《不等式与一次不等式组》全章复习与巩固(基础)知识讲解
2024河南中考数学一轮知识点复习专题 一次不等式与一次不等式组 课件
不变
改变
考点2 一元一次不等式及其解法
1.一元一次不等式含有一个未知数,未知数的次数是⑨___的不等式,叫做一元一次不等式.
1
2.解一元一次不等式的一般步骤去分母,去括号,移项、合并同类项,系数化为1(注意:当不等式两边都乘或除以同一个负数时,不等号方向要改变).
考点3 一元一次不等式组及其解法
1.一元一次不等式组由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.
2.解不等式组的一般步骤先分别解出每个一元一次不等式,再求出它们解集的⑩__________,即为不等式组的解集.
公共部分
3.一元一次不等式组的解集表示
类型
在数轴上的表示
口诀
解集
同大取大
⑪_ ______
4.[2018河南,13] 不等式组 的最小整数解是____.
5.[2017河南,12] 不等式组 的解集是____________.
考法2 不等式的实际应用(8年7考)
6.[2023河南,21] 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每 满 元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
常见关键词
符号
大于,多于,超过,高于
小于,少于,不足,低于
至少,不低于,不小于,不少于
⑬_ __
至多,不超过,不高于,不大于
⑭_ __
基础题过考点
考点2,3
1.[2022天津中考改编] 解不等式组 请结合题意填空,完成本题的解答.
(1)解不等式①,得_ _______.
初一数学《不等式与不等式组》知识点(K12教育文档)
初一数学《不等式与不等式组》知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学《不等式与不等式组》知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学《不等式与不等式组》知识点(word版可编辑修改)的全部内容。
一、目标与要求1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;2。
经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、知识框架三、重点理解并掌握不等式的性质;正确运用不等式的性质;建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程;寻找实际问题中的不等关系,建立数学模型;一元一次不等式组的解集和解法。
四、难点一元一次不等式组解集的理解;弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上.五、知识点、概念总结1。
不等式:用符号“<"“>”“≤ "“≥”表示大小关系的式子叫做不等式。
2。
不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥"“≤"连接的不等式称为非严格不等式,或称广义不等式。
人教版七年级下册数学第9章 不等式与不等式组全章课件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组
《不等式与一次不等式组》知识讲解
《不等式与一次不等式组》知识讲解【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c>).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c<).类型一、不等式1.(2015春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b >0或ax+b <0(a ≠0)叫做一元一次不等式的标准形式. 2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义; (4)列:根据题中的不等关系,列出不等式; (5)解:解出所列的不等式的解集; (6)答:检验是否符合题意,写出答案. 要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 类型二、一元一次不等式【高清课堂:一元一次不等式章节复习 410551 例3(3)】3. 已知关于x 的不等式()()1151222x ax -->+的解集是12x >,求a 的取值范围.【变式1】如果关于x的不等式06>+--x k 正整数解为1、2、3, 则正整数k应取怎样的值?【变式2】(2015•江都)如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组. 要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案. 类型三、一元一次不等式组4. 求不等式组()2x 731x 42x 31x 332513x x ⎧⎪⎪⎪≥⎨⎪-⎪<-⎪⎩-<-+-的整数解.【思路点拨】分别解出各不等式,取所有的公共部分.【变式】若关于不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有四个整数解,求a的取值范围.5. 某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:价格种类进价(元/台)售价(元/台)电视机2000 2100冰箱2400 2500洗衣机1600 1700(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?【思路点拨】 (1)设购进电视机、冰箱各x台,则洗衣机为(15-2x)台.根据两个关键词:“不大于”、“不超过”就可以建立不等式组,根据x的取值讨论确定进货方案.(2)分别求出(1)中各方案所需的补贴,再比较确定国家财政的最多补贴.类型四、综合应用6.已知不等式组134(1)1xmn x+⎧-≥⎪⎨⎪--<⎩的解集为322x<≤,试求m,n的值.7.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500 说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.统计调查知识讲解【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3. 会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息. 【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本2. 调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释:(1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.(2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.类型二、普查和抽样调查2. (2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.类型三、数据的描述4. (珠海)2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.5. 南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)6. 某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【高清课堂:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中, 每年的国内生产总值不断增长D.这7年中, 每年的国内生产总值有增有减类型四、综合应用7. 玉树地震后,全国人民慷慨解囊,积极支援玉树人民的抗震救灾,他们有的直接捐款,有的捐物,国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(如图①所示),其中,中华慈善总会和中国红十字会共接收捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是________;(2)全国接收直接捐款数和捐赠物折款数共计约________亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【变式1】如果想表示我国从2000 2010年间国民生产总值的变化情况, 最合适的是采用( ).A. 条形统计图B. 扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40举一反三:【变式】某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?。
(华东师大版)数学初二下册 《函数及其图象》全章复习与巩固—知识讲解(基础)
《函数及其图象》全章复习与巩固—知识讲解(基础)【学习目标】1.理解变量与常量、变量与函数、直角坐标系、函数图象、平面直角坐标系的概念,能正确画出平面直角坐标系,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征;2.了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能用待定系数法确定一次函数与反比例函数的解析式;4.能写出实际问题中一次函数关系与反比例函数关系的解析式及自变量的取值范围,并能应用它们解决简单的实际问题;运用数形结合的方法,深刻理解和掌握函数的性质,学会用数学建模的方法与技巧.【知识网络】【要点梳理】要点一、变量与函数 1. 常量、变量、函数(1)常量:在问题研究过程中,取值始终保持不变的量,叫做常量. (2)变量:在某一变化过程中,可以取不同数值的量,叫做变量.(3)函数:一般地,在一个变化过程中. 如果有两个变量与,对于的每一个值,都有唯一的值与之对应,那么我们就说是自变量,是因变量,也称是的函数.是的函数,如果当=时=,那么叫做当自变量为时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法.要点二、平面直角坐标系 1. 有序数对定义:把有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b). 要点诠释:有序,即两个数的位置不能随意交换,(a ,b)与(b ,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 2. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).x y x y x y y x y x x a y b b a要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.3. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P 的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.4. 坐标平面(1)象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.(2)坐标平面的结构坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点. 5. 坐标的特征(1)各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. (2)象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a ,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a ,-a). (3)关于坐标轴对称的点的坐标特征P(a ,b)关于x 轴对称的点的坐标为 (a,-b); P(a ,b)关于y 轴对称的点的坐标为 (-a,b); P(a ,b)关于原点对称的点的坐标为 (-a,-b). (4)平行于坐标轴的直线上的点平行于x 轴的直线上的点的纵坐标相同; 平行于y 轴的直线上的点的横坐标相同.要点三、一次函数 1、一次函数的定义一次函数的一般形式为,其中、是常数,≠0.特别地,当=0时,一次函数即(≠0),是正比例函数.2、一次函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线可以看作由直线平移||个单位长度而得到(当>0时,向上平移;当<0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化. 3、一次函数的性质掌握一次函数的图象及性质(对比正比例函数的图象和性质)y kx b =+k b k b y kx b =+y kx =k y kx b =+y kx =b b b y kx b =+y kx =要点诠释:理解、对一次函数的图象和性质的影响:(1)决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限.(2)两条直线:和:的位置关系可由其系数确定:与相交;,且与平行; ,且与重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.4、求一次函数的表达式待定系数法:先设待求函数表达式(其中含有待定系数),再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法. 5、用函数的观点看方程(组)与不等式k b y kx b =+k y kx b =+αb y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l 12k k =12b b =⇔1l 2l x a =y b =要点四、反比例函数 1.反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式. 要点诠释:在中,自变量的取值范围是, ()可以写成()的形式,也可以写成的形式.2.反比例函数的图象和性质 (1)反比例函数图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 要点诠释:观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线; ky x=k 0k ≠x y x ky x=k x y 、k ky x=x k y x=()0ky k x=≠x y x y )0(≠=k xky x y x y -==和②的图象是中心对称图形,对称中心为原点(0,0); ③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.注:正比例函数与反比例函数, 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(2)反比例函数的性质①图象位置与反比例函数性质当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大. ②若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.③正比例函数与反比例函数的性质比较④反比例函数y =中的意义)0(≠=k x ky xky x k y -==和x y x k y 1=xk y 2=021<⋅k k 021>⋅k k 0k >x y 、y x 0k <x y 、y x a b ,ky x=a b --,k过双曲线(≠0) 上任意一点作轴、轴的垂线,所得矩形的面积为. 过双曲线(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.要点五、实践与探索 1.数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.2.正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 3.选择最佳方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、函数的概念1.下列说法正确的是:( )A.变量满足,则是的函数;B.变量满足,则是的函数;C.变量满足,则是的函数;D.变量满足,则是的函数.【答案】A ;【解析】B 、C 、D 三个选项,对于一个确定的的值,都有两个值和它对应,不满足单值对应的条件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )xky =k x y k x ky =k 2k ,x y 23x y +=y x ,x y x y =||y x ,x y x y =2y x ,x y 221y x -=y x x y【答案】B;类型二、平面直角坐标系2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B 的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B 到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).类型三、一次函数3.(春•高新区期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=6,O为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=6时,求P点坐标.【思路点拨】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=6代入(1)中函数关系即可得出x的值,进而得出y的值.【答案与解析】解:(1)∵A和P点的坐标分别是(4,0)、(x,y),∴S=×4×y=2y.∵x+y=6,∴y=6﹣x.∴S=2(6﹣x)=12﹣2x.∴所求的函数关系式为:S=﹣2x+12.(2)由(1)得S=﹣2x+12>0,解得:x<6;又∵点P在第一象限,∴x>0,综上可得x的范围为:0<x<6.(3)∵S=6,∴﹣2x+12=6,解得x=3.∵x+y=6,∴y=6﹣3=3,即P(3,3).【总结升华】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.举一反三:【变式】(2015秋•南京校级期末)已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.【答案】解:(1)当x=0时,y=﹣x+3=3,则Q(0,3),∵点Q恰与点P关于x轴对称,∴P(0,﹣3),把P (0,﹣3),A (﹣2,5)代入y=kx+b 得,解得,所以这个一次函数解析式为y=﹣4x ﹣3;(2)当y=0时,﹣x+3=0,解得x=6,则B (6,0),当y=0时,﹣4x ﹣3=0,解得x=﹣,则直线y=﹣4x ﹣3与x 轴的交点坐标为(﹣,0), 所以△ABP 的面积=×(6+)×5+×(6+)×3=27.4.已知正比例函数(≠0)的函数值随的增大而减小,则一次函数的图象大致是图中的( ).【答案】B ;【解析】∵随的增大而减小,∴ <0.∵中的系数为1>0,<0, ∴经过一、三、四象限,故选B .【总结升华】本题综合考查正比例函数和一次函数图象和性质,>0时,函数值随自变量的增大而增大.举一反三:【变式】已知正比例函数的图象上两点A(, ), B(,),当 时,有,那么 的取值范围是( ) A . B . C . D . 【答案】 A ;提示:由题意随着的增大而减小,所以,选A 答案.类型四、反比例函数5.如图所示,P 是反比例函数图象上一点,若图中阴影部分的面积是2,求此反比例函数的关系式.y kx =k y x y x k =+y x k y x k =+x k k x ()21y m x =-1x 1y 2x 2y 12x x <12y y >m 12m <12m >2m <0m >y x 210m -<ky x=【思路点拨】要求函数关系式,必须先求出的值,P 点既在函数的图象上又是矩形的顶点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(,),由图可知,P 点在第二象限,∴ <0,>0.∴ 图中阴影部分矩形的长、宽分别为-、.∵ 矩形的面积为2,∴ -=2,∴ =-2.∵ =,∴ =-2.∴ 此反比例函数的关系式是. 【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面积为||这一条件,进行坐标、线段、面积间的转换.举一反三:【变式】如图,过反比例函数的图象上任意两点A 、B ,分别作轴的垂线,垂足为,连接OA ,OB ,与OB 的交点为P ,记△AOP 与梯形的面积分别为,试比较的大小.【答案】解:∵,且, ∴.类型五、实践与探索6.(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22k x y x y x y xy xy xy k k 2y x=-x y k )(0x x2y >=x ''B A 、'AA B B PA ''21S S 、21S S与AOP AOA A OP S S S ''∆∆∆=-OB A OP A PBB S B S S ''''∆∆=-梯形AOA 112122A A S x y '∆==⨯=OB 112122B B B S x y '∆==⨯=21S S =元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【思路点拨】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.【总结升华】本题考查了一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)根据数量关系得出函数关系式;(2)根据费用的关系找出一元一次不等式或者一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为,每月所获得的利润为.(1)写出与之间的函数关系式,并指出自变量的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1)。
初中数学中考总复习课件 第三节 一次不等式与一次不等式组
化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分
别是多少m2?
( 2 )若学校每天需付给甲队的绿化费用为0.4万元, 乙队为0.25万元,要使这次的绿化总费用不超过8 万元,至少应安排甲队工作多少天?
解:(1)设乙工程队每天能完成绿化的面积是x m2, 则甲工程队每天能完成绿化的面积是2x m2 根据题意得:
解不等式有关的实际问题时,注意一些关键词 语能帮助我们建立不等式模型.例如“不少于”、 “不超过”、“至少”、“最多”、“不高于”等, 这些关键词语用不等号表示分别为“≥”、“≤”、
“≥”、“≤”、“≤”.
3. (2015 山西)某蔬菜经营户从蔬菜批发市场批发 蔬菜进行零售,部分蔬菜批发价格与零售价格如下 表:
不等式
的性质 性质3:如果a>b,并且c<0,那么ac①___ < bc a b 或 ②___ < c c 温馨提示:使用不等式的性质3时,注意改 变不等号的方向
解一元一次不等式的一般步骤:去分母、③ _______ __________、系数化为1 去括号 、移项、 ④合并同类项
解 集 在 数 轴 上 的 表 示
卡车增加后,“宏达” 8(5 z ) 10 ( 7 + 车队需要一次一运输 6-z )>165 沙石165吨以上
四
解:设载重量为8吨的卡车增加了z辆,依题意得: 8(5+z)+10(7+6-z)>165, 5 解得:z< , 2 ∵z≥0且为整数, ∴z=0,1,2;∴6-z=6,5,4. ∴车队共有3种购车方案: ①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆; ②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆; ③载重量为8吨的卡车不购买,10吨的卡车购买6辆.
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解.doc
《不等式与一次不等式组》全章复习与巩(基础)知识讲解【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“〈”(或“彡”),“〉”(或“彡”),乒连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 解集的表示方法一般有两种:一种是川最简的不等式表示,例如X〉6/, 等;另一种是用数轴表示,如下图所示:x>aa(3)解不等式:求不等式的解集的过程叫做解不等式.2.不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方句不变.用式子表示:如果a〉b,那么a±c〉b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a〉b,c>0,那么ac〉bc(或f〉&).c c不等式的基本性质3:不等式两边乘(或除以)冋一个负数,不等号的方叫改变.用式子表示:如果a〉b,c<0,那么ac<bc(或.c c要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的S高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b〉O或ax+b<O(a.类0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清己知量、未知量;(2)设:设出适当的未知数;(3〉找:找出题中的不等关系,要抓住题屮的关键字,如“大于” “小于”“不大于” “至少” “不超过” “超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题吋,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄淸它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的儿个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解岀各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的符号语言表达下列关系.。
知识讲解《不等式》全章复习与巩固基础
《不等式》全章复习与巩固 编稿:张林娟 审稿:孙永钊【学习目标】1. 了解不等式(组)的实际背景;2. 通过图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图;3. 能用平面区域表示二元一次不等式组,能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;4. 会用基本不等式解决简单的最大(小)值问题,注意基本不等式适用的条件. 【知识网络】【要点梳理】要点一:不等式的主要性质 (1)对称性:a b b a <⇔>. (2)传递性:c a c b b a >⇒>>,.(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,.(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,;bd ac d c b a >⇒>>>>0,0. (5) 乘方法则:0n na b a b >>⇒>(*1)n n ∈>N ,且. (6) 开方法则:0a b >>⇒>(*1)n n ∈>N ,且.要点诠释:不等式性质中要注意等价双向推出和单向推出关系的不同. 要点二:三个“二次”的关系1. 一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集:设相应的一元二次方程20ax bx c ++=(0)a >的两根为2121x x x x ≤且、,ac b 42-=∆,则不等不等式不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与平面区域基本不等式最大(小)值问题简单的线性规划式的解的各种情况如下表:0>∆ 0=∆ 0<∆函数cbx ax y ++=2(0>a )的图象方程()200ax bx c a ++=>的根有两相异实根)(,2121x x x x <有两相等实根abx x 221-==无实根20(0)ax bx c a ++>>的解集{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R20(0)ax bx c a ++<>的解集{}21x x xx <<∅∅2. 解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数:2A ax bx c =++(0)a >. (2)计算判别式∆,分析不等式的解的情况:①0∆>时,求根12,x x (注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解. (3)写出解集.要点诠释:若0a <,可以转化为0a >的情形解决. 要点三:线性规划1. 用二元一次不等式(组)表示平面区域二元一次不等式0Ax By C>++在平面直角坐标系中表示直线0Ax By C ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 二元一次不等式表示哪个平面区域的判断方法由于对在直线0Ax By C ++=同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点()00x y ,,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)3. 线性规划的有关概念 (1) 线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.(2)线性目标函数:关于x 、y 的一次式()z ax by a b =+∈R ,是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③ 线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. (3)可行解、可行域和最优解:在线性规划问题中,满足线性约束条件的解(x ,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:求线性目标函数在线性约束条件下的最优解的步骤 (1)设变量,建立线性约束条件及线性目标函数; (2) 由二元一次不等式表示的平面区域做出可行域; (3)求出线性目标函数在可行域内的最值(即最优解); (4)作答.要点四:基本不等式 1. 两个重要不等式① ,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)② 基本不等式:如果,a b 是正数,那么2a b+≥a b =时取等号“=”). 2. 算术平均数和几何平均数 ① 算术平均数:2ba +称为,ab 的算术平均数; ② 几何平均数:ab 称为,a b 的几何平均数.要点诠释:基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 3. 基本不等式的应用① ,(0,)x y ∈+∞,且xy P =(定值),那么当x y =时,x y +有最小值; ② ,(0,)x y ∈+∞,且x y S +=(定值),那么当x y =时,xy 有最大值2S 41.要点诠释 :在用基本不等式求函数的最值时,应具备的三个条件: ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三等:函数的解析式中,含变数的各项均相等,取得最值. 4. 几个常用变形不等式① 222()2a b a b ++≥(当且仅当a b =时等号成立);② ()24a b ab +≥(当且仅当a b =时等号成立);③()02>⋅≥+b a abb a ;特别地:()021>≥+a aa ;④ ba ab ab b a b a +≥≥+≥+22222 (),R a b +∈. 【典型例题】类型一:不等式性质的应用例1.若0<<b a ,则下列不等关系中不能成立的是( ) A .b a 11> B .ab a 11>- C .||||b a > D .22b a > 【思路点拨】利用作差法或作商法比较两数大小;或利用赋值法排除选项. 【答案】B【解析】∵0<<b a ,∴0>->-b a .由b a -<-11,ba 11>,∴(A )成立. 由0<<b a ,||||b a >,∴(C )成立.由0>->-b a ,22)()(b a ->-,22b a >,∴(D )成立. ∵0<<b a ,0<-b a ,0<-<b a a ,0>->-a b a ,)(11b a a --<-,ba a ->11,∴(B )不成立. 故应选B【总结升华】运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误.举一反三:【变式】已知,m n R ∈,则11m n>成立的一个等价条件是( ) A.0m n >> B.0n m >> C.()0mn m n -< D.0m n << 【答案】C例2.如果3042x <<,1624y <<,则(1) x y +的取值范围是 ; (2) xy 的取值范围是 . 【答案】(1)(46,66); (2)(480,1008)【解析】(1)利用不等式的性质d b c a d c b a +>+⇒>>,可得4666x y <+<;(2)利用不等式的性质bd ac d c b a >⇒>>>>0,0可得4801008xy <<. 【总结升华】注意同向不等式的加法法则和乘法法则的正确应用,注意其使用条件. 举一反三:【变式】如果3042x <<,1624y <<,则 (1) 2x y -的取值范围是 ; (2)xy的取值范围是 . 【答案】(1)(-18,-10); (2)521(,)48. 例3.已知函数2()f x ax c =-,满足4(1)1f -≤≤-,1(2)5f -≤≤,那么(3)f 的取值范围是 .【解析】解法一:方程思想(换元):由⎩⎨⎧=-=-)2(4)1(f c a f c a ,求得[]1(2)(1)341(1)(2)33a f f c f f ⎧=-⎪⎪⎨⎪=-+⎪⎩∴ )2(38)1(359)3(f f c a f +-=-= 又340)2(3838,320)1(3535≤≤-≤-≤f f ∴ 20)2(38)1(351≤+-≤-f f ,即20)3(1≤≤-f .解法二:待定系数法设f(3)=9a-c=mf(1)+nf(2)=m(a-c)+n(4a-c)5-493()---183m m n m n n ⎧=⎪+=⎧⎪⇒⇒⎨⎨=⎩⎪=⎪⎩下略解法三:数形结合(线性规划)-4(1)-1-4--1-1(2)5-14-5f a c f a c ≤≤≤≤⎧⎧⇒⎨⎨≤≤≤≤⎩⎩ 所确定区域如图:设9-z a c =,将边界点(0,1)(3,7)代入即求出.【总结升华】利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.举一反三:【变式】已知15a b -≤+≤,13a b -≤-≤,求32a b -的取值范围. 【答案】[-3,10]类型二:一元二次不等式的有关问题例4.不等式2120ax bx ++>的解集为{|12x x -<< },则a =_______, b =________.【思路点拨】一元二次不等式2120ax bx ++>解集{|12x x -<<}中的端点12x=x=-,就是对于的方程2120ax bx =++的两个根,利用根与系数的关系(韦达定理)列方程组,即可求出a , b 的值.【解析】由不等式的解集为{x|-1<x<2}知a<0,且方程ax 2+bx+12=0的两根为-1,2.由根与系数关系得12112(1)22baa⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩解得a=-6, b=6.【总结升华】利用一元二次不等式02ax bx c ++>的解集与一元二次方程02ax bx c ++=的根之间的关系,可使问题简单化.举一反三:【变式1】若不等式()(1)0x a x ++≥的解集为(-∞,-1] ∪[2,+ ∞),求实数a 的值. 【答案】2【解析】由题设知 x=2为方程f(x)=0的根, ∴f(2)=0⇔a=-2, ∴所求实数a=2 .【变式2】已知关于x 的方程()()21110k x k x k -++++=有两个相异实根,求实数k 的取值范围.【答案】5(1,1)(1,)3- 例5.若关于x 的不等式2(1)(21)20m x m x m --++-≥的解集为一切实数R ,求m 的取值范围. 【思路点拨】观察不等式2(1)(21)20m x m x m --++-≥,可知其首项系数含参数,需分类讨论. 【解析】当1m =时,原不等式为:310x --≥,不符合题意.当1m <时,原不等式为一元二次不等式,显然不符合题意. 当1m >时,只需0∆≤,即2(21)4(1)(2)01m m m m ⎧+---≤⎨>⎩,解得m ∈∅. 综上,m 的取值范围为m ∈∅.【总结升华】① 在含参不等式问题中,二次不等式恒成立的充要条件的理论依据:ax 2+bx+c>0对任何x ∈R 恒成立⇔a>0且Δ=b 2-4ac<0; ax 2+bx+c<0对任何x ∈R 恒成立⇔a<0且Δ=b 2-4ac<0. ② 与不等式恒成立相互依存,相互支撑与相互转化的最值命题:μ<f(x)恒成立⇔μ<f(x)的最小值 μ>f(x)恒成立⇔μ>f(x)的最大值. 举一反三:【变式】若对于任意x ∈R 恒有()223221x x m x x ++>++*()m ∈N ,求m 的值.【答案】对任意x ∈R 有()223221x x m x x ++>++恒成立⇔对任意x ∈R 恒()()23220m x m x m -+-+->()成立 23m 0(2m)4(3m)(2m)0->⎧∴⎨∆=----<⎩ m 3m 210m 2m 3<⎧⎪⇔⇔<⎨<>⎪⎩或又因m ∈N *,∴m=1类型三:二元一次方程(组)与平面区域例6.设集合A ={()|1x y x y x y ,,,--是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )【解析】利用三角形的三边关系得:111x y x y x y x y y x x y+>--⎧⎪-<--⎨⎪-<--⎩,即 1,21,21,2x y x y ⎧+>⎪⎪⎪<⎨⎪⎪<⎪⎩表示的平面区域为A 选项. 【总结升华】注意本例中三角形本身的性质. 举一反三:【变式1】不等式组24236x y x y +≥⎧⎨-<⎩所表示的平面区域为( )xyOxyOxyOxyOA B C D 【答案】B【变式2】不等式组0101x yx yxy->⎧⎪+≥⎪⎨<<⎪⎪<<⎩在xOy平面上的解的集合为()A.四边形内部 B. 三角形內部 C.一点 D.空集【答案】B【解析】不等式组所表示的平面区域图形如下,xy(1,0)(2,0)(0,1)=-yx=+yx∴交集为三角形内部,选B.类型四:求线性目标函数在线性约束条件下的最优解例7.某公司招收男职员x名,女职员y名,x和y需满足约束条件51122,239,211,x yx yx-≥-⎧⎪+≥⎨⎪≤⎩则1010z x y=+的最大值是()A.80 B.85 C.90 D.95【思路点拨】画出可行域,目标函数的最大值只能在构成可行域的三角形的顶点处取得,求出顶点坐标代入目标函数即可.【答案】C【解析】先画出满足约束条件的可行域,如图阴影部分所示.由{51122,211,x y x -=-= 解得 {5.5,4.5,x y ==但x ∈N *,y ∈N *,结合图知当x=5,y=4时,z max =90.【总结升华】结合实际问题,注意约束条件中变量的取值范围. 举一反三:【变式】设变量x y 、满足约束条件,2,36,y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩则目标函数2z x y =+的最小值为( )A .2B .3C .4D .9 【答案】B【解析】如图可知,在点(1,1)处2z x y =+取得最小值,z min=3.类型五:基本不等式的应用例8.一批救灾物资随26辆汽车从某市以x km/h 的速度匀速开往400 km 处的灾区.为安全起见,每两辆汽车的前后间距不得小于220x ⎛⎫⎪⎝⎭km ,问这批物资全部到达灾区,最少要多少小时?【思路点拨】设出合适的变量,建立相应的函数关系式,注意自变量的取值范围,利用均值不等式求其最小值.【解析】设全部物资到达灾区所需时间为t 小时,由题意可知,t 相当于:最后一辆车行驶了25个220x ⎛⎫⎪⎝⎭km +400 km 所用的时间,因此2254002540020210400x x t x x x⎛⎫⨯ ⎪⎝⎭=+≥⨯=. 当且仅当25400400x x=,即x =80时取“=”. 故这些汽车以80 km/h 的速度匀速行驶时,所需时间最少要10小时.【总结升华】在解答应用问题时要加强将实际问题的文字语言转化为数学符号语言,用数学式子表达文字语言所反映的数学关系的能力.举一反三:【变式1】求2(3)(03)y x x x =-<<的最大值. 【答案】92【解析】03,30x x ∴-<<>且x x +-=()33为常数,2392(3)2()22x x y x x +-∴=-≤⋅=(当且仅当33,2x x x =-=即时取等号), ∴当32x =时,max 92y =. 【变式2】建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低造价为 元.【答案】1760【解析】设水池池底的一边长为xm ,则另一边长为4m x,则总造价y 为:4448080(22)2480320()y x x x x=+⨯+⋅⨯=++480320480320221760≥+=+⨯⨯=(元) 当且仅当4x x=即2x =时,y 取最小值为1760. 所以水池的最低造价为1760元.。
一次不等式与不等式组复习课ppt课件
,并把解集在
-5 -4 -3 -2 -1 O式的两边都乘上(或除以)同一个负数,不 等号方向改变.
三、规律与方法:
1、不等式的解法:
2、解不等式组的方法:
3、不等式的解集在数轴上的表示:大向右,小向 左,有等号是实心,无等号是空心.
4、求几个不等式的解的公共部分的方法和规律:
(1)数轴法
(2)口诀法
同大取大
同小取小
大小小大中间找 5、用一元一次不等式组 大大小小解不了 解决实际问题的步骤: 实际 设一个 列不等 解不等 检验解是否 问题 未知数 式组 式组 符合情况
一、基本概念:
1、不等式: 2、不等号: 3、不等式的解: 4、不等式的解集: 5、解不等式: 6、一元一次不等式: 7、一元一次不等式组:
8、一元一次不等式组的解集: 9、解一元一次不等式组:
二、不等式的性质:
(1)不等式的两边都加上(或减去)同一个数或式 子,不等号方向不变.
(2)不等式的两边都乘上(或除以)同一个正数,不 等号方向不变.
A
-1
3
B
-1
3
C
-1
3
D
-1
3
x 2 1 例4:不等式组2x 1 5 的解集是__2_<_x_<_3____.
3(x 2) 4 5x
例5:解不等式组
x
1 2
x
3x
1
二、求不等式的特殊解:
例6:不等式2x 3 的最小整数解为( A ) x 1 8 2x
A,-1
B,0
C,2
D,3
2x 4 0
例7:不等式组 1 2
x
2
的整数解为__-3_,_-2_____
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)
巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
初中不等式与不等式组知识点
初中不等式与不等式组知识点初中阶段,学生在学习数学的同时,也会接触到不等式与不等式组的知识。
不等式与不等式组是数学中重要的内容之一,对培养学生的逻辑思维能力和问题解决能力具有重要意义。
本文将详细介绍初中不等式与不等式组的相关知识点。
一、不等式不等式是数学中的一种关系式,表示两个数的大小关系。
初中不等式主要有一元一次不等式、一元二次不等式和绝对值不等式。
1.一元一次不等式一元一次不等式是指形式为ax + b > 0或ax + b < 0的不等式,其中a和b是已知实数,x是未知数。
解一元一次不等式的基本方法是利用等式的性质。
2.一元二次不等式一元二次不等式是指形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b和c是已知实数,x是未知数。
解一元二次不等式的方法主要有因式分解法、配方法、判别式法和图像法等。
3.绝对值不等式绝对值不等式是指形如,ax + b, > c或,ax + b, < c的不等式,其中a、b和c是已知实数,x是未知数。
解绝对值不等式的方法是利用绝对值的性质和等式的性质。
二、不等式组不等式组是指由多个不等式组成的方程组,表示多个数的大小关系。
初中不等式组主要有一元一次不等式组和二元一次不等式组。
1.一元一次不等式组一元一次不等式组是指形如{ax + by > c, dx + ey < f}的不等式组,其中a、b、c、d、e和f是已知实数,x和y是未知数。
解一元一次不等式组的方法是将不等式进行整理,将变量的系数与常数项进行比较,推导出变量的范围。
常用的解法有图像法和代数法。
2.二元一次不等式组二元一次不等式组是指由两个二元一次不等式组成的方程组,表示两个变量的大小关系。
形如{ax + by > c, dx + ey < f}的不等式组,其中a、b、c、d、e和f是已知实数,x和y是未知数。
人教版七年级数学下册《不等式与不等式组复习课》教学设计
《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。
就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是全章复习课。
由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。
教师主要在习题的设计上选好典型例题,复习的知识尽量全面。
教学效果上使不同的学生有不同的收获。
二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。
会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。
2、本节内容在教材的地位和作用。
本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。
②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用。
北京四中八年级下册数学一元一次不等式与不等式组全章复习与巩固(提高)巩固练习
《一元一次不等式与不等式组》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥1 2.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ).A .80元B .100元C .120元D .160元3.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( ).A .x <-1B .x > -1C . x >1D .x <14.若不等式组12x x k <≤⎧⎨>⎩有解,则k 的取值范围是( ). A.2k < B. 2k ≥ C.1k < D. 12k ≤<5.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( ) .A .a >0B .a <0C .a=-2D .a=26. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A .5B .4C .3D .27.如果一次函数当自变量的取值范围是时,函数值的取值范围是,那么此函数的解析式是( ) .A .B .C .或D .或8.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩二、填空题9.某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为 .10.已知方程组⎩⎨⎧=+=-7325ay x y ax 的解满足⎩⎨⎧<>00y x ,则a 的取值范围 .11. 若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是. 12. 如图,直线y kx b =+经过A (2,1),B (-1,-2)两点,则不等式122x kx b >+>-的解集为__________.13.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围 .14.如果关于x 的不等式组9080x a x b -≥⎧⎨-<⎩的正整数解仅为1,2,3,则a 的取值范围是 ,b 的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组:114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18. 若关于x 的不等式组⎩⎨⎧≥-<-nm x m x 2342的解集是32<≤-x ,求2)(n m +的值. 19.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?20. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2h 后血液中的含药量最高,达每升6mg ,接着逐步衰减,10h 后血液中的含药量为每升3mg ,每升血液中的含药量y mg 随时间x h 的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出x ≤2和x ≥2时,y 与x 之间的函数关系式;(2)如果每升血液中的含药量为4mg 或4mg 以上时,治疗疾病是有效的,那么这个有效时间是多长?【答案与解析】一.选择题1. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.2. 【答案】C ;【解析】解:设降价x 元时商店老板才能出售.则可得: 360-x ≥3601.8×(1+20%), 解得:x ≤120.3. 【答案】A ;【解析】一次函数y ax b =+的图象过第一、二、四象限,所以a <0,将(2, 0)代入y ax b =+,得20a b +=,所以()()1210a x b ax a a a x --=-+=+>,所以10,1x x +<<-.4. 【答案】A ;【解析】画数轴进行分析.5. 【答案】C ;【解析】由已知a <0且x >-a 4,则-24=a,即2a =-. 6. 【答案】A ;【解析】设一个球体、圆柱体与正方体的质量分别为x 、y 、z , 根据已知条件,有2522x y z y =⎧⎨=⎩①② ①×2-②×5,得2x =5y ,即与2个球体质量相等的正方体的个数为5.7.【答案】C ;【解析】分k >0和k <0两种情况讨论.8. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.二.填空题9. 【答案】0.7元;【解析】可以先打两次3分钟,再打一次4分钟.10.【答案】710a 157<-<; 【解析】方程组⎩⎨⎧=+=-7325ay x y ax 得:⎪⎪⎩⎪⎪⎨⎧+-=++=223210732715a a y a a x 所以⎪⎪⎩⎪⎪⎨⎧<+->++03210703271522a a a a , ∴⎩⎨⎧<->+01070715a a 解得:-710157<<a . 11. 【答案】2≥m ;【解析】要使原不等式无解,则需满足211m m -≥+,得m ≥2.12. 【答案】-1<x <2;【解析】由于直线y kx b =+经过A (2,1),B (-1,-2)两点,那么把A 、B 两点的坐标代入y kx b =+,用待定系数法求出k 、b 的值,然后解不等式组122x kx b >+>-,即可求出解集.13.【答案】 k ≥-3;【解析】3k-5x=-9,x=935k +,930,5k +≥ 解得k ≥-3. 14. 【答案】09a <≤,2432b <≤;15.【答案】3,1;【解析】由于本密码的解密钥匙是: 明文a ,b 对应的密文为a-2b ,2a+b .故当密文是1,7时,得2127a b a b -=⎧⎨+=⎩, 解得31a b =⎧⎨=⎩.也就是说,密文1,7分别对应明文3,1.16.【答案】1<a ≤2.【解析】先把a 看成一个固定数,解关于x 的不等式组,再由不等式组的解集研究a 的取值范围.三.解答题17.【解析】 解:原不等式组可化为:⎪⎩⎪⎨⎧0)12(32)12(41)12(310)3(99)3(36)3(35<---+->---+-x x x x x x , 即⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛0)12(3241310)3)(993635(<--+>--+x x ,∵35+36-99<0,0324131<-+ , ∴⎩⎨⎧01203>-<-x x ,于是,|x -3|+|2x -1|=(3-x)+(2x -1)=x +2.18.【解析】解: 原不等式组可化为:⎩⎨⎧+≥+<n m x m x 2342,∴ ⎪⎪⎩⎪⎪⎨⎧+≥+<3224n m x m x ,根据条件可得: 2432+<≤+m x n m 且⎪⎪⎩⎪⎪⎨⎧-=+=+232324n m m , 解得⎩⎨⎧-==102n m , 当10,2-==n m 时, 2)(n m +=64)102(2=-.19.【解析】解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,根据题意,得0.632 1.3x y x y +=⎧⎨+=⎩,20. 【解析】解:(1)由图知,x ≤2时是正比例函数,x ≥2时是一次函数.设x ≤2时,y kx =,把(2,6)代入y kx =,解得k =3,∴ 当0≤x ≤2时,3y x =.设x ≥2时,y k x b '=+,把(2,6),(10,3)代入y k x b '=+中,得26103k b k b '+=⎧⎨'+=⎩,解得38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩,即32784y x =-+. 当y =0时,有327084x =-+,18x =. ∴ 当2≤x ≤18时,32784y x =-+. (2)由于y ≥4时在治疗疾病是有效的, ∴ 34327484x x ≥⎧⎪⎨-+≥⎪⎩,解得42233x ≤≤. 即服药后43h 得到223h 为治病的有效时间, 这段时间为224186()333h -==.。
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解.doc
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解责编:某老师【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c ).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的符号语言表达下列关系.。
《实数》全章复习与巩固(知识讲解)八年级数学上册基础知识讲与练(北师大版)
专题2.22 《实数》全章复习与巩固(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【要点梳理】有理数和无理数统称为实数.1.实数的分类按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数特别说明:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式:(1)任何一个实数的绝对值是非负数,即||≥0;(2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、与实数有关的概念1、把下列各数填入相应的大括号里.π,2,﹣12,|,2.3,30%(1)整数集:{…};(2)有理数集:{…};(3)无理数集:{…}.【答案】(1)2,﹣12,2.3,30%π,|【分析】根据有理数与无理数概念,运用实数的分类求解即可.(1)解:∵|22,∵整数集:{2…}故答案为:2(2)解:有理数集:{2,﹣12,2.3,30%…};故答案为:2,﹣12,2.3,30%(3)解:无理数集:{π,|,…};a aa2a≥0a≥a a故答案为:π,|.【点拨】本题考查了实数的分类,解决本题的关键是熟记实数的分类. 【变式】一个数值转换器,如图所示:(1)当输入的x 为9时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,请写出所有满足要求的x 的值,并说明你的理由;(3)若输出的y x 值: . 【答案】或1,理由见分析(3)7或49 【分析】(1)根据算术平方根的定义进行计算即可; (2)根据0或1的算术平方根的特殊性得出答案;(3)可以考虑1次运算输出结果,2次运算输出结果,进而得出答案.(1)解:当x =9时,93,而3是有理数,3(2)0或1,理由如下:因为0的算术平方根是0,1的算术平方根是1, 无论进行多少次运算都不可能是无理数; (3)若1次运算就是无理数,则输入的数为7, 若2次运算输出的数是无理数,则输入的数是49, 故答案为:7或49.【点拨】本题考查算术平方根、有理数和无理数,理解算术平方根的定义是正确解答的前提.2、若0,0a ab <<,化简433a b b a ----+【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.解:∵0,0a ab <<,∵b >0,∵0,0a b b a ---+>∵a b b a ---((a b b a =-----a b b a =-+++=【点拨】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.【变式】实数a 在数轴上的对应点A 的位置如图所示,b =|a +|2−a |(1)求b 的值;(2)已知b +2的小数部分是m ,8-b 的小数部分是n ,求2m +2n +1的平方根.【答案】2(2)【分析】(1)先判断2<a <3,再判断a <0,2−a <0,再化简绝对值,合并即可;(2)先求解2,8,b b 再求解,m n 的值,再求解2m +2n +1,最后求解平方根即可. (1)解:∵2<a <3∵a ,2−a <0∵b -a +a -2(2)∵b +8-b =8)=10,3104,<<610107,∵m -3,n =10-6=4∵2m +2n +6+8-1=3∵2m +2n +1的平方根为【点拨】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键.类型二、二次根式双重非负性3、若a 、b 为实数,且b <222a a -+-+,化简:214422b b a b-++-. 【答案】3【分析】首先由二次根式有意义的条件求得:a =2,b <2,再利用实数的运算法则求解即可求得答案.解:∵20 20aa-≥⎧⎨-≥⎩,解得:a=2,∵b2=2,即b<2,221232bb-=+=+=-.【点拨】本题主要考查的是二次根式的非负性,以及二次根式的化简求值,利用非负性求得a值,以及b的取值范围是解本题的关键.【变式】已知实数,b,c满足3a+(2a b+的值.【答案】4【分析】根据二次根式的非负性求得b的值,然后根据非负数的性质求得,a c的值,最后代入代数式求解即可.解:∵3a+∵5050bb-≥⎧⎨-≥⎩,5b∴=,∴3a+0,3,2a c∴=-=,∴(2a b+()23504=-+-=.【点拨】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.类型三、与二次根式有关的规律问题4、细心观察图形,认真分析各式,然后解答问题:11OA=;2OA = 1111122S =⨯⨯=;3==OA 2112S ==4==OA 3112S ==; (1)请用含有n (n 为正整数)的等式表示上述变化规律:2nOA =______,n S =______. (2)若一个三角形的面积是 (3)求出22221239S S S S +++⋅⋅⋅+的值.【答案】(1)n 它是第32个三角形;(3)11.25. 【分析】(1)由勾股定理及直角三角形的面积求解;(2)利用(1)的规律代入Sn n 即可; (3)算出第一到第九个三角形的面积后求和即可.(1)解:因为每一个三角形都是直角三角形,由勾股定理可求得:OA 1,OA 2OA 3…,OAn所以OAn 2=n .Sn =12故答案为:n(2)解:当Sn 解之得:n =32,即:说明它是第32个三角形; (3)解:S 12+S 22+S 32+…+S 92 =14+24+…+94=454=11.25.即:S 12+S 22+S 32+…+S 92的值为11.25.【点拨】本题考查了勾股定理以及二次根式的应用,解题的关键是看清楚相邻两个三角形的各个边之间的关系.【变式】观察以下等式:第112=第223=第334== ...........按照以上规律,解决下列问题: (1)写出第7个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示,n 为自然数)(3)【答案】78=;1n n =+;(3)150 【分析】(1)根据所给的等式的形式求解即可; (2)分析所给的等式的形式,总结出规律即可; (3)利用(2)中的规律进行求解即可. (1)解:根据题意得第7个等式为:78==;78==;(2)解:第112;第223=;第334==; 由以上等式可以猜想第n 个等式是:1nn +;1nn =+;(3)……=1234923450⨯⨯⨯…… =150. 【点拨】本题主要考查数字的变化规律、二次根式性质和运算法则,解答的关键是由所给的等式总结出存在的规律.类型四、二次根式化简、求值5、计算:(1)⎛ ⎝ (2) )21+【答案】4+【分析】(1)先把各二次根式化为最简二次根式,去括号后再合并即可; (2)先利用平方差公式及完全平方公式进行计算,然后再合并即可.(1)解:原式=⎛ ⎝⎭=(2)解:原式=2221-++=3221-++ =4+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式】计算:(1) (2) (1112π-⎛⎫- ⎪⎝⎭【答案】(1)10-2 【分析】(1)根据二次根式的运算法则进行计算即可; (2)根据运算法则进行计算即可.(1)解:===46=+-10=-(2)解:(2)原式112=+2=【点拨】本题考查二次根式的计算,实数的计算,熟练掌握各运算法则是解题的关键.6、已知21x =+,21y =-,求2y xx y++的值. 【答案】8【分析】根据x y ,求出x y +和xy 的值,然后对原式进行通分转化为x y +和xy 的形式.解:∵1x =,1y =∵x y +=1xy =,22282()2y x x y xy x x y y xy x y ++===++=+ 【点拨】此题考查了二次根式的加减乘除运算,涉及了完全平方公式的应用,解题的关键是掌握二次根式的有关运算法则以及完全平方公式.【变式】(124x =.(2)已知x =y =22x xy y -+值.【答案】(1) (2)11 【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =∵x y -231xy ==-=-,原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy=(2﹣1 =12﹣1 =11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.类型四、二次根式大小比较7、请比较52和113的大小.【分析】先将两数通分,然后将分子中根号外的数字平方后移到根号内,通过比较被开方数的大小得出结论.解:,又∴.【点拨】本题主要考查了实数大小的比较,二次根式的性质.将两个无理数适当变形后,通过比较被开方数的大小进行解答是解题的关键.【分析】再进行作差运算,10>即可.=;解:1=1)1=,1,>,10【点拨】本题考查了无理数的比较大小,以及二次根式的分母有理化,解题的关键是将进行分母有理化,再进行作差运算比较大小.8、(1)观察各式:0.030.1732,3 1.732,30017.32≈≈≈...发现规律:被开方数的小数点每向右移动_________位,其算术平方根的小数点向______移动______位;(2 2.236≈_________________;(37.746≈≈的值.【答案】(1)2;右;1(2)0.2236;22.36(3)15.492,0.7347【分析】(1)观察分析已知式子中被开方数与算术平方根的小数点从小到位数,总结归纳出规律即可;(2)根据(1)发现的规律计算即可;(3=解:(1)0.1732≈17.32≈ 1.732≈,∵发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2) 2.236≈,≈,0.2236≈,22.36故答案为:0.2236,22.36;(3)7.746≈,27.74615.492=⨯=,2.449≈30.24490.7347==≈⨯=【点拨】本题考查数字型规律,算术平方根,总结归纳出规律是解题的关键.【变式】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =(0a >且1x ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式52log 25=,可以转化为指数式2525=.我们根据对数的定义可得到对数的一个性质:log ()log log a a a M N M N ⋅=+(0a >,1a ≠,0M >,0N >),理由如下:设log a M m =,log a N n =,则m M a =,n N a =,∵m n m n M N a a a +⋅=⋅=,由对数的定义得log ()a m n M N +=⋅又∵log log a a m n M N +=+∵log ()log log a a a M N M N ⋅=+根据阅读材料,解决以下问题:(1)将指数式4381=转化为对数式________;(2)求证:log log log a a a M M N N=-(0a >,1a ≠,0M >,0N >) (3)拓展运用:计算666log 9log 8log 2+-=________.【答案】(1)34log 81=;(2)详见分析;(3)2.【分析】(1)根据对数式的定义转化即可;(2)先设log a M m =,log a N n =,根据对数的定义可表示为指数式为:m M a =,n N a =,计算M N的结果,类比所给材料的证明过程可得结论; (3)根据公式:log ()log log a a a M N M N ⋅=+和log log log M M N N ααα=-的逆用,计算可得结论.解:(1)34log 81=(或3log 814=),故答案为34log 81=;(2)证明:设log a M m =,log a N n =,则m M a =,n N a =, ∵mm n n M a a N a-==,由对数的定义得log a M m n N -=, 又∵log log a a m n M N -=-, ∵log log log a a a M M N N=-; (3)666log 9log 8log 2+-66log (982)log 362=⨯÷==.故答案为2.【点拨】本题是新定义试题,主要考查幂的运算性质、新定义对数与指数之间的关系,解题的关键是明确新定义,理解对数的运算法则,明白指数与对数之间的相互转化关系.。
北京四中八年级下册数学一元一次不等式与不等式组全章复习与巩固(基础)巩固练习
《一元一次不等式与不等式组》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1. 已知a>b>0,则下列不等式不一定成立的是().A. ab>b2B. a+c>b+cC. 1a<1bD. ac>bc2. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m (g)的取值范围,在数轴上可表示为().3.不等式组24010xx-<⎧⎨+⎩≥的解集在数轴上表示正确的是().A B C D4. 如果关于x的不等式 (a+1)x>a+1的解集为x<1,那么a的取值范围是( ) .A. a>0B. a<0C. a>-1D. a<-15. 一次函数y ax b=+,若a b+=1,则它的图象必经过点().A.(-1,-1)B.(-1, 1)C.(1, -1)D.(1, 1)6.以下各式中,一元一次不等式个数为().①23<-a;②31>--xx;③0<-yx;④132≤+xx;⑤2131+>-xxA. 1B. 2C. 3D. 07.直线11:l y k x b=+与直线22:l y k x=在同一平面直角坐标系中的图象如图所示,则关于x的不等式12k x b k x+>的解为().A.1x>- B.1x<- C.2x<- D.无法确定°.°-1...°°00 1 2BAA0 1 2A21C1D28.三个连续自然数的和小于11,这样的自然数组共有( )组. A .1 B .2 C .3 D .4 二、填空题9. 当x_____时,代数式-3x +5的值不大于4.10.一个不等式的解集如图所示,则这个不等式的正整数解是_____.11.不等式组⎩⎨⎧<+≥+3201x x 的整数解是_______.12.已知2(2)230x x y a -+--=,y 是正数,则a 的取值范围 .13.不等式组130x x ≥⎧⎨-<⎩的解集是 .14.关于x 的方程2x +3k =1的解是负数,则k 的取值范围是_______.15.若不等式(m-2)x >2的解集是x <,则m的取值范围是_____.16.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________. 三、解答题17.在数学学习中,及时对知识进行归纳、类比和整理是提高学习效率的有效策略,善于学习的小明在学习解一元一次不等式中,发现它与解一元一次方程有许多相似之处.小明列出了一张对照表:从表中可以清楚地看出,解一元一次不等式与解一元一次方程有一定的联系,利用这种联系解决下列问题:(1)若不等式kx >b 的解集是x <1,求方程kx=b 的解; (2)若方程kx=b 的解是x=-1,求不等式kx >b 的解集. 18.解下列不等式(组),并把不等式的解集表示在数轴上. (1)4(1)33(21)x x -+≤+ (2)125336x --<≤19.(舟山)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?20.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为张. (1)写出零星租碟方式应付金额(元)与租碟数量(张)之间的函数关系式; (2)写出会员卡租碟方式应付金额(元 )与租碟数量(张)之间的函数关系式;(3)小彬选取哪种租碟方式更合算?【答案与解析】 一.选择题1. 【答案】D ;【解析】不等式的基本性质. 2. 【答案】A ; 3. 【答案】B ; 4. 【答案】D ;【解析】不等号的方向改变,说明a+1<0,即a <﹣1.5. 【答案】D ;【解析】当x =1时,y =1,故它的图象过点(1,1). 6. 【答案】B ;【解析】是一元一次不等式的是①和⑤. 7. 【答案】B ;【解析】当x <-1时,直线1l 在直线2l 的上方. 8. 【答案】C ;【解析】,解得n=0、1、2,共3组 .二.填空题9. 【答案】;【解析】-3x +5 10. 【答案】1、2;【解析】由图可得3x <,所以正整数有1、2.11. 【答案】-1,0;【解析】不等式组的解集为11x -≤<,整数解为-1,0. 12. 【答案】4a <; 【解析】由2230x x y a =⎧⎨--=⎩,解得2220y x a a =-=⨯->,化简得4a <.13. 【答案】1≤x <3;14. 【答案】;【解析】解方程得,则.15. 【答案】m<2;【解析】由不等式的基本性质3得,m-2<0.16. 【答案】(或:等);【解析】答案不唯一.三.解答题 17.【解析】 解:(1)1=x.(2)当0k >时,1x >-; 当.10-<<x k 时,18.【解析】 解:(1)44363x x -+≤+410x ≤∴25x ≥将解集表示在数轴上,如下图:(2)18245x -<-≤2043x -<-≤∴354x >≥-将解集表示在数轴上,如下图:19.【解析】解:(1)设租用甲车x 辆,则租用乙车(10-x )辆.由题意得4030(10)340,1620(10)170.x x x x +-≥⎧⎨+-≥⎩ 解得4≤x ≤7.5.因为x 取整数,所以x =4,5,6,7.则相应地,10-x =6,5,4,3.因此,有四种租车方案,分别是:①租用甲车4辆,乙车6辆;②租用甲车5辆,乙车5辆;③租用甲车6辆,乙车4辆;④租用甲车7辆,乙车3辆.(2)租车费用分别为:①4×2000+6×1800=18800(元);②5×2000+5×1800=19000(元);③6×2000+4×1800=19200(元);④7×2000+3×1800=19400(元).因为18800<19000<19200<19400,所以,方案①租甲车4辆,乙车6辆费用最省.20.【解析】解:(1).(2).所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算.。
中考数学一轮复习考点不等式与不等式组
2013年中考数学一轮复习考点8: 不等式与不等式组考点1:一次不等式(组)的概念考点2:一次不等式(组)的解集考点3: 一元一次不等式(组)的解法考点4: 一元一次不等式(组)的数学应用1. (2011湖北鄂州,7,3分)若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.考点5: 一元一次不等式(组)的实际应用实际应用题1. (2011湖南湘潭市,21,6分)某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数解.2. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( )A .6.0元B .7.0元C .8.0元D .9.0元3. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.4. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对 道题.5. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明8米厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.6. (2011浙江温州,23,12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于...85%,求其中所含碳水化...合物..质量的最大值.7. (2011湖南邵阳,22,8分)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛。
初一数学知识点讲解不等式与不等式组知识点
初一数学知识点讲解不等式与不等式组知识点
解一元一次方程,要根据等式的性质,将方程逐步化为x=a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x
9.3 一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。
解一元一次不等式组时。
一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
这篇初一数学知识点讲解不等式与不等式组知识点是小编精心为同学们准备的,祝大家学习愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的符号语言表达下列关系.。
(1)a与5的和是正数.(2)b与-5的差不是正数.(3)x的2倍大于x.(4)2x与1的和小于零.(5)a的2倍与4的差不少于5.【答案与解析】解:(1)a+5>0;(2)b-(-5)≤0;(3)2x>x;(4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于……2.用适当的符号填空:(1)如果a<b,那么a-3__b-3; 7a__7b;-2a__-2b.(2)如果a<b,那么a-b__0;a+5b__6b;11__22a b b .【思路点拨】不等式的基本性质1,2,3.【答案】(1)<;<;>.(2)<;<;<.【解析】(1)在不等式a<b两边同减去3,得a-3<b-3;在不等式a<b两边同乘以7,得7a<7b;在不等式a<b两边同乘以﹣2,得-2a>-2b.(2)在不等式a<b两边同减去b,合并得a-b<0;在a<b两边同加上5b,合并得a+5b<6b;在a<b两边同减去12b,合并得1122a b b-<.【总结升华】刚开始在面对不等式的基本变形时,要不断强化在变形上所运用的具体性质,同时也要逐步积累一些运用性质变形后的化简结果,这样学习到的不等式的基本性质才能落在实处.举一反三:【高清课堂:一元一次不等式章节复习 410551 例1】【变式】判断(1)如果a b>,那么22ac bc>;(2)如果22ac bc>,那么a b>.【答案】(1)×;(2)√.类型二、一元一次不等式3.(2016•宁德)解不等式﹣1≤,并把解集在数轴上表示出来.【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号.【答案与解析】解:去分母,得:3x﹣6≤2(7-x),去括号,得:3x﹣6≤14﹣2x移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.ax=b ax>b ax<b 解:当a≠0时,bxa=;当a=0,b≠0时,无解;当a=0,b=0时,x为任意解:当a>0时,bxa>;当a<0时,bxa<;解:当a>0时,bxa<;当a<0时,bxa>;有理数.当a =0,b ≥0时,无解; 当a =0,b <0时,x 为任意有理数. 当a =0,b ≤0时,无解; 当a =0,b >0时,x 为任意有理数.举一反三: 【变式】解不等式5113x x -->,并把解集在数轴上表示出来. 【答案】解:去分母得5x -1-3x >3,移项、合并同类项,得2x >4, 系数化为1,得x >2,解集在数轴上的表示如图所示.4.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x (单位:度) 电费价格(单位:元/度)0<x ≤200 a 200<x ≤400 b x >400 0.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a ,b 的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度? 【思路点拨】(1)根据题意即可得到方程组,然后解此方程组即可求得答案; (2)根据题意列不等式,解不等式. 【答案与解析】 解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x 度,根据题意得:200×0.61+200×0.66+0.92(x ﹣400)≤300, 解得:x≤450.答:李叔家六月份最多可用电450度. 【总结升华】考查了一元一次方程组与一元一次不等式的应用.注意根据题意得到等量关系是关键.类型三、一元一次不等式组5. 解不等式组: ⎪⎩⎪⎨⎧->+≥--②①13215)3(3x xx x ,并求出正整数解。
【思路点拨】分别解出各不等式,取所有的公共部分。
【答案与解析】解:由不等式①得x ≤2,由不等式②得4x <,∴由①②得⎩⎨⎧<≤42x x ,即2≤x∴原不等式组的解集是2≤x ,正整数解为1,2.【总结升华】求不等式(组)的特殊解的一般步骤是先求出不等式(组)的解集,再从中找出符合要求的特殊解. 举一反三:【变式】解不等式组:,并把解集在数轴上表示出来.【答案】 解:∵解不等式①得:x >﹣3, 解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.类型四、综合应用6.若关于x,y 的方程组3223x y ky x +=⎧⎨-=⎩的解满足11x y <⎧⎨>⎩,求k 的整数值.【思路点拨】从概念出发,解出方程组(用k 表示x 、y ),然后解不等式组. 【答案与解析】解:解方程组3223x y k x y +=⎧⎨-+=⎩43,729.7k x k y -⎧=⎪⎪⎨+⎪=⎪⎩得∵11x y <⎧⎨>⎩,431,729 1.7k k -⎧<⎪⎪⎨+⎪>⎪⎩即 解得:512k -<<,∴整数k 的值为0,1,2.【总结升华】方程组的未知数是x 、y ,k 在方程组里看成常数.通过求解方程组可以用k 表示x 、y.方程组的解满足不等式,那么可以将x 、y 用含k 的式子替换,得到关于k 的不等式组,可以求出k 的取值范围,进而可以求出k 的整数值. 【高清课堂:一元一次不等式章节复习 410551 例3(1)】 举一反三:【变式】m 为何值时,关于x 的方程:6151632x m m x ---=-的解大于1? 【答案】解:由6151632x m m x ---=-,得315m x -=, ∴3115m ->,解得2m >.∴当2m >时,关于x 的方程:6151632x m m x ---=-的解大于1. 7.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满.....).请你计算本次社会实践活动所需车辆的租金.【思路点拨】(1)设单独租用35座客车需x 辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y 辆,则租55座客车(4-y )辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解. 【答案与解析】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2(辆).∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.【总结升华】本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。