生产者消费者问题模拟实现z
操作系统中的经典问题——生产者消费者问题(两种方式实现)
操作系统中的经典问题——⽣产者消费者问题(两种⽅式实现)操作系统中的经典问题——⽣产者消费者问题(两种⽅式实现)1、问题引⼊:什么是⽣产者消费者问题?⽣产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是⼀个多线程同步问题的经典案例。
该问题描述了共享固定⼤⼩缓冲区的两个线程——即所谓的“⽣产者”和“消费者”——在实际运⾏时会发⽣的问题。
⽣产者的主要作⽤是⽣成⼀定量的数据放到缓冲区中,然后重复此过程。
与此同时,消费者也在缓冲区消耗这些数据。
该问题的关键就是要保证⽣产者不会在缓冲区满时加⼊数据,消费者也不会在缓冲区中空时消耗数据。
.要解决该问题,就必须让⽣产者在缓冲区满时休眠(要么⼲脆就放弃数据),等到下次消费者消耗缓冲区中的数据的时候,⽣产者才能被唤醒,开始往缓冲区添加数据。
同样,也可以让消费者在缓冲区空时进⼊休眠,等到⽣产者往缓冲区添加数据之后,再唤醒消费者。
通常采⽤进程间通信的⽅法解决该问题。
如果解决⽅法不够完善,则容易出现死锁的情况。
出现死锁时,两个线程都会陷⼊休眠,等待对⽅唤醒⾃⼰。
该问题也能被推⼴到多个⽣产者和消费者的情形。
2、问题分析该问题需要注意的⼏点:1. 在缓冲区为空时,消费者不能再进⾏消费2. 在缓冲区为满时,⽣产者不能再进⾏⽣产3. 在⼀个线程进⾏⽣产或消费时,其余线程不能再进⾏⽣产或消费等操作,即保持线程间的同步4. 注意条件变量与互斥锁的顺序由于前两点原因,因此需要保持线程间的同步,即⼀个线程消费(或⽣产)完,其他线程才能进⾏竞争CPU,获得消费(或⽣产)的机会。
对于这⼀点,可以使⽤条件变量进⾏线程间的同步:⽣产者线程在product之前,需要wait直⾄获取⾃⼰所需的信号量之后,才会进⾏product的操作;同样,对于消费者线程,在consume之前需要wait直到没有线程在访问共享区(缓冲区),再进⾏consume的操作,之后再解锁并唤醒其他可⽤阻塞线程。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)(2)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV 操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0 专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<Othe nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs -0thenR(s)en d{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore 直接改成integer 。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
生产者消费者问题模拟实现(z)
生产者-消费者实验1.1实验目的和要求1.1.1实验目的操作系统的基本控制和管理控制都围绕着进程展开,其中的复杂性是由于支持并发和并发机制而引起的。
自从操作系统中引入并发程序设计后,程序的执行不再是顺序的,一个程序未执行完而另一个程序便已开始执行,程序外部的顺序特性消失,程序与计算不再一一对应。
并发进程可能是无关的,也可能是交互的。
然而,交互的进程共享某些变量,一个进程的执行可能会影响其他进程的执行结果,交互的并发进程之间具有制约关系、同步关系。
其中典型模型便是生产者-消费者模型。
本实验通过编写和调试生产者-消费者模拟程序,进一步认识进程并发执行的实质,加深对进程竞争关系,协作关系的理解,掌握使用信号量机制与P、V操作来实现进程的同步与互斥。
1.1.2实验要求1.用高级语言编写一个程序,模拟多个生产者进程和多个消费者进程并发执行,并采用信号量机制与P、V操作实现进程间同步与互斥。
2.撰写实验报告,报告应包含以下内容:(1)实验目的;(2)实验内容;(3)设计思路;(4)程序流程图;(5)程序中主要数据结构和函数说明;(6)带注释的源程序代码;(7)程序运行结果及分析;(8)实验收获与体会。
1.2预备知识1.2.1生产者—消费者问题生产者—消费者问题表述如下:如图所示,有n个生产者和m个消费者,连接在具有k个单位缓冲区的有界环状缓冲上,故又称有界缓冲问题。
生产者不断生成产品,只要缓冲区未满,生产者进程pi所生产的产品就可投入缓冲区;类似的,只要缓冲区非空,消费者进程cj就可以从缓冲区取走并消耗产品。
图生产者—消费者问题示意图著名的生产者—消费者问题(producer-consumer problem)是计算机操作系统中并发进程内在关系的一种抽象,是典型的进程同步问题。
在操作系统中,生产者进程可以是计算进程、发送进程,而消费者进程可以是打印进程、接收进程等,解决好生产者—消费者问题就解决了一类并发进程的同步问题。
操作系统之生产者消费者问题(c++实现)
{
std::cout<<"* - - - - - - - - - - - - - - - - - - - - - - - *"<<std::endl;
std::cout<<"|课程设计课题:生产者-消费者问题的模拟实现|"<<std::endl;
std::cout<<"|指导老师:李先锋|"<<std::endl;
bool g_continue = 1;//控制程序运行:1表示继续运行?0表示停止运行
HANDLE g_hMutex;//线程间的互斥信号量
HANDLE g_hFullSemaphore;//资源信号量:缓冲区满
HANDLE g_hEmptySemaphore;//资源信号量:缓冲区空
DWORD WINAPI Producer(LPVOID);//生产者线程
std::cout<<"|学生:丁可|"<<std::endl;
std::cout<<"|班级: B计123班|"<<std::endl;
std::cout<<"* - - - - - - - - - - - - - - - - - - - - - - - *"<<std::endl;
std::cout<<" ==》按回车开始该程序"<<std::endl;
getchar();
}
/*----------------------------程序提示信息结束------------------------------*/
实习5生产者-消费者问题实现
一、实习内容
熟悉临界资源、信号量及PV操作的定义与物理意义了解进程通信的方法掌握进程互斥与进程同步的相关知识掌握用信号量机制解决进程之间的同步与互斥问题实现生产者-消费者问题,深刻理解进程同步问题
二、实习目的
在Linux操作系统下用C实现经典同步问题:生产者—消费者,具体要求如下: (1)一个大小为10的缓冲区,初始状态为空。 (2)2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消费者取走数据之后再添加,重复10次。 (3)2个消费者,随机等待一段时间,从缓冲区中读取数据,若缓冲区为空,等待生产者添加数据之后再读取,重复10次。
管道通信系统 向管道提供输入的发送进程,以字符流方式将大量的数据送入管道,而接收进程从管道中接收数据。由于发送进程和接收进程是利用管道进行通信的,故称为管道通信。 为了协调发送和接收双方的通信,管道通信机制必须提供以下3方面的协调功能。 (1)互斥 当一个进程正在对pipe文件进行读或写操作时,另一个进程必须等待。 (2)同步 当写进程把一定数量的数据写入pipe文件后,便阻塞等待,直到读进程取走数据后,再把写进程唤醒。 (3)确认对方是否存在 只有确定对方已存在时,才能进行管道通信,否则会造成因对方不存在而无限制地等待。
在这个问题当中,我们采用信号量机制进行进程之间的通信,设置两个信号量,空的信号量和满的信号量。 在Linux系统中,一个或多个信号量构成一个信号量集合。使用信号量机制可以实现进程之间的同步和互斥,允许并发进程一次对一组信号量进行相同或不同的操作。每个P、V操作不限于减1或加1,而是可以加减任何整数。在进程终止时,系统可根据需要自动消除所有被进程操作过的信号量的影响 1.缓冲区采用循环队列表示,利用头、尾指针来存放、读取数据,以及判断队列是否为空。缓冲区中数组大小为10; 2.利用随机函数rand()得到A~Z的一个随机字符,作为生产者每次生产的数据,存放到缓冲区中;
C语言编程模拟生产者与消费者问题附代码程序
添加标题 添加标题
性能优化总结:在实现过程中,我们采用了多线程和并发等机制,提高了程序的运行效率和响 应速度,同时也考虑了程序的稳定性和可靠性。
展望未来:在未来的工作中,我们可以进一步探索和研究生产者与消费者问题及其解决方案, 例如使用更高级的并发和分布式技术,提高程序的性能和可扩展性。同时,也可以将该问题 及其解决方案应用于其他领域,例如操作系统、网络通信和数据库等。
消费者从共享缓冲区取出数 据的代码示例
消费者从共享缓冲区取出数 据的过程分析
消费者从共享缓冲区取出数 据需要注意的问题
添加同步机制(互斥锁、条件变量)
互斥锁的使用:通过互斥锁可以保证同一时间只有一个线程可以访问 共享资源,避免数据冲突。
条件变量的使用:条件变量可以用于实现线程间的同步,一个线程可 以在条件变量上等待,直到另一个线程发出通知。
代码程序运行结果展 示
第五章
程序运行截图
生产者程序运行截图
消费者程序运行截图
生产者与消费者程序运行截 图
程序运行结果展示
程序运行结果描述
生产者与消费者问题的模拟过程 代码程序的运行结果展示 生产者与消费者问题的解决效果 代码程序的运行效率和性能评估
结果分析
展示代码程序运行结果 分析代码程序的执行过程 解释代码程序对生产者与消费者问题的解决过程 总结代码程序的优缺点及改进方向
创建生产者线程
生产者线程执行逻辑
生产者线程与消费者 线程交互
生产者线程结束
消费者线程代码实现
创建消费者线程
消费者线程调用 生产者线程
消费者线程接收 生产者线程发送 的消息
消费者线程处理 接收到的消息
共享资源代码实现
共享资源定义:共享资源是生产者和消费者共同使用的资源,需要保证 在任何时刻都不会被多个生产者或消费者同时访问
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
C语言编程模拟生产者和消费者问题(附代码程序)实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:⑴PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<0the nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs _Othe nR(s)en d{v}其中W (s)表示将调用过程的进程置为等待信号量s的状态;R (s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:⑴PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<0the nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs _Othe nR(s)en d{v}其中W (s)表示将调用过程的进程置为等待信号量s的状态;R (s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
实验5 模拟生产者-消费者实验
实验5 模拟生产者-消费者实验
实验目的
(1)掌握信号量及互斥信号量的使用方法;
(2)掌握共享存储区的使用方法。
实验原理
生产者-消费者(producer-consumer)问题是一个著名的进程同步问题。
它描述的是:有一群生产者进程在生产产品,并将这些产品提供给消费者进程去消费。
为使生产者进程与消费者进程能并发执行,在两者之间设置了一个具有n个缓冲区的缓冲池,生产者进程将它所生产的产品放入一个缓冲区中;消费者进程可从一个缓冲区中取走产品去消费。
尽管所有的生产者进程和消费者进程都是以异步方式运行的,但它们之间必须保持同步,即不允许消费者进程到一个空缓冲区去取产品;也不允许生产者进程向一个已装满产品且尚未被取走的缓冲区中投放产品。
为了保证数据的一致性,必须将信号量机制引入到生产者-消费者问题之中。
对于n个缓冲区,设置互斥信号量mutex使诸进程实现对缓冲池的互斥使用;利用资源信号量empty和full分别表示缓冲池中空缓冲区和满缓冲区的数量。
又假设生产者和消费者进程相互等效,只要缓冲池未满,生产者便可将消息送入缓冲池;只要缓冲池未空,消费者便可从缓冲池中取走一个消息。
6.4 实验内容
模拟生产者-消费者工作机制,由串口接收任务不断接收用户从超级终端输入的数据,模拟成数据的生产者,并将数据存放到共享缓冲区中;由LCD任务不断从共享缓冲区中读取数据,并显示出来,模拟成消费者。
C语言编程模拟生产者和消费者问题附代码程序
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s£0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Window s操作系统和Visu al C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:proced ure p (var s: semaph ore);begins: = s-1;if s<0 then W (s)end {p}proced ure v (var s: semaph ore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生产者消费者问题模拟实现(z)————————————————————————————————作者: ————————————————————————————————日期:生产者-消费者实验1.1实验目的和要求1.1.1实验目的操作系统的基本控制和管理控制都围绕着进程展开,其中的复杂性是由于支持并发和并发机制而引起的。
自从操作系统中引入并发程序设计后,程序的执行不再是顺序的,一个程序未执行完而另一个程序便已开始执行,程序外部的顺序特性消失,程序与计算不再一一对应。
并发进程可能是无关的,也可能是交互的。
然而,交互的进程共享某些变量,一个进程的执行可能会影响其他进程的执行结果,交互的并发进程之间具有制约关系、同步关系。
其中典型模型便是生产者-消费者模型。
本实验通过编写和调试生产者-消费者模拟程序,进一步认识进程并发执行的实质,加深对进程竞争关系,协作关系的理解,掌握使用信号量机制与P、V操作来实现进程的同步与互斥。
1.1.2实验要求1.用高级语言编写一个程序,模拟多个生产者进程和多个消费者进程并发执行,并采用信号量机制与P、V操作实现进程间同步与互斥。
2.撰写实验报告,报告应包含以下内容:(1)实验目的;(2)实验内容;(3)设计思路;(4)程序流程图;(5)程序中主要数据结构和函数说明;(6)带注释的源程序代码;(7)程序运行结果及分析;(8)实验收获与体会。
1.2预备知识1.2.1生产者—消费者问题生产者—消费者问题表述如下:如图3.1所示,有n个生产者和m个消费者,连接在具有k个单位缓冲区的有界环状缓冲上,故又称有界缓冲问题。
生产者不断生成产品,只要缓冲区未满,生产者进程pi所生产的产品就可投入缓冲区;类似的,只要缓冲区非空,消费者进程cj就可以从缓冲区取走并消耗产品。
图 3.1生产者—消费者问题示意图著名的生产者—消费者问题(producer-consumer problem)是计算机操作系统中并发进程内在关系的一种抽象,是典型的进程同步问题。
在操作系统中,生产者进程可以是计算进程、发送进程,而消费者进程可以是打印进程、接收进程等,解决好生产者—消费者问题就解决了一类并发进程的同步问题。
操作系统实现进程同步的机制称为同步机制,它通常由同步原语组成。
不同的同步机制采用不同的同步方法,迄今已设计出多种同步机制,本实验采用最常用的同步机制:信号量及PV操作。
1.2.2信号量与PV操作1965年,荷兰计算机科学家E.W.Dijkstra提出新的同步工具——信号量和PV操作,他将交通管制中多种颜色的信号灯管理方法引入操作系统,让多个进程通过特殊变量展开交互。
一个进程在某一关键点上被迫停止直至接收到对应的特殊变量值,通过这一措施任何复杂的进程交互要求均可得到满足,这种特殊变量就是信号量(semaphore)。
为了通过信号量传送信号,进程可利用P和V两个特殊操作来发送和接收信号,如果协作进程的相应信号仍未到达,则进程被挂起直至信号到达为止。
在操作系统中用信号量表示物理资源的实体,它是一个与队列有关的整型变量。
具体实现时,信号量是一种变量类型,用一个记录型数据结构表示,有两个分量:一个是信号量的值,另一个是信号量队列的指针。
信号量在操作系统中主要用于封锁临界区、进程同步及维护资源计数。
除了赋初值之外,信号量仅能由同步原语PV对其操作,不存在其他方法可以检查或操作信号量,PV操作的不可分割性确保执行的原子性及信号量值的完整性。
利用信号量和PV操作即可解决并发进程竞争问题,又可解决并发进程协作问题。
信号量按其用途可分为两种:公用信号量,联系一组并发进程,相关进程均可在此信号量上执行PV操作,用于实现进程互斥;私有信号量,联系一组并发进程,仅允许此信号量所拥有的进程执行P操作,而其他相关进程可在其上执行V操作,初值往往为0或正整数,多用于并发进程同步。
信号量的定义为如下数据结构:typedefstruct semaphore{ﻩintvalue;//信号量的值ﻩstruct pcb *list; //信号量队列的指针}信号量说明: semaphore s;P、V操作原语描述如下:(1)P(s):s.value--;若s.value≥0,则执行P(s)的进程继续执行;若s.v alue<0,则执行P(s)的进程被阻塞,并把它插入到等待信号量s的阻塞队列中。
(2)V(s):s.value++;若s.value≤0,则执行V(s)的进程从等待信号量s的阻塞队列中唤醒头一个进程,然后自己继续执行。
若s.value>0 ,则执行V(s)的进程继续执行;1.2.3信号量实现互斥信号量和PV操作可用来解决进程互斥问题。
为使多个进程能互斥地访问某临界资源,只需为该资源设置一互斥信号量mutex,并置初值为1,然后将各进程访问该资源的临界区置于P(mutex)和V(mutex)操作之间即可。
用信号量和PV操作管理并发进程互斥进入临界区的一般形式为:semaphoremutex;mutex =1;cobeginprocess Pi()/*i =1,2,…,n */{ﻩﻩP(mutex);ﻩﻩﻩ/*临界区*/ﻩV(mutex);}coend当有进程在临界区中时,mutex的值为0或负值,否则mutex值为1,因为只有一个进程,可用P操作把mutex减至0,故可保证互斥操作,这时试图进入临界区的其它进程会因执行P(mutex)而被迫等待。
mutex的取值范围是1~-(n-1),表明有一个进程在临界区内执行,最多有n-1个进程在信号量队列中等待。
1.2.4信号量解决生产者—消费者问题信号量和PV操作不仅可以解决进程互斥问题,而且是实现进程同步的有力工具。
在协作进程之间,一个进程的执行依赖于协作进程的信息或消息,在尚未得到来自协作进程的信号或消息时等待,直至信号或消息到达时才被唤醒。
生产者—消费者问题是典型的进程同步问题,对于生产者进程:生产一个产品,当要送入缓冲区时,要检查是否有空缓冲区,若有,则可将产品送入缓冲区,并通知消费者进程;否则,等待;对于消费者进程:当它去取产品时,要看缓冲区中是否有产品可取,若有则取走一个产品,并通知生产者进程,否则,等待。
这种相互等待,并互通信息就是典型的进程同步。
因此应该设两个同步信号量:信号量empty表示可用的空缓冲区的数目,初值为k;信号量full表示可以使用产品的数目,初值为0。
缓冲区是一个临界资源,必须互斥使用,所以另外还需要设置一个互斥信号量mutex,其初值为1。
用信号量机制解决生产者—消费者问题可描述如下:item B[k];semaphoreempty; empty=k; //可以使用的空缓冲区数semaphorefull; full=0; //缓冲区内可以使用的产品数semaphore mutex;ﻩmutex=1;//互斥信号量int in=0;ﻩﻩﻩ//放入缓冲区指针int out=0; //取出缓冲区指针cobeginprocess producer_i()process consumer(){ {While(true) ﻩWhile(true){{produce();ﻩﻩﻩﻩP(full);P(empty); ﻩﻩP(mutex);P(mutex);ﻩﻩﻩﻩtakefrom B[out];appendto B[in]; ﻩﻩﻩout=(out+1)%k;in=(in+1)%k;ﻩﻩﻩﻩV(mutex);V(mutex);ﻩﻩﻩV(empty);V(full);ﻩﻩﻩﻩﻩﻩconsume();} ﻩ}}}ﻩCoend程序中的P(mutex)和V(mutex)必须成对出现,夹在两者之间的代码段是临界区;施加于信号量empty和full上的PV操作也必须成对出现,但分别位于不同的程序中。
在生产者消费者问题中,P操作的次序是很重要的,如果把生产者进程中的两个P操作交换次序,那么,当缓冲区中存满k件产品时,生产者又生产一件产品,在它欲向缓冲区存放时,将在P(em pty)上等待,由于此时mutex=0,它已经占有缓冲区,这时消费者预取产品时将停留在P (mutex)上而得不到使用缓冲区的权力。
这就导致生产者等待消费者取走产品,而消费者却在等待生产者释放缓冲区的占有权,这种互相之间的等待永远不可能结束。
所以,在使用信号量和PV操作实现进程同步时,特别要当心P操作的次序,而V操作的次序无关紧要。
一般来说,用于互斥的信号量上的P操作总是在后面执行。
1.3生产者消费者问题模拟实现1.3.1实验内容考虑一个系统中有n个进程,其中部分进程为生产者进程,部分进程为消费者进程,共享具有k个单位的缓冲区。
现要求用高级语言编写一个程序,模拟多个生产者进程和多个消费者进程并发执行的过程,并采用信号量机制与P、V操作实现生产者进程和消费者进程间同步以及对缓冲区的互斥访问。
利用信号量机制解决此问题的算法见3.2.4所示。
1.3.2实验指导1.设计提示(1)本实验并不需要真正创建生产者和消费者进程,每个进程用一个进程控制块(PCB)表示。
PCB数据结构如下:typedef struct Process//进程PCB{ﻩchar name[10];ﻩ//进程名introleFlag; //进程类型(1:生产者0: 消费者)ﻩint currentState;ﻩﻩ//进程状态(1: 可运行态0:阻塞态)ﻩint currentStep; ﻩ//断点ﻩint data;ﻩﻩ//临时数据int code; ﻩ//进程编号}Process;(2)程序中应指定缓冲区的数目,进程总个数等,现考虑共有4个生产者和消费者进程,缓冲区数目是两个,定义如下所示:#define dataBufferSize2ﻩﻩ//缓冲区数目#define processNum 4ﻩﻩ//进程数量(生产者、消费者进程总数目)structDataBuffer //缓冲区{ﻩint buffer[dataBufferSize];ﻩint count;ﻩﻩﻩ//当前产品数量}dataBuffer;(3)为解决生产者-消费者问题需设两个同步信号量:信号量empty表示可用的空缓冲区的数目,初值为缓冲区数目;信号量full表示可以使用产品的数目,初值为0。
缓冲区是一个临界资源,必须互斥使用,所以另外还需要设置一个互斥信号量mutex,其初值为1。
信号量定义和说明如下所示:typedef structSeamphore //信号量{ ﻩﻩintvalue;ﻩ//信号量的值ﻩﻩint*pcq; //信号量队列指针} Seamphore;int producerCongestionQueue[processNum]; //等待信号量empty的阻塞队列int consumerCongestionQueue[processNum];ﻩ//等待信号量full的阻塞队列int shareCongestionQueue[processNum]; //等待信号量mutex的阻塞队列Seamphoreempty={dataBufferSize,producerCongestionQueue};Seamphore full={0,consumerCongestionQueue};Seamphore mutex={1,shareCongestionQueue};(4)为模拟多个生产者和多个消费者进程并发执行的过程,首先根据进程总个数产生若干生产者和若干消费者进程,然后随机调度一个处于就绪态的进程,判断是生产者还是消费者,然后执行不同的代码,为模拟并发执行,进程每执行一步操作就中断执行,再调度其他进程运行,在被中断进程的PCB中记录了中断的位置,等到下次被调度执行时则从此位置继续执行。