《变量与函数》ppt课件

合集下载

变量与函数-完整版课件

变量与函数-完整版课件

问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
题 过3公里,一律收费8元;超过3公里时,超过3公里

的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x为整数),相对应的收费为y(元).

(1)请分别写出当0<x≤3和x>3时,表示y与x
的关系式,并直接写出当x=2和x=6时对应的y值;
活动四:辨析概念

题 问题4:下列曲线中,表示y不是x的函数是( ), 探 怎样改动这条曲线,才能使y是x的函数?

y

y
y
O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念

问题4:如何确定函数值?
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
O
x
O
x
O
x
O
x
A
B

变量、函数及函数图象PPT课件

变量、函数及函数图象PPT课件

5.某单位急需用车,但又不准备买车,他们准备 和一个体车或一国营出租车公司的一家签定月租车 合同,设汽车每月行驶x千米,应付给个体车主的 月费用是y1元,应付给出租车公司的月费是y2元, yl、y2分别与工之间的函数关系图象 (两条射线) 如下图所示,观察图象回答下列问题: (1)每月行驶的路程在什么范围内,租国营公 司的车合算? (2)每月行驶的路程等于多少时,租两家的费 用相同? (3)如果这个单位估计每月行驶的路程为2300千 米,那么这个单位租哪家公司的车比较合算?
解:根据图象知:在 1500千米时, y2 的
值等于yl的值, 所以,当每月行驶的路 程为1500千米时,租两 家的费用相同。
5.某单位急需用车,但又不准备买车,他们准备和一个体车或一 国营出租车公司的一家签定月租车合同,设汽车每月行驶x千米, 应付给个体车主的月费用是y1元,应付给出租车公司的月费是y2元, yl、y2分别与x之间的函数关系图象 (两射线)如下图所示,观察图 象回答下列问题: (3)如果这个单位估计每月行驶的路程为2300 千米,那么这个单位租哪家公司的车比较合算?
x y 2 x 4
x≠±2
2 x y x 1
x≤2且x≠-1
y 3 x
x全体实数
2
y 3 x 3
x全体实数
3.平行四边形的底边为5,则其面积S与底边 上的高h之间的函数关系式是
S 5h(h 0)
4.填空: (1)若M(a-5,-a+3)在x轴上,则a= 3 ; (2)若M(a-5,-a+3)在第三象限,则a的取 值范围是 3<a<5 ; (3)若M(a-5,-a+3)在第一、三象限的角 平分线上,则a= 4 ; (4)求M(a-5,-a+3)关于y轴对称的点的坐 标是 (-a+5,-a+3) ;

人教版《变量与函数》(完整版)课件

人教版《变量与函数》(完整版)课件
雪山的气温随海拔而变化
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
圆形水波的面积随着半径而变化
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
人教版《变量与函数》教学实用课件 (PPT优 秀课件 ) 人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
19.1.1变量与函数 变量:发生变化的量 常量:始终不变的量 函数:有两个变量x和y,给定x 的一个值,y唯一确定值对应,x 是自变量,y是x的函数。
人教版《变量与函数》教学实用课件 (PPT优化过程中,
如果有两个变量x与y,对于x的 每一个确定的值,y都有唯一确定 的值与其对应,那么我们就说x是 自变量, y是x的函数.
1、等腰三角形的底边和面积。
2、y=x2 3、人的年龄与体重。
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
人教版《变量与函数》教学实用课件 (PPT优 秀课件 ) 人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
学案引领
自主学习
规范定义 在一个变化过程中,
变量:发生变化的量
S = 60 t y=10x S=兀r22
常量:始终不变的量.
注意:2是 一种运算, 不是常量
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )
3、指出下列关系式中的变量与常量:
(1) y=5x-6 (2)y=4x2+5x-7 (3)S= 兀r3
人教版《变量与函数》教学实用课件 (PPT优 秀课件 )

19.1.1变量与函数(第一课时)(优质公开课)PPT课件

19.1.1变量与函数(第一课时)(优质公开课)PPT课件

60 120 180 240 300
2.在以上这个过程中, 变化的量是 里程S千米与时间t时.
没变化的量是 速度60千米/小时 .
3.试用含t的式子表示S S=60t .
活动一
1. 每张电影票售价为10元,如果 第一场售出票150张,第二场售出 票205张,第三场售出310张. 三场
电影的票房收入各多少元?设一场 电影售票x张,票房收入y元。怎样 用含x的式子表示 y ?
2 3


关系式是——S——=—π——r2————;
4
π 16π 其中常量是——————————;


r
πr2
S, r 变量是——————————. 10
活动三
1.用10cm长的绳子围成矩形,试改变矩形的长、 宽,观察矩形的面积怎样变化,试举出三组长、 宽的值。计算相应矩形的面积的值,然后探索 它们的变化规律:设矩形的长度为xcm,面积
常量是 a
14
随堂练习
1.若球体体积为V,半径为R,则V= 4 R 333
3
其中变量是 V 、 R ,常量是
4
.
3
2.汽车开始行使时油箱内有油40升,如果每
小时耗油5升,则油箱内余油量Q升与行使
时间t小时的关系是
其中的常量是40、5
Q,=变40量-5是t
. 并指出
Q、t
随堂练习
3.夏季高山上温度从山脚起每升高 100米降低 0.7℃,已知山脚下温度是 23℃,写出温度y与上升高度 x之间的 关系式,并指出其中的常量与变量。
一般地, 如果当x=a时,y=b,则b叫做当自变量为a时的函数值。
20
函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且

19.1.1 变量与函数(第2课时)课件

19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.

18.1变量与函数(2)课件

18.1变量与函数(2)课件
4
3.写出下列各问题中的关系式 并指出其中的常量与变量 写出下列各问题中的关系式,并指出其中的常量与变量 写出下列各问题中的关系式 并指出其中的常量与变量: (1)圆的周长 与半径 的关系式 圆的周长C与半径 的关系式; 圆的周长 与半径r的关系式 (2)火车以 千米 时的速度行驶 它驶过的路程 千米 和所 火车以90千米 时的速度行驶,它驶过的路程 千米)和所 火车以 千米/时的速度行驶 它驶过的路程s(千米 用时间t(时 的关系式 的关系式; 用时间 时)的关系式 (3)n边形的内角和 与边数n的关系式 边形的内角和S与边数 的关系式. 边形的内角和 与边数 的关系式
及三角形内角和为180度,可以得到关于x,y的二元 及三角形内角和为180度 可以得到关于x,y的二元 180 x,y 一次方程: + =180 一次方程:2x+y=180 方程变形为: 方程变形为:
y=180-2x (0<x<90) -
利用变量之间的关系列出方程, 利用变量之间的关系列出方程 再把方程变形,从而求出两个变量之 再把方程变形 从而求出两个变量之 间的函数关系. 间的函数关系
6
试一试: 试一试:看谁的眼光准
判断下列变量关系是不是函数? 例1 判断下列变量关系是不是函数?
(1)等腰三角形的面积与底边长 等腰三角形的面积与底边长. 等腰三角形的面积与底边长 (2)关系式 =± x 中, y是x的函数吗 关系式y 的函数吗? 关系式 是 的函数吗 判断是不是函数, 判断是不是函数,我们可以看它的数学 式子中的变量之间是否满足函数的定义. 式子中的变量之间是否满足函数的定义.
1
函数
一般地,在一个变化过程中有两个变 一般地 在一个变化过程中有两个变 如果对于x的每 一个值, 都有唯 量x与y,如果对于 的每 一个值 y都有唯 与 如果对于 与它对应,那么就说 一的值与它对应 那么就说x是自变量, 是 一的值与它对应 那么就说 是自变量 y是 因变量, 的函数. 因变量 此时也称 y是x的函数 是 的函数

八年级数学下册 17.1.2 变量与函数 自变量范围课件

八年级数学下册 17.1.2 变量与函数 自变量范围课件
x表示,纵向的加数用
y表示,试写出y与x的
函数关系式.
第六页,共二十页。
分析(fēnxī我): 们发现,横向的加数与纵向的加数之和为10, 即x+y=10,通过这个关于x,y的二元一次方程(yī cì fānɡ ,可 chénɡ) 以求出y与x之间的函数关系式:
y=10-x
12
11 10
(0<x<10 , x为整数)
练习(liànxí) :1.求下列(xiàliè)函数中自变量x的取值范围
(1) y =
;3-x
(2) y =
+x-1 .
1-x
第十六页,共二十页。
例3 在上面(shàng miɑn)试一试的问题(3)中,当MA=1 cm时,重叠 部分的面积是多少?
解 设重叠部分面积为ycm²,MA长为x cm,容易(róngyì)求出y与x之间的函数
先找出自变量x与函数y之间的等量关系
列出关于x, y的二元一次方程
然后用x表示y
最后还要考虑数量的实际意义
第十页,共二十页。
自变量的取值范围(fànwéi)
y=10-x (0<x<10 x为整数 ) (zhěngshù)
y=180-2x
(0<x<90)
y=
1 2

(0 ≤ x≤10 )
使函数有意义的自变量的取值的全体,叫做(jiàozuò)函数自变量的
关系式为
y=
1 2

(0 ≤ x≤10 )
当x=1时,
y=
1
y= 2
1 2
×1²

1 2
叫做(jiàozuò)当x=1时的函数值.
第十七页,共二十页。

《变量与函数》PPT课件 沪科版

《变量与函数》PPT课件 沪科版
2+1
当x=3时,y= 5;
2
当x=-3时,y=7;
把自变量x的值带 入关系式中,即 可求出函数的值.
(2)令
4x 2 x 1
=0,解得x=
1 2
即当x= 1 时,y=0.
2
当堂练习
1.设路程为s,时间为t,速度为v,当v=60时,路程和 时间的关系式为 s=60t ,这个关系式中, 60 是常量, t和s 是变量, s 是 t 的函数.
第12章
八年级数学上(HK) 教学课件
一次函数
12.1 函数
第1课时 变量与函数
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.联系自己的学习、生活实际,通过具体情境 领悟函数的概念,了解常量、变量,知道自变量 与函数,能写出简单的函数表达式;
2.探究变量的发现和函数概念的形成,提高学 生分析、解决问题的能力.
不断变化的量 热气球升空的时间tmin (变量) 气球升空的高度hm
(5)热气球上升的高度h与时间t,这两个变量之 间有关系吗?
自我发生变化的量__t_________; 因别人变化而变化的量___h_______.
时间t/min 0 1 2 3 4 5 6 7 … 海拔高度h/m 500 550 600 650 700 750 800 850 …
一时刻的用电负荷y MW(兆瓦)是多少吗?说明了什么? 能,分别为10000MW、15000MW,说明t的值一确定,y
的值就唯一确定了.
(3)这一天的用电高峰、用电低谷时负荷各是多少?它们是在
什么时刻达到的? 这一天的用电高峰在13.5h达到18000MW,用电低估在
4.5h达到10000MW.

《变量与函数》课件

《变量与函数》课件
解:因为0< 2 < 3 ,所以当 x=3时,收费为 10 元.
因为 5 >3 ,所以当 x=5 时,收费为 16 元.
0 ≤ x ≤ 20.
3.一盒中性笔有 10 支,价格为 15 元. 请写出购买中性 笔支数 x 与花费的总钱数 y 之间的关系式. 解:根据题意,得 10 支中性笔的价格为 15 元,则 1 支中性笔的价格为 1.5 元. 花费的总钱数 = 单价×购买中性笔数量,即 y =1.5x.
课堂小结

更多同类练习见RJ八下 《教材帮》19.1节方法帮
新知探究 跟踪训练
1.拖拉机开始工作时,油箱中有油 36 L,如果每小时
耗油4 L,那么油箱中剩余油量 y L 与工作时间 x h 之间的函数解析式是 y = 36- 4x ,自变量 x 的取值范 围是 0 ≤ x ≤ 9 ,当 x=4 时,函数值 y= 20 .
(1)请分别写出 x>3 和 0<x≤3 时,表示 y 与 x 的关系式;
分析:①当 0<x≤3 时,一律
按照 10 元收费,即 y=10. ②当 x>3 时,超过 3 公里的
解:y =
部分,每公里加收 3元,则 y
10 (0<x≤3), 3x+1 (x>3).
=10+3(x-3)=3x+1.
2.本市出租车的收费标准如下:乘坐公里数不超过 3 公里的,一律按照 10 元收费;超过 3 公里的部分,每 公里加收 3 元. 设乘坐公里数为 x 公里(x 为整数), 相对应的收费为 y 元. (2)直接写出当 x=2 和 x=5 时的函数值.
写 根据数量关系写出含有两个变量的等式. 将等式变形为用含自变量的式子表示因变量的

1.1变量与函数PPT课件(沪科版)

1.1变量与函数PPT课件(沪科版)

(2)热气球的高度随时间的推移而升高的高度有规律吗?
(3)你能总结出h与t的关系吗? 50m×1=50m
h=500+50t
50m×2=100m
(4)哪些量产生了变化?哪些 量没有产生变化?
50m×3=150m 50m×4=200m

50m×t=50tm
保持不变的量 热气球本来所在的高度500m (常量) 气球上升的速度50m/min
八年级数学沪科版·上册
第十二章 一次函数
12.1.1变量与函数
新课引入 万物皆变
行汽星车在宇行宙驶气中里温的程随位随置海行随拔时驶而间时变而间化变而化变化
新知探究
为了更深刻地认识千变万化的世界,在这一章里,我们将学习有 关一种量随另一种量变化的知识,共同见证事物变化的规律.
新知探究 我们生活在一个变化的世界,通常会看到在同
解:(1)当x=2时,y= 4 2-2 =2;
2+1
当x=3时,y= 5 ;
2
当x=-3时,y=7;
把自变量x的值带 入关系式中,即 可求出函数的值.
(2)令
4x 2 x 1
=0,解得x=
1 2
即当x= 1 时,y=0. 2
课堂小结
常量与变量:在一个变化过程中, 数值产生变化的量为变量,数值 始终不变的量为常量.
(3)这一天的用电高峰、用电低谷时负荷各是多少?它们是在 什么时刻到达的? 这一天的用电高峰在13.5h约到达18000MW,用电低谷在 4.5h约到达10000MW.
新知探究
问题3 汽车在行驶过程中,制动后由于惯性的作用仍将滑行一段距离才能停 住,这段距离称为制动距离.制动距离是分析事故原因的一个重要因素.

变量与函数-PPT课件全文

变量与函数-PPT课件全文
(2)在求自变量的取值范围时,要从两个方面来考虑: ①代数式要有意义;②要符合实际.
1、下列关系中,y不是x函数的是( D )
A. y x B. y x2 C. y x D. y x
2
2、求出下列函数中自变量的取值范围
(1)y=x-3 (2) y 1 x (3) y 3 2 x
(4)
大千世界万物皆变
行星在宇宙中的位置随时间而变化; 人体细胞的个数随年龄而变化; 气温随海拔而变化; 汽车行驶里程随行驶时间而变化;
……
这种一个量随另一个量的变化而变化的现象大量存在。
大千世界处在不停的运动变化之 中,如何来研究这些运动变化并寻找 规律呢?
数学上常用变量与函数 来刻画各种运动变化。
如果当x=a时y=b,那么b叫做当自 变量x的值为a时y的函数值。
t
1 2 3 4 ……
S
60 120 180 240 ……
思考下列问题?
(1)y 2x 中的y是x的函数吗 是
(2)一天中的气温是时刻的函数吗? 是
(3) y x 不是
判断是不是函数,我们可以看它的两个变量之间 是否满足函数的定义
例1求出下列函数中自变量的取值范围
(1)y=2x
(2)
y 3 x2
(3)m n 1 (4)y 3 x 1
(5) h 1 k
k 1
(7) y x 1 x 1
(6) y x2 1
确定函数自变量取值范围的条件:
(1)分母不等于0;【1a(a≠ 0】
(2)开偶数次方中的被开方数必须大
于等于0。【 a(a≥0】
(2)若教室座位共安排15排,座位总数
将达到多少个?
(1)m=25+n-1=n+24, p 25 24 n • n 1 n(n 49)

变量与函数关系说课课件

变量与函数关系说课课件
中,变量可以表示物体的位置、速度和加 速度等,函数关系描述物体运动规律。
02 电磁学
在电磁学中,变量可以表示电荷、电流和电压等, 函数关系描述电磁场的变化规律。
03 热学
在热学中,变量可以表示温度、压力和体积等, 函数关系描述热力学系统的状态变化。
其他领域的应用
01
学习态度
学生对待学习的态度是否 认真,是否按时完成作业 和积极参与课外学习。
教师自评
教学目标达成度
课堂氛围营造
教师是否达到了预期的教学目标,学 生是否掌握了关键知识点。
教师是否营造了一个积极、互动的课 堂氛围,学生是否感受到学习的乐趣。
教学方法有效性
教师所采用的教学方法是否有效,能 否激发学生的学习兴趣和思考能力。
建议学生多做相关的练习题,加 深对概念的理解和掌握,提高解
题能力。
注重实际应用
提醒学生关注数学在实际问题中 的应用,培养自己的数学应用意
识和能力。
对未来的展望
深入学习函数理论
01
引导学生进一步深入学习函数的性质、定理和证明等方面的知
识。
拓展函数的应用领域
02
鼓励学生将函数应用到其他学科和实际问题中,提高自己的跨
案例教学法
总结词
通过具体案例帮助学生理解变量与函数关系
详细描述
选取具有代表性的实际案例,如气温变化与时间 的关系、股票价格波动等,引导学生分析案例中 的变量与函数关系,加深对概念的理解。
互动式教学法
总结词
增强学生参与度,促进师生互动
详细描述
采用小组讨论、角色扮演等形式,鼓励学生积极参与课堂互动,发表自己的见解,促进学生对 变量与函数关系的思考。
家长反馈

好用《变量与函数》ppt课件

好用《变量与函数》ppt课件
. 1、平行四边形的哪些性质? 平行四边形的两组对边分别平行且相等; 平行四边形的两组对角分别相等;
平行四边形的对角线互相平分。 A
O
D C
B
平行四边形的判定方法(记住)
1、两组对边分别平行的四边形是平行四边形 从边来判定 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形

1 x y=+2x 2和-2
4 8和-8
9
16
18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值
与之对应吗?
答:不是
(2)y是x的函数吗?为什么?
答:不是,因为x每取一个值时对应的y值 不是唯一的。
巩固提高
汽车由武汉驶往相距1200千米外的北 京,它的平均速度是100 千米/小时,试 写出汽车距北京的的距离s(千米)与行 驶时间t(小时)的函数关系式。

是自变量,
1.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) y=x (3) S= πr2
解:(1)常量是3000,-300;变量是x,y;自变量是 x;y是x的函数。 (2)常量是1;变量是x,y;自变量是x;y是x的函数。 (3)常量是π;变量是r,s;自变量是r;s是r的函数。
探究: 2011年深圳大运会主火炬手刘 翔 以 3米/秒的速度跑步前进传递火炬,传递路
程为S米,传递时间为t秒。 1.请同学们根据题意填写下表:
t(秒) s(米) 1
3
2
6
3
9
4
12
2.在以上这个过程中,变化的量是 路程s与时间t . 没变化的量是 速度3米/秒 . S=3t 3.试用含t的式子表示s.

变量与函数04课件

变量与函数04课件

2
C A B
D
1.1
E O0
15 25 37 55 80
x/分
八年级 数学
第十四章 一次函数
14.1.3 函数的图象(2)
应用举例
问题3:菜地离玉米地多远?小明从菜地走 到玉米地用了多少时间?
y/千米
解:由纵坐标看出,菜地离玉米地0.9千米,由横坐标看出, 小明从菜地到玉米地用了12分钟。
2
C A B
D
1.1
E O
0 15 25 37 55 80
x/分
八年级 数学
第十四章 一次函数
14.1.3 函数的图象(2)
应用举例
问题4:小明给玉米地锄草用了多少时间?
y/千米
解:由横坐标看出,小明给玉米地锄草用了18分钟。
2
C A B
D
1.1
E O 0
15 25 37 55 80
x/分
八年级 数学
第十四章 一次函数
y/千米 C
2
D
A
1.1
B
O
E
15 25 37 55 80
0
x/分
八年级 数学
第十四章 一次函数
14.1.3 函数的图象(2)
应用举例
解(1)由纵坐标看 问题1:菜地离小明家多远?小明走到菜地 出,菜地离小明 用了多少时间? 家1.1千米;由横 坐标看出小明走 y/千米 到菜地用了15分 种。 解:由纵坐标看出,菜地离小明家1.1千米,由横坐标看出,
14.1.3 函数的图象(2)
应用举例
问题5:玉米地离小明家多远?小明从 玉米地走回家的平均速度是多少?
y/千米
解:由纵坐标看出,玉米地离小明家用2千米,由横坐 标看出,小明从玉米回家用了25分钟,由此算出平均 速度为0.08千米/分。

人教版八年级数学下册19.1.1变量与函数(2) 课件

人教版八年级数学下册19.1.1变量与函数(2) 课件

等号右边是开偶次方的式子,自变量的取值
范围是使根号下的式子的值大于或等于0的实数,例如:
= − 3.
④.零次型
等号右边是自变量的零次幂或负整数次幂,
自变量的取值范围是使幂的底数不为0的实数,例如:
= 0.
新知探究
例5 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的
油量y(单位:L)随行驶里程x(单位:km)的增加而减少,
的函数. 例如,问题1中的s=3t,问题2中的S=x(5-x)
如果当x=a时y=b,那么b叫做当自变量的值为a时
的函数值.
新知小结
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
3个条件
缺一不可
③看每当变量确定一个值时,另外一个变量是否都有唯一
确定的值与之相对应.
平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子;
叫做函数的解析式
解:函数关系式为: y = 50-0.1x.
0.1x表示的意义是什么?
新知探究
(2)指出自变量x的取值范围;
解: 由x≥0及50-0.1x ≥0得
0 ≤ x ≤ 500.
汽车行驶里程,油箱中
的油量均不能为负数!
∴自变量的取值范围是
化;当一个变量确定时,另一个变量也随之确定.
新知探究
奥运会火炬手以3米/秒的速度
跑步前进传递火炬,传递路程为s
米,传递时间为t秒,怎样用含t的
式子表示 s?
新知探究
知识点 1
函数的有关概念
问题1 全运会火炬手以3米/秒的速度跑步前进传递火炬,传
递路程为s米,传递时间为t秒,填写下表:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量与函数
大千世界处在不停的运动变化之中 , 如何 来研究这些运动变化并寻找规律呢?
数学上常用变量与函数来刻画各种运动变化.
变量与函数
创设问题情境 1.票房收入问题:每张《哈里·波特7》电影票的售 价为50元. (1)若一场售出100张电影票,则该场的票房收 入 是 5000 元; (2)若一场售出160张电影票,则该场的票房收 入 8000 是 元; (3)若设一场售出x张电影票,票房收入为 y元, 则 y= 50x 。 小结:票房收入随售出的电影票数变化而变化,即 y随 x 的变化而变化;
(6)圆的周长公式 C 2 r 是 2 。 ,这里的变量是
r和C
,常量
设问:
(1)上面各个问题中,都出现了几个变 量?同一个问题中的变量之间有什么联 系? (2)行程问题中s=60t ,当t=3时,s有没 有值和它对应?有几个?当t=4,5……呢?
自变量、函数的概念
设在某一变化过程中有两个变量x 和y,如果对于x的每一个值,y总有 唯一的值与它对应,我们就说x是自 变量,y是x的函数。如果当x=a时 y=b,那么b• 叫做当自变量的值为a 时的函数值.
日常生活和自然界中函数的事例很多,你能举一个吗?
1.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) y=x (3) S= πr2
解:(1)常量是3000,-300;变量是x,y;自变量是 x;y是x的函数。 (2)常量是1;变量是x,y;自变量是x;y是x的函数。 (3)常量是π;变量是r,s;自变量是r;s是r的函数。

1 x y=+2x 2和-2
4 8和-8
定义:在一个变化过程中:发生变化的量 叫做 变量 ;不变的量叫做 常量 ;
指出前面三个问题及其它问题中的常量、变量.
10 (1)“票房收入问题”中y=10x,常量是
60 (2)“行程问题”中s=60t,常量是
X和y ,变量是
t和 s

,变量是 ;

(3)“气温变化问题”, 变量是
t和T
(4)某位教师为学生购买数学辅导书,书的单价是4元,则总 金额y(元)与学生数n(个)的关系式是 y=4n 。其中的变 量是 n和y 。常量是 4 。 (5)计划购买50元的乒乓球,所能购买的总数n(个)与单价 a(元)的关系式为 n=50/a 。其中的变量是 a和n ,常量 是 50 。
解:s=60t
创设问题情境
2.行程问题:汽车以60千米/小时的速度匀速 行驶,行驶里1 2 3 … 10
S(千米) 60
120
180
600
小结:行驶路程随 t 的变化而 变化,有关系式s= 60t ,即 s随 时间 的变化而变化;
3.温度变化问题:如图一,是南通某一天的 气温T随时间t变化的图象,看图回答:
问题思考:
一辆汽车以60千米/小时的速度匀速行驶,行 驶里程为s千米.行驶时间为t小时. 1.请同学们根据题意填写下表: 1 2 3 4 5 t/时 s/千米 60 120 180 240 300 2.在以上这个过程中,变化的量是里程s与时间t . 没变化的量是 速度60千米/小时 . 3.试用含t的式子表示s.
㈡.自变量、函数、函数值:
指出前面三个问题中的自变量与函数. 1.“票房收入问题”中y=10x,对于x的每一个值,y都有 唯一 的值与之对应,所以 x 是自变量,y是x的函数. 唯一 的 2.“行程问题”中s=60t,对于t的每一个值,s都有 s 是 t 的函数. 值与之对应,所以 t 是自变量, 3.“气温变化问题”,对于时间t的每一个值,气温T都 有唯一的值与之对应,所以 t 是自变量, T 是 t 的函数.
传递路程S
问题2 : 2011年深圳大运会主火炬手刘翔以3 米/秒的速度跑步前进传递火炬,传递路程为S米,
传递时间为t秒。 1.请同学们根据题意填写下表: t(秒) s(米) 1
3
2
6
3
9
4
12
2.在以上这个过程中,变化的量是 里程s与时间 .t 没变化的量是 速度3米/秒 . S=3t 3.试用含t的式子表示s. 传递路程 S 随着 传递时间t 的变化而变化, ________ 当 传递路程S 确定一个值时, 传递时间t 就随 之确定一个值。
(1)这天的8时的气温是 4 ℃,14时的气温是 8 ℃, 22时的气温是 6 ℃; (2)这一天中,最高气温是 10 ℃,最低气温 是 -2 ℃; 小结:天气温度随 时间 的变化而变化,即T随 t 的变 化而变化;
思考:1每个问题中有几个变量?
2同一个问题中的变量之间有什么联系?
在上面的问题反映了不同事物的变化过 程,其中有些量(例如售出票数x,票房收入 y;时间t,路程s……)的值按照某种规律变 化,有些量的值始终不变(例如电影票的单 价50元……)。
例: 一个三角形的底边为5,高h可以任意伸缩,三角 5 形的面积也随之发生了变化. h 解:(1)面积s随高h变化的关系式s = , 2 5 h 其中常量是 2 ,变量是 h和s , 是自变 量, s 是 h 的函数; 7.5 (2)当h=3时,面积s=______, 25 ; (3)当h=10时,面积s=______
2、根据所给的 条件,写出y与x的函数关系式:
1、y 比 x的 1 少2。
3
2、y 是 x的 倒数的4倍。
1 y x2 3 4 y x
3、矩形的周长是18 cm ,它的长是 ycm,宽是x cm。
y 9 x
4、等腰三角形的顶角度数y与底角x的关系。
Y=180º -2x
思考题: 填表并回答问题:
大运会开幕式主火 炬手刘翔以3米/秒的 速度跑步前进传递火炬, 传递路程为S米,传递 时间为t秒。
问题2 :大运会火炬手刘翔以3米/秒的速度跑步前进传 递火炬,传递路程为S米,传递时间为t秒,填写下表: 1 2 3 4 t(秒) s(米) 怎样用含t的 式子表示 s? S=3t ________ 随着 传递时间t 的变化而变化, 当 传递时间t 确定一个值时,传递路程S 就随 之确定一个值。
相关文档
最新文档