高等数学微积分习题
高等数学教材微积分课后答案
高等数学教材微积分课后答案第一章微积分基本概念1. 第一节课后习题答案1.1 单项选择题1. A2. B3. C4. D5. A1.2 填空题1. 42. 273. 184. 05. 21.3 解答题1. (a) 首先将函数对x求导,得到f'(x) = 6x^2 + 12x - 8。
令f'(x) = 0,解得x = -2和x = 2/3。
然后再带入原函数,得到f(-2) = 0和f(2/3) = -1/27。
因此,函数在x = -2和x = 2/3处取得极值,极大值为0,极小值为-1/27。
(b) 由于f'(x) = 6x^2 + 12x - 8 > 0,说明函数在(-∞, -2)和(2/3, +∞)上为增函数;当-2 < x < 2/3时,f'(x) < 0,说明函数在(-2, 2/3)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, -2)上递增,在(-2, 2/3)上递减,在(2/3, +∞)上递增。
2. 第二节课后习题答案2.1 单项选择题1. C2. A3. D4. B5. C2.2 填空题1. 82. 123. 04. -∞5. +∞2.3 解答题1. (a) 首先求函数的导数,得到f'(x) = 2e^x - 12x。
令f'(x) = 0,解得x = ln6。
然后带入原函数,得到f(ln6) = 4ln6 - 6ln^2(6)。
因此,函数在x = ln6处取得极值。
(b) 由于f'(x) = 2e^x - 12x > 0,说明函数在(-∞, ln6)上为增函数;当x > ln6时,f'(x) < 0,说明函数在(ln6, +∞)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, ln6)上递增,在(ln6, +∞)上递减。
第二章微分学中值定理1. 第三节课后习题答案1.1 单项选择题1. B2. D3. C4. A5. D1.2 填空题1. 42. 53. π/24. √35. 01.3 解答题1. 根据罗尔定理,首先证明f(x)在区间[0, 1]上连续。
高等数学微积分上复习题及解答
(D)a、b、c 都任意
22、设 f (x)
=
1 − e−x2 x
0
(A)0
(B) 1 2
x ≠ 0 , 则 f ′(0) = ( D )。 x=0
(C)-1
(D)1
23、设 f (x) 是可导函数, 则 ( A )
(A)若 f (x) 为奇函数, 则 f ′(x) 为偶函数
(B)若 f (x) 为奇函数, 则 f ′(x) 亦为奇函数
(D)- 1 (1 − x 2 )3/ 2 + C 3
∫ 30、当 ( C ) 时,广义积分 0 e−kxdx 收敛。 −∞
(A) k >0
(B) k ≥0
(C) k <0
(D) k ≤0
∫ 31、设 f (x=) sin x sin t2dt, g(x=) x3 + x4 ,则当 x → 0 时 f (x) 是 g(x) 的(B )无穷小. 0
1− x x ≥ 0
1− x2 x < 0 (D)
1+ x x ≥ 0
42. 设 x → 0 时, esin x − ex 与 xn 是同阶无穷小,则 n = ( C ).
(A)1
(B)2
(C)3
(D) 4
43. 设 f (x) 在 x = 0 的某个领域内可导,且 f ′(0) = 0 及 lim f ′(x) = 1 ,则( A ). x→0 1− cos x 2
(D) A, B,C 都不对
1− x
41.
设
g(x)
=
x
+
1
x≤0
x2
x
>
0
,
f
2020年6月山东农业大学高等数学(微积分)期末考试试题及参考答案
第一学期《高等数学(微积分)》(专)复习题一、单选题(每题5分,共10道小题,总分值50分)1.image.png(5分)Aimage.pngB不存在C1D0纠错正确答案C2.image.png(5分)Aimage.pngB1C1/3D-1正确答案B3.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C4.下列函数中,有界的是()。
(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案A5.image.png(5分)Aimage.pngBimage.pngCimage.pngD6正确答案B6.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C7.下列变量在给定的变化过程中是无穷大量的有()。
(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案A8.image.png(5分)Bimage.pngCimage.pngDimage.png正确答案B9.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C10.image.png(5分)Aimage.pngBimage.pngC0D1/2正确答案A二、简答题(每题5分,共10道小题,总分值50分)1.image.png ____(5分)正确答案1正确答案2.image.png ____(5分)正确答案R正确答案3.image.png ____(5分)正确答案image.png正确答案4.image.png ____(5分)正确答案x=1正确答案5.image.png(5分)正确答案-3正确答案6.image.png(5分)正确答案2正确答案7.image.png ____(5分)正确答案-6正确答案8.image.png ____(5分)正确答案(-5,2)正确答案9.image.png(5分)正确答案y=2x正确答案10.image.png ____(5分)正确答案-3/2正确答案第一学期《高等数学(微积分)》(专)在线作业练习题一、单选题(每题5分,共10道小题,总分值50分)1.image.png(5分)B1C1/3D-1纠错正确答案B2.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C3.image.png(5分)Aimage.pngB不存在C1D0正确答案C4.image.png(5分)Aimage.pngBimage.pngC0D1/2正确答案A5.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C6.image.png(5分)Aimage.pngBimage.pngCimage.pngD6正确答案B7.下列函数中,有界的是()。
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(33)
1、试将三重积分(),,f x y z dv Ω⎰⎰⎰化为三次积分,其中积分区域Ω分别为:1) 由双曲抛物面xy z =及平面10,0x y z +-==所围成的区域。
(),,f x y z dv Ω=⎰⎰⎰()110,,xxydx dy f x y z dz-⎰⎰⎰。
2) 由曲面2222,2z x y z x =+=-所围成的区域(),,f x y z dv Ω=⎰⎰⎰()2221212,,x x y dx f x y z dz --+⎰⎰。
2、计算下列三重积分 1)23xy z dv Ω⎰⎰⎰,其中Ω是由曲面xy z =与平面,1,0x y x z ===所围成的闭区域。
解:原式111235612000000111428364x xy xdx dy xy z dz dx x y dy x dx ====⎰⎰⎰⎰⎰⎰ 2)xzdxdydz Ω⎰⎰⎰,其中Ω是由平面,1,0z y y z ===及抛物柱面2y x =所围成的闭区域。
解:原式()221111127101111026yx x dx dy xzdz dx xy dy x x dx ---===-=⎰⎰⎰⎰⎰⎰ 3、利用柱面坐标计算()22x y dv Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=及平面2z =所围成的区域。
解:原式22546222233000201622222123r r r r d dr r dz r dr πθπππ⎛⎫⎡⎤==-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰4、利用球面坐标计算()222xy z dv Ω++⎰⎰⎰,其中Ω是由球面2221x y z ++=所围成的闭区域。
解:原式214024sin sin 55d d d d πππππθϕρϕρϕϕ===⎰⎰⎰⎰5、选用适当坐标计算Ω,其中Ω是由球面222x y z z ++=所围成区域。
解:原式522cos 3422001cos sin 2cos sin 42510d d d d ππππϕπϕπθϕρϕρπϕϕϕ⎡⎤===-=⎢⎥⎣⎦⎰⎰⎰⎰。
微积分综合练习题与参考答案完美版
微积分综合练习题与参考答案完美版综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e2)(='')0(f 2-(1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
高等数学微积分试题
高等数学微积分试题1. 给定函数$f(x) = \frac{1}{2}x^2 - 3x + 2$,求其在区间$[-1,2]$上的定积分$\int_{-1}^{2} f(x)dx$。
解析:首先,我们需要计算函数$f(x)$的不定积分,然后再求出在给定区间上的定积分值。
计算不定积分:对于多项式函数$f(x) = \frac{1}{2}x^2 - 3x + 2$,我们可以逐项求导得到原函数。
$f'(x) = \frac{d}{dx}(\frac{1}{2}x^2 - 3x + 2) = x - 3$因此,不定积分为:$\int f(x)dx = \int(\frac{1}{2}x^2 - 3x + 2)dx = \frac{1}{6}x^3 -\frac{3}{2}x^2 + 2x + C$其中,$C$为常数。
计算定积分:利用定积分的性质,我们可以将定积分转化为不定积分:$\int_{-1}^{2}f(x)dx = F(2) - F(-1)$其中,$F(x)$是$f(x)$的不定积分。
$F(2) = \frac{1}{6}2^3 - \frac{3}{2}2^2 + 2 \cdot 2 + C = \frac{8}{6} - \frac{12}{2} + 4 + C = \frac{8}{6} - 6 + 4 + C = -\frac{1}{3} + C$$F(-1) = \frac{1}{6}(-1)^3 - \frac{3}{2}(-1)^2 + 2 \cdot (-1) + C = -\frac{1}{6} - \frac{3}{2} - 2 + C = -\frac{1}{6} - \frac{9}{6} - \frac{12}{6} + C = -\frac{22}{6} + C = -\frac{11}{3} + C$将结果代入定积分公式:$\int_{-1}^{2}f(x)dx = (-\frac{1}{3} + C) - (-\frac{11}{3} + C) =\frac{10}{3}$因此,函数$f(x)$在区间$[-1,2]$上的定积分为$\frac{10}{3}$。
高等数学微积分习题册上册答案
|
x2 − 2x2 +1
1 |= 2
1 2(2 x2
+ 1)
<
1 x2
<ε
→
x>
1 ε
取X =
1 ε
,当| x |>
X
,
|
2
x2 x2 +
1
−
1 2
|<
ε
,所以
lim
x→∞
x2 2x2 +
1
=
1。 2
四、证明 lim x = 1,并求正数 X ,使得当 x > X 时,就有| x −1|< 0.01 .
;
根据
lim
k→∞
x2k
= a ,存在 N2>0,
当 k>N2 时 | x2k
− a |< ε
.
取N
=
2max( N1, N 2) + 1,当
n>N
时|
xn
− a |<
ε
,所以
lim
n→∞
xn
=
a。
四川大学数学学院高等数学教研室编
2
学院
姓名
学号
一、根据函数极限的定义证明下列极限:
日期
1.3 函数的极限
证明:对任意ε,解不等式 | 2n − 3 − 2 |= 17 < 1 < ε → n > 1
5n + 1 5 5(5n + 1) n
ε
取 N = [ 1 ],当 n>N 时| 2n − 3 − 2 |< ε ,所以 lim 2n − 3 = 2 。
ε
高等数学(下)多元函数微积分试题
x2 y2 0 x2 y2 0
,则在点(0,0)处(
)
(B)连续但偏导数不存在; (D)不连续且偏导数不存在。
2
多元函数微积分
6、设平面区域 D: ( x 2) ( y 1) 1,若 I 1
2 2
( x y)
D
2
d , I 2 ( x y)3 d 则有(
D
) (A)
I1 I 2 ; (B) I1 I 2 ;
7、设 z x ,结论正确的是(
y2
(C) I 1 I 2 ; )
(D)不能比较。
2z 2z 2z 2z 2z 2z 2z 2z (A) (B) (C) (D) 0; 0; 0; 0。 xy yx xy yx xy yx xy yx
( xy cos x cos y)dxdy (
D
)
(D) 0 。
cos x sin ydxdy
D1
;
(B) 2
xydxdy
D1
; (C) 4
xydxdy ;
D1
19、下列命题正确的是(
)
(A) 若 z f ( x, y) 在 ( x0 , y 0 ) 处可微,则 f x ( x, y), f y ( x, y) 在该点处连续; (B) 若 z f ( x, y) 在 ( x0 , y 0 ) 处可微,则 f x ( x0 , y0 ), f y ( x0 , y0 ) 存在; (C) 若 z f ( x, y) 在 ( x0 , y 0 ) 处 f x ( x0 , y0 ), f y ( x0 , y0 ) 都存在,则 f ( x, y) 在 ( x0 , y 0 ) 处连续; (D) 若 z f ( x, y) 在 ( x0 , y 0 ) 处的二阶偏导数都存在, 则 f x ( x, y), f y ( x, y) 在 ( x0 , y 0 ) 处连续。 20、下列论述正确的是( )
北京邮电大学高等函授教育《微积分》综合练习题
北京邮电大学高等函授教育一年级第一学期《高等数学(微积分)》综合练习题与解答经济管理、电子邮政专业 第一部分 练习题一、判断题1. 设)(x f 的定义域为)1,(-∞,则)11(2x f -的定义域为(0,1). 2. 设)(x f 的值域为)1,(-∞,则)(x arctgf 的值域为)4,2(ππ-. 3. 2)1(--x e 是偶函数. 4. xxy +-=11ln是奇函数. 5. e x xx =+∞→1)1(lim6. 设)(u f 是可导函数,则2sin 22)(cos 2)(sin x u u f x x x f dxd='=. 7. 设函数)(x e f y -=可微,则dx e f e dy x x )(--=. 8. 设dx xx df 211)(+=,则arctgx x f ='')(. 9. ⎰=)()()()(x df x f x df x f dxd. 10. ⎰+'=''c x f dx x f )()(.11.0sin 2112=+⎰-dx x tgx.12. 如果1102=+⎰+∞dx x A ,则常数π2=A .13. 如果级数∑∞=1n nu发散,则0lim ≠∞→n n u .14. 级数)0(1>∑∞=x xn n收敛的充分必要条件是1<x .15. 级数∑∞=11n pn收敛的充分必要条件是1>p . 16. 如果1)43(1=∑∞=n na ,则常数41=a . 17.0),(),(0x x y y x x y x f y x f x==='=∂∂.18. 设xy x z =,则1-=∂∂xy xyx xz. 19.)()](,[x y f f x y x f dxdy x ''+'=. 20. 设v u f 、、都是可微函数,则xv f x u f y x v y x u f x v u ∂∂'+∂∂'=∂∂)],(),,([. 二、单项选择题1. 设⎪⎩⎪⎨⎧-≤<<--≤≤=2,202,20,)(x x x x x x f 则)(x f 的定义域为___________.A.),(+∞-∞B.)2,2[-C.]2,(-∞D.]2,2[- 2. 设)(x f 的定义域为),0,(-∞则函数)(ln x f 的定义域是_______. A.),0(+∞ B.]1,0( C.),1(+∞ D.(0,1) 3. 设)1()1(-=-x x x f ,则)(x f =_________.A.)1(-x xB.)1(+x xC.)2)(1(--x xD.2x 4. 下列函数中,奇函数为____________. A.)sin(cos x B.)1ln(2++x x C.xx tgx -+11lnD.xe sin 5. =+∞→1sin limn nn _____________.A.0B.1C.1-D.∞6. 当0x x →时,α和β都是无穷小,下列变量中,当0x x →时可能不是无穷小的是___________.A.βα+B.βα-C.αβD.)0(≠ββα7. 设⎪⎪⎩⎪⎪⎨⎧>+=<=0,11sin 0,0,sin 1)(x x x x k x x x x f 且)(x f 在0=x 处连续,则=k _________.A.0B.1C.2D.1- 8. 设)(x f 在点0x 可导,则=--+→hh x f h x f h 2)()(lim000___________.A.)(0x f 'B. )(0x f '-C. )(20x f 'D. )(20x f '- 9. 设)(u f 可导,则=)(sin 2x f dxd____________. A.)(sin sin 22x f x ' B.)(sin cos 22x f x 'C. )(sin 2sin 2x f x 'D. )(sin cos sin 2x f x x '10. 已知3)0(,0)0(='=f f ,则=→xx f x )2(lim 0___________.A.3B.3-C.6-D.611. ___________满足罗尔定理的条件.A.2)(x x f =在]3,0[上B.21)(x x f =在]1,1[-上 C.x x x f -=3)( 在]3,0[上 D.x x f =)(在]1,1[-上 12. =)(x f ________是2sin x x 的一个原函数.A.2c os 21x B. 2cos 2x C. 2cos 2x - D. 2cos 21x - 13. 设)(x f 在],[b a 上连续,),(0b a x ∈且是常数,则=⎰0)(x adt t f dx d _________.A.)(0x fB.0C.)()(0a f x f -D.)(0x f ' 14.=⎰-883dx e x ________.A.0B. ⎰8032dx exC.⎰-22dx e xD.⎰-2223dx e x x15. 设1012=+⎰+∞∞-dx x A,则=A ___________. A.π10 B.10π C.π10 D.π10- 16. 如果0lim =∞→n n u ,则级数∑∞=1n nu___________.A.必收敛B.必发散C.可能收敛D.必绝对收敛 17. 如果级数∑∞=-111n p n收敛,则p 应满足___________.A.2>pB.1>pC.0>pD.0<p 18. 设常数0>k ,则级数∑∞=--112)1(n nn k___________. A.发散 B.条件收敛 C.绝对收敛 D.收敛性与k 有关19. 设yx z +=12,则=∂∂y z__________.A.y x+12 B.22)1(y x +- C.221y x +- D.22)1(y x + 20. 二次积分交换积分顺序后=⎰⎰yydx y x f dy ),(1____________.A. ⎰⎰102),(x xdy y x f dx B.⎰⎰12),(xx dy y x f dxC.⎰⎰21),(xxdy y x f dx D.⎰⎰21),(x xdy y x f dx三、填空题1. 函数xxy -+=11ln的定义域是_______________________________.2. 设⎩⎨⎧>≤+=0,ln 0,3)(x x x x x f ⎩⎨⎧>≤=1,ln 1,)(x x x e x g x 则=)]1([g f ___________,当1>x 时, )]([x g f 的表达式为____________________.3. 函数1--=x y 的反函数为_____________________.4. 设函数)(x f 满足x x f =)(log 2, 则)(x f =_________________.5. 设xxx f +-=11)(, 则=)]([x f f __________________________. 6. 函数x y 2cos1π+=的最小正周期是_______________.7. 设x e x f =)(且0>x ,则=-)ln (x f __________________.8. 设函数)(x f 在0=x 处连续,且0≠x 时,xx x f 1)21()(-=,则=)0(f __________. 9. 设1)0(='f ,则=-→xf x f x )0()2(lim_______________.10. 曲线x x y ln 2-=在点(1,1)处的切线方程为_______________________. 11. 设)(x f 可导且2)1(='f , 则==1)(x x f dxd_______________.12. 设1)(+=x xx f ,则=)(x df _______________________. 13. 设x x f dxd=)(ln , 则='')(x f ______________________. 14. 设)1(1)(22x d xx x df +=, 则=)(x f _________________, =')(x f ____________, ='')(x f ___________________________.15. 设)(x f 的一个原函数为x ln , 则=')(x f ________________. 16. 设c x dx x f ++=⎰211)(, 则)(x f =_____________________.17.=''⎰dx x f x )(_________________________________________.18. ⎰=)(x xdf d ______________dx . 19. 设)(x f 是连续函数, 若⎰=+xcdt t f x )(4053, 则=)(x f __________,=c _____.20. =⎰ax dt t f dx d )(_______________________.21. =⎰xdt t xf dxd 0)(_________________________________. 22. 设112=⎰adx x , 则=a ______________________.23.='⎰xdt t f t 02)(______________________________.24. 设)(x f 在[0,1]上连续, 则积分⎰1)(dt at f 经变换)0(≠=a at u 后为___________________________________. 25. 设)(x f 在],[l l -上连续,且为奇函数,2)(0=⎰ldx x f , 则=⎰-0)(ldx x f __________.26. 在],[b a 上, 函数)(x f 连续且0)(≤x f , 则由曲线)(x f y =与直线b x a x ==,及x 轴所围图形的面积S 的积分表达式为__________________________________.当b a =时, S=_______________.27. 如果级数∑∞=1)31(n na 的和为1, 则=a ___________________. 28. 设x xy z )(=, 则=∂∂xz__________________. 29. 设22yx xz +=, 则=∂∂x z __________________. 30. 交换积分顺序后, =⎰⎰102),(yy dx y x f dy _______________________________.四、计算题1. 求下列各极限(1)2211limxx x +-→ (2)22312lim4---+→x x x(3))11(lim 22+--+++∞→x x x x x (4)11lim 31--→x x x(5)x x x )21(lim -∞→ (6)xx x x ⎪⎭⎫ ⎝⎛-+∞→11lim(7)]ln )1[ln(lim x x x x -++∞→ (8)xx x 220sin arcsin lim → (9)设⎪⎩⎪⎨⎧<+>-+=0,30,sin 11)(x a x x x x x f 且)(lim 0x f x →存在,求常数a 的值.(10)30)1(2)1(lim x e e x x x x --+→ (11))1(log 22lim 20x xx x +--→(12)x ctgx x ln ln lim 0+→ (13)x x x cos 1)1ln(lim 20-+→(14)20)1(lim tgx e x x x -→ (15))sin 11(lim 0x x x -→ (16)xtdt xx ⎰→02sin lim(17)3sin lim2xx dt e xt x -⎰→(18))12753(lim 2222nn n n n n +++++∞→ 2. 求导数或微分(1) 设212sin xxy +=,求y '. (2) 设)1ln(2x x y ++=,求y '. (3) 设x x xarctg y ln 1+=,求y ''. (4) 设)(2)(x fe x =ϕ,且)(1)(x f x f =',证明:)(2)(x x ϕϕ='. (5) 设1)sin(=-y xy ,求dy . (6) 设133=-+y y x ,求y '.(7) 设y y x -=+3)ln(2,求dy . (8) 设y xe y +=1,求y y x '''=,0.(9) 设x x y )(ln =,求y ' (10) 设x x x x y sin +=,求y '. (11) 设)ln(22a x x xa y x +++=,1,0(≠>a a 且为常数),求0='x y .(12) 设x xy n ln )2(=-,求nn dxy d . (13) 求⎰-12x t dt e dxd (14) 设⎰+=2211)(x xdt tx p ,求)(x p '.(15) 设)sin(x ye z x +=,求yzx z ∂∂∂∂,. (16) 设xyxe z =,求yzx z ∂∂∂∂,. (17) 设y x e z xy 2+=,求yz x z ∂∂∂∂,. (18) 设z y z x ln =,求yzx z ∂∂∂∂,. 3. 计算下列各积分 (1)⎰+dx x x x sin cos 2cos (2)⎰-dx x sin 11(3)⎰+dx xxln 11 (4)⎰+++dx x arctgxx 211(5)⎰-dx x x2211(6)⎰xdx x ln 2(7)⎰xdx x ln (8)⎰xdx x 2cos(9)⎰xdx x 2sin (10)⎰xdx arcsin(11)⎰dx x sin (12)⎰+101dx e e xx(13)⎰++4122dx x x (14)⎰-312dx x(15)设⎩⎨⎧<≥=0,0,)(x e x x x f x求⎰-21)(dx x f(16)⎰-4sin ππdx x (17)⎰''tdx x f x 0)((18)⎰+∞-02dx e x x(19)D ydxdy xD,2⎰⎰是由曲线2,2,1===y x xy 所围成的区域.(20)⎰⎰++Ddxdy y x2211,其中1:22≤+y x D .五、判断下列各级数的收敛性,若收敛,指出绝对收敛还是条件收敛 1.∑∞=+131n n n 2.∑∞=+1)1(1n n n 3.∑∞=⎪⎭⎫ ⎝⎛+112n n n n 4.∑∞=⎪⎪⎪⎪⎭⎫⎝⎛+-1sin 321n nn n n 5.∑∞=1!n n n n 6.∑∞=--111)1(n n n7.∑∞=+-1)!12()1(n n n 8.∑∞=-+-11)1ln(1)1(n n n9.∑∞=+131cos n n n 10.∑∞=-121)1(n nn六、应用题1. 设曲线x x y ln 2+=上的点),(00y x M 处的切线平行于直线x y 4=,求点M 的坐标.2. 讨论函数2332x x y -=的单调性与极值.3. 求函数x x e e y -+=2的极值.4. 求由曲线0,1,3===x y x y 所围成的平面图形的面积(要画图).5. 求由曲线2,1,4===x xy x y 及x 轴所围平面图形的面积(要画图).6. 求由曲线212x y +=与2x y =所围平面图形的面积. 七、证明题1. 已知)(2)(x fa x =ϕ且ax f x f ln )(1)(=',证明:)(2)(x x ϕϕ='2. 证明:⎰⎰-+=-aaadx x f x f dx x f 0)]()([)(.第二部分 解答一、判断题1. ×2. √3. ×4. √5.×6. √7. ×8. ×9. × 10.√ 11. √ 12. √ 13. × 14. √ 15. √ 16. × 17. √ 18. × 19. √ 20. √ 二、单项选择题1.C2.D3.B4.B5.A6.D7.B8.A9.C 10.D 11.C 12.D 13.B 14.D 15.A 16.C 17.A 18.B 19.B 20.B 三、填空题1.)1,1(-2. 1, x ln ln3.0,12≤+=x x y4. x 25. x6. 47.x18. 2-e 9. 2 10. x y =11. 1 12.dx x x x 2)1(21+-13. x e 22 14. 222)1(2,11,x xxc arctgx ++-+- 15.21x - 16. 22)1(2x x +- 17. c x f x f x +-')()( 18. )(x f x ' 19. 2,152-x 20. )(x f -21. )()(0x xf dt t f x+⎰22. 32-23.)]0()([212f x f - 24. ⎰adu u f a)(125. 2- 26. ⎰-b adx x f )(, 027. 2 28. )]ln(1[)(xy xy x +29. 22222)(y x x y +- 30. ⎰⎰xxdy y x f dx ),(1四、计算题 1.求下列极限 (1) 2)11(lim 11lim2022-=++-=+-→→x x x x x(2) 232312)22(2lim22312lim44=+++-=---+→→x x x x x x(3) 112lim )11(lim 2222+-+++=+--+++∞→+∞→x x x x xx x x x x x11111112lim22=+-+++=+∞→xx x x x(4) )1()1)(1(lim11lim 2131-++-=--→→x x x x x x x x 3)1(lim 21=++=→x x x(5) 222])21[(lim )21(lim ---∞→∞→=-+=-e xx xx x x(6) 2)11()11(lim 11lim e xx x x xxx xx =-+=⎪⎭⎫ ⎝⎛-+∞→∞→ (7) 1)11ln(lim ]ln )1[ln(lim =+=-++∞→+∞→xx x xx x x (8) 1arcsin sin lim sin arcsin lim22220220==→→x x x x x x x x (9) 21111sin limsin 11lim )(lim 00=++=-+=+++→→→x x xxx x f x x x a a x x f x x =+=--→→)3(lim )(lim 0)(lim 0x f x → 存在)(lim )(lim 0x f x f x x +-→→=∴ 21=a (10)203031lim )1(2)1(lim xe xe x e e x x x x x x x +-=--+→→ (罗必塔法则)x xe xx 6lim0→= (罗必塔法则) 61= (11)exx x x x x x x 2020log 112ln )22(lim )1(log 22lim ++=+--→-→ (罗必塔法则)22)2(ln 2log 2ln 2==e(12)xx x xctgx x x 1cos sin 1lim ln ln lim 00-=++→→ (罗必塔法则) 1cos sin lim 0-=-=+→xx xx(13)xx x x x x x sin 12limcos 1)1ln(lim 2020+=-+→→ (罗必塔法则) 2sin )1(2lim20=+=→xx xx(14)22020cos 21lim )1(lim x x e xe tgx e x x x x x x -+=-→→ (罗必塔法则)x e xe x x x 21lim 0-+=→122lim 0=+=→xx x e xe (15)x x xx xx x x sin sin lim )sin 11(lim 00-=-→→ xx x x x cos sin 1cos lim 0+-=→ (罗必塔法则) x x x xx sin cos 2sin lim 0--=→ (罗必塔法则) 0=(16)xxx tdt x xx 22sin lim2sin lim02→→=⎰ (罗必塔法则)1= (17) 233cos limsin lim22xxex x dt e x x xt x -=-→→⎰(罗必塔法则) 216s i n 2l i m 20=+=→x x xe x x(18) 1)2(lim )12753(lim 22222=+=+++++∞→∞→n n n n n n n n n n2.求导数或微分(1)222)1(2sin 22cos )1(2x xx x x y +-+=' (2)22211]11[11xxx xx y +=++++='(3)21ln 1)1(1122++-+='x x x y21ln 112+++-=x xx x x y 21)1(222++='' (4))()(2)()(2x f x f e x x f'⋅⋅='ϕ)(22x f e= ))(1)((x f x f =' )(2x ϕ= (5)等号两边微分0])[cos(=-+dy ydx xdy xy0)cos(]1)cos([=+-dx xy y dy xy xdx xy x xy y dy )cos(1)cos(-=∴(6)等号两边对x 求导03322='-'+y y y x22313y x y -='∴ (7)等号两边微分dy dy xdx yx -=++]2[12dy y x dx y x x )11(222++-=+dx y x xdy 122++-=∴ (8)等号两边对x 求导y xe e y y y '+=' (*)yyxee y -='∴1 (因当0=x 时,1=y ) e y x ='∴=0(*)式两边再求导y xe y xe y e y e y y y y y ''+'+'+'=''2)( 2)(2)1(y xe y e y xe y y y '+'=''-232)1(12y yy y xe xe xe e -+-=232)1(2y yy xe xe e --= 32)1()2(y yy xe e xe y --=''∴ (9)x x x e x y ln ln )(ln ==]ln 1ln [ln )(ln ]ln 1ln [ln ln ln xx x x x e y x x x +=+=' (10) x x x x x x e e x x y ln sin ln sin +=+=]sin ln [cos ]1[ln ln sin ln xxx x e x e y x x x x +++=' ]s i n ln [cos ]1[ln sin xxx x xx x xx+++= (11) ]1[1ln 2222ax x ax x a xa a y xx++++++='221]ln 1[ax a x a x +++=ay x 110+=='∴= (12) x x x x dx y d n n 211ln 1ln ln -='⎪⎭⎫ ⎝⎛=-- xx x x x x xx x dx y d n n 342ln ln 2ln )1(ln ln 2ln 1-=--=∴ (13)][1122⎰⎰---=x t x t dt e dx d dt e dx d x e x21-=(14) ⎰⎰+++=2221111)(x xdt tdt tx p⎰⎰+++-=xx dt tdt t 02221111421211)(xx xx p +++-='∴(15))1)(cos(++=∂∂x x ye x ye xz)cos(x ye e yzx x +=∂∂ (16) x yx yx ye xy e x y e x z )1(-=-=∂∂x ye yz=∂∂ (17)xy ye xzxy 2+=∂∂ 2x xe yzxy +=∂∂ (18) 设zy z x z y x F ln ),,(-=221,1,1zxz z z x F y F z F z y x -=+-=-==z x z F F x z z x -=-=∂∂∴, )(2x z y z F F y z z y -=-=∂∂ 3.计算下列各积分(1)⎰⎰++=-=+c x x dx x x dx x x xcos sin )sin (cos sin cos 2cos(2) ⎰⎰+=-dx xxdx x 2cos sin 1sin 11 ⎰⎰-=x d x dx xcos cos 1cos 122 c xtgx ++=cos 1(3)⎰⎰-+=+x d x dx xxln )ln 1(ln 1121c x ++=ln 12 (4)⎰⎰+++++=+++dx x arctgxx x x dx x arctgx x )1111(112222⎰⎰⎰++++=tgx arctgxdarc dx x dx x222112111 c arctgx x arctgx ++++=22)(21)1ln(21(5) 令 tdt dx t x cos ,sin ==⎰⎰+-==-c c t g t dt tdx x x222sin 111c xx +--=21(6)⎰⎰=)31(ln ln 32x xd xdx x⎰-=dx x x x 2331ln 31 c x x x +-=3391ln 31 (7)⎰⎰=)32(ln ln 23x xd xdx x⎰-=dx x x x 212332ln 32 c x x x +-=232394ln 32 (8)⎰⎰=)2sin 21(2cos x xd xdx x ⎰-=x d x x x 2s i n 212s i n 21c x x x ++=2c o s 412s i n 21 (9)⎰⎰-=dx xx xdx x 22cos 1sin 2⎰⎰-=x d x x x d x 2c o s 2121c x x x x +--=2c o s 812s i n 41412(10)⎰⎰--=dx xx x x xdx 21arcsin arcsinc x x x +-+=21arcsin(11) 令tdt dx t x 2,==⎰⎰⎰-==)cos (2sin 2sint td tdt t dx x⎰+-=t d t t t c o s 2c o s 2c t t t ++-=s i n 2c o s2 c x x x ++-=s i n 2c o s 2(12)2ln )1ln()1ln(11010-+=+=+⎰e e dx e e x xx (13)令udu dx u x u x =-==+,2121,122 ⎰⎰+=++3124)2321(122du u dx x x 322)2361(313=+=u u (14)⎰⎰⎰-+-=-322131)2()2(2dx x dx x dx x=1 (15) 121213)(----=+=⎰⎰⎰e xdx dx e dx xf x(16)⎰-4sin ππdx x ⎰⎰--=040sin sin ππxdx xdx223cos cos 040-=+-=-ππxx(17)⎰⎰'-'=''tt tdx x f x f x dx x f x 000)()()()0()()()()(0f t f t f t x f t f t t +-'=-'=(18)⎰⎰+∞-∞+-+∞-+-=002022dx xe ex dx e x x x x⎰+∞-∞+-+-=0022dx e xex x220=-=+∞-xe(19)⎰⎰⎰⎰=2122122xDydy dx x ydxdy x ⎰-=2212)212(dx x29)2132(2213=-=x x (20)⎰⎰⎰⎰+=++1022022111dr r rd dxdy y xDπθ2ln π=五、判断下列级数的收敛性, 若收敛, 指出绝对收敛还是条件收敛. 1. )(113∞→→+=n n nu n , 所以发散 2. ,2,1,11)1(1=+≥+=n n n n u n 而级数∑∞=+111n n 发散, 由比较法知原级数发散. 3. ,2,1,)21()12(=≤+=n n n u n n n而级数∑∞=1)21(n n 收敛,由比较法知, 级数收敛(绝对收敛). 4. n n n n n n n n n u )21()2()sin 321(=≤+-= 而级数∑∞=1)21(n n收敛, 由比较法知, 级数收敛(绝对收敛)5. ,!n n u nn =e n n n n n u u n n nn n nn n =+=++=∞→+∞→+∞→)11(lim !)!1()1(lim lim111> 由比值法知, 级数发散 6. 这是交错级数, nu n 1=,2,1,111=+≥n n n,2,1,1=≥∴+n u u n n又∴==∞→∞→,01limlim nu n n n 级数收敛.但∑∑∞=∞=-=-11111)1(n n n nn发散, 所以此级数条件收敛.7.∑∞=+-1)!12()1(n n n ∑∑∞=∞==+=11)!12(1n n n u n)!12(1)!32(1lim lim1++=∞→+∞→n n u u n nn n 0)22)(32(1lim=++=∞→n n n由比值法知,∑∞=+1)!12(1n n 收敛,所以原级数绝对收敛. 8. 这是交错级数, )1ln(1+=n u n ,,2,1,)2ln(1)1ln(1=+≥+n n n,2,1,1=≥∴+n u u n n ; 又0)1ln(1limlim =+=∞→∞→n u n n n所以级数收敛. 但∑∑∞=∞=-+=+-111)1ln(1)1ln(1)1(n n n n n 发散, 所以原级数条件收敛. 9. 23331111cos nn n n u n ≤+≤+=而级数∑∞=1231n n收敛, 由比较法知∑∞=+131cos n n n 收敛,所以原级数收敛且绝对收敛.10. 221)1(n n u n n =-=, 而∑∞=121n n 收敛, 所以原级数绝对收敛. 六、应用题 1. ,412)(00=+='x x y2ln 1ln 2,210000-=+==∴x x y xM ∴点的坐标为 )2ln 1,21(- 2. 定义域为),(∞+-∞ )1(6662-=-='x x x x y令 0='y 得 1,0==x x 列表讨论在(-∞,0),(1,+∞)内单调增,在(0,1)内单调减,有极大值0)0(=y ,极小值1)1(-=y . 3. x x e e y --='2,x x e e y +=''2 令 0='y ,得驻点 2ln 21-=x 022)2ln 21(>=-''y 22)2ln 21(=-∴y 为极小值。
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(28)
1、选择题1)对于级数1n n a ∞=∑,"lim 0"n n a →∞=使它收敛的( B )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 2)“部分和数列{}n S 有界”,是正项级数1nn a∞=∑收敛的( C )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 3)若级数1nn a∞=∑绝对收敛,则级数1nn a∞=∑必定( A )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛 4)若级数1nn a∞=∑条件收敛,则级数1nn a∞=∑必定( B )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛2、用适当的方法判别下列级数的敛散性 1)()11ln 1n n ∞=+∑解:用比较判别法,和调和级数11n n∞=∑比较因为()11ln 1n n >+,级数()11ln 1n n ∞=+∑发散。
2)n ∞= 解:用比较判别法,因为431n n n →∞==,而级数4131n n ∞=∑收敛,级数1n ∞=3)2n n n ∞=+解:用比较判别法,因为2322lim 12n n n n n→∞→∞⎛⎫=+= ⎪⎝⎭级数3121n n∞=∑收敛,由比较判别法极限形式可得12n n n ∞=+收敛。
4)411!n n n ∞=+∑解:用比值判别法,因为()()()4444111!111limlim 01111!n n n n n n n n n →∞→∞+++++=⋅=<+++,级数411!n n n ∞=+∑收敛 5)()112n n n n ∞=++∑解:用比较判别法,因为()121lim lim 112n n n n n n n n →∞→∞+++==+,级数()112n n n n ∞=++∑发散。
6)()11,,0n a b na b∞=>+∑解:用比较判别法,因为11lim lim 1n n na b a b a n n →∞→∞+==+,级数11n na b ∞=+∑发散。
《高等数学》第一部分微积分习题参考答案
文 科 高 等 数 学第一部分 微 积 分习题一:1.(1)是;(2)不是;(3)不是。
2.(1)(,2)(2,1)(1,)-∞----+∞ ;(2)(3,1][1,)--+∞ ;(3)[1,3]; (4)(1,0)(0,1]- 。
3. sin ,,sin(),sin(sin )xe x x e e e x 。
4. 1()2f x x=+ (0)x ≠。
5.(1)0][0,)x ∈-∞∈+∞当(,时,函数单调减少;当x 时,函数单调增加。
(2 ) ][1,)x ∈-∞∈+∞当(,1时,函数单调减少;当x 时,函数单调增加。
(3)[0,][,]332x x πππ∈∈当时,函数单调增加;当时,函数单调减少。
6.(1)奇;(2)奇;(3)非奇非偶;(4)偶;(5)非奇非偶。
7.(1)24y x =- (02)x ≤≤;(2)3arcsin 2xy = (03)x ≤≤(3)41116ln xx y x x x x e <⎧⎪=≤≤⎨⎪>⎩。
8. 211966R x x =-+。
9. (1000)(60.002)y x x =+- (03000,)x x N ≤<∈。
10. 题目有问题。
习题二:1.(1)存在;(2)不存在;(3)存在;(4)存在;(5)不存在。
2. 不能,如1(1),(1)nn n n a b +=-=-。
3. 能,用反证法证明。
4.(1)2;(2)0;(3)2;(4)15;(5)75;(6)0;(7)1;(8)0; (9)12;(10)n;(11)12x;(12)23;(13)12;(14)1;(15)1;(16)cos a ;(17)23;(18)2e ; (19)e ;(20)1e;(21)3e -;(22)2。
5.(1)错;(2)错;(3)错;(4)正确;(5)错。
6.(1)不连续;(2)不连续;(3)连续。
7. 略。
8.(1)约为7950.0元;(2)约为61391元。
(完整版)高等数学-微积分下-习题册答案-华南理工大学(6)
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及xv∂∂与y v ∂∂.解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分 24112211d e d d e dx xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤ 从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d()d ()d 2xy x y z Sz S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰ 222220(2D x y drr πθπ=+==⎰⎰⎰⎰⎰(4041115t ππ⎫=+-=+⎪⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y +-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y zz x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D Dx y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t sx =适合042222=∂∂+∂∂sy t y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
高等数学(一)微积分模考1
高等数学(一)微积分模考1 一、单选题1.已知函数$f(x)=(x-1)(x-2)(x-3)(x-4)$,则方程$f'(x)=0$有A.三个根,分别位于区间(1,2)、(2,3)、(3,4)内B.四个根,分别为$x_1=1, x_2=2, x_3=3, x_4=4$C.四个根,分别位于区间内(1,2)、(2,3)、(3,4)D.三个根,分别位于区间(1,2)、(1,3)、(1,4)内2.过曲线$y=(x+4)/(4-x)$上一点(2,3)的切线斜率为A.$-2$B.2C.-1D.13.若$f'(1)=3$,则$lim_(h->0)(f(1)-f(1-2h))/h=$A.3B.-3C.6D.-64.下列广义积分中,发散的是( )A.$int_1^(+oo)xe^(-x)dx$~B.$int_e^(+oo)(dx)/(xlnx)$C.$int_1^(+oo) x^(2)e^(-x)dx$D.$int_e^(+oo)(dx)/( xln^(2)x)$5.设$f(x+1)=x^2-3x+2$,则f(x)=A.$x^2-6x+5$B.$x^2-5x+6$C.$x^2-5x+2$D.$x^2-x$二、填空题1.$lim_(n->oo)sqrt(n)(sqrt(n+1)-sqrt(n))$=___2.$f(x)={(ax+b,x<=1),(x^2,x>1):}$在x=1处可导,则a=___,b=___ 3.$f(x)={(x-1,x<0),(x^2,x>0):}$,则$lim_(x->0^(-))f(x)=$___4.$z=x^y$,则$(delz)/(delx)=$___,$(delz)/(dely)=$___5.设$D={(x,y)||x|<=pi,0<=y<=1}$,则$intint_D(2+xy)dxdy$=___ 6.设有方程$z^2-3xyz-a^3=0$,则$z'_x$=___7.若$R(x)=10x-0.02x^2$,则MR=___8.$sum_(n=1)^(oo)(2/3)^(n)$=___9.已知$lim_(x->oo)((x+a)/(x-a))^x=e^4$,则a=___~10.f(x)在点$x=x_0$连续是f(x)在点$x=x_0$可导的___条件。
高数微积分真题及答案解析
高数微积分真题及答案解析高等数学是大多数理科学生必修的一门课程,其中微积分是其中的重要组成部分。
在学习微积分时,遇到一些经典的高数微积分问题是很常见的。
本文将介绍一些常见的高数微积分真题,并给出详细的答案解析,希望能够帮助读者更好地理解微积分的概念和应用。
【真题一】计算函数 f(x) = x^3 - 3x^2 - 9x + 5 在 x = 2 处的导数。
【答案解析】首先,函数的导数可以通过求取函数的极限来计算。
对于本题中的函数 f(x),可以使用导数的定义来求取其导数:f'(x) = lim [f(x + h) - f(x)] / h as h -> 0将函数 f(x) 带入上述定义可得:f'(x) = lim [(x + h)^3 - 3(x + h)^2 - 9(x + h) + 5 - (x^3 - 3x^2 - 9x + 5)] / h as h -> 0化简后得:f'(x) = lim [3hx^2 + 3h^2x + h^3 - 6hx - 6h^2 - 9h] / h as h -> 0进一步化简得:f'(x) = lim [3x^2 + 3hx + h^2 - 6x - 6h - 9] as h -> 0当 h 趋近于 0 时,可以忽略掉 h^2、h 以及 9 这三项,得到最终的导数表达式:f'(x) = 3x^2 - 6x - 6【真题二】已知一曲线的方程为 y = x^2 + ax + b,该曲线过点 (1, -1) 和 (2, 2),求 a 和 b 的值。
【答案解析】首先,根据已知条件,可以得到两个方程:-1 = 1^2 + a(1) + b2 = 2^2 + a(2) + b化简上述两个方程得:-1 = 1 + a + b2 = 4 + 2a + b通过进一步化简,可以得到:b = -a - 2将该表达式代入第二个方程可得:2 = 4 + 2a + (-a - 2)化简得:2 = 4 + a - 2解得 a = 0将 a 的值代入第一个方程可得:-1 = 1 + 0 + b解得 b = -2因此,方程的解为 a = 0,b = -2。
高等数学微积分习题册上册答案
三、根据函数极限的定义证明下列极限.
(1)
lim
x→∞
1 x2
= 0;
证明:对任意ε>0,解不等式
|
1 x2
− 0 |=
1 x2
<ε
→|
x |>
1 ε
四川大学数学学院高等数学教研室编
3
学院
姓名
学号
日期
取X
= 1 ,当| x |> ε
X,
|
1 x2
−
0
|<
ε
,所以
lim
x→∞
1 x2
= 0。
1.3 函数的极限
证明:对任意ε>0, 解不等式 | x2 − 4 + 4 |=| x + 2 |< ε x+ 2
取δ = ε ,当 0 <| x + 2 |< δ , | x2 − 4 + 4 |< ε ,所以 lim x2 − 4 = −4 。
x+2
x→−2 x + 2
二、证明 lim(4x −1) = 11,并求正数δ ,使得当| x − 3 |< δ 时,就有| (4x −1) −11|< 0.001. x→3
学院
姓名
学号
一、根据数列极限的定义证明下列极限:
日期
1.2 数列的极限
(1)
lim
n→∞
(−1) n2
n
= 0;
证明:对任意ε,解不等式
|
(−1)n n2
−
0 |=
1 n2
<
ε
→
n
>
1 ε
高等数学多变量微积分试题
高等数学多变量微积分试题1. 对于函数 f(x, y) = 3x²y - 2xy² + 4x + y ,回答以下问题:a) 求函数 f(x, y) 的偏导数∂f/∂x 和∂f/∂y。
b) 求函数 f(x, y) 的二阶偏导数∂²f/∂x²、∂²f/∂y² 和∂²f/∂x∂y。
2. 给定曲面方程 z = x² + 2y² - 3xy - 6x + 2y,回答以下问题:a) 求曲面的切平面方程。
b) 求曲面在点 (1, 2, -5) 处的法向量。
c) 求曲面在点 (1, 2, -5) 处的法线方程。
3. 对于三维空间内的曲线 C:x = t², y = 3t, z = t³,回答以下问题:a) 写出曲线 C 的参数方程和对应的速度向量。
b) 求曲线 C 在 t = 2 时的切向量和法向量。
4. 给定二次曲面 S:x² - 4yz + y² - 8xz + 3z² = 16,回答以下问题:a) 写出曲面 S 的隐函数方程。
b) 求曲面 S 在点 (2, 3, 1) 处的切平面方程。
5. 对于函数 f(x, y) = e^(x²+y²),回答以下问题:a) 求函数 f(x, y) 的梯度∇f。
b) 在点 (1, 2) 处,计算梯度∇f 的值。
6. 对于矢量场 F(x, y, z) = (2xy, yz, xz²),回答以下问题:a) 计算矢量场 F 的散度 div F。
b) 计算矢量场 F 的旋度 curl F。
7. 给定曲线积分C ∫(2xy - z) ds,其中曲线 C 为三维空间内起点为 (1, 0, 0),终点为 (2, 1, 3) 的直线段,回答以下问题:a) 计算曲线积分C ∫(2xy - z) ds 的值。
b) 将曲线积分转化为参数方程形式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学B(1)》教学大纲
二、课程描述
中文:高等数学B课程是我校经济、管理类学科各专业一门必修的重要基础理论课程,它能使学生获得微积分学方面的一些基本概念、基本理论和基本方法,并为学习后继课程和进一步获得数学知识奠定必要的数学基础。
高等数学课程安排上下两个学期讲授,其主要内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数的微积分、无穷级数、常微分方程、差分方程等。
高等数学课程在传授知识的同时,将通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力和自学能力,并注重培养学生具有比较熟练的运算能力以及综合运用所学知识去分析问题和解决问题的能力。
湖南大学的高等数学课程是国家级精品课程,课程的教学团队是国家级教学团队。
英文:Course Description:
Advanced Mathematics B is an important pubic basic compulsory course for the students majoring in economics or management at Hunan university.In this course, students will learn the basic concepts,basic theories and basic principles in the differential and integral calculus to obtain the necessary mathematics fundamentals for further courses or advanced mathematics studies.
Advanced Mathematics B is lectured in two semesters,covering functions,limits and continuity,derivative and differential,the mean value theorem of differential calculus and the application of derivatives,indefinite integral,definite integral and its applications,calculus of multivariate functions,infinite series,ordinary differential equation,difference equation,etc.
In this course,the professor not only imparts knowledge,but also cultivates a student’s ability to draw abstraction and generalization,to make logical reasoning and to study independently.This course also focuses on enhancing a student’s ability to achieve relatively proficient calculation and the ability to analyze and solve the problems with all knowledge in hand.
Advanced Mathematics B in Hunan University is listed in China Excellent Courses, whose faculty is a national teaching team.
三、课程内容
(一)课程教学目标
1.掌握一元和多元函数微积分、无穷级数、微分方程等方面的基本概念、基本理论和基本方法。
2.学会高等数学处理问题、解决问题的思想方法,并为学习后继的数学课程及经管学科的专业课程奠定必要的数学基础。
(二)基本教学内容
第一章、
教学目的与要求:掌握微积分的研究的主要对象-函数的概念和性质。
教学重点:,邻域,复合函数,初等函数
教学难点:复合函数,反函数。
教学内容:理解函数、函数图象、函数的奇偶性、单调性、周期性和有界性等概念及性质。
理解复合函数的概念,了解反函数的概念。
掌握基本初等函数的性质及其图象。
了解初等函数的概念。
了解常见的经济变量间的数量关系。
学时分配:大课主讲6学时,小课2学时。
第二章、
教学目的与要求:掌握微积分研究的主要方法及思路-极限思想。
教学重点:极限的运算,连续性的讨论
教学难点:极限的分析性定义的理解
教学内容:理解数列极限的概念。
掌握单调有界数列必有极限的准则,掌握数列极限的夹逼定理,并会用它们求极限。
理解函数极限的概念
(含自变量趋于有限值或无穷大时的极限及单侧极限)。
掌握极限的性质及四则运算法则,掌握利用两个重要极限求有关极限的方法。
理解无穷小与无穷大的概念,掌握无穷小的阶的比较,会用等价无穷小求极限。
理解函数连续性概念,会判断函数的间断点。
了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质,掌握这些性质的简单应用。
学时分配:大课主讲14学时,小课3学时。
第三章、
教学目的与要求:掌握导数的概念及运算。
教学重点:导数的概念的理解,运算法则及计算技巧。
教学难点:复合函数的导数,分段函数的导数。
教学内容:理解导数和微分的概念、关系和几何意义,理解函数的可微性与连续性的关系。
熟练掌握导数的四则运算法则和复合函数求导法则,熟练掌握基本初等函数的求导公式。
掌握反函数求导法,隐函数求导法和参数方程确定的函数的求导法,掌握对数求导法。
理解高阶导数的概念,会求简单函数的高阶导数。
了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
学时分配:大课主讲14学时,小课3学时。
第四章、
教学目的与要求:掌握导数与微分的应用。
教学重点:对导数的几何意义及边际与弹性分析,微分的思想的灵活应用
教学难点:中值定理及微分的应用
教学内容:理解并能应用罗尔定理,拉格朗日中值定理,知道柯西中值定理。
掌握罗必塔法则求极限的方法。
掌握泰勒公式。
理解函数极值的概念,掌握用导数判断函数单调性。
掌握函数极值的方法,掌握函数最小值、最大值的求法及其应用。
掌握用导数判断函数凸性与拐点的方法。
掌握根据函数的微分性质描绘函数图象的方法。
学时分配:大课主讲14学时,小课3学时。
第五章、
教学目的与要求:掌握不定积分的概念及运算。
教学重点:原函数的概念,不定积分的运算方法
教学难点:间接积分法
教学内容:理解原函数和不定积分的概念,掌握不定积分的性质。
熟练掌握基本积分公式。
掌握不定积分的第一换元法(凑微分法)。
掌握第二换元法。
掌握分部积分法。
知道有理函数的部分分式分解。
学时分配:大课主讲14学时,小课3学时。
第六章、
教学目的与要求:掌握定积分的概念及运算,定积分的应用。
教学重点:定积分的概念及运算
教学难点:定积分的换元法,定积分的应用-求平面图形的面积及旋转体的体积。
教学内容:理解定积分的概念、性质。
了解定积分的几何意义。
熟练掌握微积分基本公式,理解定积分与不定积分的联系。
会求变限积分的导数。
掌握定积分的换元法。
掌握分部积分法。
了解定积分微元法的思想。
掌握用定积分表达和计算平面图形的面积。
掌握旋转体体积和常用经济量。
了解反常积分及其敛散性概念。
学时分配:大课主讲14学时,小课3学时。
小注:总复习:大课主讲2学时,答疑2学时。
小课2学时。
四、考核方式:
三次机考30%(每次10%),一次期末笔试50%,平时作业10%,课堂到课情况10%.
五、教材及参考书
教材:选用教材:
曹定华、李建平、方涛:微积分(第四版),复旦大学出版社,2011.4
参考书:
1.朱来义:《微积分》(第二版),高等教育出版社,2004.
2.朱来义:《微积分中的典型例题分析与习题》,高等教育出版社,
2004
3.顾静相,冯泰:《经济应用数学》(上、下册),高等教育出版社,2004
六、授课手段
大课堂讲课以小课堂讨论并进,通过“课堂理论教学--课堂上下的作业练习—重点难点疑点的习题课---安排助教答疑—拓展数学应用与实践”的教学过程,培养学生的逻辑推理、综合归纳的能力和数学运算能力,逐步培养学生综合运用所学知识去分析问题和解决问题的能力。