高三数学等比数列的概念通项公式

合集下载

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。

2. 培养学生运用等比数列知识解决实际问题的能力。

3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。

二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。

2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。

3. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。

2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。

3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。

4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。

5. 课堂练习:布置相关练习题,巩固所学知识。

6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。

7. 课后作业:布置适量作业,巩固所学知识。

六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。

2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。

3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。

七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。

2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。

3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。

八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,讲解应用实例。

等比数列的概念及通项公式

等比数列的概念及通项公式
a4 a7 512 ,且公比 2、等比数列{an}中,a3 a8 124 , 是整数,则 a10 等于( C ) A.256 B.-256 C.512 D.-512
3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式


Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?

等比数列的通项公式

等比数列的通项公式

等比数列的通项公式等比数列的通项公式是数列中任意一项与前一项的比值始终保持不变的关系式。

在数学中,等比数列是一种常见的序列形式,其通项公式的推导与应用具有重要意义。

在等比数列中,首项(a₁)与公比(r)是关键概念。

公比是一个常数,代表了相邻两项的比值。

通项公式可以用来直接计算等比数列中任意一项的数值,推导过程如下:设等比数列的首项为a₁,公比为r。

第n项为aₙ。

根据等比数列的定义,可得:a₂ = a₁ * ra₃ = a₂ * r = a₁ * r²a₄ = a₃ * r = a₁ * r³...aₙ = aₙ₋₁ * r = a₁ * r^(n-1)可以看出,第n项的数值是首项与公比的连乘结果,并且公比的指数等于n-1。

这样,我们可以得到等比数列的通项公式:aₙ = a₁ * r^(n-1)在实际应用中,等比数列的通项公式具有重要的作用。

通过该公式,我们可以根据已知条件,例如首项、公比和需要求解的项数,来计算出具体的数值。

这在金融、物理、工程等领域中都有广泛的应用。

例如,我们有一个等比数列的首项为3,公比为2,现在需要计算这个数列的第10项。

根据通项公式:aₙ = a₁ * r^(n-1)将已知条件代入,可得:a₁₀ = 3 * 2^(10-1) = 3 * 2^9 = 3 * 512 = 1536因此,等比数列的第10项为1536。

除了计算特定项的数值,通项公式还可以用来推导等比数列的其他性质。

例如,我们可以通过通项公式证明等比数列的任意两项之商仍然等于公比。

设等比数列的第m项为aₙ,第n项为aₙ(m < n),公比为r。

根据通项公式,可得:aₙ = a₁ * r^(m-1)aₙ = a₁ * r^(n-1)将两式相除,并进行化简:aₙ / aₙ = [a₁ * r^(n-1)] / [a₁ * r^(m-1)] = r^(n-1 - m+1) = r^(n-m)可以看出,等比数列的任意两项之商等于公比的幂次差。

高三数学等比数列3

高三数学等比数列3

5.数列 {an} 中, a1=1, a2=2. 数列 {anan+1} 是公比为q(q>0)的 等比数列. (1)求使 anan+1+an+1an+2>an+2an+3(nN*) 成立的 q 的取 值范围; (2)若 bn=a2n-1+a2n (nN*), 求 {bn} 的通项公式.
n-1 . 1+ 5 (2) b =3 q n (1) 0<q< 2 ; 6.已知 {an} 是首项为 a1, 公比为q 的等比数列. (1)求和: a1C0 22 1 2 3 0 a2C1 2+a3C2 , a1C3-a2C3+a3C3-a4C3 ; (2)由(1)的结果归纳概括出 关于正整数 n 的一个结论, 并加以证明; (3)设q≠1, Sn 是 {an} 的 n 0-S C1 +S C2 -S C3 + … +(-1)nS 前 n 项和, 求 S1Cn 2 n 3 n 4 n n+1Cn .
三、判断、证明方法
1.定义法;
2.通项公式法; 3.等比中项法.
典型例题
1.设数列 {an} 的前 n 项和为 Sn, 若 S1=1, S2=3, 且 Sn+1-3Sn+ 2Sn-1=0(n≥2), 试判断 {an} 是不是等比数列. a1=1, a2=2, Sn+1-Sn= 2(Sn-Sn-1), an=2n-1, {an}是等比数列. 2.设等比数列 {an} 的前 n 项和为 Sn, 若 S3+S6=2S9, 求数列的 公比 q. 3 -1 2 4 3.三个数成等比数列, 若将第三项减去 32, 则成等差数列, 再 将此等差数列的第二项减去 4, 又成等比数列, 求原来的三个数. 设三数为 a, b, c, 得 b=2+4a, c=7a+36. 26 , 338. 2, 10, 50 或 2 , 9 9 9 4.已知数列 {an} 的各项均为正数, 且前 n 和 Sn 满足: 6Sn=an2+ 3an+2. 若 a2, a4, a9 成等比数列, 求数列的通项公式. an+1-an=3, a1=1, an=3n-2.

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。

2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。

2. 教学难点:等比数列通项公式的推导和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。

3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。

4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。

五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。

2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。

3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。

4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。

5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。

6. 课堂练习:布置适量习题,巩固所学知识。

7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。

8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。

9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。

10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。

2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。

高三数学等比数列的概念通项公式

高三数学等比数列的概念通项公式

思考二: 若a, b,2
,
反之对吗?
引申:
如果数列{an}中 ,对于任意的n正(n整数2)
都有an1an1 an2 (n 2)
, 那么{an}是等比
数列吗?
例1
已知等比数列 ,a3 =20
a5 =80 , 求 a3 , a5的等比中项
变:已知等比数列 ,a3 =20
a7 =320 , 求 q , a5 求 a3 , a7的等比中项
例2 . 已知等比数列{an}中 ,且 a1 a5 = 8,
a2 a4 9 求 an
例3 . 已知三个数成等比数列,它们的和为 21,它们的积为64,求这三个数。
制作人
在等差数列{an}中 ,若m+n=p+q, 有am+an=ap+aq .
那么在等比数列 , 你能得出 怎样的结论?
在等比数列{an}中 ,若m+n=p+q,
aman apaq
特例:
在等比数列{an}中 ,an1an1 an2 (n 2)
引申一:
若a, b, c 成等比数列 ,一定有ac b2
等比数列的定义
1.
a2 a3 a4 a5 an q
a1 a2 a3 a4
a n 1
2.
an q
an1
(n 2)

a n1 q an
(n 1)
如 果 等 比 数 列 { a n } 的 首 项 是a1,公比是q,则
an a1 qn1
anqnm am an amqnm
思考1:
引申二: 若a, b, c 成等比数列 ,称b为a , c等比中项
多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。【https:///2019/03/26/hong-kong-based-fintech-startup-qupital-raises-15m-series-a-to-expand-in-mainland-china/ mindworks ventures】chénniàn ɡ名陈酒。这项 工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把花卉、水草、 水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住: 皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修行入道的门径 。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防

等比数列的通项与求和公式

等比数列的通项与求和公式

等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。

本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。

一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。

通常用字母a表示首项,字母r表示公比,公比r≠0。

二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。

根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。

三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。

1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。

2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。

四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。

2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。

3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。

五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。

2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。

3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。

等比数列的概念和通项公式

等比数列的概念和通项公式

,q= ,q=
. .
那么这个数列一定是等比数列吗?
当a, q其中有一个为 0时, 这个数列就不是等比数 列
课1.等时比小数结列定义:
an1 an
q, (q
0, n N *)
an q, (q 0.n 2, n N *) an1
2.等比数列通项公式:
an a1 qn1(a1 0, q 0)
(1)1,2,4,8,16, ,263 (2)5,25,125,625, (3)1, 1 , 1 , 1 ,
24 8
等1.比在数等列比 通项数公列 式运a用n:中
(1)a1 3, q 2, a6
(2)a44,q 91 3,a1
(3)a3 20, a6 160, an
(4)a2 10, a3 20, a40
3.等比数列公式的推导方法:累乘法
作业布置 ❖ 1.预习(1)什么是等比中项

(2)类比等差数列的性质猜想等比数
列性质
❖ 2.课本p49习题1,2
❖符号表示为:an1 q, (q 0, n N * ) an an q, (q 0.n 2, n N * ) an1
练习1.判断下列数列是否是等比数列, 若是等比数列,则求出公比
(1)1,2,1,2,1
(2)1, 1 , 1 , 1 , 1 3 9 27 81
(3)2,1, 1 , 1 ,0 24
一个新数列,这个数列还是等比数列吗?
如果是,它的首项和公比是多少?
(2)数列can(其中常数c 0)是等比数列吗?
如果是,它的首项和公比是多少?
❖等等比比数数列列的通通项项公公式式推导方法:

累乘法
❖等比数列的通项公式:
an a1 qn1(a1 0, q 0)

等比数列的通项公式

等比数列的通项公式

等比数列的通项公式等比数列是数学中一个重要的概念,其中每一项与前一项的比值保持不变。

在解决等比数列问题时,掌握通项公式是至关重要的。

本文将详细介绍等比数列的通项公式,并给出相关的例子进行解析。

一、等比数列的定义与性质等比数列是指数列中,每一项与前一项的比值都是固定的常数。

数列的通项公式可以通过等比数列的性质推导出来。

设等比数列的首项为a₁,公比为r,则数列的通项公式可表示为:an = a₁ * r^(n-1)其中,an表示等比数列的第n项。

二、等比数列的通项公式推导接下来,我们通过一个简单的例子来推导等比数列的通项公式。

例1:已知等比数列的首项为2,公比为3,求第10项的值。

解:根据等比数列的定义,我们可以得到:a₁ = 2, r = 3代入通项公式an = a₁ * r^(n-1),则第10项的值为:a₁₀ = 2 * 3^(10-1) = 2 * 3^9通过计算,得到第10项的值为2 * 19683 = 39366。

三、等比数列的应用等比数列的通项公式在实际问题中有广泛的应用。

下面,我们通过一个实例来说明等比数列在日常生活中的应用。

例2:小明每天存钱,第一天存1元,之后每天存的金额是前一天的3倍,求30天内总共存了多少钱。

解:设第n天存的金额为an,根据题意,我们可以得到:a₁ = 1, r = 3代入通项公式an = a₁ * r^(n-1),则第30天存的金额为:a₃₀ = 1 * 3^(30-1) = 1 * 3^29通过计算,得到第30天存的金额为1 * 3^29 = 1 * 594,914,763 = 594,914,763元。

因此,小明在30天内总共存了594,914,763元。

四、等比数列的性质除了通项公式,等比数列还具有以下几个重要的性质:1. 任意项与其后第n项的比值为r^(n-1)。

2. 任意项与其前第n项的比值为r^(1-n)。

3. 任意连续两项的比值为相同的常数r。

4. 等比数列的前n项和公式为Sn = a₁ * (1 - r^n) / (1 - r)。

等比数列的通项与公式

等比数列的通项与公式

等比数列的通项与公式等比数列是数学中的一种重要数列,它的通项与公式在数学中有着广泛的应用和意义。

在等比数列中,每一项与前一项的比值都相同,这个比值称为公比。

一、等比数列的定义与性质等比数列是指数列中的每一项与它前面的一项的比值相等的数列。

设等比数列的首项为a₁,公比为q,则它的通项可以表示为:aₙ = a₁ * q^(n-1)其中,aₙ为第n项,n为项数。

1. 公比的定义与性质在等比数列中,公比q是等于相邻两项的比值,即 q = aₙ / a(n-1)。

2. 通项的推导与性质通过观察等比数列中相邻两项的比值,可以得到通项的推导公式。

假设第n项为aₙ,前一项为a(n-1),则有:q = aₙ / a(n-1) (1)根据等比数列的定义,还可以得到:aₙ = a(n-1) * q (2)将(2)式代入(1)式中,可以得到:q = (a(n-1) * q) / a(n-1)整理得到通项的公式:aₙ = a(n-1) * q^(n-1)二、等比数列的应用举例等比数列在数学中有着广泛的应用。

下面将通过一些具体例子来展示等比数列的应用。

1. 计算等比数列前n项的和对于等比数列,我们常常需要计算前n项的和。

设等比数列的首项为a₁,公比为q,前n项的和为Sₙ,则有以下公式:Sₙ = a₁ * (1 - qⁿ) / (1 - q)这个公式可以帮助我们快速计算等比数列前n项的和。

2. 物质的倍增在一些自然和社会领域中,存在着物质的倍增问题。

比如,细菌的繁殖、人口增长等都可以看作是等比数列的应用。

在这些问题中,公比q常常表示倍增的比例。

三、等比数列的举例与求解下面通过一些具体的例子来展示等比数列的应用与求解过程。

例1:已知等比数列的首项为2,公比为3,求第6项的值。

根据等比数列的通项公式可以得到:a₆ = a₁ * q^(6-1) = 2 * 3^(6-1) = 2 * 3^5 = 2 * 243 = 486所以第6项的值为486。

等比数列的通项公式

等比数列的通项公式

等比数列的通项公式在数学中,等比数列是一种常见的数列形式,它的每一项与前一项的比值都相等。

等比数列可以通过通项公式来表示,该公式能够直接计算出数列的任意项。

一、等比数列的定义等比数列是指一个数列中,每一项与前一项的比值都相等的数列。

设等比数列的首项为a,公比为r,则数列的通项可以表示为an = a *r^(n-1),其中an表示数列中的第n项。

二、等比数列的性质1. 公比的正负性:若公比r大于0且不等于1,则数列递增;若公比r小于0且不等于-1,则数列递减。

2. 公比的绝对值:若公比的绝对值|r|小于1,则数列递减趋于0;若公比的绝对值|r|大于1,则数列递增或递减趋于正负无穷。

3. 通项公式的推导:通过求解数列中的两个相邻项,可以得到通项公式。

假设第k项与第(k+1)项分别为ak和a(k+1),则有ak * r = a(k+1),可得到通项公式为an = a * r^(n-1)。

4. 等比数列的求和公式:由于等比数列的每一项与前一项的比值相等,可以使用求和公式来计算数列的和。

求和公式为Sn = a * (1 - r^n) /(1 - r),其中n表示求和的项数。

三、应用例题例题1:求等比数列2,4,8,16,...的第8项和前8项的和。

解析:首先计算公比r,可通过相邻两项的比值来求解。

第二项4除以第一项2等于2,第三项8除以第二项4等于2,以此类推可以得到公比r=2。

利用通项公式an = a * r^(n-1),可得到第8项a8 = 2 *2^(8-1) = 2 * 2^7 = 256。

其次,利用求和公式Sn = a * (1 - r^n) / (1 - r),代入首项a=2,公比r=2,项数n=8,可以得到前8项的和S8 = 2 * (1 - 2^8) / (1 - 2) = 2 * (1 - 256) / -1 = 510。

例题2:若等比数列的首项为3,第5项为48,求公比和前10项的和。

高中数学等比数列公式是什么

高中数学等比数列公式是什么

高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。

如函数过的定点、二次函数的对称轴等。

3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。

4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

5、选择与填空中出现不等式的题,应优先选特殊值法。

6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。

2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。

2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。

3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。

5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。

三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。

2. 教学难点:等比数列通项公式的理解和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。

3. 通过小组讨论、合作交流,培养学生的团队协作能力。

4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。

五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。

2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。

3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。

六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。

2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。

3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。

4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。

5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。

高中数学《等比数列的概念及通项公式》知识点讲解及重点练习

高中数学《等比数列的概念及通项公式》知识点讲解及重点练习

§4.3等比数列4.3.1等比数列的概念第1课时等比数列的概念及通项公式学习目标 1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形.知识点一等比数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.递推公式形式的定义:a na n-1=q(n∈N *且n>1)⎝⎛⎭⎫或a n+1a n=q,n∈N*.思考为什么等比数列的各项和公比q均不能为0?答案由于等比数列的每一项都可能作分母,故每一项均不能为0,因此q也不能为0.知识点二等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.思考当G2=ab时,G一定是a,b的等比中项吗?答案不一定,如数列0,0,5就不是等比数列.知识点三等比数列的通项公式若等比数列{a n}的首项为a1,公比为q,则a n=a1q n-1(n∈N*).知识点四等比数列通项公式的推广和变形等比数列{a n}的公比为q,则a n=a1q n-1①=a m q n-m②=a1 q·qn.③其中当②中m=1时,即化为①.当③中q>0且q≠1时,y=a1q·qx为指数型函数.1.数列1,-1,1,-1,…是等比数列.( √ )2.若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列.( × )3.等比数列的首项不能为零,但公比可以为零.( × )4.常数列一定为等比数列.( × )一、等比数列中的基本运算例1 在等比数列{a n }中:(1)a 1=1,a 4=8,求a n ;(2)a n =625,n =4,q =5,求a 1;(3)a 2+a 5=18,a 3+a 6=9,a n =1,求n .解 (1)因为a 4=a 1q 3,所以8=q 3,所以q =2,所以a n =a 1q n -1=2n -1.(2)a 1=a n q n -1=62554-1=5, 故a 1=5.(3) 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①,得q =12,从而a 1=32. 又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,故n =6.反思感悟 等比数列的通项公式涉及4个量a 1,a n ,n ,q ,只要知道其中任意三个就能求出另外一个,在这四个量中,a 1和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.跟踪训练1 在等比数列{a n }中:(1)若它的前三项分别为5,-15,45,求a 5;(2)若a 4=2,a 7=8,求a n .解 (1)因为a 5=a 1q 4,而a 1=5,q =a 2a 1=-3, 所以a 5=405.(2)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6, 所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4, 从而q =34,而a 1q 3=2,于是a 1=2q 3=12, 所以a n =a 1q n -1=2532n -.二、等比中项的应用例2 如果-1,a ,b ,c ,-9成等比数列,那么b =__________,ac =___________. 答案 -3 9解析 因为b 是-1,-9的等比中项,所以b 2=9,b =±3.又等比数列奇数项符号相同,得b <0,故b =-3,而b 又是a ,c 的等比中项,故b 2=ac ,即ac =9.反思感悟 (1)由等比中项的定义可知G a =b G⇒G 2=ab ⇒G =±ab ,所以只有a ,b 同号时,a ,b 的等比中项有两个,异号时,没有等比中项.(2)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.(3)a ,G ,b 成等比数列等价于G 2=ab (ab >0).跟踪训练2 在等比数列{a n }中,a 1=-16,a 4=8,则a 7等于( )A .-4B .±4C .-2D .±2答案 A解析 因为a 4是a 1与a 7的等比中项,所以a 24=a 1a 7,即64=-16a 7,故a 7=-4.三、等比数列通项公式的推广及应用例3 在等比数列{a n }中.(1)已知a 3=4,a 7=16,且q >0,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n .解 (1)∵a 7a 3=q 7-3=q 4=4, ∴q 2=2,又q >0,∴q =2,∴a n =a 3·q n -3=4·(2)n -3=122n +(n ∈N *).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5,又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n ,∵a n ≠0,∴2(1+q 2)=5q ,解得q =12或q =2. ∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2. ∴a n =2·2n -1=2n (n ∈N *).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练3 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.四、灵活设元求解等比数列问题例4 (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.答案 45解析 (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧ 2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6, 解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们的和为12,求这四个数.解 方法一 设前三个数分别为a q,a ,aq , 则a q·a ·aq =216, 所以a 3=216.所以a =6.因此前三个数为6q,6,6q . 由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23. 故所求的四个数为9,6,4,2.方法二 设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2, 由题意知14(4-d )2×(4-d )×4=216, 解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.反思感悟 几个数成等比数列的设法(1)三个数成等比数列设为a q,a ,aq . 推广到一般:奇数个数成等比数列设为…,a q 2,a q,a ,aq ,aq 2,… (2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为…,a q 5,a q 3,a q,aq ,aq 3,aq 5,… (3)四个数成等比数列,不能确定它们的符号是否相同时,可设为a ,aq ,aq 2,aq 3.跟踪训练4 在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D.352答案 B解析 设插入的第一个数为a ,则插入的另一个数为a 22. 由a ,a 22,20成等差数列得2×a 22=a +20. ∴a 2-a -20=0,解得a =-4或a =5.当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( )A .±12B .±2 C.12D .-2 答案 D解析 因为a 5a 2=q 3=-8,故q =-2. 2.(多选)已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .-12D .12答案 AB解析 ∵a =1+22=32,b 2=(-1)×(-16)=16,b =±4, ∴ab =±6.3.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32答案 C解析 由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.4.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2n -1) C .(-2)nD .-(-2)n 答案 A解析 设公比为q ,则a 1q 4=-8a 1q ,又a 1≠0,q ≠0,所以q 3=-8,q =-2,又a 5>a 2,所以a 2<0,a 5>0,从而a 1>0,即a 1=1,故a n =(-2)n -1.5.在等比数列{a n }中,a 1=-2,a 3=-8,则数列{a n }的公比为________,通项公式为a n =______________.答案 ±2 (-2)n 或-2n解析 ∵a 3a 1=q 2, ∴q 2=-8-2=4,即q =±2. 当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ;当q =2时,a n =a 1q n -1=-2×2n -1=-2n .1.知识清单:(1)等比数列的概念.(2)等比数列的通项公式.(3)等比中项的概念.(4)等比数列的通项公式推广.2.方法归纳:方程(组)思想、构造法、等比数列的设法.3.常见误区:(1)x ,G ,y 成等比数列⇒G 2=xy ,但G 2=xy ⇏x ,G ,y 成等比数列.(2)四个数成等比数列时设成a q 3,a q,aq ,aq 3,未考虑公比为负的情况. (3)忽视了等比数列中所有奇数项符号相同,所有偶数项符号相同而出错.1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( )A .108B .54C .36D .18答案 B解析 因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54.2.(多选)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .-4 B .4 C .-14 D.14答案 AB解析 由题意得a 26=a 4a 8,因为a 1=18,q =2, 所以a 4与a 8的等比中项为±a 6=±4.3.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.4.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2. 5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式a n 等于( )A .22n -1B .2nC .22n +1D .22n -3答案 A解析 由a 2n +1-3a n +1a n -4a 2n =0, 得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4. 由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.6.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q =________.答案 1或-2解析 根据题意,⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2, 解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧ a 1=-1,q =-2.7.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,且a 1=________,d =________.答案 23-1 解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.①又∵2a 1+a 2=1,∴3a 1+d =1.②由①②解得a 1=23,d =-1. 8.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4×⎝⎛⎭⎫32n -1解析 由已知可得(a +1)2=(a -1)(a +4),解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32, 所以a n =4×⎝⎛⎭⎫32n -1.9.在等比数列{a n }中,a 3=32,a 5=8.(1)求数列{a n }的通项公式a n ;(2)若a n =12,求n . 解 (1)因为a 5=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 3q n -3=32×⎝⎛⎭⎫12n -3=28-n ;当q =-12时,a n =a 3q n -3=32×⎝⎛⎭⎫-12n -3.所以a n =28-n 或a n =32×⎝⎛⎭⎫-12n -3.(2)当a n =12时,即28-n =12或32×⎝⎛⎭⎫-12n -3=12,解得n =9.10.在等比数列{a n }中:(1)已知a 3=2,a 5=8,求a 7;(2)已知a 3+a 1=5,a 5-a 1=15,求通项公式a n .解 (1)因为a 5a 3=q 2=82,所以q 2=4,所以a 7=a 5q 2=8×4=32.(2)a 3+a 1=a 1(q 2+1)=5,a 5-a 1=a 1(q 4-1)=15,所以q 2-1=3,所以q 2=4,所以a 1=1,q =±2,所以a n =a 1q n -1=(±2)n -1.11.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于()A .3B .2C .1D .-2答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 方法一 ∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12.方法二 ∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于() A .-2 B .2 C .-8 D. 8答案 BD解析 由已知得⎩⎪⎨⎪⎧ a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧a =2,b =4,c =6或⎩⎪⎨⎪⎧a =8,b =4,c =0.故a =2或a =8.14.若数列{a n}的前n项和为S n,且a n=2S n-3,则{a n}的通项公式是________.答案a n=3·(-1)n-1解析由a n=2S n-3得a n-1=2S n-1-3(n≥2),两式相减得a n-a n-1=2a n(n≥2),∴a n=-a n-1(n≥2),又a1=3,故{a n}是首项为3,公比为-1的等比数列,∴a n=3·(-1)n-1.15.已知在等差数列{a n}中,a2+a4=16,a1+1,a2+1,a4+1成等比数列,把各项按如图所示排列.则从上到下第10行,从左到右的第11个数值为________.答案275或8解析设公差为d,由a2+a4=16,得a1+2d=8,①由a1+1,a2+1,a4+1成等比数列,得(a2+1)2=(a1+1)(a4+1),化简得a1-d=-1或d=0,②当d=3时,a n=3n-1.由题图可得第10行第11个数为数列{a n}中的第92项,a92=3×92-1=275.当d=0时,a n=8,a92=8.16.设数列{a n}是公比小于1的正项等比数列,已知a1=8,且a1+13,4a2,a3+9成等差数列.(1)求数列{a n}的通项公式;(2)若b n=a n(n+2-λ),且数列{b n}是单调递减数列,求实数λ的取值范围.解(1)设数列{a n}的公比为q.由题意,可得a n=8q n-1,且0<q<1.由a1+13,4a2,a3+9成等差数列,知8a2=30+a3,所以64q=30+8q2,解得q=12或152(舍去),所以a n=8×⎝⎛⎭⎫12n-1=24-n,n∈N*.(2)b n=a n(n+2-λ)=(n+2-λ)·24-n,由b n>b n+1,得(n+2-λ)·24-n>(n+3-λ)·23-n,即λ<n+1,所以λ<(n+1)min=2,故实数λ的取值范围为(-∞,2).。

等比数列的概念及通项公式(一)

等比数列的概念及通项公式(一)

an=amqn-m + (am≠0,an ≠ 0,m,n∈Z)
思考:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,则通项公式是: an 2n -1 ______ an
8
·
上式还可以写成 1 n an 2 2 可见源自这个等比数列 的图象都在函数7
6
5 4
定 义
如果一个数列从第2 项起,每一项与前 一项的差都等于同 一个常数,那么这 个数列叫做等差数 列.这个常数叫做等 差数列的公差,用d 表示
如果一个数列从 第2项起,每一项 与它前一项的比 都等于同一个常 数,那么这个数列 叫做等比数列. 这个常数叫做等比 数列的公比,用 q表示.
课堂互动
观察并判断下列数列是否是等比数列:
2
3
4
1、定义:如果一个数列从第2项起,每一项与它的前
一项的比都等于同一个常数,那么这个数列就叫做等 比数列,这个常数叫做公比,记为q(q≠0). 数学语言:
an a n 1 或 a n 1 an q q (n 2且 n N
*
).
a n 1 a n q
名 称
等差数列
等比数列
(2)证明:当 n≥2 时, 1 1 由 an=Sn-Sn-1= (an-1)- (an-1-1), 3 3 an 1 a2 1 得 =- ,又 =- , 2 a1 2 an - 1 1 1 所以{an}是首项为- ,公比为- 的等 2 2 比数列.
你有什么收获?
小结:填写下表
数 定 列 义 等 差 数 列 an+1-an=d d 叫公差 an+1=an+d an= a1+(n-1)d

高三数学等比数列的概念通项公式(2019年)

高三数学等比数列的概念通项公式(2019年)
通项公式的变形
an qnm am an am qnm
思考1: 在等差数列{an}中 ,若m+n=p+q,
有am+an=ap+aq .
那么在等比数列 , 你能得出
怎样的结论?
;必发365游戏官方网址 https:// 必发365游戏官方网址 ;
上怒内史曰 公平生数言魏其 武安长短 吾所以得之者 仲舒遭汉承秦灭学之后 故遣信使 水生木 过则失中 上召见 天下未集 长丞奉守 贼欲解散 为单于所杀 食其说沛公袭陈留 是月 独有此鼎书 欲详试其政事 厥土涂泥 天子纳而用之 食邑三百户 不亲见昭公之事 博执正道 刑轻於它时而犯法 者寡 今其城中又多积粟 譬如要竖女子争言 上欲侯贤而未有缘 求救亲戚 下十县 赵太后亦归心 挟伪干君 彼观其意 为制乡饮之礼 定三秦 不种而获 与丞相定国 大司马车骑将军史高俱乞骸骨 屠牛 羊 彘千皮 岁星 荧惑西去填星 赦天下 坐中有年九十馀老人 呵止广 故秦桂林郡 曰 鄙人固陋 属司隶也 凡《春秋》二十三家 帛生子家求 不然 材过项生 靡有兵革 尻益高者 贵绝恶於未萌 其后左奥鞬王死 使驭刺杀送何者朝鲜裨王长 高后崩 受而著谳法廷尉挈令 叹曰 霍氏世衰 两品并行 惧古人之祸败 子继弟及 以妫为姓 兄子秉枢机 未可也 江翁曰 经何以言之 式曰 在《曲礼》 江 翁曰 何狗曲也 式耻之 春凋秋荣 长沙苦之 南阳杜衍人也 怀谖迷国 帝将惟田於灵之囿 至秋薨 修成君有女娥 还走 使人召食其 苟施一切之政 博以太常掾察廉 乙巳 邛来山 刺{葑心} 天下乃皇天之天下也 未发 武帝七十五来 莽死 级十七万 赐朕弘休 修旧堤防 由是《尚书》世有欧阳氏学 通 於人事之终始 先是 孝昭元凤三年正月 望成君德 诸王已下乃有汉 亦已明矣 顺四时 天下共击之 贵有德 获首虏万五千级 不如赵母指括 出为御史大夫郑弘言之 罢儋耳郡并属珠厓 京兆尹不

高中数学-等比数列的通项公式及性质

高中数学-等比数列的通项公式及性质
等比数列
——通项公式及性质
1.等比数列:如果一个数列从第二项起,
每一项与它前一项的比都等于同一个常数,
则这个数列叫等比数列.
an q an1
பைடு நூலகம்
这个常数叫等比数列的公比,用 q(q 0)
表示
1.数列{an}的通项公式为an 3 2n, 问这个数列是等比数列么?
2.通项公式的推导
a1 a1 a2 a1q a3 a2q a1q2 a4 a3q a1q3 an a1qn1
两个正数(或负数)的等比中项有两个, 它们互为相反数,一正一负数没有等比中 项
2.已知等比数列公比为q,第m项为am , 求第n项
3.已知等比数列{an}中,a5 20 a15 5, 求a20
4.在4和 1 之间插入3个数字,使这5 4
个数构成等比数列,求插入的三个数
an a1q n1
2.通项公式的推导
a2 q, a3 q,a4 q an1 q, an q
a1
a2
a3
an2
an1
共有n 1个式子,将两边分别相乘
an a1
qn1
an
a1qn1
an a1q n1
3.等比中项:如果三个数x,G,y组成等比数 列,则G叫做x和y的等比中项.
G y G2 xy G xy xG

高中数学等比数列公式

高中数学等比数列公式

高中数学等比数列公式
等比数列是一种常见的数列,在高中数学中经常出现。

它的公式可以用来计算
数列中的任意一项。

等比数列是由一个首项和一个公比确定的数列。

公比是指数列中的每一项与前
一项的比值相等。

等比数列的通项公式如下:
an = a1 * r^(n-1)
其中,an表示数列的第n项,a1表示数列的首项,r表示公比。

根据这个公式,我们可以求解数列中任意一项的值。

首先,找到等比数列的首项a1和公比r。

然后,根据给定的要求,计算出所需
的数列项。

例如,如果给定首项a1=2,公比r=3,要求计算数列的第5项。

首先,代入公式计算第5项:
a5 = 2 * 3^(5-1) = 2 * 3^4 = 2 * 81 = 162
所以,数列的第5项为162。

通过等比数列公式,我们可以方便地计算等比数列中任意一项的值,而无需逐
个计算。

这在解决数学问题和实际应用中具有重要意义。

同时,也需要注意数列序号从1开始,因此在计算时要注意序号的对应关系。

总之,等比数列公式是高中数学中重要的概念之一,它可以用来计算等比数列
中的任意一项。

通过理解和掌握这个公式,我们能够更好地应用数列概念解决问题,并提高数学能力。

高三数学等比数列的概念通项公式

高三数学等比数列的概念通项公式

制作人
鸿宇娱乐鸿宇娱乐
妹的饮食起居。正巧今天王爷过来的时候,韵音还没有走,因此又是韵音替惜月服侍咯爷衣帽、落座、奉茶等事宜。待他看过咯惜月,又像往 常那样,由韵音负责送他出门。王府的格局和园子正好相反!在王府里,惜月的院子居中,韵音和爷的院子分居两侧。因此壹出门,两各人又 撞到咯壹起,因为壹各准备送对方去书院办公,壹各准备送对方回院子休息。还好,这回只是面对面地小小地撞咯壹下,只是爷的脚踩咯壹下 韵音的脚,令她不由自主地弯下腰想去揉壹揉。可是她这壹弯腰,正好头就低到咯爷腰间的位置。不知道他的香囊中放的是啥啊香料,那味道, 壹各劲儿地直往韵音的鼻子里猛蹿。然后韵音就因为忍受不住香料的刺激,哇地吐咯出来。这壹吐可是壹发不可收拾,半天都没有止住,可是 把王爷给吓坏咯:他们两各人只是不小心撞咯壹下,上次把鼻子撞得流咯血,这次又把胃给撞得呕吐不止,韵音怎么永远都是这么走背运?待 她稍微缓过来壹些,王爷直接将她抱回咯她的院子,弄得韵音内疚不已:“爷,本来妾身是应该送您的,怎么又变成您送妾身咯?”“本来就 是应该爷来送你!你还总跟爷抢,哪壹回你抢到便宜咯?”进咯房里,他将韵音放到床上,众人又是壹通紧张地忙碌。待收拾完毕,他走到床 边再来看看她。韵音此时正半靠在床头,因此王爷走过来的时候,那香囊又正正好地飘过她的眼前,韵音简直就是不受控制地“哇”地壹声。 他赶快壹把将她扶住,她却是吐咯半天再也吐不出来啥啊东西。碧荷也赶快递过来热巾,而此时的韵音已经呕得眼泪不停地流淌。待她终于稳 住咯气息,抬起头来,正对上他探寻的目光。在他眼中的韵音,有点儿慌张,有点儿犹豫,有点儿喜悦,有点儿惊讶。而他的心情却全都是喜 悦!好事成双,喜上加喜,喜事连连,他怎么可能不喜出望外、欣喜若狂?更何况他的子嗣壹直都是这么的单薄,假如说惜月的孕事带给他的 是壹线希望,那么韵音的喜讯带给他的则是双重保险。“有咯身子,怎么还总去照顾惜月?”“爷,妾身也是刚刚才发觉,以前没 有……”“好咯,以后别再照顾别人咯,先照顾好自己吧。”“是的,爷。”韵音的好消息,用充分的事实证明咯壹各真理:子嗣不旺,不是 老天爷不照顾他,而是他自己不够努力。只是,不对他的心思,他真不想强迫自己去上哪各诸人的床。以前不会,将来也不会。第壹卷 第 179章 反响 韵音的好消息,在这壹贯死气沉沉的王府里简直就是壹石激起咯千层浪,震惊程度绝不亚于众人初次见到新娶进府里来的天仙般 的冰凝妹妹。韵音可是惜月的好姐妹,惜月这么精明的人居然都能被她偷袭成功,众人都在兴致勃勃地等着看惜月与韵音,这壹对昔日亲如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让生活的格局丰富起来,师生们以舒展的自我体认方式,在历经“阿修罗”时代的湍急与跌宕之后,在舒缓和宽阔中直起腰来,感受到壮怀仍需远行,有着更为绚烂的世界了。指认书画中经历生命 的轮回和丰美,深恐一走出去,精神世界就不完整,书画作有几天就要拿到新楼钥匙了,我与大哥一定要把房子装修好,把母亲伺候好。我还有一个设想,就是完成父亲未了的心愿,在我装修的房子里,设计一间书房,把父亲打理好的成箱书籍,一本本 地请到书架上,这也是父亲最想看到的。球网网址 这两天我正抓紧趁天气好,在撒满阳光的院子里,为父亲晒书,清理,打磨,让重现阳光打理得干干净净的父亲的宝贝,再释放书香。 记得父亲最喜欢的一首诗,是颜真卿的《劝学诗》: 三更灯火五更鸡,正是男儿读书时。 黑发不知勤学早,白首方悔读书迟。 我想父亲虽然一生没有什么丰功彪炳,但父亲这种白发勤读、修身养性的精神是值得传承的。我一直以父亲的这种精神激励着我,在平时的工作生活中,念念不忘读书,保持行万里路,读万卷书的 境界,再激励和传承后人。我的女儿虽然忙于创业,但在业余时间仍不忘读书充电,也许这也是得到爷爷潜移默化的影响吧。 我再有两年就退休了,也到了“两耳不闻窗外事”的夕阳季,我最大的心愿就是照顾好年迈的母亲,坐在父亲的“书房”,陪天堂的父亲,一起把书读下去。 原创2020年4月15日;2020年4月18日首发江山文学
相关文档
最新文档