称为总体参数的区间估计
统计学02-第三讲 两个总体参数的区间估计_24
2 p
(n1
1)s12
(n2
1)s
2 2
n1 n2 2
3. 估计量x1-x2的抽样标准差
s
2 p
s
2 p
n1 n2
sp
11 n1 n2
两个总体均值之差的估计
(小样本: 1222 )
1. 两个样本均值之差的标准化
t
( x1
x2 ) 1
s p n1
(1
1 n2
2 )
~
t (n1
n2
2)
2. 两个总体均值之差1-2在1- 置信水平下的
x1
32.5
s12
15.996 x2
27.875
s
2 2
23.014
自由度为
15.996
23.014
2
v 12
8
13.188 13
15.996 122 23.014 82
12 1
8 1
(32.5 27.875) 2.1604 15.996 23.014 4.625 4.433
女学生: x2 480
s
2 2
280
试以90%置信水平估计男女学生生活费支出方 差比的置信区间
两个总体方差比的区间估计 (例题分析)
解 : 根 据 自 由 度 n1=25-1=24 , n2=25-1=24 , 查 得 F/2(24)=1.98, F1-/2(24)=1/1.98=0.505
12 /22置信度为90%的置信区间为
两个总体均值之差1-2在1- 置信水平下的置
信区间为
x1 x2 t 2 (v)
s12
s
2 2
n1 n2
自由度 v
总体参数的区间估计
三、总体参数的区间估计
图5-10 “探索”对话框
图5-11 “探索:统计量”对话框
三、总体参数的区间估计
单击“统计量”按钮,弹出“探索:统计量”对话框,如图5-11所示。 该对话框中有如下四个复选框: (1)描述性:输出均值、中位数、众数、标准误、方差、标准差、极小值 、极大值、全距、四分位距、峰度系数和偏度系数的标准误差等。此处能够设 置置信区间,默认为90%(α=0.1),可根据需要进行调整。 (2)M 最大似然确定数。 (3)界外值:输出五个最大值和五个最小值。 (4)百分位数:输出第5%、10%、25%、50%、75%、90%、95%位数 。
三、总体参数的区间估计
【例5-17】 某餐馆随机抽查了50位顾客的消费额(单位:元)为 18 27 38 26 30 45 22 31 27 26 35 46 20 35 24 26 34 48 19 28 46 19 32 36 44 24 32 45 36 21 47 26 28 31 42 45 36 24 28 27 32 36 47 53 22 24 32 46 26 27 在90%的概率保证下,采用点估计和区间估计的方法推断餐馆顾客的平均消 费额。 解:执行“分析”→“描述统计”→“探索”命令,打开“探索”对话框。由于本例只 有消费额一个变量,且需要对消费额进行探索性分析,故选中左侧列表框中的“消 费额”选项,将其移入“因变量列表”框中,如图5-10所示。
解:已知n=31,α=0.01,=10.2;σ=2.4,z0.005=2.58,由于总 体方差已知,为大样本,可以利用式(5-23)来进行计算。
即(9.088,11.312 该学生每天的伙食费在显著性水平为99%时的置信区间为( 9.088,11.312)。
现代心理教育与统计学_第三版复习资料(张厚粲)
第一章绪论1.描述统计(descriptive statistics)主要研究如何将实验或调查得到的大量数据进行图表整理或简缩成有代表性的数字(即统计量数),使其能客观、全面地反映这组数据的全貌,将其所提供的信息充分显现出来,为进一步统计分析和推论提供可能。
2.描述统计只限于对试验样本所得观测数据的统计分析,不考察其总体的特性。
3.推论统计(inferential statistics)是以描述统计为基础,从而解决由局部到全体的推论问题,即通过对一组统计量的计算分析,推论该组数据所代表的总体特性。
4.变量(variables):一个可以取不同数值的物体属性/事件。
5.事前无法预期结果的变量——随机变量6.观测值(原始取值):事后测定的某一结果。
7.概念理解:[涉及“实验”] 自变量(及其各水平)& 因变量(及相应的反应指标);[涉及“调查”,粗略对应于] 属性变量& 反应变量8.计数资料(count data):计算个数的数据,(如人口数,学校数,男女数等)9.计量资料(measurement data):借助于一定的测量工具或一定的测量标准而获得的数据(如分数,身高,体重,IQ)10.称名数据(nominal data):只区分属性或类别上的不同,只可计数,不能排序(性别,学科,职业)11.等级/顺序数据(ordinal data):可排序,但无相等单位,不能加减。
(等级评定,受教育程度,职称)12.等距数据(interval data):具有相等单位,无绝对零的数据,能加减不能乘除。
13.比率数据(ratio data):既表明量的大小,又具有相等单位,可以加减乘除,具有绝对零点。
14.称名数据和顺序数据合称为离散数据。
15.等距数据和比率数据合称为连续数据。
16.离散数据(discrete data)又称为不连续数据,这类数据在任何两个数据点之间所取的数据的个数是有限的。
17.连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。
统计学参数估计
统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。
这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。
在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。
而样本则是从总体中获取的一部分观测值。
参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。
常见的参数估计方法包括点估计和区间估计。
点估计是一种通过单个数值来估计总体参数的方法。
点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。
矩估计则是通过样本矩的函数来估计总体矩的方法。
然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。
为了解决这个问题,区间估计被引入。
区间估计是指通过一个区间来估计总体参数的方法。
该区间被称为置信区间或可信区间。
置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。
置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。
在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。
例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。
在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。
参数估计的准确性和可靠性是统计分析的关键问题。
估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。
经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。
总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。
参数估计在统计推断、统计检验和决策等领域具有广泛的应用。
估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。
总体参数的区间估计
因为
ˆ (1 P ˆ) P SP ˆ n
0.1 (1 0.1) 0.0077 1500
上一张 下一张 主 页Fra bibliotek退 出
所以该地区老年人结核病患病率ρ 的95%、 99%置信区间为:
0.1 1.96 0.0077 0.1 1.96 0.0077
0.1 2.58 0.0077 0.1 2.58 0.0077
越高。
上一张 下一张 主 页 退 出
常用的置信度为95%和99%,故由(5-13)
式可得总体平均数μ 的95%和99%的置信区间如
下:
( x t 0.05 S x x t 0.05 S5-14 x ) ( 5-15 ) x t 0.01S x x t 0.01 S x
P( x t a S x x t a S x ) 1 a
称为置信半径; ta S x
(5-13)式称为总体平均数μ 置信度为1-a的置
信区间。其中
x和 ta S x
分别称为置信下限和置信上限; 置信上、下限 x ta S x
之差称为置信距,置信距越小,估计的精确度就
ˆ 其中, P 为样本百分数, 为样本百分数标准 S ˆ P
误, 的计算公式为: SP ˆ
SP ˆ ˆ (1 P ˆ P ) 5-18) ( n
上一张 下一张 主 页 退 出
【例5.10】 调查某地1500老年人,患结核病
的有150人,求该地区老年人结核病患病率的
95%、99%置信区间。
ˆ ,采用正态分布近似法求 由于>1000, >1% P 置信区间。
上一张 下一张 主 页 退 出
统计推断的基本解法
统计推断的基本解法统计推断是统计学的重要分支,用于从样本中推断总体特征。
在统计分析中,我们通常使用一些基础的解法来进行统计推断。
本文将介绍一些常用的基本解法。
点估计点估计是一种基本的统计推断方法,用于估计总体参数的值。
在点估计中,我们通过样本数据得到一个点估计量,作为总体参数的估计值。
例如,常见的点估计方法包括样本均值、样本方差和样本比例等。
区间估计区间估计是一种更精确的统计推断方法,用于估计总体参数的范围。
在区间估计中,我们通过样本数据得到一个区间估计量,包含了总体参数真值的可能范围。
例如,常见的区间估计方法包括置信区间和可信区间等。
假设检验假设检验是一种常用的统计推断方法,用于验证关于总体参数的假设。
在假设检验中,我们首先提出一个原假设和一个备择假设,然后使用样本数据来判断哪个假设更为合理。
例如,常见的假设检验方法包括单样本检验、双样本检验和方差分析等。
相关分析相关分析是一种用于研究变量之间关系的统计推断方法。
在相关分析中,我们通过计算相关系数来衡量变量之间的相关程度。
例如,常见的相关分析方法包括皮尔逊相关系数和斯皮尔曼相关系数等。
回归分析回归分析是一种用于预测和探索变量之间关系的统计推断方法。
在回归分析中,我们使用回归方程来建立变量之间的函数关系,并通过回归系数来解释这种关系。
例如,常见的回归分析方法包括线性回归和逻辑回归等。
综上所述,统计推断的基本解法包括点估计、区间估计、假设检验、相关分析和回归分析等。
这些方法在统计学领域中被广泛应用,帮助我们从样本中推断总体的特征和关系。
总体参数的区间估计公式
总体参数的区间估计公式在进行区间估计时,我们首先需要收集到一个样本,并根据样本对总体参数进行估计。
然后根据样本的统计量,结合分布的性质和抽样方法,建立置信区间。
设总体参数为θ,我们希望得到它的置信水平为1-α的置信区间。
置信水平表示我们对总体参数的估计的可信程度,一般常用的置信水平有90%、95%和99%等。
参数估计的方法有很多,具体的方法选择取决于总体参数的性质、样本的大小以及其他假设条件。
常见的参数估计方法有:1.总体均值的区间估计:假设总体呈正态分布,样本大小为n,则总体均值的区间估计公式为:[样本均值-Z值(α/2)*总体标准差/√(n),样本均值+Z值(α/2)*总体标准差/√(n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
2.总体比例的区间估计:假设总体为二项分布,样本大小为n,成功的次数为x,则总体比例的区间估计公式为:[样本比例-Z值(α/2)*√(样本比例*(1-样本比例)/n),样本比例+Z值(α/2)*√(样本比例*(1-样本比例)/n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
3.总体方差的区间估计:假设总体呈正态分布,样本大小为n,则总体方差的区间估计公式为:[(n-1)*样本方差/卡方分布(α/2),(n-1)*样本方差/卡方分布(1-α/2])]其中卡方分布是用于描述自由度为n-1的卡方随机变量的概率分布,可以从卡方分布表中查得。
以上是常见的总体参数区间估计公式,这些公式是根据统计学理论推导而来的,适用于不同情况下的参数估计。
在实际应用中,我们根据具体问题和假设条件选择适当的参数估计方法,计算置信水平的区间估计,从而对总体参数进行估计和推断。
统计学习题05
2.下面哪些是影响必要样本容量的因素()。
A.总体各单位标志变异程度B.允许的极限误差大小
C.推断的可靠程度D.抽样方法和抽样组织方式
E.样本均值和样本统计量
答案:ABCD
3.评价估计量是否优良的常用标准有( )。
A.无偏性B.有效性
C.准确性D.一致性
E.随机性
答案:ABC
4.点估计( )。
[参考答案]
28.306
2.现有一大批种子,为了估计其发芽率,随机抽取400粒进行发芽试验。结果有15粒每发芽。试以90%的置信度估计这批种子的发芽率。
[参考答案]
[ 0.95 , 0.97 ]
3.设总体X服从参数 的泊松分布,其概率分布率为 ,
x=0,1,2,……试求参数 的极大似然估计量及矩估计量。
A.求每晚睡眠时间总体均值的点估计。
B.假定总体是正态分布,求总体均值的点估计的95%置信区间。
[参考答案]
A.6.86,B.[6.54 , 7.18]
5.在某地方选举进行以前展开的民意测验表明,在随机抽取的121名居民中有65名支持某候选人,试求该候选人支持率的信赖区间。( =5%)
[参考答案]
0.54-0.089=0.451
答案:C
21.已知σ2的1-α置信区间为,该区间也可表示为()。
(D)以上答案都不正确
答案:B
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低
E. 两者呈相反方向变化
3.在进行参数估计时,我们并不是直接用一个个的具体样本之来估计、推断总体参数,而是根据样本构造出一些特定的量,用这些特定量来估计总体参数,这些根据样本构造的特定量就称为样本统计量。在估计过程中,我们把用来推估总体参数的样本统计量称为估计量。
双正态总体参数的区间估计
双正态总体参数的区间估计双正态总体参数的区间估计是统计学中的一种方法,用于估计由两个正态分布组成的总体的参数。
这种方法适用于当我们需要估计两个总体的平均值或比例时,且这两个总体可以被假定为来自两个不同的正态分布。
下面我们将详细介绍双正态总体参数的区间估计的原理和步骤。
双正态总体参数的区间估计可以分为两种情况:一种是当我们需要估计两个总体的平均值,另一种是当我们需要估计两个总体的比例。
首先,假设我们需要估计两个总体的平均值。
我们可以用样本平均值来估计总体平均值,并通过计算标准误差来构建置信区间。
如果我们假设两个总体的方差相等,则可以使用统计学中的配对t检验方法来进行推断。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本的观测值。
2.计算样本平均值。
对于每个总体,计算对应样本的平均值。
3.计算差值。
对于每个配对样本,计算它们的差值。
如果我们关注的是总体平均值的差异,则用两个总体对应样本的平均值之差来作为差值。
4.计算标准差。
计算差值样本的标准差,用来估计差值的标准误差。
5.确定置信水平。
选择一个置信水平,通常为95%。
这意味着我们希望有95%的置信度认为估计的区间包含真实的总体差异。
6.计算临界值。
确定配对t检验的自由度,并使用自由度和置信水平来查找相应的t临界值。
7.构建置信区间。
使用差值平均值±t临界值*标准误差来构建置信区间,这个区间将包含真实的总体差异。
另一种情况是当我们需要估计两个总体的比例。
在这种情况下,我们可以使用两个样本中的比例差异来估计总体的比例差异。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本中的成功次数和总次数。
2.计算样本比例。
对于每个总体,计算对应样本的比例,即成功次数除以总次数。
3.计算差异。
对于每个配对样本,计算它们的比例之差。
4.计算标准误差。
计算比例差异样本的标准误差,用来估计比例差异的标准误差。
应用数理统计第二章参数估计(3)区间估计
例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n
正态总体参数的区间估计
总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。
医学统计学填空题
030302 患病率,又成为现患率,指某时点上受检人数中 现患某种疾病 的频率。 030303 生存率,指病人(观察单位)能活到 某一时点 的概率。 030401 某地区某个疾病在某年的发病人数为 a0,以后历年为 a1,a2………an,则该疾病发病人数 的年平均增长速度为__ n an / a 0 -100%______。 030402 动态数列是按照 时间 顺序,将一系列描述某事务的统计指标依次排列,观察和比 较该事物的变化发展趋势。 030403 常用的动态数列分析指标有:_绝对增长量__、__发展速度__、__增长速度_____、 ____平均发展速度____、___平均增长速度_____。 040101 二项分布的特征:_高峰在μ=nπ处或附近__、_π为 0.5 时图形是对称的_______、 __当π不等于 0.5 时,分布不对称,且对同一 n,π离 0.5 愈远,对称性愈差_____。 040102 二项分布的均数和标准差为:_μ=nπ___、__σ= nπ (1 π ) _____。 {二项分布的特征由参数π及观察的次数 n 决定;当 n→∞时,只要π不太靠近 0 或 1,特 别是 nπ和 n(1-π)均大于 5 时,二项分布趋于正态分布} 040201 Poisson 分布的特征:_Poisson 分布时非对称的,总体参数λ值越小,分布越偏、 __随着λ增大,分布趋于对称、_Poisson 分布的总体均数与总体方差相等,均为λ____、 __Poisson 分布的观察结果具有可加性_____。 {当λ≥20 时 Poisson 分布近似正态分布} 040202 Poisson 分布的总体均属于总体方差分别为:__λ_____、__λ_____。 040301 正态概率密度曲线关于 x=μ 对称,在 x=μ σ 处有拐点。 040302 正态概率密度曲线下面积为: 1 ,在 x=μ 处取得该概率密度函数的最大值。 040303 正态概率密度曲线的形状由 σ 决定, 当µ恒定, 其值越大, 数据越 集中 。 040304 标准正态分布的两个参数_总体均数_______、____总体方差____。 040305 标准正态分布的两个参数µ=__0______、σ=___1_____。 040306 标准化变换又叫µ变换,这里µ/z=_(x-μ)/_σ______。 040307 确定医学参考值范围的方法有:_百分位数法___、_正态分布法__、 。 040308 特别是当 nπ和 n(1-π)均大于 5 时 二项分布近似正态分布。 040309 一般,当 λ≥20 时 Poisson 分布资料可按正态分布处理。 040310 应用正态分布法确定医学参考值范围的条件是: (1)只限于正态分布资料,近似正 态分布资料或以一定的方法可以转化为正态分布的资料________, (2)________。 050101 表示样本均数抽样误差的指标叫做: 均数的标准误 。 050201 t 分布是以 0 为中心,左右对称的 一簇 曲线。 050202 在 t 变换中,t= (X-μ)/Sx = (X-μ)/S/ n 。
统计学学习题及解答
统计学学习题及解答一、填空题:1、“统计”一词,一般有三种涵义,即统计资料、统计工作和统计学。
2、统计指标按其反映的总体内容不同,可分为数量指标与质量指标;按其作用和表现形式不同,可分为总量指标、相对指标和平均指标。
结构相对指标是部分(或各组)总量与总体总量之比。
3、总量指标时间数列是基本的时间数列,它有时期数列和时点数列两种。
4、当我们研究某个班学生的学习情况时,某个班的学生便构成总体,而这个班的每一名学生则是总体单位。
5、可变的数量标志称为变量,而数量标志的表现则称标志值。
6、标志是用来说明总体单位特征的名称,而指标是说明总体的综合数量特征的。
7、人口按性别、民族、职业分组,属于按品质标志分组,而人口按年龄、工资、身高分组,则属于按数量标志分组。
8、方差分析中,如果在实验中变化的因素只有一个,这时的方差分析称为单因素方差分析。
9、直线相关系数等于0,说明两变量之间无线性相关关系;直线相关系数等于1,说明两变量之间完全线性正相关。
直线相关系数越接近于1,说明两变量之间相关关系越密切;直线相关系数越接近于0,说明两变量之间相关关系越不密切。
10、相关系数的取值在-1 和 1 之间,即[-1,1]。
11、从内容上看,统计表由主词栏和宾词栏两部分组成。
12、假设检验分为两类:参数假设检验和非参数假设检验。
p13、是非标志的平均数等于,是非标志的标准差等于14、统计调查按调查对象所包括的范围不同,可分为全面调查和非全面调查。
15、按照说明现象的范围不同,统计指数可分为个体指数和总指数。
16、保证时间数列中各个指标数值的可比性是编制时间数列的基本原则。
17、组中值是各组上限和下限的简单平均。
18、投资额与消费额的比例为1:3(A)。
投资额占国内生产总值使用额的25%(B)。
在这一资料中,A为比例相对指标,B为结构相对指标。
19、统计数据的表现形式有绝对数、相对数和平均数三种。
20、相关关系按相关的方向可分为正相关和负相关。
一个总体参数的区间估计
x z
1-3
x
2
n
或 x z
s
2
n
( 未知)
!
总体均值的区间估计
(例题分析)
【 例 】一家食品生产企业以生产袋装食品为主,每天产量大约8000
袋。按规定,每袋应为100g。为对食品质量进行监测,企业质检部
门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产
的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产
机 地 抽 取 了 100 名
下岗职工,其中65
人为女性职工。试
以95%的置信水平
估计该城市下岗职
工中女性比例的置
信区间
解:已知 n=100,p=65% , 1- = 95%,
z/2=1.96
p z
2
p (1 p )
n
65%(1 65%)
65% 1.96
100
65% 9.35%
49
38
34
48
50
34
39
45
48
45
32
!
总体均值的区间估计
(例题分析)
解:已知n=36, 1- = 90%,z/2=1.645。根据样本数
据计算得:ഥ
= . , = .
总体均值在1- 置信水平下的置信区间为
x z
2
s
7.77
39.5 1.645
1-5
!
总体均值的区间估计
(例题分析)
【例】一家保险公司收集到由36个投保人组成的
随机样本,得到每个投保人的年龄(单位:周岁)
数据如下表。试建立投保人年龄90%的置信区间
应用统计单项选择题
应用统计单项选择题1.社会经济统计是(C)的有利工具。
A.处理问题B.进行交流C.认识社会D.引进外资2.(A)是用图形、表格和概括性的数字对数据进行描述的统计方法。
A.描述统计B.推断统计C.理论统计D.应用统计3.(A)是我们所要研究的所有基本单位(通常是人、物体、交易或事件)的总和。
A.总体B.变量C.样本D.统计4.经济数据是对(B)进行计算的结果。
A.主观现象B.客观现象C.数字特征D.社会现象5.美国盖洛普(Gallup)调查公司在美国总统大选前通常会从全美国的选民中随机抽取1500人左右,对大选结果进行调查和预测,并会给出2%左右的预测误差。
这是利用样本信息和概率论原理进行(B)的过程。
A.统计描述B.统计推断C.统计分析D.统计应用6.统计学的核心内容是(C)。
A.统计数据的收集B.统计数据的整理C.统计数据的分析D.统计数据的应用7.(A)在《政治算术》一书中用大量的数字对英国、法国、荷兰三国的经济实力进行比较,用数字、重量、尺度等定量的方法进行分析和比较,表达他的思想和观点。
A.威廉配第B.约翰格朗特C.帕斯卡D.费马8.统计整理主要是对(C)的整理。
9.著名统计学家(B)给出了F统计量、最大似然估计、方差分析等方法和思想。
A.戈赛特B.费希尔C.奈曼和皮尔逊D.沃尔德10.统计数据的搜集活动是(B)。
A.应用统计B.统计工作C.统计数据D.统计学第02章-统计数据的描述1.某企业男性职工占60%,月平均工资为550元,女性职工占40%,月平均工资为500元,该企业全部职工的平均工资为(B)。
A.525元B.530元C.535元D.540元2.如果数据是左偏分布,则有(C)。
A.平均数=中位数=众数B.平均数>中位数>众数C.平均数A.抽样调查B.典型调查C.重点调查D.普查4.今有四位工人的工资分别为:400元,600元,700元,900元,计算四人平均工资,应采用的计算方式是(A)。
统计学第4章 参数估计
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被
估计的总体参数
抽样分布
中,样本 P(ˆ)
均值、比 率、方差
无偏
有偏
分别是总
A
B
体均值、
比率、方
差的无偏
估4计- 2量3
ˆ
统计学
STATISTICS
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
置信水平(1-α)表达了区间估计的可靠性。 它是区间估计的可靠概率。
显著性水平α表达了区间估计的不可靠的概 率。
4 - 20
统计学§4.2 点估计的评价标准
STATISTICS
对于同一个未知参数,不同的方法得到的估 计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用 标准
4 - 21
(1) 无偏性 (2) 有效性 (3) 一致性
统计学 定义 STATISTICS
无偏性
(unbiasedness)
若 E(ˆ)
则称 ˆ是 的无偏估计量.
定义的合理性
我们不可能要求每一次由样本得到的
估计值与真值都相等,但可以要求这些估 计值的期望与真值相等.
4 - 22
统计学
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
无偏估计量还 必须与总体参 数的离散程度
比较小
4 - 24
A
ˆ2 的抽样分布
ˆ
统计学
有效性
STATISTICS
定义 设 ˆ1 1(X1, X 2, , X n )
数理统计自考复习资料
复习资料(资料总结,仅供参考)判断题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。
X 2.统计分析包括统计描述和统计推断。
3.计量资料、计数资料和等级资料可根据分析需要相互转化。
4.均数总是大于中位数。
X 5.均数总是比标准差大。
X 6.变异系数的量纲和原量纲相同。
X 7.样本均数大时,标准差也一定会大。
X 8.样本量增大时,极差会增大。
9.若两样本均数比较的假设检验结果P 值远远小于,则说明差异非常大。
X 10.对同一参数的估计,99%可信区间比90%可信区间好。
X 11.均数的标准误越小,则对总体均数的估计越精密。
12. 四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。
X 13.统计资料符合参数检验应用条件,但数据量很大,可以采用非参数方法进行初步分析。
14.对同一资料和同一研究目的,应用参数检验方法,所得出的结论更为可靠。
X 15.等级资料差别的假设检验只能采用秩和检验,而不能采用列联表χ2检验等检验方法X 。
16.非参数统计方法是用于检验总体中位数、极差等总体参数的方法。
X 17.剩余平方和SS 剩1=SS 剩2,则r 1必然等于r 2。
X 18.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互直线关系。
19.两变量关系越密切r 值越大。
X 20.一个绘制合理的统计图可直观的反映事物间的正确数量关系。
21.在一个统计表中,如果某处数字为“0”,就填“0”,如果数字暂缺则填“…”,如果该处没 有数字,则不填。
X 22.备注不是统计表的必要组成部分,不必设专栏,必要时,可在表的下方加以说明。
23.散点图是描写原始观察值在各个对比组分布情况的图形,常用于例数不是很多的间断性分组资料的比较。
24.百分条图表示事物各组成部分在总体中所占比重,以长条的全长为100%,按资料的原始顺序依次进行绘制,其他置于最后。
X 25.用元参钩藤汤治疗80名高血压患者,服用半月后比服用前血压下降了,故认为该药有效( X )。
统计学-复习试题(含答案)
一. 单项选择题(每小题2分,共20分)1. 对于未分组的原始数据,描述其分布特征的图形主要有( )A. 直方图和折线图B. 直方图和茎叶图C. 茎叶图和箱线图D. 茎叶图和雷达图 2. 在对几组数据的离散程度进行比较时使用的统计量通常是( )A. 异众比率B. 平均差C. 标准差D. 离散系数3. 从均值为100、标准差为10的总体中,抽出一个50=n 的简单随机样本,样本均值的数学期望和方差分别为( )A. 100和2 B. 100和0.2 C. 10和1.4 D. 10和2 4. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量标准之一是使它与总体参数的离差越小越好。
这种评价标准称为( )A. 无偏性 B. 有效性 C. 一致性 D. 充分性5. 根据一个具体的样本求出的总体均值95%的置信区间( )A. 以95%的概率包含总体均值B. 有5%的可能性包含总体均值C. 一定包含总体均值D. 可能包含也可能不包含总体均值 6. 在方差分析中,检验统计量F 是( )A. 组间平方和除以组内平方和B. 组间均方和除以组内均方C. 组间平方和除以总平方和D. 组间均方和除以组内均方 7. 在回归模型εββ++=x y 10中,ε反映的是( )A. 由于x 的变化引起的y 的线性变化部分B 由于y 的变化引起的x 的线性变化部分C. 除x 和y 的线性关系之外的随机因素对y 的影响D 由于x 和y 的线性关系对y 的影响8. 在多元回归分析中,多重共线性是指模型中( )A. 两个或两个以上的自变量彼此相关B 两个或两个以上的自变量彼此无关 C 因变量与一个自变量相关D 因变量与两个或两个以上的自变量相关9. 若某一现象在初期增长迅速,随后增长率逐渐降低,最终则以K 为增长极限。
描述该类现象所采用的趋势线应为( )A. 趋势直线 B. 指数曲线 C. 修正指数曲线 D. Gompertz 曲线10. 消费价格指数反映了( )A. 商品零售价格的变动趋势和程度B 居民购买生活消费品价格的变动趋势和程度C 居民购买服务项目价格的变动趋势和程度D 居民购买生活消费品和服务项目价格的变动趋势和程度二. 简要回答下列问题(每小题5分,共20分)1. 解释总体与样本、参数和统计量的含义。
社会统计学期末复习题整理
社会统计学期末复习训练一、单项选择题(20=2×10)1.为了解IT行业从业者收入水平,某研究机构从全市IT行业从业者随机抽取800人作为样本进行调查,其中44%回答他们的月收入在6000元以上,30%回答他们每月用于娱乐消费在1000元以上。
此处800人是.样本2.某地区政府想了解全市332.1万户家庭年均收入水平,从中抽取3000户家庭进行调查,以推断所有家庭的年均收入水平。
这项研究的总体是 332.1户家庭的年均收入3.学校后勤集团想了解学校22000学生的每月生活费用,从中抽取2200名学生进行调查,以推断所有学生的每月生活费用水平。
这项研究的总体是 22000名学生的每月生活费用4.为了解地区的消费,从该地区随机抽取5000户进行调查,其中30%回答他们的月消费在5000元以上,40%回答他们每月用于通讯、网络的费用在300元以上。
此处5000户是样本5.从变量分类看,下列变量属于定序变量的是产品等级6.下列变量属于数值型变量的是工资收入7.从含有N个元素的总体中,抽取n个元素作为样本,同时保证总体中每个元素都有相同的机会入选样本,这样的抽样方式称为.简单随机抽样8.某班级有60名男生,40名女生,为了了解学生购书支出,从男生中抽取12名学生,从女生中抽取8名学生进行调查。
这种调查方法属于分层抽样9.先将总体按某标志分为不同的类别或层次,然后在各个类别中采用简单随机抽样或系统抽样的方式抽取子样本,这样的抽样方式称为分层抽样10.某班级有100名学生,为了了解学生消费水平,将所有学生按照学习成绩排序后,在前十名学生中随机抽出成绩为第3名的学生,后面依次选出第13、23、33、43、53、63、73、83、93九名同学进行调查。
这种调查方法属于系统抽样11.在频数分布表中,某一小组中数据个数占总数据个数的比例称为频率12.在频数分布表中,将各个有序类别或组的百分比逐级累加起来称为累积频率13.在频数分布表中,频率是指各组频数与总频数之比14.在频数分布表中,比率是指不同小组的频数之比15.如果用一个图形描述比较两个或多个样本或总体的结构性问题时,适合选用环形图16.某地区2001-2010年人口总量(单位:万人)分别为98,102,103,106,108,109,110,111,114,115,下列哪种图形最适合描述这些数据线图17.当我们用图形描述甲乙两地区的人口年龄结构时,适合选用哪种图形环形图18.在某市随机抽取10家企业,7月份利润额(单位:万元)分别为72.0、63.1、20.0、23.0、54.7、54.3、23.9、25.0、26.9、29.0,那么这10家企业7月份利润额均值为 39.19 19.某班级10名同学期末统计课考试分数分别为76、93、95、80、92、83、88、90、92、72,那么该班考试成绩的中位数是 8920.某企业职工的月收入水平分为五组:1)1500元及以下;2)1500-2000元;3)2000-2500元;4)2500-3000元;5)3000元及以上,则3000元及以上这一组的组中值为 3250元21.为了解某行业12月份利润状况,随机抽取5家企业,12月份利润额(单位:万元)分别为65、23、54、45、39,那么这5家企业12月份利润额均值为 45.222.某专业共8名同学,他们的统计课成绩分别为86、77、97、94、82、90、83、92,那么该班考试成绩的中位数是8823.某班级学生平均每天上网时间可以分为以下六组:1)1小时及以下;2)1-2小时;3)2-3小时;4)3-4小时;5)4-5小时;6)5小时及以上,则5小时及以上这一组的组中值近似为5.5小时24.对于左偏分布,平均数、中位数和众数之间的关系是众数>中位数>平均数25.对于右偏分布,平均数、中位数和众数之间的关系是平均数>中位数>众数26.离散系数的主要目的是比较多组数据的离散程度27.两组数据的平均数不相等,但是标准差相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一、抽样误差
由于总体的个体之间存在着差异,使得样本指标与总 体指标之间有差异,这种误差称为抽样误差。
• 抽样误差的来源总体内个体之间的差异。
例如,在上例中师大男生的平均身高如果是 μ=168cm,则估计误差为2cm,这是由抽样误差造成的, 抽样误差来自于各学生的身高差异。估计误差的大小与抽 样误差大小有关。
二、标准误
(standard error,SE)
(一)标准误的概念
若总体 x ~ N (u, 2 )是反映样本均数抽样误 或总体分布不明但样本含量很大 时,样本平均数服从或近似服从正态分布, 差大小的指标。 2 即 : x ~ N (u, ) n x 的离散程度反映了抽样误差的大小, 定义:样本均数的标准差称为均数的标准差,又称标准误。
• 在例1利用点估计的方法,得到平均身高的估计值 为显然存在误差,但误差究竟有多大?还是不知 道。 • 因此,若能估计出平均身高所在范围,并给出相 应的可靠性程度则更现实,实用价值更大,这就 是区间估计。
一、基本概念
(一)区间估计:具体如前述。 • 简单地说就是用一个区间去估计未知参数, 把未知参数估计在某两个界限之间。 (二)置信区间: • 按照预先给定的概率(1- α )确定的包含 未知总体参数的可能范围。它是以上下置 信限(L1 , L2)为界。
可见,确定区间估计很关键的是要寻找 一个待估参数 和估计量T 的函数S(T, ), 且S(T, )的分布为已知, 不依赖于任何未 知参数 (这样我们才能确定一个大概率区间).
而这与总体分布有关,所以,总体分布的 形式是否已知,是怎样的类型,至关重要.
参数估计的基本方式
• 点估计(point estimation)
• 区间估计(interval est计
设总体为
X ~ N (u, 2 ), ( x1x2 xn )为样本观测值。
点估计的方法:利用样本特征数去估计总体特征数 。
ˆx 例如: u
ˆ S
X P{| | u 2 } 1 n
为什么 这样取?
对给定的置信水平1 , 查正态分布表得 u 2 , 使
X P{| | u 2 } 1 n
P{ X
从中解得
n u 2 X
n
u 2 } 1
P{ X 1
x 记作 :
x
n
(二)标准的计算
• 总体标准差σ一般是未知的,应用中以样本 标准差 S 近似代替,从而可得标准误的计 算公式 。 S
Sx n
例如,例1中标准误为: S S 5 0.707 x n 50
第三节 总体均数的区间估计
引言
前面,我们讨论了参数点估计. 它 是用样本算得的一个值去估计未知参数. 但是,点估计值仅仅是未知参数的一个 近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计 正好弥补了点估计的这个缺陷 .
第六章
参数估计
(parameter estimation)
安徽师范大学体育学院
0
概 述
• 用样本统计量的来估计相应总体参数,称 为参数估计。 • 判断估计量优劣的标准
无偏性 有效性 一致性 充分性
•
以样本统计量的抽样分布(概率分布) 用某一样本统计量的值来估计相应总体参 为理论依据,按一定概率要求,由样本 用样本对总体的未知参数进行估计的方法 数的值叫总体参数的点估计。 统计量的值估计总体参数值的所在范围, 常见的有两种 : 称为总体参数的区间估计。
4. 对于给定的置信水平1 ,根据S(T, ) 的分布,确定常数a, b,使得 P(a ≤S(T, )≤b)= 1 5. 对“a≤S(T, )≤b”作等价变形,得到如下 形式: ˆ ˆ
P{1 2 } 1
ˆ ,ˆ ] 就是 的100(1 )%的置信区间. 则[ 1 2
一、基本概念 (三)置信概率: • 又称置信水平或置信度,指在区间估计中, 预先选定(规定)的概率。用 1-α表示。常 取95%或99%。 (四)显著性水平: • 在使用置信区间作估计时,被估计的参数 不在该区间内的概率。用α表示。一般α取 值要求较小。
要点
置信区间表达了区间估计的精确性。 置信概率(1-α)表达了区间估计的可 靠性。它是区间估计的可靠概率。 显著性水平α表达了区间估计的不可靠 的概率。
例1: 为了考察安师大男生的身高状况,随机抽测50人得到 x 170cm, S 5cm
试估计师大男生的平均身高和标准差。
解:
在上例中安师大男生平均身高的估计值是170cm,但其 真正的平均身高是否就是170cm? 未必就是,这里面存在误差。 那么这种误差是如何产生的呢?
第二节 抽样误差和标准误
寻找一个待估参数和 估计量的函数 ,要求 其分布为已知.
置信水平是多少? 一个良好估计.
有了分布,就可以求出 U取值于任意区间的概率.
对于给定的置信水平(大概率), 根据U的分布, 确定一个区间, 使得U取值于该区间的概率为 置信水平.
对给定的置信水平1 , 查正态分布表得 u 2 , 使
n
u 2 X
n
u 2 }
于是所求 的 置信区间为
[X
n
u 2 , X
n
u 2 ]
也可简记为
X
n
u 2
从例1解题的过程,我们归纳出求置 信区间的一般步骤如下:
1. 明确问题, 是求什么参数的置信区间? 置信水平 1 是多少? 2. 寻找参数 的一个良好的点估计 T (X1,X2,…Xn) 3. 寻找一个待估参数 和估计量T的函数 S(T, ),且其分布为已知. 称S(T, )为枢轴量.
2 (一) μ 未知, 已知, 时 二、置信区间的计算
2 例1 设X1,…Xn是取自N ( , 2 )的样本, 已知,
求参数 的置信度为 1 的置信区间.
解: 明确问题 选 的点估计为 X 寻找未知参数的 ,是求什么参数的置信区间 ?
X 取 U ~N(0, 1) n