高考数学二轮复习:三角函数专题

合集下载

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。

高三数学第二轮专题复习(4)三角函数

高三数学第二轮专题复习(4)三角函数

高三数学第二轮专题复习系列(4)三角函数一、本章知识结构:二、高考要求1.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

2.掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

4.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A 、ω、 的物理意义。

5. 会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx 表示角。

三、热点分析1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题。

3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度. 四、复习建议应用同角三角函数的基本关任意角的概念 任意角的三角诱导公式 三角函数的图象与计算与化简 证明恒等式 已知三角函数值求和角公式 倍角公式 差角公式 弧长与扇形面积公角度制与弧度应用应用 应用应用本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。

高考总复习二轮文科数学精品课件 专题1 三角函数与解三角形 考点突破练1 三角函数的图象与性质

高考总复习二轮文科数学精品课件 专题1 三角函数与解三角形 考点突破练1 三角函数的图象与性质
g(x2)=2,∴g(x1)=g(x2)= 2或 g(x1)=g(x2)=2,∴|x1-x2|=kπ,k∈N,∴|x1-x2|min=π.
7.(2023 陕西榆林二模)已知函数
π
π
2 7π
f(x)=2sin(2x+6 )在[-4 , 6 ]和[ 5 , 12 ]上都是单调
的,则 a 的取值范围是( D )
π
f(x)=2sin(ωx+6 )(ω>0),若方程|f(x)|=1
在区间(0,2π)内恰有 5 个实
根,则 ω 的取值范围是( D )
7 5
A.( , ]
6 3
解析 由|f(x)|=
5 13
B.( , ]
3 6
π
|2sin(ωx+ )|=1
6
4
C.(1, ]
3
可得
π
1
sin(ωx+ )=± ,若
6
5
π·
=1,∴当
2
5
f(2)>f(1)=2,当
5
2
x=2时,f(x)< +sin
5
x=2时,得
πx 不成立,即
5
5 2
4
4
g(2)=f(2)- 5 >f(1)-5=2-5
2
=
6
>sin
5
5

g(2)<sin 2 不成立,由此可在坐标系
中画出 g(x)与 y=sin πx 大致图象如图所示:
由图象可知,当 x∈(-∞,-1)∪(0,1)时,g(x)<sin πx,即
f(x)的单调递增区间为[kπ-

π

专题四 三角函数 第一讲 三角函数的图像及性质——2024届高考数学二轮复习

专题四 三角函数 第一讲  三角函数的图像及性质——2024届高考数学二轮复习
2
当 x 2k , k Z时,y取得最小值-1
得最大值1
当 x 2k , k Z
2
时,y取得最小值-1
解题技巧
1.三角函数定义域的求法 求三角函数的定义域实际上是解简单的三角不等式, 常借助三角函数线或三角函数图象来求解.
解题技巧
2.三角函数值域(最值)的三种求法 (1)直接法:利用 sinx,cosx 的值域.
6
关于 y 轴对称,则 的最小值为( )
A.1
B.2
C. 2
3
√D.5
f (x) sinx
3
cos x
2 sin
x
π 3

g(x)
2
sin
x
π 6
π 3
2
sin
x
π 6
π 3
.
又函数 g(x) 的图象关于 y 轴对称,则 π π kπ π , k Z , 6k 5 , k Z . 0 ,
)
A. f (x) 的一个周期为 2π
B. f (x) 的图象关于直线 x 8π 对称
3
C. f (x π) 的一个零点为 x π
6
√D.
f
(x)

π 2
,
π
上单调递减
f
(x)
的周期为
2kπ

k
Z
,故
A
中结论正确;
f
8π 3
cos
8π 3
π 3
cos 3π
1

为 f (x) 的最小值,故 B 中结论正确;
f
(x
π)
cos
x
π
π 3
cos
x

【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质

【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质
sin(ωx+φ)=(
)

A.sin x + 3

B.sin 3 -2x

C.cos 2x + 6
D.cos
5
-2x
6
答案 BC

解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2


π

= 2,则 T=π,所以 ω= =


=2,当
π

= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +

高三数学二轮复习专题 三角函数(公开课)

高三数学二轮复习专题 三角函数(公开课)

高三数学二轮复习专题三角函数(公开课)高三数学二轮复习专题三角函数(公开课)一、基础知识回顾三角函数是高中数学中的重要内容之一。

在这个专题中,我们将回顾三角函数的基础知识,包括正弦函数、余弦函数、正切函数等的定义、性质以及相互之间的关系。

1. 三角函数的定义在直角三角形中,我们定义了三角函数的概念。

对于一个角A,定义了三个比值:正弦函数sinA=对边/斜边,余弦函数cosA=邻边/斜边,正切函数tanA=对边/邻边。

2. 三角函数的周期性我们知道,三角函数具有周期性。

例如,正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

这意味着在一个周期内,三角函数的值是重复的。

这种周期性使得三角函数在实际问题中具有广泛的应用。

3. 三角函数的性质三角函数有许多重要的性质。

例如,正弦函数和余弦函数是偶函数,即f(x)=f(-x);正切函数是奇函数,即f(x)=-f(-x)。

此外,三角函数还具有增减性和界值性质。

二、三角函数的图像与性质下面我们将进一步讨论三角函数的图像与性质。

通过对三角函数图像的分析,我们能够更好地理解三角函数的特点和性质。

1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,振动范围在[-1,1]之间。

正弦函数的图像关于y轴对称,且在0点处取得最小值。

我们可以通过调整系数来改变正弦函数的振幅和周期。

2. 余弦函数的图像与性质余弦函数的图像也是一条连续的波浪线,振动范围也在[-1,1]之间。

与正弦函数不同的是,余弦函数的图像关于x轴对称,且在0点处取得最大值。

同样地,我们可以通过系数调整来改变余弦函数的振幅和周期。

3. 正切函数的图像与性质正切函数的图像是一条连续的曲线,其值在整个实数轴上变化。

正切函数在某些点上没有定义,这些点是函数的奇点。

我们可以通过系数调整来改变正切函数的振幅和周期。

三、三角函数的应用三角函数在实际问题中有广泛的应用。

在这一部分,我们将介绍一些常见的三角函数应用,并通过例题来加深理解。

新高考新教材数学二轮复习六大核心专题1三角函数与解三角形解答题专项1三角函数与解三角形pptx课件

新高考新教材数学二轮复习六大核心专题1三角函数与解三角形解答题专项1三角函数与解三角形pptx课件
6
π
φ=-6.
考点二
利用正弦、余弦定理解三角形
考向1 求三角形中的边或角
例 2(2023 北京海淀一模)在△ABC 中,bsin2A= 3asinB.
(1)求 A;
(2)若△ABC 的面积为 3 3,再从条件①、条件②、条件③这三个条件中选择
一个作为已知,使△ABC 存在且唯一确定,求 a 的值.
1
∵0<B<π,∴sinB≠0,则 cosA=-2.

∵0<A<π,∴A= . ........................................................................................ 10
3
1
1

1
3
3
由(1)知 bc=1,故 S△ABC=2bcsinA=2×1×sin 3 = 2×1× 2 = 4 . ................... 12
4
2
3
4
π
3
π
π
π

整理得 sin(2x+3)= 2 ,即 2x+3=2kπ+3或 2x+3=2kπ+ 3 (k∈Z),
π
π

π
当 k=0 时,2x+ = 或 ,即 x=0 或 ;
3
3
3
6

当 k=1 时,x=π 或 6 .
π


故所有零点之和为 0+ +π+ = .
6
6
3
增分技巧1.三角恒等变换在三角函数图象与性质中应用的基本思路:通过

新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件

新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
=2,则
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则

α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=

(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=

2024届高考数学二轮复习专题1三角函数与解三角形课件

2024届高考数学二轮复习专题1三角函数与解三角形课件

即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量

2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习(附答案)

2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习(附答案)

2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。

二轮专题复习第1讲三角函数公式图像与性质(学生版)

二轮专题复习第1讲三角函数公式图像与性质(学生版)

2023年高考数学二轮复习三角函数专题第1讲 三角函数公式,图像与性质1. 同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α= . (2)商数关系:tan α= .2.诱导公式:第①大组: )(2R k k ∈+απ, α-, απ-, απ+, απ-2 记忆口诀: ;第②大组:απ±2, απ±23 记忆口诀: 2.两角和与差的正弦、余弦、正切公式及倍角公式sin(α±β)= β――→令α=βsin 2α= .cos(α±β)= ――→令α=βcos 2α= = =tan(α±β)= ――→令α=βtan 2α= .3.公式的逆向变换及有关变形:(1)sin αcos α=(2)降幂公式:sin 2α= ,cos 2α= ;(3)1±sin 2α= ;sin α±cos α=4.辅助角公式:asin α+bcos α= ,(其中cos φ= ,sin φ= ,tan φ= .φ的终边所在象限由a 、b 的符号来确定)5.在三角的恒等变形中,注意常见的拆角、拼角技巧如:①α=(α+β)-β ②2α=(α+β)+(α-β)③α=12[(α+β)+(α-β)] ④α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. 二.三角函数定义 1.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α= ,cos α= ,tan α= ,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.2.三角函数在各象限内的正值口诀是: .三.三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点);(2)对称轴:y =sin x ,x = ,k ∈Z ;y =cos x ,x = ,k ∈Z ;对称中心:y =sin x , ,k ∈Z ;y =cos x , ,k ∈Z ;y =tan x , ,k ∈Z .(3) 单调区间:y =sin x 的增区间: (k ∈Z ),减区间: (k ∈Z );y =cos x 的增区间: (k ∈Z ),减区间: (k ∈Z );y =tan x 的增区间: (k ∈Z ).(4)周期性与奇偶性:y =sin x 的最小正周期为 ,为 函数;y =cos x 的最小正周期为 ,为 函数;y =tan x 的最小正周期为 ,为 函数.四.y =Asin(ωx +φ)的有关概念=sin x 的图象作如下变换得到:(1)相位变换:y =sin x →y =sin(x +φ),把y =sin x图象上所有的点向 (φ>0)或向 (φ<0)平行移动 个单位.(2)周期变换:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标伸长( )或缩短( )到原来的 倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标伸长( )或缩短( )到原来的 倍(横坐标不变).3.确定y =Asin(ωx +φ)+b 的解析式的步骤:(1)求A ,b.确定函数的最大值M 和最小值m ,则A = ,b = .(2)求ω.确定函数的周期T ,则ω= .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ =π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2. 4. 函数y =Asin(ωx +φ) (A>0,ω>0)性质:(1)单调性:增区间由 ,k ∈Z 得;减区间由 ,k ∈Z(2)最值:最大值为 ,当且仅当 k ∈Z 取最大值; 最小值为 ,当且仅当 k ∈Z 取最大值。

高三数学第二轮复习三角函数的图像与性质ppt课件.ppt

高三数学第二轮复习三角函数的图像与性质ppt课件.ppt

直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
注 一般说来, 某一周期函数解析式加绝对值或平方, 其周期 性是: 弦减半、切不变.

前 热 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物

1.给出四个函数:
(A)y=cos(2x+π/6) (B)y=sin(2x+π/6)
要特别注意, 若由 或向右平移应平移 |
y=s| i个n(单x位) 得. 到
y=sin(x+)
的图象,
则向左
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
二、三角函数图象的性质
1.正弦函数 y=sinx(xR) 是奇函数, 对称中心是 (k, 0)(kZ), 对 对称称轴 中是 心直 是线(kx+=k2,+0)2(k(kZZ),);对余称弦轴函是数直y线=coxs=xk(x(kR)Z是)(偶正函, 数余,
1、 解:(1) m n 2 3sin xcos x 2cos2 x
作函数
y
2
s
in(1
x
3
)
的图象,并说明图象可
由函数 y sin x 的图象经过怎样的变换得到.

2023年高考数学二轮复习热点重点难点专练——三角函数定义与三角函数恒等变换(含答案解析)

2023年高考数学二轮复习热点重点难点专练——三角函数定义与三角函数恒等变换(含答案解析)

重难点10三角函数定义与三角函数恒等变换1.三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P的坐标,求角α的三角函数值.方法:先求出点P到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P的横坐标或纵坐标,求与角α有关的三角函数值.方法:先求出点P到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y=kx,k≠0),求角α的三角函数值.方法:先设出终边上一点P(a,ka),a≠0,求出点P到原点的距离(注意a的符号,对a 分类讨论),再利用三角函数的定义求解.2.对sinα,cosα,tanα的知一求二问题(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sinαcosα=tanα可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.3.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――――→利用诱导公式一0~2π的角的三角函数――――――――→利用诱导公式二或四或五锐角三角函数也就是:“负化正,大化小,化到锐角就好了”.4.三角函数式化简的原则和方向(1)切化弦,统一名.(2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.也就是:“统一名,统一角,同角名少为终了”.5.三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正弦、余弦函数值,若角的范围是0,π2,选正弦、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是-π2,π2,选正弦函数.2023年高考仍将重点考查同角三角函数基本关系及三角恒等变换,同时要注意三角函数定义的复习,题型仍为选择题或填空题,难度为基础题或中档题.(建议用时:40分钟)一、单选题1.sin 20cos 70sin10sin 50︒︒+︒︒的值是()A .14B .32C .12D .342.设θ是第二象限的角,则必有()A .tancot 22θθ>B .tancot22θθ<C .sincos22θθ>D .sincos22θθ<3.已知2sin 23α=,(0,)απ∈,则sin cos αα+=()A .153B .153-C .53D .53-4.已知2sin 23α=,则2cos 4πα⎛⎫+ ⎪⎝⎭=()A .16B .15C .14D .135.函数2cos 3cos 2y x x =-+的最小值为()A .2B .0C .14-D .66.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .33C .23D .227.已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .28.已知α为第二象限角,3sin 5α=,则sin 2α=.A .2425-B .1225-C .1225D .24259.已知4sin cos 3αα-=,则sin 2α=.A .79-B .29-C .29D .7910.已知θ是第三象限的角,且445sin cos 9+=θθ,那么sin 2θ的值为A .223B .223-C .23D .23-11.4cos50°﹣tan40°=()A .2B .232+C .3D .221-12.已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=()A .35-B .45-C .23D .34二、填空题13.如果12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,那么πcos 4θ⎛⎫+ ⎪⎝⎭=_______.14.已知2sin ()4πα+=23,则sin 2α的值是____.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.16.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos 2β=_________.三、解答题17.已知A 、B 、C 是ABC 三内角,向量(1,3),(cos ,sin )m n A A =-= ,且1m n ⋅=.(1)求角A ;(2)若221sin 23cos sin BB B+=--,求tan C .18.已知函数()2sin cos cos 2f x x x x =+.(1)求π4f ⎛⎫⎪⎝⎭的值;(2)设2(0,π),22f αα⎛⎫∈= ⎪⎝⎭,求sin α的值.重难点10三角函数定义与三角函数恒等变换1.三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P 的坐标,求角α的三角函数值.方法:先求出点P 到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P 的横坐标或纵坐标,求与角α有关的三角函数值.方法:先求出点P到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y=kx,k≠0),求角α的三角函数值.方法:先设出终边上一点P(a,ka),a≠0,求出点P到原点的距离(注意a的符号,对a 分类讨论),再利用三角函数的定义求解.2.对sinα,cosα,tanα的知一求二问题(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sinαcosα=tanα可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.3.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――――→利用诱导公式一0~2π的角的三角函数――――――――→利用诱导公式二或四或五锐角三角函数也就是:“负化正,大化小,化到锐角就好了”.4.三角函数式化简的原则和方向(1)切化弦,统一名.(2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.也就是:“统一名,统一角,同角名少为终了”.5.三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正弦、余弦函数值,若角的范围是0,π2,选正弦、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是-π2,π2,选正弦函数.2023年高考仍将重点考查同角三角函数基本关系及三角恒等变换,同时要注意三角函数定义的复习,题型仍为选择题或填空题,难度为基础题或中档题.(建议用时:40分钟)一、单选题1.sin 20cos 70sin10sin 50︒︒+︒︒的值是()A .14B .32C .12D .34【答案】A【解析】()()11sin 20cos70sin10sin 50sin 90sin 50cos60cos 4022︒︒+︒︒=︒+-︒-︒+-︒⎡⎤⎡⎤⎣⎦⎣⎦1111sin 50cos 402242=-︒-+︒111cos 40cos 40422=-︒+︒14=.故选:A.2.设θ是第二象限的角,则必有()A .tancot 22θθ>B .tancot22θθ<C .sincos22θθ>D .sincos22θθ<【答案】A【解析】22sin cos sin cos cos 22222tancot122tan cossincos sin sin 22222θθθθθθθθθθθθθ---=-===- θ是第二象限的角,tan 0,sin 0,cos 0θθθ∴<><,即2tancot 022tan θθθ-=->,tancot 22θθ∴>,A 正确,B 错误;θ是第二象限的角,即(2,2)(),2k k k Z πθπππ∈++∈(,)()242k k k Z θππππ∴∈++∈当(2,2)()242k k k Z θππππ∈++∈时,22sin cos cos 022θθθ-=->,可得sin cos 022θθ>>,D 错误;当53(2,2)()242k k k Z θππππ∈++∈时,22sin cos cos 022θθθ-=->,可得sincos 022θθ<<,C 错误;故选:A.3.已知2sin 23α=,(0,)απ∈,则sin cos αα+=()A .153B .153-C .53D .53-【答案】A【解析】由2sin 22sin cos 03ααα==>,又(0,)απ∈,所以π(0,)2α∈,所以sin cos 0αα+>,又()25sin cos 12sin cos 3αααα+=+=,所以3sin co 5s 1αα+=或3sin cos 15αα+=-(舍去),所以3sin co 5s 1αα+=.故选:A .4.已知2sin 23α=,则2cos 4πα⎛⎫+ ⎪⎝⎭=()A .16B .15C .14D .13【答案】A 【解析】21cos(2)2cos ()42παπα+++==1sin 22α-=2132-=16,故选A.5.函数2cos 3cos 2y x x =-+的最小值为()A .2B .0C .14-D .6【答案】B【解析】因为2cos 3cos 2y x x =-+,设cos t x =,则()223132()1124y t t t t =-+=---≤≤,由二次函数性质可得当[]1,1t ∈-上单调递减,所以当1t =,()23211y t t t =-+-≤≤取最小值,最小值为0,故当2,Zx k k π=∈时,函数2cos 3cos 2y x x =-+取最小值,最小值为0,故选:B.6.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .33C .23D .22【答案】B【解析】由题意可得:13sin sin cos 122θθθ++=,则:33sin cos 122θθ+=,313sin cos 223θθ+=,从而有:3sin coscos sin663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.7.已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭ ,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.8.已知α为第二象限角,3sin 5α=,则sin 2α=.A .2425-B .1225-C .1225D .2425【答案】A【解析】因为α为第二象限,所以cos 0α<,即24cos 1sin 5αα=--=-,所以4324sin 22sin cos 25525ααα==-⨯⨯=-,选A.9.已知4sin cos 3αα-=,则sin 2α=.A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A.10.已知θ是第三象限的角,且445sin cos 9+=θθ,那么sin 2θ的值为A .223B .223-C .23D .23-【答案】A【解析】∵22sin cos 1θθ+=,∴4422sin cos 2sin cos 1θθθθ++=,∵445sin cos 9+=θθ,∴2242sin cos 9θθ=,∵角是第三象限角即322,2k k k Z ππθππ+<<+∈,∴24234,k k k Z ππθππ+<<+∈,∴22sin 23θ=,故选A .11.4cos50°﹣tan40°=()A .2B .232+C .3D .221-【答案】C【解析】4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C12.已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=()A .35-B .45-C .23D .34【答案】A【解析】找θ角终边上一点(1,2),则25sin 5θ=,5cos 5θ=,所以223cos 2cos sin 5θθθ=-=-故选A.二、填空题(共0分)13.如果12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,那么πcos 4θ⎛⎫+ ⎪⎝⎭=_______.【答案】7226-【解析】因12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,则25sin 1cos 13θθ=--=-,所以πππ122527cos cos cos sin sin 244413213226θθθ⎛⎫⎛⎫+=-=-⨯--⨯=- ⎪ ⎪⎝⎭⎝⎭.故答案为:7226-14.已知2sin ()4πα+=23,则sin 2α的值是____.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79-【解析】试题分析:因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.16.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos 2β=_________.【答案】3101045【解析】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos 10αα-=,即3101010sin cos 101010αα⎛⎫-= ⎪ ⎪⎝⎭,令10sin 10θ=,310cos 10θ=,则()10sin 10αθ-=,∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴310sin sin 2cos 210k παθπθ⎛⎫=++== ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:31010;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos 10αα-=,又22sin cos 1αα+=,将cos 3sin 10αα=-代入得210sin 610sin 90αα-+=,解得310sin 10α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:31010;45.三、解答题17.已知A 、B 、C 是ABC 三内角,向量(1,3),(cos ,sin )m n A A =-= ,且1m n ⋅= .(1)求角A ;(2)若221sin 23cos sin B B B+=--,求tan C .【答案】(1)π3A =;(2)853tan 11C +=.【解析】(1)∵1m n ⋅= ,∴(1,3)(cos ,sin )1A A -⋅=,即cos 3sin 1A A -+=,312(sin cos )122A A -=,1sin()62A π-=,∵0πx <<,ππ5π666A -<-<,∴ππ66A -=,∴π3A =;(2)由题知:2212sin cos 3cos sinB B B B +=--,所以()2222sin cos 2sin cos 3cos sin B B B B B B ++=--整理得22sin sin cos 2cos 0B B B B --=,∴cos 0B ≠,∴2tan tan 20B B --=,∴tan 2B =或tan 1B =-,而tan 1B =-时,22cos sin 0B B -=,与已知矛盾,舍去,∴tan 2B =,∴tan tan 23853tan tan[()]tan()1tan tan 11123A B C A B A B A B π+++=-+=-+=-=-=--.18.已知函数()2sin cos cos 2f x x x x =+.(1)求π4f ⎛⎫ ⎪⎝⎭的值;(2)设2(0,π),22f αα⎛⎫∈= ⎪⎝⎭,求sin α的值.【答案】(1)1(2)264+【解析】(1)由已知,函数()2sin cos cos 2sin 2cos 2f x x x x x x =+=+,所以πππsin cos 101422f ⎛⎫=+=+= ⎪⎝⎭.(2)π()sin 2cos 22sin 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,所以π2π12sin sin 24242f ααα⎛⎫⎛⎫⎛⎫=+=⇒+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()0,πα∈,所以ππ5π,444α⎛⎫+∈ ⎪⎝⎭,所以2ππ3cos 1sin 442αα⎛⎫⎛⎫+=±-+=± ⎪ ⎪⎝⎭⎝⎭,①当π3cos 42α⎛⎫+= ⎪⎝⎭时,ππππππ26sin sin sin cos cos sin 4444444αααα⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦而当()0,πα∈时,sin 0α>,所以此种情况不成立;②当π3cos 42α⎛⎫+=- ⎪⎝⎭时,ππππππ26sin sin sin cos cos sin 4444444αααα⎡⎤+⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.所以sin α的值为264+.。

2024年对口高考数学二轮复习专题四—三角函数

2024年对口高考数学二轮复习专题四—三角函数

2024年对口高考数学专题四—三角函数一、选填1、已知,且,则tan(﹣α)=()A.B.C.D.2、若∠α的终边落在第三象限,则+的值为()A.3B.﹣3C.1D.﹣13、函数f(x)=3sin x+4cos x(x∈R)的最小值是()A.﹣7B.﹣12C.﹣5D.14、已知α,β均为锐角,且,,则tanβ等于()A.B.C.D.5、若α是钝角,且,则cos(π+α)=()A.B.C.D.6、若cos x+2m=1,x∈R,则实数m的取值范围是()A.[﹣1,1]B.[0,1]C.[﹣1,0]D.[﹣1,2] 7、已知函数f(x)=A sin(ωx+φ)(A,ω,φ是常数,A>0,ω>0,)的部分图象如图所示,则()A.B.C.D.8、已知a=sin20°,b=cos20°,c=tan75°,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 9、在△ABC中,a cos A=b cos B,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形10、函数在区间内的最小值为()A.B.C.D.11、要得到函数y=sin(2x﹣)的图像,只需要将函数y=sin2x的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度14、函数f(x)=5sin x cos x的最大值为.15、若sinα+2cosα=0且,则sin2α﹣sinαcosα=.16、已知角α的终边经过点P(m+3,m﹣1),且tanα=2,则m的值为。

17、=.18、已知,且α是锐角,若β是锐角,且,则cosβ的值二、解答题19、在锐角三角形中,有.(1)求角C的大小;(2)若,且三角形面积,求a+b的值.20、在△ABC中,cos A=,BC=8,AC=7.(Ⅰ)求B的大小;(Ⅱ)若D是BC的中点,求AD的长.21、△ABC中D是BC上的点,AD平分∠BAC,BD=2DC.(I)求;(Ⅱ)若∠BAC=60°,求∠B.22、如图,△ABC是边长为3的等边三角形,线段AE交BC于点D,BD=1.(1)求sin∠ADB;(2)若AD=3DE,求BE长.23、如图,在△ABC中,AB>BC,∠ABC=120°,AB=3,∠ABC的角平分线与AC交于点D,BD=1.(Ⅰ)求sin A;(Ⅱ)求△BCD的面积.24、如图所示,在△ABC中,D为BC边上的一点,已知AB=3,AC=6,∠BAC=120°,∠BAD=90°.求:(1)BC的长;(2)△ADC的面积.。

高考二轮复习三角函数(学生版)

高考二轮复习三角函数(学生版)

高考二轮专题复习————三角函数(一)1、 已知()sin 2sin 2cos 2166f x x x x ππ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭(1)求函数f (x )的最小正周 (2)求函数f (x )的单调递减区间;(3)该函数的图象可由y=sinx (x R ∈)的图象经过怎样的平移和伸缩变换得到?2、已知函数2()sin (sin 2cos )cos f x x x x x =+-(1)求f (x )的最小正周期和最大值;(2)求f (x )的单调区间。

(3)在直角坐标系中画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象。

3、已知函数()sin()sin()cos (66f x x x x a x R ππ=++-++∈,a 为常数) (1)求函数f (x )的最小正周期;(2)若函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之a 的值。

4、已知函数2()2cos sin 3sin sin cos 3f x x x x x x π⎛⎫=+-+ ⎪⎝⎭(1)求函数f (x )的单调递减区间;(2)将函数f (x )的图象按向量(),0a m =平移,使平移后函数为偶函数,求m 的最小正值。

5、已知函数()2cos (sin cos )1,f x x x x x R =-+∈,(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间3,84ππ⎡⎤⎢⎥⎣⎦上的最小值和最大值并求出相应的x 值。

6、已知函数21()cos ,()1sin 2122f x x g x x π⎛⎫=+=+ ⎪⎝⎭(1)设x=0x 是函数()y f x =图像的一条对称轴,求0()g x 的值;(2)求函数()()()h x f x g x =+的单调递增区间。

7.已知函数2()12sin 2sin cos 888f x x x x πππ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求:(1) 函数()f x 的最小正周期;(2)求函数()f x 的单调递增区间。

2023新教材高考数学二轮专题复习:三角函数与解三角形课件

2023新教材高考数学二轮专题复习:三角函数与解三角形课件

技法领悟
1.若涉及已知条件中含边长之间的关系,且与面积有关的最值问题, 一般利用S=12ab sinC型面积公式及基本不等式求解.
2.若求与三角形边长有关的表达式的最值或取值范围时,一般把边
用三角形的一个角表示,利用角的范围求解.
巩固训练1 1.[2022·河北沧州二模]在△ABC中;内角A,B,C的对边分别为a, b,c,已知b(2sin A- 3cos A)=a sin B. (1)求A;
2,则sin B= 22且π>B>0,可得B=π4或B=34π,
(2)若a=2,求△ABC的面积.
解析:由题设,a=2,则b= 3,又B=π4,
所以cos B=a2+c2−b2=1+c2= 2,整理得c2-2 2c+1=0,解得c= 2±1,满足
2ac
4c 2
题设.
由S△ABC=12ac sin B= 22c, 所以,当c= 2+1时S△ABC=1+ 22;当c= 2-1时S△ABC=1- 22.
(2)将函数f(x)的图象向右平移π6个单位长度,再把各点的横坐标缩小 为原来的12(纵坐标不变),得到函数y=g(x)的图象,当x∈[-1π2,π6]时, 求函数g(x)的值域.
解析:将函数f(x)的图象向右平移π6个单位长度,可得y=2sin (2x-π3)的图象. 再把横坐标缩小为原来的12,得到函数y=g(x)=2sin (4x-π3)的图象. 当当当x44∈xx--[-ππ33==1π2-π3,时π2时,π6]时,函,函数4数gx(-xg)(取π3x∈)取得[-得最2最大3π 小值,值,π3],最,最 大小值值为为3-,2, 故函数g(x)的值域为[-2, 3].
1.已知函数f(x)= 称轴间的距离为π2.

二轮专题复习(二):三角函数与解三角形

二轮专题复习(二):三角函数与解三角形

二轮专题复习(二):三角函数与解三角形•应知已会——熟练 •会而不对——巩固 •对而不全——强化 •全而不优——指导三角函数二轮复习的目标和方向(1)注重任意角三角函数的定义,深化公式的理解记忆 (2)二倍角公式和两角和差公式是化简的核心工具 (3)三角函数的图象与性质是核心(4)解三角形问题要充分利用正、余弦定理以及两角和与差的三角公式 典型例题:一.三角函数的概念、诱导公式与三角恒等变换例1.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45变式1.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(a b -= )A .15B CD .1变式2.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin()απ+的值; (2)若角β满足5sin()13αβ+=,求cos β的值.例2.若角α的终边在第二象限,则下列三角函数值中大于零的是( )(A )πsin()2α+ (B )πcos()2α+(C )sin(π)α+ (D )cos(π)α+变式1.若tan 0α>,则( )A. sin 20α>B. cos 0α>C. sin 0α>D. cos20α>例3.已知α∈(0,),2sin 2α=cos 2α+1,则sin α=( )A . BCD变式1.若 ,则( ) A .B .C .1D . 变式2.若,则tan2α=( ) A .−B .C .−D . 变式3.已知,则( ) A .B .C .D .变式4.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=变式5.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+= . 变式6. 已知4sin cos 3αα-=,则sin 2α=_________ 二. 三角函数的图象与性质例 1.动点(),A x y 在圆422=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间0t =时,点A 的坐标是)3,1(,则动点A 的纵坐标y 关于t (秒)的函数的解析式为 .例2.若()cos sin =-f x x x 在[,]-a a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π变式1. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( ) 2π155353tan 4α=2cos 2sin 2αα+=642548251625sin cos 1sin cos 2αααα+=-34344343210cos 2sin ,=+∈αααR =α2tan 344343-34-A .]45,21[B .]43,21[C .]21,0(D .]2,0(变式2.函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( ).A .13(,)44k k ππ-+,k Z ∈ B .13(2,2)44k k ππ-+,k Z ∈ C .13(,)44k k -+,k Z ∈ D .13(2,2)44k k -+,k Z ∈ 变式3.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈ 恒成立,且()()2f f ππ>,则()f x 的单调递增区间是_________________ 例3.函数3()sin(2)3cos 2f x x x π=+-的最小值为 ______ . 变式1.若x ∈(0,)则2tanx+tan(-x)的最小值为 . 变式2.若,则函数的最大值为 .变式3. 函数xxy cos 3sin 1--=的值域___________.变式4.当时,函数的最小值为__________.例4.函数图像可由函数图像至少向右平移____个单位长度得到.变式1.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移则ϕ=_________。

高三数学二轮专题复习 三角函数与解三角形 附详细答案解析

高三数学二轮专题复习 三角函数与解三角形 附详细答案解析

(一)三角函数与解三角形1.(2019·沈阳郊联体模拟)若sin ⎝⎛⎭⎫π3-x =23,则cos ⎝⎛⎭⎫π3+2x 等于( ) A.79 B.19 C.-19 D.-792.(2019·海口调研)下列不等式正确的是( )A.sin 130°>sin 40°>log 34B.tan 226°<ln 0.4<tan 48°C.cos(-20°)<sin 65°<lg 11D.tan 410°>sin 80°>log 523.(2019·钦州模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,C =π4,tan B =43,则△ABC 的面积等于( ) A.87 B.37 C.47 D.274.(2019·宜宾诊断)要得到函数y =sin ⎝⎛⎭⎫2x +π4的图象,可以将函数y =cos ⎝⎛⎭⎫π6-2x 的图象( ) A.向右平移π24个单位长度 B.向左平移π24个单位长度 C.向右平移π12个单位长度 D.向左平移π12个单位长度 5.(2019·天一联考)已知f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,则函数f (x )的对称中心可以为( )A.⎝⎛⎭⎫π6,0B.⎝⎛⎭⎫π6,1C.⎝⎛⎭⎫-π6,0D.⎝⎛⎭⎫-π6,1 6.(2019·广元统考)函数f (x )=sin 2x -3(cos 2x -sin 2x )的图象为C ,以下结论正确的是( ) ①f (x )的最小正周期为π;高三数学二轮专题复习②对任意的x ∈R ,都有f ⎝⎛⎭⎫x +π6+f ⎝⎛⎭⎫π6-x =0; ③f (x )在⎝⎛⎭⎫-π12,5π12上是增函数; ④由y =2sin 2x 的图象向右平移π3个单位长度可以得到图象C . A.①② B.③④ C.①②③ D.①②③④7.(2019·漳州质检)已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎫ω>0,||φ<π2,满足f ⎝⎛⎭⎫2π3-x =2-f (x ),且对任意x ∈R ,都有f (x )≥f ⎝⎛⎭⎫π4.当ω取最小值时,函数f (x )的单调递减区间为( )A.⎣⎡⎦⎤π12+k π3,π4+k π3,k ∈ZB.⎣⎡⎦⎤π12+2k π,π4+2k π,k ∈Z C.⎣⎡⎦⎤-π12+k π3,π12+k π3,k ∈Z D.⎣⎡⎦⎤-π12+2k π,π12+2k π,k ∈Z 8.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积”中提出了已知三角形三边a ,b ,c 求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为10+27的△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,则用以上给出的公式求得△ABC 的面积为( )A.6 3B.47C.87D.129.(2019·成都诊断)某小区打算将如图的一直角三角形ABC 区域进行改建,在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知AB =20 m ,AC =10 m ,则△DEF 区域内面积(单位:m 2)的最小值为( )A.25 3B.75314C.10037D.753710.(2019·漳州质检)在△ABC 中,C =60°,BC =2AC =23,点D 在边BC 上,且sin ∠BAD =277,则CD 等于( )A.433B.34C.33D.23311.已知函数f (x )=sin ωx -3cos ωx (ω>0),若方程f (x )=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )A.⎝⎛⎦⎤136,72B.⎝⎛⎦⎤72,256C.⎝⎛⎦⎤256,112D.⎝⎛⎦⎤112,37612.(2019·福建质检)在△ABC 中,B =30°,BC =3,AB =23,点D 在边BC 上,点B ,C 关于直线AD 的对称点分别为B ′,C ′,则△BB ′C ′的面积的最大值为( ) A.9-332 B.637 C.937 D.33213.(2019·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =________.14.(2019·湖南省岳阳市第一中学模拟)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,三角形的内切圆的半径r =________.15.(2019·上海市交大附中模拟)已知函数f (x )=a sin 2x +b cos 2x (a ,b ∈R ,ab ≠0),若其图象关于直线x =π6对称,则直线ax +by +c =0的倾斜角α=________. 16.(2019·湖北八校联考)如图所示,在平面四边形ABCD 中,若AD =2,CD =4,△ABC 为正三角形,则△BCD 面积的最大值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学二轮复习:三角函数的专题(附参考答案)本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。

例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。

A .m 2=nB .m 2=12+nC .n m 22=D .22mn = 分析:观察sin θ+cos θ与sin θcos θ的关系:sin θcos θ=2121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θθθθcos sin 1 故:1212122+=⇒=-nm n m ,选B 。

例3 已知:tg α+ctg α=4,则sin2α的值为( )。

A .21B .21-C .41D .41-分析:tg α+ctg α=41cos sin 4cos sin 1=⇒=αααα 故:212sin cos sin 22sin =⇒=αααα。

答案选A 。

例4 已知:tg α+ctg α=2,求αα44cos sin +分析:由上面例子已知,只要αα44cos sin +能化出含sin α±cos α或sin αcos α的式子,则即可根据已知tg α+ctg α进行计算。

由于tg α+ctg α=⇒=2cos sin 1αα 21cos sin =αα,此题只要将αα44cos sin +化成含sin αcos α的式子即可: 解:αα44cos sin +=αα44cos sin ++2 sin 2αcos 2α-2 sin 2αcos 2α=(sin 2α+cos 2α)- 2 sin 2αcos 2α=1-2 (sin αcos α)2 =1-2)21(2⨯ =11- 可以得出以下结论:由于ααcos sin ±,sin αcos α及tg α+ctg α三者之间可以互化,知其一则必可知其余二。

这种性质适合于隐含此三项式子的三角式的计算。

但有一点要注意的;如果通过已知αcos ±的式子,必须讨论其象限才能得出其结果的正、负号。

这是由于(αsin ±cos α,要进行开方运算才能求出ααcos sin ±二、关于“托底”方法的应用:在三角函数的化简计算或证明题中,往往需要把式子添加分母,这常用在需把含tg α(或ctg α)与含sin α)的式子的互化中,本文把这种添配分母的方法叫做“托底”法。

方法如下:例5 已知:tg α=3,求ααααcos sin 2cos 3sin +-的值。

分析:由于αααcos sin =tg ,带有分母cos α,因此,可把原式分子、分母各项除以cos α,“造出”tg α,即托出底:cos α;解:由于tg α=30cos 2≠⇒+≠⇒αππαk 故,原式=013233123cos cos cos sin 2cos cos 3cos sin =+⨯-=+-=+⋅⋅-ααααααααααtg tg例6 已知:ctg α= -3,求sin αcos α-cos 2α=?分析:由于αααsin cos =ctg ,故必将式子化成含有ααsin cos 的形式,而此题与例4有所不同,式子本身没有分母,为了使原式先出现分母,利用公式:1cos sin 22=+αα及托底法托出其分母,然后再分子、分母分别除以sin α,造出ctg α:解:αααααααααα222222cos sin cos cos sin cos cos sin 1cos sin +-=-⇒=+ α2sin ,分母同除以分子 ααααααααα22221)sin cos (1)sin cos (sin cos ctg ctg ctg +-=+- 56)3(1)3(322-=-+-+-= 例7 (95年全国成人高考理、工科数学试卷) 设20,20ππ<<<<y x ,)6sin()3sin(sin sin y x y x --=ππ且 求:)3)(33(--ctgy ctgx 的值 分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法”,由于20,20ππ<<<<y x ,故0sin ,0sin ≠≠y x ,在等式两边同除以y x sin sin ,托出分母y x sin sin 为底,得:334)3)(33(1)3)(33(43=--⇒=--⇒ctgy ctgx ctgy ctgx “托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。

由于αααcos sin =tg ,αααsin cos =ctg ,即正切、余切与正弦、余弦间是比值关系,故它们间的互化需“托底”,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化,达到根据已知求值的目的。

而添加分母的方法主要有两种:一种利用1cos sin 22=+αα,把αα22cos sin +作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又或者它们的积,产生分母。

三、关于形如:x b x a sin cos ±的式子,在解决三角函数的极值问题时的应用:可以从公式)sin(sin cos cos sin x A x A x A ±=±中得到启示:式子x b x a sin cos ±与上述公式有点相似,如果把a ,b 部分变成含sinA ,cosA 的式子,则形如x b x a sin cos ±的式子都可以变成含)sin(x A ±的式子,由于-1≤)sin(x A ±≤1,所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把a 当成sinA ,b 当成cosA ,如式子:x x sin 4cos 3+中,不能设sinA=3,cosA=4,考虑:-1≤sinA ≤1,-1≤cosA ≤1,可以如下处理式子:⎪⎪⎭⎫ ⎝⎛+±++=±x b a b x b a a b a x b x a sin cos sin cos 222222 由于1)()(222222=+++b a b b a a。

故可设:22sin b a aA +=,则A A sin 1cos -±=,即:22cos b a b A +±= ∴)sin()sin cos cos (sin sin cos 2222x A b a x A x A b a x b x a ±+=±+=±无论x A ±取何值,-1≤sin(A ±x)≤1,22b a +-≤)sin(22x A b a ±+≤22b a + 即:22b a +-≤x b x a sin cos ±≤22b a +例1( A 分析x 变成含x cso 2的式子:222cos =x 于是:x x y 2sin 21212cos 3-+⋅= x x 2sin 21232cos 23-+= 23)2sin 212cos 23(+-=x x 由于这里:1)21()23(,21,232222=+=+==b a b a 则 ∴23)2sin 212cos 23(1+-⨯=x x y 设:21cos ,23123sin 22===+=A b a a A 则∴232sin cos 2cos sin +-=x A x A y 23)2sin(+-=x A 无论A-2x 取何值,都有-1≤sin(A-2x)≤1,故231+-≤y ≤231+ ∴y 的最大值为231+,即答案选A 。

例2 (96年全国成人高考理工科数学试卷)在△ABC 中,已知:AB=2,BC=1,CA=3,分别在边AB 、BC 、CA 上任取点D 、E 、F ,使△DEF 为正三角形,记∠FEC=∠α,问:sin α取何值时,△EFD 的边长最短?并求此最短边长。

分析:首先,由于222224)3(1AB CA BC ==+=+,可知△ABC 为Rt △,其中AB 为斜边,所对角∠C90°—∠的边长为l ,且要列出有关l 为,再想办法找出另两个量,即可根据α,则BE=BC-EC=1-l ·cos α。

而∠B+ ∠α ∠∴在△︒∠∠60sin sin sin sin B BDE BF αααααsin cos 2323sin )cos 1(23⋅=⋅-⇒⋅=⋅-⇒l l l l ααsin cos 2323+=⇒l在这里,要使l 有最小值,必须分母:ααsin cos 23+有最大值,观察:271)23(1,23,sin cos 232222=+=+⇒==+b a b a αα ∴)sin 772cos 721(27sin cos 23αααα+=+设:721sin =A ,则772cos =A 故:)sin cos cos (sin 27sin cos 23ααααA A +=+ )sin(27α+=A ∴ααsin cos 23+的最大值为27。

即:l 的最小值为:7212723= 而)sin(α+A 取最大值为1时,A k k A -+=⇒+=+2222ππαππα∴sin α即:三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90º,90º)的公式.1.sin(kπ+α)=(-1)k sinα(k∈Z);2. cos(kπ+α)=(-1)k cosα(k∈Z);3. tan(kπ+α)=(-1)k tanα(k∈Z);4. cot(kπ+α)=(-1)k cotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。

相关文档
最新文档