函数图像及其变化
三角函数的图像及其变换规律
![三角函数的图像及其变换规律](https://img.taocdn.com/s3/m/f8bc2f501fd9ad51f01dc281e53a580216fc5091.png)
三角函数的图像及其变换规律三角函数是高中数学中的重要内容之一,也是大学数学和物理的基础。
其中,三角函数与图像变换规律是我们需要深入了解的。
一、初步认识三角函数的图像三角函数是由单位圆上的点的坐标表示的函数,我们称这些点的坐标为正弦和余弦,正弦函数的图像和余弦函数的图像可以通过下面的方式作出:1. 画一个以原点 O 为圆心、1 为半径的单位圆;2. 以非负 x 轴正半轴为起始线,从原点开始按逆时针方向旋转一定角度θ,记作点 A (1,0),A 点纵坐标就是正弦值sinθ;3. 以非负 y 轴正半轴为起始线,从原点开始按逆时针方向旋转一定角度θ,记作点 B (0,1),B 点横坐标就是余弦值cosθ。
4. 相邻两个峰值之间的水平距离称为周期,即正弦函数和余弦函数的周期都是2π。
这样我们就可以画出正弦函数 y = sin x 和余弦函数 y = cos x 的图像了。
在这个图像中,横轴表示角度,纵轴表示函数值。
另外,三角函数中还有一种常见的函数,即 y = tan x(正切函数)和 y = cot x(余切函数),它们的图像可以通过画出正弦函数和余弦函数的图像来得到。
二、三角函数的图像变换规律我们还可以通过对函数公式的系数进行变换,来改变函数图像的期数、振幅、图像的左右平移及上下平移等。
具体变换规律如下:1. 函数 y = A sin(Bx - C) + D,其中 A 为振幅,B 为周期,C 为左右平移,D 为上下平移。
当 A 和 B 变化时,函数图像的振幅和期数也随之发生变化。
其中,若 A > 1,则函数图像沿 y 轴方向压缩;若 A < 1,则函数图像沿 y 轴方向伸长。
当 B > 1 时,函数图像变窄了,其左右的振动次数增多,周期减小;当 B < 1 时,函数图像变宽了,左右振动次数减少,周期增加。
当 C > 0 时,函数图像向右移动;当 C < 0 时,函数图像向左移动。
2023年新高考数学大一轮复习专题11 函数的图象(解析版)
![2023年新高考数学大一轮复习专题11 函数的图象(解析版)](https://img.taocdn.com/s3/m/144cb34cae1ffc4ffe4733687e21af45b307fecd.png)
专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。
一次函数的像特征及其变化规律
![一次函数的像特征及其变化规律](https://img.taocdn.com/s3/m/dd3688faf021dd36a32d7375a417866fb84ac006.png)
一次函数的像特征及其变化规律一次函数是指形式为y = kx + b的函数,其中k和b是常数,k表示斜率,b表示截距。
一次函数的图像通常表现为一条直线。
在讨论一次函数的像特征及其变化规律之前,首先来了解一下一次函数的基本性质。
一、基本性质1. 斜率 k:一次函数的斜率 k 决定了直线的倾斜程度。
当 k > 0 时,图像向右上方倾斜;当 k < 0 时,图像向右下方倾斜;当 k = 0 时,图像为水平直线。
2. 截距 b:一次函数的截距 b 决定了直线与y轴的交点。
当 b > 0 时,图像在y 轴上方与y轴相交;当 b < 0时,图像在y轴下方与y轴相交;当 b = 0 时,图像与y轴相切。
3. 零点 x0:一次函数的零点即为满足y = 0的x值,表示函数与x轴的交点。
零点可以通过解方程 kx + b = 0 找到,即 x0 = -b/k。
二、像特征的变化规律一次函数的像特征主要包括斜率和截距的变化规律。
1. 斜率的变化规律:(1)当 k > 0 时,随着k的增大,直线的倾斜程度越大,图像越陡峭。
(2)当 k < 0 时,随着k的减小,直线的倾斜程度越大,图像越陡峭。
(3)当 k = 0 时,直线为水平线,斜率不变。
(4)当 k > 1 或 k < -1 时,直线倾斜程度更大,图像越陡。
2. 截距的变化规律:(1)当 b > 0 时,随着b的增大,直线与y轴的交点越靠上。
(2)当 b < 0 时,随着b的减小,直线与y轴的交点越靠下。
(3)当 b = 0 时,直线与y轴相切。
(4)当截距 b 不变时,直线与y轴的交点也不变。
三、例题分析例1:考虑函数 f(x) = 2x + 1斜率 k = 2,截距 b = 1。
根据斜率和截距的定义,我们可以得出以下结论:(1)斜率 k > 0,表示直线向右上方倾斜;(2)截距 b > 0,表示直线与y轴交点在y轴的正半轴上;(3)直线与x轴的交点为 x0 = -b/k = -1/2,即 x = -0.5。
函数图像及其变换(复合函数)——王彦文
![函数图像及其变换(复合函数)——王彦文](https://img.taocdn.com/s3/m/e04961e951e79b89680226b5.png)
例4:求函数y = 2x22x的单调区间.
例5:求函数y = (1)x2 2x的单调区间. 2
关于x轴对称
于y轴对称
关于原点对称
四﹑翻折变换
4﹑试画出函数y=|x2-3x+2)|的图象,并指出它与函 数y= x2-3x+2的图象之间有怎样的变换关系?
若将函数y=| x2-3x+2 |该为函数y=x2-3|x| +2),会 有何变化?
函数图象的翻折变换规律:
上下翻折:
翻
只保留y=f(x) x轴上方图象来自折y=f(x)
y=|f(x)|
并将x轴下方图象沿x轴进行翻折
变
换
左右翻折: 只保留y=f(x) y轴右侧图象
y=f(x)
y=f(|x|)
并将y轴右侧图象沿y轴进行翻折
识图
1.f(x)=|x-1|的图象为如下图所示中的 (B )
识图
4.函数y=
1
的图象大致是(B )
x 1
1 x 1
1
由函数y= x 的图象向左平 移一个单位长度可得.
(x≥0) (x<0)
.图象如下图(3).
变式迁移 1 作出下列函数的图象: (1)y=|x-2|·(x+1); (2)y=(12)|x|; (3)y=|log2(x+1)|. 解:(1)先化简,再作图. y=x-2-x2x+-x2+2(x≥(x2<)2) .(如下图(1)).
绘图
变式迁移 1 作出下列函数的图象: (1)y=|x-2|·(x+1); (2)y=(12)|x|; (3)y=|log2(x+1)|. 解:(2)此函数为偶函数, 利用 y=(12)x(x≥0)的图象进行变换.(如下图(2)).
三角函数图像的变换与特征
![三角函数图像的变换与特征](https://img.taocdn.com/s3/m/1bd77fc205a1b0717fd5360cba1aa81144318f29.png)
三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。
在本文中,我们将探讨三角函数的变换和它们的特征。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。
对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。
对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
六大基本初等函数图像及其性质(总12页)
![六大基本初等函数图像及其性质(总12页)](https://img.taocdn.com/s3/m/3d784875effdc8d376eeaeaad1f34693daef10cc.png)
六大基本初等函数图像及其性质(总12页)抛物线函数 y = x^2- 图像为开口朝上的抛物线,顶点在原点(0,0)- 奇函数,即f(-x) = -f(x)- 定义域为全体实数,值域为[0, +∞)- 极值点为顶点(0,0),不存在最大值和最小值- 函数单调递增且无拐点反比例函数 y = 1/x-tu.grid正比例函数 y = x- 图像为平面直线,通过原点(0,0)- 定义域为全体实数,值域为全体实数- 函数单调递增,无拐点- 斜率代表变化率,斜率越大表示变化速度越快,斜率为正则表示函数单调增加,斜率为负则表示函数单调减少指数函数 y = a^x (a>0且a≠1)- 图像为上凸曲线,通过点(0,1)- 定义域为全体实数,值域为(0,+∞)- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值加速增大或减小对数函数y = logₐ(x) (a>0且a≠1)- 反指数函数,图像和指数函数的图像呈镜像关系- 定义域为(0,+∞),值域为全体实数- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值增长速度逐渐变慢三角函数 y = sin(x), y = cos(x), y = tan(x)- 正弦函数图像为周期性上下波动的连续曲线,取值范围[-1, 1] - 余弦函数图像为周期性波动的连续曲线,取值范围[-1, 1]- 正弦函数、余弦函数的定义域为全体实数,值域为[-1, 1]- 正弦函数、余弦函数是周期性函数,周期为2π- 正切函数图像为周期性波动的连续曲线,定义域为实数集合-{(2n + 1)π/2 | n∈Z},值域为全体实数这些基本初等函数的图像和性质对数学的学习和应用有着重要的作用,掌握这些函数的图像及其性质,有助于理解数学问题的规律,并能够在实际问题中进行分析和求解。
函数图像的变换法则
![函数图像的变换法则](https://img.taocdn.com/s3/m/67e9c33810661ed9ad51f3d3.png)
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
常见函数的图像及其性质
![常见函数的图像及其性质](https://img.taocdn.com/s3/m/30e91744cd1755270722192e453610661ed95a06.png)
常见函数的图像及其性质数学中的函数就像我们日常生活中的“机器”,通过给出一个输入,便能得到一个输出。
而函数所表示的“规律”,可以通过数学的方法加以描述和解释。
在数学中,常见的函数有线性函数、二次函数、指数函数、对数函数、三角函数等。
本文将介绍这些函数的图像及其性质。
一、线性函数线性函数是最基本、最简单的函数之一。
线性函数的一般形式为:y = kx + b其中,k和b是常数,x是自变量,y是因变量。
这里k表示直线斜率,b表示直线截距。
线性函数的图像是一条直线,其特点是斜率恒定。
当直线斜率为正时,函数是增长函数;当直线斜率为负时,函数是减少函数;斜率为0时,函数是常量函数。
二、二次函数二次函数是一种二次多项式函数,其一般形式为:y = ax² + bx + c其中,a、b、c是常数,x是自变量,y是因变量。
二次函数的图像是一个开口朝上或开口朝下的抛物线,因为其自变量是平方项的形式。
二次函数的性质包括:1. 当a > 0时,函数开口向上,有最小值;当a < 0时,函数开口向下,有最大值。
2. 当二次函数的判别式b²-4ac > 0时,函数图像与x轴有两个交点;当b²-4ac = 0时,函数图像与x轴有一个交点;当b²-4ac < 0时,函数图像与x轴没有交点。
三、指数函数指数函数是一种以常数e(自然对数常数)为底,自变量是指数的函数。
其一般形式为:y = a^x其中,a是一个大于0且不等于1的常数,x是自变量,y是因变量。
指数函数的图像有如下特点:1. 当a > 1时,函数在x轴右侧增长;当0 < a < 1时,函数在x 轴左侧增长。
2. 当a > 1时,函数的y值无上限,但x轴是渐近线;当0 < a < 1时,函数的y值趋于0,但x轴是渐近线。
四、对数函数对数函数是指既然函数,其一般形式为:y = logₐx其中,a是底数,a > 0且a ≠ 1,x是自变量,y是因变量。
初中知识点归纳——函数图像篇
![初中知识点归纳——函数图像篇](https://img.taocdn.com/s3/m/acb9bd4591c69ec3d5bbfd0a79563c1ec5dad715.png)
初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。
通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。
本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。
一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。
1. 线性函数图像线性函数的特点是图像为一条直线。
直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。
2. 二次函数图像二次函数的图像通常为抛物线形状。
抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。
二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。
3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。
指数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。
4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。
对数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。
二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。
(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。
2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。
(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。
函数及其图象函数的图像函数的图象
![函数及其图象函数的图像函数的图象](https://img.taocdn.com/s3/m/347eec6e76232f60ddccda38376baf1ffc4fe307.png)
02
函数的图像
函数图像的概念
1 2
函数图像
将函数表达式中自变量与因变量之间的关系用 图形表示出来。
坐标系
在平面直角坐标系中,以横轴表示自变量,纵 轴表示因达式的性质,图像呈现不同形状, 如直线、曲线、折线等。
绘制函数图像的方法
描点法
根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对 应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法
利用计算器或编程语言,直接在计算机上绘制出函数图像。
函数图像的变换
复合变换
以上变换可以同时进行,也可以多次进行 。
平移
将函数图像沿横轴或纵轴方向移动一定距 离。
伸缩
将函数图像按比例进行缩放,可以是横向 或纵向。
旋转
将函数图像按一定角度顺时针或逆时针旋 转一定角度。
翻折
将函数图像以某一条直线或点为对称中心 进行翻折。
VS
图像特征
对数函数的图像在坐标系中呈现出“双曲 线+直线”的形式,当底数$a>1$时,函 数图像在第一象限,当底数$0<a<1$时 ,函数图像在第四象限。
04
函数图像的应用
利用函数图像求解方程
图像法
通过观察函数图像的交点或切 线等方法,求解方程的根。
交点法
根据两个函数图像的交点坐标 ,求解方程的根。
零点法
通过函数图像与x轴交点的横坐 标,求解方程的根。
利用函数图像研究函数性质
01
02
观察法
分析法
通过观察函数图像的形状、趋势和特 征,得出函数的性质。
通过对函数图像的局部和整体分析, 得出函数的性质。
03
计算法
六大基本初等函数图像及其性质
![六大基本初等函数图像及其性质](https://img.taocdn.com/s3/m/01863c92250c844769eae009581b6bd97e19bc74.png)
六大基本初等函数图像及其性质六大基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
1. 常数函数:y = c,其中c是一个常数。
常数函数的图像是一条平行于x轴的直线,与y轴相距c个单位。
它没有自变量的限制,函数值始终为常数。
2. 幂函数:y = x^n,其中n是任意实数。
幂函数的图像依赖于指数n的符号及大小。
当n为正数时,随着x的增大,函数值也增大;当n为负数时,随着x的增大,函数值减小。
若n为奇数,图像穿过原点;若n为偶数,图像在原点有一个极小值或极大值。
3. 指数函数:y = a^x,其中a是一个正数且不等于1。
指数函数的图像是递增或递减的曲线。
如果a大于1,函数图像是递增的,如果a在0和1之间,函数图像是递减的。
指数函数没有定义域的限制,但其值范围从0到正无穷大。
4. 对数函数:y = log_a(x),其中a是一个正数且不等于1。
对数函数的图像与指数函数的图像是关于直线y = x对称的。
当x在0到正无穷大之间变化时,函数值从负无穷大逐渐增大到正无穷大。
对数函数的定义域为正实数,值域为负无穷大到正无穷大。
5. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x),割函数y = sec(x),余割函数y = csc(x),和余切函数y = cot(x)。
三角函数的图像是周期性的波形,沿x 轴变化。
例如,正弦函数和余弦函数的图像是在[-π, π]范围上的曲线。
正弦函数的值域在[-1, 1]之间,余弦函数的值域也在[-1, 1]之间。
6. 反三角函数:包括反正弦函数y = arcsin(x),反余弦函数y = arccos(x),反正切函数y = arctan(x),反割函数y = arcsec(x),反余割函数y = arccsc(x),和反余切函数y = arccot(x)。
反三角函数的图像是由对应的三角函数的图像上截取而来的。
(完整版)高中化学常见函数图像
![(完整版)高中化学常见函数图像](https://img.taocdn.com/s3/m/3f2925eb77eeaeaad1f34693daef5ef7bb0d125c.png)
完整版)高中化学常见函数图像1.引言在高中化学学习中,我们经常会遇到各种各样的函数图像,这些函数图像代表了不同化学反应的关系式。
掌握常见的化学函数图像可以帮助我们更好地理解和分析化学反应的特性和规律。
本文将介绍高中化学中常见的函数图像及其特点。
2.常见的化学函数图像2.1 直线函数图像直线函数图像在化学中常用来描述比例关系或线性规律。
在化学实验中,当两个物质的反应遵循简单的比例关系时,函数图像往往是一条直线。
直线函数图像的特点是斜率恒定,代表了化学反应的恒定速率。
2.2 指数函数图像指数函数图像在化学中常用来描述指数衰减或指数增长的情况。
例如,放射性衰变反应的速率就遵循指数函数规律。
指数函数图像的特点是曲线逐渐上升或下降,且增长或衰减的速度逐渐加快。
2.3 对数函数图像对数函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈指数关系时,函数图像往往是一条对数曲线。
对数函数图像的特点是曲线呈现逐渐平缓的增长或衰减趋势。
2.4 正弦函数图像正弦函数图像在化学中常用来描述周期性变化的情况。
例如,电化学反应中的电势变化往往呈现正弦函数规律。
正弦函数图像的特点是周期性波动,曲线呈现出波峰和波谷的交替变化。
2.5 反比例函数图像反比例函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈反比关系时,函数图像往往是一条反比例曲线。
反比例函数图像的特点是曲线逐渐趋于水平轴,并且在某个点处存在间断。
3.总结掌握常见的化学函数图像有助于我们更好地理解和分析化学反应的规律和特性。
直线函数图像代表了恒定速率,指数函数图像代表了增长或衰减的速度逐渐加快,对数函数图像代表了增长或衰减的速度逐渐减慢,正弦函数图像代表了周期性变化,反比例函数图像代表了反比关系。
通过对这些函数图像的分析,我们可以更深入地理解和应用化学知识。
以上就是关于高中化学常见函数图像的介绍。
希望本文能帮助到你在学习中的理解和应用。
函数的图像及其变换
![函数的图像及其变换](https://img.taocdn.com/s3/m/44734ae5aeaad1f346933fae.png)
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
函数及其图像分析详解
![函数及其图像分析详解](https://img.taocdn.com/s3/m/098e3b020a4c2e3f5727a5e9856a561252d32197.png)
函数及其图像分析详解函数是高中数学中非常重要的一个概念,它可以描述两个变量之间的关系,或者将一个自变量的值映射到一个因变量的值上。
在实际应用中,各种函数及其图像都有着非常重要的作用,本文将对常见的函数及其图像进行详细的分析。
一、常见的函数类型1.线性函数线性函数是最简单的一类函数,它的定义域为全体实数集合R,表达式为:y=kx+b(其中k和b为常数)。
直线y=kx+b就是它的图像,这条直线在坐标系中的位置由直线的斜率和截距决定。
斜率表示函数在一定区间内自变量变化时因变量的变化幅度,截距表示函数与y轴的交点。
2.二次函数二次函数是一类带有平方项的函数,也是非常常见的函数类型。
它的定义域为全体实数集合R,表达式为:y=ax^2+bx+c(其中a,b,c为常数)。
二次函数的图像是一个抛物线,抛物线开口的方向由a的正负号决定。
当a>0时,抛物线开口朝上,当a<0时,抛物线开口朝下。
3.指数函数指数函数是一类用x的幂作为自变量的函数,自变量为x,因变量为y,通式为y=a^x,其中a为大于0且不等于1的常数。
指数函数的图像是一条右侧开口的曲线,曲线在x轴上向右无限延伸,当x趋近于负无穷大时,曲线趋近于y轴。
4.对数函数对数函数是指数函数的反函数,它的定义域为(0,+∞),值域为全体实数集合R,通式为y=loga x,其中a为大于0且不等于1的常数。
对数函数的图像是一条带左侧开口的曲线,曲线在y轴上向上无限延伸,当x趋近于正无穷大时,曲线趋近于x轴。
5.三角函数三角函数是用角度作为自变量的函数,它是解决几何问题中经常使用的函数。
常见的三角函数包括正弦函数、余弦函数、正切函数等,它们的定义域为全体实数集合R,值域为[-1,1]。
三角函数的图像是一条在[-1,1]区间内振荡的波形,波形周期的长度由函数的周期决定。
二、函数图像分析的相关概念1.函数的极值函数的极值是函数在定义域内的最大值和最小值。
在一段区间内,如果函数的导数在该区间内始终大于0,则该函数在这段区间内单调递增,在这段区间内的最大值即为函数的极大值。
余弦函数及其图像变换
![余弦函数及其图像变换](https://img.taocdn.com/s3/m/a6dc23682bf90242a8956bec0975f46526d3a749.png)
伸缩变换的应用:在信号处理、波动方程等领域中,通过伸缩变换可以实现对信号的压缩或 拉伸,便于分析和处理。
翻折变换的定义:将余弦函数图像在垂直方向上对称翻转。 翻折变换的数学表达:设原函数为f(x),则翻折变换后的函数为f(-x)。 翻折变换的证明:利用余弦函数的性质,证明f(-x)与f(x)在图像上关于y轴对称。 翻折变换的应用:在信号处理、振动分析等领域中,利用翻折变换对信号进行变换处理。
余弦函数在数学建 模中的应用,如解 决物理问题、优化 问题等。
利用余弦函数进行 数值计算,如计算 积分、求解微分方 程等。
余弦函数在信号处 理中的应用,如音 频处理、图像处理 等。
余弦函数在统计学 中的应用,如回归 分析、时间序列分 析等。
PART FOUR
图像平移:将 余弦函数图像 沿x轴或y轴方
平移证明:通过三角函数变换,将平移后的函数表达式与原函数进行对比,证明其等价性
平移性质:平移不改变函数的周期性和对称性,只改变图像的位置
应用举例:平移变换在信号处理、波动方程等领域有广泛应用
伸缩变换的定义:将余弦函数图像在x轴方向进行拉伸或压缩,保持y轴方向不变。
伸缩变换的数学表达:设原函数为y=cos(x),伸缩变换后的函数为y=cos(ax),其中a>1 表示拉伸,0<a<1表示压缩。
旋转变换的定 义:将一个向 量绕原点旋转 一定角度的线
性变ห้องสมุดไป่ตู้。
旋转变换的矩阵 表示:使用旋转 矩阵表示旋转变 换,旋转矩阵由 旋转角度和旋转
轴决定。
旋转变换的几何 意义:将一个向 量绕旋转轴旋转 一定角度,旋转 过程中向量与旋 转轴之间的夹角
函数的伸缩平移变换的规律
![函数的伸缩平移变换的规律](https://img.taocdn.com/s3/m/54f1d85e15791711cc7931b765ce05087732757a.png)
函数的伸缩平移变换的规律函数的伸缩平移变换是数学中研究的一个重要问题,它描述了函数图像在坐标系中的变换规律。
通过对函数进行伸缩和平移操作,可以改变函数的形状、位置和大小,从而得到新的函数图像。
本文将详细介绍函数的伸缩平移变换的规律及其应用。
一、函数的伸缩变换规律1. 水平方向的伸缩变换当函数的自变量(x)乘以一个正数(a)时,函数的图像会在水平方向上发生伸缩变换。
当a>1时,函数的图像会被压缩;当0<a<1时,函数的图像会被拉伸。
伸缩的倍数为|a|,伸缩的中心为y轴。
例如,对于函数y=f(x),当x变为ax时,函数的图像会在水平方向上发生变化,新函数为y=f(ax)。
如果a>1,则图像会被压缩;如果0<a<1,则图像会被拉伸。
2. 垂直方向的伸缩变换当函数的因变量(y)乘以一个正数(b)时,函数的图像会在垂直方向上发生伸缩变换。
当b>1时,函数的图像会被拉伸;当0<b<1时,函数的图像会被压缩。
伸缩的倍数为|b|,伸缩的中心为x轴。
例如,对于函数y=f(x),当y变为by时,函数的图像会在垂直方向上发生变化,新函数为y=bf(x)。
如果b>1,则图像会被拉伸;如果0<b<1,则图像会被压缩。
二、函数的平移变换规律1. 水平方向的平移变换当函数的自变量(x)加上一个常数(c)时,函数的图像会在水平方向上发生平移变换。
当c>0时,函数的图像会向左平移;当c<0时,函数的图像会向右平移。
例如,对于函数y=f(x),当x变为x+c时,函数的图像会在水平方向上发生变化,新函数为y=f(x+c)。
如果c>0,则图像会向左平移;如果c<0,则图像会向右平移。
2. 垂直方向的平移变换当函数的因变量(y)加上一个常数(d)时,函数的图像会在垂直方向上发生平移变换。
当d>0时,函数的图像会向上平移;当d<0时,函数的图像会向下平移。
函数图像的变换及应用
![函数图像的变换及应用](https://img.taocdn.com/s3/m/d2e11f8588eb172ded630b1c59eef8c75ebf955f.png)
函数图像的变换及应用函数图像的变换指的是通过对函数图像进行一系列的操作,使得原函数图像在坐标系中发生平移、伸缩、翻折等变化,从而得到新的函数图像。
这些变换可以通过改变函数的参数或者利用一些特定的变换公式来实现。
函数图像的变换有很多种,下面列举几种常见的变换及其应用:1. 平移变换:平移变换是将函数图像在坐标系上沿着横轴或者纵轴方向进行移动。
对于函数y=f(x),平移变换可以表示为y=f(x-a)+b,其中a表示横向平移的距离,b表示纵向平移的距离。
平移变换的应用场景有很多,例如对于温度变化的曲线图,可以通过平移变换来调整图像在时间轴上的位置,实现对曲线的观察和比较。
2. 伸缩变换:伸缩变换是改变函数图像的尺度,使得函数图像的宽度或者高度发生变化。
对于函数y=f(x),伸缩变换可以表示为y=a*f(bx),其中a控制纵向的伸缩比例,b控制横向的伸缩比例。
伸缩变换可以用来调整图像的大小,使得函数曲线更加清晰或者适应特定的分析需求。
3. 翻折变换:翻折变换是将函数图像沿着坐标轴进行翻转。
对于函数y=f(x),翻折变换可以表示为y=-f(x)(沿着x轴翻折)或者y=f(-x)(沿着y轴翻折)。
翻折变换可以用来分析函数的对称性质,例如判断函数是否关于x轴或者y轴对称。
4. 拉伸变换:拉伸变换是通过改变函数图像的形状来实现对函数的变换。
拉伸变换可以是横向拉伸或者纵向拉伸。
对于函数y=f(x),横向拉伸可以表示为y=f(cx),纵向拉伸可以表示为y=c*f(x),其中c是大于1的常数。
拉伸变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。
5. 压缩变换:压缩变换与拉伸变换相反,是通过改变函数图像的形状来实现对函数的变换。
压缩变换可以是横向压缩或者纵向压缩。
对于函数y=f(x),横向压缩可以表示为y=f(x/c),纵向压缩可以表示为y=(1/c)*f(x),其中c是大于1的常数。
压缩变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。
初中数学知识点初等函数的像与变化规律
![初中数学知识点初等函数的像与变化规律](https://img.taocdn.com/s3/m/289238030812a21614791711cc7931b764ce7b62.png)
初中数学知识点初等函数的像与变化规律初中数学知识点:初等函数的像与变化规律初等函数是数学中常见的一类函数,它们具有一定的变化规律和像的特点。
在初中数学学习中,了解初等函数的像与变化规律对于掌握函数概念和解题能力都非常重要。
本文将详细介绍初等函数的像与变化规律的相关知识点。
一、初等函数的定义及类型初等函数是指由常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等基本初等函数通过有限次的加、减、乘、除、复合运算得到的函数。
常见的初等函数类型包括:1. 常数函数:f(x) = c,其中c为常数。
2. 线性函数:f(x) = kx + b,其中k和b为常数,k称为斜率,b称为截距。
3. 平方函数:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
4. 平方根函数:f(x) = √x,其中x≥0。
5. 反比例函数:f(x) = k/x,其中k为常数,x ≠ 0。
6. 指数函数:f(x) = a^x,其中a为常数,且a>0且a≠1。
7. 对数函数:f(x) = loga x,其中a为常数,且a>0且a≠1。
8. 正弦函数、余弦函数、正切函数及其反函数等三角函数。
二、初等函数的像函数的像是指定义域中的元素通过函数得到的值的集合。
对于初等函数来说,不同的函数类型对应着不同的像。
1. 常数函数的像:常数函数的定义域中的任意元素经过函数变换后得到的值都是相同的常数,因此该函数的像为该常数。
2. 线性函数的像:线性函数的像是一个直线或一组直线上的点集,根据斜率的正负不同和截距的取值范围,可以得到不同的像。
3. 平方函数的像:平方函数的定义域中的元素经过平方运算后得到的值,可以是正数、零和负数,因此像可以是正数集、零点和负数集。
4. 平方根函数的像:平方根函数的定义域是非负实数集,经过平方根运算后得到的值不会小于零,因此像为非负实数集。
5. 反比例函数的像:反比例函数的定义域中的元素除以非零常数时,得到的值为实数,因此像为实数集。
正弦函数及其图像变换
![正弦函数及其图像变换](https://img.taocdn.com/s3/m/4ee45743eef9aef8941ea76e58fafab068dc4449.png)
周期变换
周期缩短:正弦函数的图像 在周期内进行平移,使得图 像的周期缩短。
周期延长:正弦函数的图像 在周期内进行平移,使得图 像的周期延长。
周期变换规律:正弦函数的 图像变换遵循一定的规律,
即周期变换规律。
周期变换的应用:周期变换 在信号处理、振动分析等领
域有着广泛的应用。
相位变换
相位变换的概念:通过改变正弦函数的相位,使其在时间上移动。
信号处理:正弦函数在信号处理领 域中用于滤波、调制和解调等操作, 提高信号质量和通信效率。
添加标题
添加标题
添加标题
添加标题
交流电:正弦函数用于描述交流电 的电压和电流,广泛应用于电力传 输和分配。
物理实验:在物理实验中,正弦函 数常用于测量、分析和建模各种物 理现象,如光干涉、衍射等。
在工程学中的应用
正添加弦副函标数题 及其图像 变换
汇报人:XX
目录
PART One
正弦函数的性质
PART Two
正弦函数的图像 变换
PART Three
正弦函数的应用
PART Four
正弦函数的扩展弦函数是三角函数的一种,定义为y=sinx,其中x是角度,y是正弦值。
正弦函数的周期为360度,即每隔360度重复一次。
正弦函数的图像是一个周期性变化的波形,最高点为1,最低点为-1。 正弦函数的表达式可以表示为y=Asin(ωx+φ),其中A是振幅,ω是角频 率,φ是初相。
周期性和振幅
正弦函数的周期性:正弦函数在一定周期内呈现规律性的变化,其周期为2π。 正弦函数的振幅:振幅是正弦函数图像在垂直方向上的最大或最小值,表示函数值的波动幅度。
三角函数的积化和差公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像及其变化重点:简单函数的画法,以及函数图像的变换。
难点:函数图像的相关应用。
(
)函数图像的画法
1.函数图像的画法,一般有三个步骤:列表,连线,连线。
例1 :画出函数y=3x-2的图像。
例2:函数
的图象是
(二)函数图像的变换
(1)函数图像的平移
函数图象的平移变化可以概括地总结为:
(1)函数
的图象变为
的图象,只要将
的图象沿水平方向向右平移
个单位
(2)函数
的图象变为
的图象,只要将
的图象沿水平方向向左平移
个单位,然后再沿竖直方向向下平移
个单位即可。
(3)函数
的图象变为
的图象,只要将
的图象沿水平方向向左平移
个单位,然后再沿竖直方向向上平移
个单位即可。
(4)函数
的图象变为
的图象,只要将
的图象沿水平方向向右平移
个单位,然后再沿竖直方向向下平移
个单位即可。
函数图象的平移的实质是有变量本身变化情况所决定的。
总结:函数的左右平移只是针对自变量
,而上下平移只是针对函数值。
遵循的原则为左加右减,上加下减。
例1.为了得到函数
的图象,只需把函数
的图象上所有的点()
A. 向右平移3个单位长度,再向下平移1个单位长度
B. 向左平移3个单位长度,再向下平移1个单位长度
C. 向右平移3个单位长度,再向上平移1个单位长度
D. 向左平移3个单位长度,再向上平移1个单位长度
例2把函数
的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是().
(A)
(B)
(C)
(D)
函数的对称变换
1、一般地,函数
与
的图象关于直线
对称,函数y=f(2a-x)与函数y=f(x)关于直线x=a对称
2、两个函数图象间的常见的轴对称情况有以下几种情况:对于函数
:
(1)关于
轴对称的函数解析式为
;
(2)关于
轴对称的函数解析式为
;
关于原点对称的函数解析式为。
函数值加上绝对值,则把x轴下方向上翻折,仅对自变量加上绝对值,则把y轴右边的图像向左翻折。
例题:作函数
的图象.
分析已知函数的定义域为R,且显然为偶函数.又当
时,
,它的图象可由
1的图象向左平移个单位,并截取所得图象在
的部分,最后再作所得图形关于
轴对称的图形,即将所要求的函数图象
例2在函数y=1/x中的自变量中加负号,得y =______________;再在自变量中减2,得y=____________________;再在函数值中加1,得y
=______________;
1.函数
的图象是
2.设函数y=f(x)的定义域为R,则函数y=f(x-1)与函数y=f(1-x)的图象关于( )。
(A)直线y=0对称 (B)直线x=0对称
(C)直线y=1对称 (D)直线x=1对称
3已知图4(1)中的图象对应的函数为y=f(x),则图4(2)中的图象对应的函数在下列给出的四式中,只可能是( )
(A)y=f(|x|) (B)y=|f(x)| (C)y=f(-|x|) (D)y=-f(|x|)
4.甲工厂八年来某种产品年产量y与时间t(单位:年)的函数关系如图6所示,现有下列四种说法:
①前三年该产品产量增长速度越来越快;
②前三年该产品产量增长速度越来越慢;
③第三年后该产品停止生产;
④第三年后该产品年产量保持不变,其中说法正确的是 ( )
(A)②与③(B)①与③(C)②与④(D)①与④
5.为了得到函数y=2x-3+1的图象,只需把y=2x的图象上所有点( )
A.向左平移3个长度单位,再向上平移1个单位
B.向右平移3个长度单位,再向上平移1个单位
C.向左平移3个长度单位,再向下平移1个单位
D.向右平移3个长度单位,再向下平移1个单位
6.(2012·广东潮汕名校)若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )
7.试讨论方程 |x2-x+3|=a的解的个数(a∈R).
8.已知函数f(x)=|x-3|+|x+1|.
(1)作出y=f(x)的图象;
(2)解不等式f(x)≤6.
9.一次函数y=kx+b的图像右移一个单位,再向上移动3个单位后回到原处,求k的值。