次被调查的学生有 名;(2)补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味牛奶要比原味多送多少盒?22.(本小题满分9分) 如图,已知双曲线1y x =-与两直线x y 41-=,kx y -=(0>k 且41≠k )分别相交于A ,B ,C ,D 四点.(1)当点C 的坐标为(1,1)-时,A ,B ,D 三点坐标分别是A ( , ),B ( , ),D ( , );(2)证明:以A ,D ,B ,C 为顶点的四边形是平行四边形; (3)当k 为何值时,□ADBC 是矩形;23.(本小题满分7分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B两船相距1)海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁.若巡逻船A 沿直线AC 去营救船C ,在毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共32页) 数学试卷 第8页(共32页)去营救的途中有无触礁危险?(1.411.73≈)24.(本小题满分9分)某地实行医疗保险(以下简称“医保”)制度,医保机构规定: 一、每位居民年初缴纳医保基金70元;二、居民每个人当年治病所花的医疗费(以定点医院的医疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用.如果设一位居民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和年初缴纳的医保基金)记为y 元.(1)当0x n ≤≤时,70y =;当6000n x <≤时,y = (用含n 、k 、x 的代数式表示);(2)表二是该地A ,B ,C 三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n 、k 的值;(3)该地居民周大爷2013年看病的医疗费用共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(本小题满分13分)已知,如图所示,在四边形OABC 中,AB OC ∥,BC x ⊥轴于C ,(1,1)A -,(3,1)B -,动点P 从O 点出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P 作PQ 垂直于直线OA ,垂足为点Q .设点P 移动的时间为t 秒02)t (<<,OPQ △与四边形OABC 重叠部分的面积为S .(1)求经过O ,A ,B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示点P 、点Q 的坐标;(3)如果将OPQ △绕点P 按逆时针方向旋转90︒,是否存在t ,使得OPQ △的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求出S 与t 的函数关系式;5 / 16湖北省黄冈市2014年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据立方根的定义,3(2)8-=-Q ,8∴-的立方根是2-,故选A. 【考点】立方根. 2.【答案】D【解析】若两个角的和是90︒,则这两个角互余,故90αβ+=︒,故选D. 【考点】互余. 3.【答案】B【解析】同底数幂相乘,底数不变,指数相加,故23235x x xx +==g ,A 错误;同底数幂相除,底数不变,指数相减,故6565x x x x -÷==,B 正确;幂的乘方,底数不变,指数相乘,故24248()x x x ⨯-==,C错误;2x 与3x 不是同类项,不能合并,故D 错误,故选B. 【考点】幂. 4.【答案】D【解析】根据几何体的形状可知从正面看到的图象为D ,故选D. 【考点】几何体的三视图,难度较小. 5.【答案】B【解析】根据二次根式被开方数是非负数,分式的分母不能等于0,得20,0,x x -⎧⎨≠⎩≥解得2x ≥,故选B.【考点】函数自变量的取值范围. 6.【答案】C 【解析】若α,β是方程2260x x +-=的两根,则2b aαβ+=-=-,6c aαβ==-,所以2222()2(2)2(6)16αβαβαβ+=+-=--⨯-=,故选C.【考点】一元二次方程的根与系数的关系. 7.【答案】C数学试卷 第11页(共32页)数学试卷 第12页(共32页)【解析】设圆锥的母线长为l ,根据勾股定理,4l ==,故圆锥的全面积22πππ24π212πrl r =+=⨯⨯+=g ,故选C. 【考点】圆锥表面积的计算. 8.【答案】D【解析】EF BC ∥Q ,AEF ABC ∴△△:,相似三角形对应边上的高之比等于相似比,5510x EF-∴=,102EF x ∴=-,21(102)52S x x x x ∴=-=-+(05x ≤≤),由此可知,S 是关于x 的二次函数且图象开口向下,故选D.【考点】动点问题的函数图象,相似三角形的性质,三角形的面积.第Ⅱ卷二、填空题9.【答案】13【解析】根据负数的绝对值等于它的相反数,故1133-=. 【考点】绝对值. 10.【答案】(31)(1)a a ++【解析】原式(21)(21)(31)(1)a a a a a a =+++-=++g . 【考点】平方差公式分解因式. 11.【答案】2【解析】原式22=-=. 【考点】二次根式的化简与计算. 12.【答案】60【解析】A D B E ∥Q ,180DAB ABE ∴∠+∠=︒,即180DAC CAB ABC CBE ∠+∠+∠+∠=︒,又90ACB ∠=︒Q ,90CAB ABC ∴∠+∠=︒,90DAC CBE ∴∠+∠=︒,而30CBE ∠=︒,60DAC ∴∠=︒.【考点】直角三角形的性质,平行线的性质. 13.【答案】3-7 / 16【解析】原式22(1)(1)(1)11x x x x x x x x x x -+=+=-+=+-g,当1x =时,原式21)3==-【考点】代数式的化简与求值. 14.【答案】【解析】连接OD ,根据同弧所对的圆周角等于圆心角的一半,260BOD BAD ∴∠=∠=︒,设O e 半径是r ,则2OE r =-,在Rt DOE △中,cos OE BOE OD ∠=,即2cos60r r-︒=,解得4r =,2OE ∴=,4OD =,又由勾股定理得DE =,根据垂径定理2CD DE ==. 【考点】圆周角定理,垂径定理,解直角三角形.15.【答案】252或10【解析】分类谈论:(1)等腰三角形的顶角的顶点与矩形的顶点重合,如图a ,则5AE AF ==,此时,112555222AEF S AE AF ==⨯⨯=△g ;(2)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 与宽AB 上,如图b ,此时5EF AE ==,651BE =-=,在Rt EBF △中,根据勾股定理,BF ==,11522AEF S AE BF ==⨯⨯=△g (3)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 在长AD 上,如图c ,此时5EF AE ==,853DE =-=,在Rt EDF △中,根据勾股定理,4DF ==,11541022S AE DF ==⨯⨯=△AEF g ;故答案是252或10.【考点】等腰三角形的画法,三角形的面积计算. 三、解答题16.【答案】解:解不等式①得3x >; 解不等式②的1x ≥.∴原不等式组的解集为3x >,不等式组的解集在数轴上表示如下:数学试卷 第15页(共32页)数学试卷 第16页(共32页)【考点】一元一次不等式组.17.【答案】购买一台电子白板需8 000元,购买一台投影机需4 000元.【解析】解:设购买一块电子白板需x 元,购买一台投影机需y 元,依题意列方程组234000,4344000.x y x y -=⎧⎨+=⎩解得8000,4000.x y =⎧⎨=⎩答:购买一台电子白板需8 000元,购买一台投影机需4 000元. 【考点】二元一次方程组在实际问题中的应用. 18.【答案】证法一:连接AD.AB AC =Q ,BD CD =,AD AD =,ABD ACD ∴△≌△.BAD CAD ∴∠=∠.AD ∴是EAF ∠的平分线.又DE AB ⊥Q ,DF AC ⊥,DE DF ∴=. 证法二:证ABD ACD △≌△,得ACD ABD ∠=∠.DCF DBE ∴∠=∠.又90DFC DEB ∠=∠=︒Q ,DC DB =,DFC DEB ∴△≌△.DE DF ∴=.【考点】全等三角形的判定和性质. 19.【答案】解:(1)树形图:∴共有12种选派方案.(2)恰有一男一女参赛共有8种可能,82123P∴==(一男一女).【考点】列举法或树状图求概率.20.【答案】(1)解:(1)证法一:如图,连接CD.ACQ为Oe的直径,90ACB∠=︒,CB∴为Oe的切线.又DEQ切Oe于点D,ED EC∴=.CDE DCE∴∠=∠.ACQ为Oe直径,90ADC∴∠=︒.90CDE EDB∴∠+∠=︒,90DCE CBD∠+∠=︒.9 / 16数学试卷 第19页(共32页)数学试卷 第20页(共32页)EDB CBD ∴∠=∠.ED EB ∴=.EB EC ∴=.证法二:如图,连接OD .AC Q 为O e 的直径,90ACB ∠=︒,CB ∴为O e 的切线.又DE Q 切O e 与点D ,EB EC ∴=,90ODE ∠=︒.90ODA EDB ∴∠+∠=︒. OA OD =Q ,ODA OAD ∴∠=∠.又90OAD DBE ∠+∠=︒Q ,EDB DBE ∴∠=∠.ED EB ∴=.EB EC ∴=.(2)ACB △为等腰直角三角形. 理由:Q 四边形ODEC 为正方形,OC CE ∴=,90ACB ∠=︒.又12OC AC =Q ,12CE EB BC ==,AC BC ∴=.ACB ∴△为等腰直角三角形.【考点】圆的切线的判定和性质,等腰三角形的判定和性质,正方形的性质,等腰直角三角形的判定. 21.【答案】(1)200. (2)40.90︒.(3)144.【解析】解:(1)200(2)如图,补全条形图(40人)喜好“菠萝味”学生人数在扇形统计图中所占圆心角度数为5036090200⨯︒=︒. (3)6238241200()1200144200200200⨯-=⨯=(盒) 答:每次草莓味要比原味多送144盒.【考点】条形统计图,扇形统计图的理解与应用.22.【答案】解:(1)1(2,)2A -,1(2,)2B -,(1,1)D -. (2)证法一:Q 反比例函数1y x =-的图象关于原点对称,过原点的直线14y x =-也关于原点对称,OA OB ∴=.同理OC OD =. ∴四边形ADBC 是平行四边形. 证法二:14y x =-Q 与1y x=-交于A ,B 两点, 1(2,)2A ∴-,1(2,)2B -. ∴由勾股定理知222117(2)()24OA =-+=, 2221172()24OB =+-=. 22OA OB ∴=.OA OB ∴=.y kx =-Q 与1y x =-交于C ,D 两点,(C k ∴,(D k. 21OC k k ∴=+,21OD k k =+.数学试卷 第23页(共32页)22OC OD ∴=.OC OD ∴=.∴四边形ADBC 是平行四边形.(3)当4k =时,ADBC Y 为矩形.理由:当OA OC =时,22AB OA OC CD ===.ADBC ∴Y 为矩形.此时由22OA OC =得1174k k +=,217104k k -+=, 14k ∴=,214k =. 又14k ≠Q ,4k ∴=. 4k ∴=时,ADBC Y 为矩形.【考点】待定系数法求函数的解析式,平行四边形的判定,矩形的判定,勾股定理. 23.【答案】(1)A 与C 间距离为200海里,A 与D间距离为1)-海里. (2)船A 沿直线AC 航行,前往船C 处途中无触礁危险.【解析】解:(1)如图,过C 作CE AB ⊥于点E .设AE a =海里,则1)BE AB AE a =-=-(海里).在Rt ACE △中,90AEC ∠=︒,60EAC ∠=︒,21cos602AE a AC a ∴===︒海里,tan 60CE AE =︒g 海里.在Rt BCE △中,BE CE =,1)a ∴-=.100a ∴=海里.2200AC a ∴==海里.在ACD △和ABC △中,180456075ACB ADC ∠=︒-︒-=︒=∠,CAD BAC ∠=∠,ACD ABC ∴△△:,AD AC AC AB∴=. 即200AD =1)AD ∴=.答:A 与C 间距离为200海里,A 与D 间距离为1)海里.(2)如图,过D 作DF AC ⊥于点F .在Rt ADF △,60DAF ∠=︒,sin601)2DF AD ∴=︒=⨯g100(3127100=-≈>. ∴船A 沿直线AC 航行,前往船C 处途中无触礁危险.【考点】解直角三角形.24.【答案】(1)()%70y x n k =-+g .(2)50040.n k =⎧⎨=⎩, (3)7 470【解析】解:(1)()%70y x n k =-+g .(2)由表二易知400n ≥,且800x =时,190y =,1500x =时,470y =.(800)%70190,(1500)%70470.n k n k -+=⎧∴⎨-+=⎩g g 解得500,40.n k =⎧⎨=⎩(3)当6000x >时,(6000500)40%(6000)20%70y x =-⨯+-⨯+数学试卷 第27页(共32页)0.21070x =+,∴当32000x =时,0.23200010707470y =⨯+=(元).(直接代入计算也可)【考点】列代数式的应用,二元一次方程组的应用.25.【答案】(1)4(2,)3-. (2)(2,0)P t ,(,)Q t t -.(3)①12t =. ②1t =(4)见解析.【解析】解:(1)Q 抛物线过原点(0,0)O , ∴可设经过A ,B ,O 三点的抛物线解析式为2y ax bx =+(或直接设2y ax bx c =++).将(1,1)A -,(3,1)B -代入2y ax bx =+中,得1,93 1.a b a b +=-⎧⎨+=-⎩1,34.3a b ⎧=⎪⎪∴⎨⎪=-⎪⎩ 21433y x x ∴=-. ∴抛物线221414(2)3333y x x x =-=--,顶点M 的坐标为4(2,)3-.(2)Q 点A 坐标为(1,1)-,45COA ∴∠=︒.OPQ ∴△为等腰直角三角形.过Q 作QD x ⊥轴于D.2OP t =Q ,11222OD OP t t ∴==⨯=,12DQ OP t ==. ∴点P 坐标为(2,0)P t ,点Q 坐标为(,)Q t t -.(3)当OPQ △绕点P 逆时针旋转90︒后,点O 坐标为(2,2)t t -,点Q 的坐标为(3,)t t -.①若点O 在21433y x x =-上, 则214(2)2233t t t ⨯-⨯=-,220t t -=. 10t ∴=,212t =.02t <<Q ,12t ∴=. 12t ∴=时点(1,1)O -在21433y x x =-上.(只需求出t 的值即可). ②若点Q 在21433y x x =-上, 则214(3)(3)33t t t ⨯-⨯=-,20t t -=. 10t ∴=,21t =.又02t <<Q ,1t ∴=.1t ∴=时点(3,1)Q -在21433y x x =-上.(只需求出t 的值即可). (4)如图,分三种情况讨论:①当01t <≤时, 211222OPQ Q S S OP y t t t ===⨯⨯=△g . (方法二:212OPQ S S OQ ==△) ②当312t <≤时,设P Q ''交AB 与E . OP Q ABQ S S S '''=-△△.AB OC ∥Q ,45Q AE '∴∠=︒,数学试卷 第31页(共32页)AEQ '∴△为等腰直角三角形.cos4522OQ OP t ''∴=︒==g. 1)AQ OQ OA t ''∴=--.221(1)2AEQ S AQ t ''∴==-△. 22(1)21S t t t ∴=--=-.(方法二:OAEP S S '=梯形) ③如图,当322t <<时,设P Q ''''交BC 于点F ,交AB 于点E ', 则OP Q AE Q CFP S S S S '''''''''=--△△△.221(1)2AE Q S AQ t '''''==-△Q , 2211(23)22CFP S CP t ''''==-△, 2222111(1)(23)2822S t t t t t ∴=----=-+-. (方法二:BE F OABC S S S '=-△梯形)22(01),321(1),211328(2).22t t S t t t t t ⎧⎪⎪⎪∴=-⎨⎪⎪-+-⎪⎩<≤<≤<< 【考点】求抛物线解析式,抛物线顶点坐标,动点问题,面积的计算,点的存在.。
2014年黄冈地区竞赛九年级训练题(18)

班级: 姓名: 日期: 漳州正兴学校九年级奥数辅导班练习12014年黄冈地区竞赛九年级训练题(18)一、选择题(本大题共8个小题,每小题5分,共50分) 1、设a <b <0,ab b a 422=+,则ba ba -+的值为( ) A 、3 B 、6 C 、 2 D 、 32、已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式ca bc ab c b a ---++222的值为( )A 、0B 、1C 、2D 、 3 3、点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF ,CE ,设AF ,CE 交于点G , 则S 四边形AGCD 等于( ) S 矩形ABCD A 、65 B 、54 C 、43 D 、32 4、已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) A 、a<b<c B 、b<a<cC 、c<b<aD 、c<a<b 二、填空题(本大题共11个小题,每空5分,共55分) 5、计算_____________6、已知:x 为非零实数,且1122x x -+ = a, 则 2x 1x+=_____________7、已知a<0,ab<0,化简,=+----|3a b ||23b a |18,则x =_____________9、甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 件。
10、(初中数学竞赛试题)计算:223223++-的结果是: . 11、(2010年全国初中数学竞赛试题)已知a =5-1,则2a 3+7a 2-2a -12 的值等于 . 12、(2010年全国初中数学竞赛试题)一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = . 13、(全国初中数学竞赛试题)若521332412---=----+c c b ab a , 则a +b +c= .三、解答题(本大题共3个小题,每题15分,共45分)14、(每题15分)△ABC 内,∠BAC=600,∠ACB=400,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线。
湖北省黄冈市2014届九年级数学上学期四科联赛C试题

某某省黄冈市2014届九年级数学上学期四科联赛C 试题 一、选择题(本大题共5小题,每小题6分,共30分)1. 如果a<b,那么)()(3b x a x ++-等于( ) A.(x+a)))((b x a x ++- B.(x+a)))((b x a x ++ C.-(x+a)))((b x a x ++- D.-(x+a)))((b x a x ++2. 如图所示,点A 为∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C ,P 为BC 的中点,过P 作BC 的垂线交OA 于点D .∠MON=60°,则∠BDC=( )A.120° B .130° C .140° D .150°3. 方程(x2-x-1)x+2=1的整数解的个数有( )A. 2B. 3 C4. 已知直线y1=x ,y2=31x+1,y3=-54x +5的图象如图所示,若无论x 取何值,y 总取y1、y2、y3中的最小值,则y 的最大值为( )A.23B.1737C.1760D.9255.(改编题)在2011,2012,2013,2014这四个数中,不能表示为两个整数的平方差的数是( )A.2011B.2012二、填空题(本大题共5小题,每小题6分,共30分)6. 不等边△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则它的长度最大可能是_______.7.(改编题)已知2a•5b=2c•5d=10,则(a-1)(d-1)-(b-1)(c-1)= .8. (改编题)如图,两正方形彼此相邻且内接于半圆,若大正方形的面积64cm2,则小正方形的面积为 .第8题图 第9题图9. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数y=x k(x >0)的图象与△ABC 有公共点,则k 的取值X 围是 .10.(改编题)已知:n ,k 均为自然数,且满足不等式137<k n n +<116,若对于某一给定的自然数n,只有惟一的一个自然数k 使不等式成立,则所有符合要求的自然数n 中的最大数和最小数的和是 .三、解答题(本大题共5小题,共40分)11. (本题满分8分)若实数a,b,c 满足b a +-2011×b a --2011=c b a --+253+c b a -+32,求c 的值.12. (本题满分8分)矩形ABCD 中,AB=20,BC=10,若在AC 、AB 上各取一点M 、N (如图),使BM+MN 的值最小,求这个最小值.13. (改编题)(本题满分8分)设三个方程x2+4mx+4m2+2m+3=0, x2+(2m+1)x+m2=0,(m-1)x2+2mx+m-1=0中至少有一个方程有实根,求m的取值X围.14. (改编题)(本题满分8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证: BC=2CD.15. (改编题)(本题满分8分)已知5个三位数acb 、bac 、bca 、cab 、cba 的和为3194,求三位数abc .答 案6.5 提示:根据面积相等,可设△ABC 的两边长为3x ,x ;因为2S=3x ×4=12x. 2S=第三边的长×第三条高,所以第三条高=第三边的长S2.因为2x <第三边长度<4x, 所以x x 412<第三条高<x x 212,即3<第三条高<6. 第三条高的长度最大整数值是5.10.97 提示:因为n>0,n+k>0,所以有⎩⎨⎧>+<+n k n n k n 1166,1377得65n<k<76n.由已知,76n-65n ≤2,∴n ≤84.当n=84时,70<k<72,只能取唯一值k=71,故n 的最大值是84;又由65n<k<76n 得65<n k <76,即1210<n k <1412,故当n=13时,k=11满足条件,可得n 的最小值是13.11.由已知,得a-2011+b ≥0,2011-a-b ≤0,故2011≤a+b ≤2011,所以a+b=2011.代入原式,得c b a --+253+c b a -+32=0,又c b a --+253≥0,c b a -+32≥0,所以c b a --+253=c b a -+32=0,所以⎩⎨⎧=-+=--+).2(032),1(0253c b a c b a (2)×2-(1),得a+b+2-c=0,故c=a+b+2=2011+2=2013.12. 如图,作B 关于AC 的对称点B ′,连结AB ′,则N 关于AC 的对称点N ′在AB ′上,过B 作AB ′的垂线,垂足为H ′,则BM+MN=BM+MN ′≥BH ′,即BM+MN 的最小值为B H ′.设AB ′交CD 于点P ,连结BP ,则△ABP 的面积等于100102021=⨯⨯,由AB ∥CD及由对称性知∠PAC=∠PCA ,∴AP=PC ,设AP=PC=x ,则DP=20-x ,根据勾股定理,得22210)20(+-=xx,解得x=.又201021'21⨯⨯=⋅BHAP,∴165.12200'==BH.故BM+MN的最小值是16.15.由abc+acb+bac+bca+cab+cba=3194+abc,222×(a+b+c)=3194+100a+10b+c,3194÷222=14…86,∴a+b+c>14.当a+b+c=15时,abc=15×222-3194=3330-3194=136,而1+3+6≠15,故错误.当a+b+c=16时,abc=16×222-3194=358;当a+b+c=17时,abc=17×222-3194=580,5+8+0≠17,不合题意;当a+b+c=18时,abc=18×222-3194=802,8+0+2≠18,不合题意;当a+b+c≥19时,abc>1000,不合题意.∴abc=136+222=358.。
2014-2015年湖北省黄冈市初三上学期期末数学试卷含答案解析

2014-2015学年湖北省黄冈市初三上学期期末数学试卷一.选择题(共27分)1.(3分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1B.m≤1C.m≤4D.2.(3分)已知x=﹣1是方程ax2+bx+c=0的根(b≠0),则=()A.1B.﹣1C.0D.23.(3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个4.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是()A.60°B.90°C.120°D.180°5.(3分)坐标平面上有一函数y=﹣3x2+12x﹣7的图形,其顶点坐标为何?()A.(2,5)B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)6.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.7.(3分)正六边形的边心距与边长之比为()A.:3B.:2C.1:2D.:28.(3分)已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π二.填空题(共21分)10.(3分)方程(x﹣3)(x+1)=x﹣3的解是.11.(3分)已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是.12.(3分)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.13.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.14.(3分)如图所示,一半径为2的圆内切于一个圆心角为60°的扇形,则扇形的周长为.15.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为.16.(3分)如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.三.解答题(共72分)17.(8分)关于x的一元二次方程x2﹣x+p﹣1=0有两实数根x1,x2,(1)求p的取值范围;(2)若[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求p的值.18.(6分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?19.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF 的数量关系,并说明理由.20.(7分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S=4.△BOD (1)求反比例函数解析式;(2)求点C的坐标.21.(8分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.22.(6分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得元购物券,至多可得元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.23.(8分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径r.24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如表所示.销售量p(件)p=50﹣x销售单价q (元/件)当1≤x≤20时,q=30+x 当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?25.(11分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2014-2015学年湖北省黄冈市初三上学期期末数学试卷参考答案与试题解析一.选择题(共27分)1.(3分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1B.m≤1C.m≤4D.【解答】解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.2.(3分)已知x=﹣1是方程ax2+bx+c=0的根(b≠0),则=()A.1B.﹣1C.0D.2【解答】解:∵x=﹣1是方程ax2+bx+c=0的根,∴a﹣b+c=0,即a+c=b,∴===1.故选:A.3.(3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.4.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是()A.60°B.90°C.120°D.180°【解答】解:设圆锥的母线长为R,底面半径为r.∵侧面积是底面积的3倍,∴2πr×R÷2=3πr2,∴R=3r.∴=2πr,∴n=120°5.(3分)坐标平面上有一函数y=﹣3x2+12x﹣7的图形,其顶点坐标为何?()A.(2,5)B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)【解答】解:∵y=﹣3x2+12x﹣7=﹣3(x2﹣4x+4)+12﹣7,=﹣3(x﹣2)2+5,∴函数的顶点坐标为(2,5).故选:A.6.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【解答】解:∵二次函数图象开口向上,∴a>0,∵对称轴为直线x=﹣=,∴b=﹣a<0,当x=﹣1时,a﹣b+c>0,∴﹣b﹣b+c>0,解得c﹣2b>0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴一次函数图象经过第一、二、四象限,反比例函数图象经过第一三象限.故选:B.7.(3分)正六边形的边心距与边长之比为()A.:3B.:2C.1:2D.:2【解答】解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选:B.8.(3分)已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.【解答】解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC 上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选:D.二.填空题(共21分)10.(3分)方程(x﹣3)(x+1)=x﹣3的解是X1=0,X2=3.【解答】解:(x﹣3)(x+1)=x﹣3,(x﹣3)(x+1﹣1)=0,x﹣3=0或x=0,解得x1=0,x2=3.11.(3分)已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是﹣2.【解答】解:设关于x的一元二次方程x2+x+m=0的另一个实数根是α,∵关于x的一元二次方程x2+x+m=0的一个实数根为1,∴α+1=﹣1,∴α=﹣2.故答案为﹣2.12.(3分)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=28度.【解答】解:由垂径定理可知,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=∠CEA=28度.故答案为:28.13.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.14.(3分)如图所示,一半径为2的圆内切于一个圆心角为60°的扇形,则扇形的周长为12+2π.【解答】解:作PD⊥OA于D,如图,则PD=2,∵OC、OA与⊙P相切,∴∠AOB=∠AOC=×60°=30°,在Rt△POD中,OP=2PD=4,∴OB=OP+PB=6,∴BC弧的长度==2π,∴扇形的周长=6+6+2π=12+2π.故答案为:12+2π.15.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为π+1.【解答】解:如图,∵正方形ABCD的边长为1,∴对角线长:=,点A运动的路径线与x轴围成的面积为:+++×1×1+×1×1=π+π+π++=π+1.故答案为:π+1.16.(3分)如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.三.解答题(共72分)17.(8分)关于x的一元二次方程x2﹣x+p﹣1=0有两实数根x1,x2,(1)求p的取值范围;(2)若[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求p的值.【解答】解:(1)由题意得:△=(﹣1)2﹣4(p﹣1)≥0解得,p≤;(2)由[2+x1(1﹣x1)][2+x2(1﹣x2)]=9得,(2+x1﹣x12)(2+x2﹣x22)=9∵x1,x2是方程x2﹣x+p﹣1=0的两实数根,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x1﹣x12=p﹣1,x2﹣x22=p﹣1∴(2+p﹣1)(2+p﹣1)=9,即(p+1)2=9∴p=2或p=﹣4,∵p≤,∴所求p的值为﹣4.18.(6分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.19.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF 的数量关系,并说明理由.【解答】线段AE与EF的数量关系为:AE=EF.证明:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠HAD=∠DCE=90°,又∵EF⊥AE,∴∠AEF=90°,∵AD∥BC∴∠DAE=∠AEB(两直线平行,内错角相等)∴∠HAE=∠HAD+∠DAE=∠AEF+∠BEA=∠CEF,又∵△HEB是以∠B为直角的等腰直角三角形,∴BH=BE,∠H=45°,HA=BH﹣BA=BE﹣BC=EC,又∵CF平分∠DCE,∴∠FCE=45°=∠EHA,在△HAE和△CEF中∴△HAE≌△CEF(ASA),∴AE=EF.20.(7分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在=4.第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD (1)求反比例函数解析式;(2)求点C的坐标.=4,【解答】解:(1)∵∠ABO=90°,S△BOD∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).21.(8分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.【解答】解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.22.(6分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得10元购物券,至多可得80元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.【解答】解:(1)根据题意得:该顾客至少可得购物券:0+10=10(元),至多可得购物券:30+50=80(元).故答案为:10,80.…2′(2)列表得:01030500﹣(0,10)(0,30)(0,50)10(10,0)﹣(10,30)(10,50)30(30,0)(30,10)﹣(30,50)50(50,0)(50,10)(50,30)﹣∵两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种.…8′∴该顾客所获购物券的金额不低于50元的概率是:.…10′23.(8分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径r.【解答】(1)证明:连接OA、OD,∵D为弧BE的中点,∴OD⊥BC,∠DOF=90°,∴∠D+∠OFD=90°,∵AC=FC,OA=OD,∴∠CAF=∠CFA,∠OAD=∠D,∵∠CFA=∠OFD,∴∠OAD+∠CAF=90°,∴OA⊥AC,∵OA为半径,∴AC是⊙O切线;(2)解:∵⊙O半径是r,∴OD=r,OF=8﹣r,在Rt△DOF中,r2+(8﹣r)2=()2,r=6,r=2(舍),当r=2时,OB=OE=2,OF=BF﹣OB=8﹣2=6>OE,∴r=2舍去;即⊙O的半径r为6.,24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如表所示.销售量p(件)p=50﹣x销售单价q (元/件)当1≤x≤20时,q=30+x 当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?【解答】解:(1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意即第10天或者第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x﹣20)(50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,即y=,(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网店获得利润最大,最大利润为725元.25.(11分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC ﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共5小题,每小题6分,共30分)
1. 如果a<b,那么)()(3b x a x ++-等于( ) A.(x+a)))((b x a x ++- B.(x+a)))((b x a x ++ C.-(x+a)))((b x a x ++- D.-(x+a)))((b x a x ++
2. 如图所示,点A 为∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C ,P 为BC 的中点,过P 作BC 的垂线交OA 于点D .∠MON=60°,则∠BDC=( )
A.120°
B.130°
C.140°
D.150°
3. 方程(x 2-x-1)x+2=1的整数解的个数有( )
A. 2
B. 3
C. 4
D. 5
4. 已知直线y 1=x ,y 2=31x+1,y 3=-5
4x+5的图象如图所示,若无论x 取何值,y 总取y 1、y 2、y 3中的最小值,则y 的最大值为( ) A.23 B.1737 C.1760 D.9
25 5. (改编题)在2011,2012,2013,2014这四个数中,不能表示为两个整数的平方差的数是( )
A.2011
B.2012
C.2013
D.2014
二、填空题(本大题共5小题,每小题6分,共30分)
6. 不等边△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则它的长度最大可能是_______.
7. (改编题)已知2a •5b =2c •5d =10,则(a-1)(d-1)-(b-1)(c-1)= .
8. (改编题)如图,两正方形彼此相邻且内接于半圆,若大正方形的面积64cm 2
,则小正方形的面积为 .
第8题图 第9题图
9. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反
比例函数y=
x
k (x >0)的图象与△ABC 有公共点,则k 的取值范围是 . 10. (改编题)已知:n,k 均为自然数,且满足不等式137<k n n +<116,若对于某一给定的自然数n,只有惟一的一个自然数k 使不等式成立,则所有符合要求的自然数n 中的最大数和最小数的和是 .
三、解答题(本大题共5小题,共40分)
11. (本题满分8分)若实数a,b,c 满足
b a +-2011×b a --2011=
c b a --+253+c b a -+32,
求c 的值.
12. (本题满分8分)矩形ABCD 中,AB=20,BC=10,若在AC 、AB 上各取一点M 、N (如图),使BM+MN 的值最小,求这个最小值.
13. (改编题)(本题满分8分)设三个方程x 2+4mx+4m 2+2m+3=0, x 2+(2m+1)x+m 2=0,(m-1)x 2+2mx+m-1=0中至少有一个方程有实根,求m 的取值范围.
14. (改编题)(本题满分8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:BC=2CD.
15. (改编题)(本题满分8分)已知5个三位数acb、bac、bca、cab、cba的和为3194,
求三位数abc.
答案
6.5 提示:根据面积相等,可设△ABC 的两边长为3x ,x ;因为2S=3x ×4=12x. 2S=第三边的长×第三条高,所以第三条高=第三边的长
S 2.因为2x <第三边长度<4x, 所以x x 412<第三条高<x
x 212,即3<第三条高<6. 第三条高的长度最大整数值是5.
10.97 提示:因为n>0,n+k>0,所以有⎩⎨⎧>+<+n
k n n k n 1166,1377得65n<k<76n.由已知,76n-6
5n ≤2,∴n ≤84.当n=84时,70<k<72,只能取唯一值k=71,故n 的最大值是84;又由65n<k<76n 得65<n k <76,即1210<n k <14
12,故当n=13时,k=11满足条件,可得n 的最小值是13.
11.由已知,得a-2011+b ≥0,2011-a-b ≤0,故2011≤a+b ≤2011,所以a+b=2011.代入原式,得c b a --+253+c b a -+32=0,又c b a --+253≥0,c b a -+32 ≥0,所以
c b a --+253=c b a -+32=0,所以⎩⎨⎧=-+=--+).
2(032),1(0253c b a c b a (2)×2-(1),得a+b+2-c=0,故c=a+b+2=2011+2=2013.
12. 如图,作B 关于AC 的对称点B ′,连结AB ′,则N 关于AC 的
对称点N ′在AB ′上,过B 作AB ′的垂线,垂足为H ′,则
BM+MN=BM+MN ′≥BH ′,即BM+MN 的最小值为BH ′.设AB ′交CD 于
点P ,连结BP ,则△ABP 的面积等于10010202
1=⨯⨯,由AB ∥CD 及由对称性知∠PAC=∠PCA ,∴AP=PC ,设AP=PC=x ,则DP=20-x ,根
据勾股定理,得22210)20(+-=x x ,解得x=12.5.又20102
1'21⨯⨯=⋅BH AP ,∴165
.12200'==BH .故BM+MN 的最小值是16.
15.由abc +acb +bac +bca +cab +cba =3194+abc ,
222×(a+b+c )=3194+100a+10b+c ,3194÷222=14…86,∴a+b+c >14.
当a+b+c=15时,abc =15×222-3194=3330-3194=136,而1+3+6≠15,故错误. 当a+b+c=16时,abc =16×222-3194=358;
当a+b+c=17时,abc =17×222-3194=580,5+8+0≠17,不合题意;
当a+b+c=18时,abc =18×222-3194=802,8+0+2≠18,不合题意;
当a+b+c≥19时,abc>1000,不合题意.∴abc=136+222=358.。