北师大九年级数学上册花边有多宽2
初三数学花边有多宽2[北师版]
(x+5) (x+2) =54
x
即 x2 + 7x-44 =0
x 2
2 54m
X+5
(2)三个连续整数两两相乘,再求和,结果 为242,这三个数分别是多少?
解:设第一个数为x,则另两个数分别为
x+1 , x+2,依题意得方程: x (x+1) + x(x+2) + (x+1) (x+2) =242 即 3x2 +6x-24 0=0
X -2
依题意得方程:
(x-4)2+ (x-2)2= x2
即
x2-12 x +20 = 0
X-4
4尺
2.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形 式,并写出它的二次项系数、一次项系数和常数项. 解:将原方程化简为:
9x2+12x+4=4(x2-6x+9) 9x2+12x+4= 4 x2 -24x +36 9x2 - 4 x2 + 12x + 24x + 4 - 36=0 5 5x2 + 36 x - - 32 32=0
1.关于x的方程(k-3)x2 + 2x-1=0,当k ≠3 是一元二次方程. 时,
2.关于x的方程(k2-1)x2 + 2
k ≠±1
次方程.
(k-1) x + 2k + 2=0,当 时,是一元二次方程.,当k =-1 时,是一元一
练一练
把下列方程化为一元二次方程的形式,并写出它的二 次项系数、一次项系数和常数项:
上面的方程都是只含有
一次项和常数项,a, b分别称为二次项系数和一次项系数.
判一判 下列方程哪些是一元二次方程? (1)7x2-6x=0 (2)2x2-5xy+6y=0
1 2 (3)2x - - 3x -1 =0 y2 (4) - 2 =0
北师大版数学九年级上册2.1.1《花边有多宽》教案
北师大版数学九年级上册2.1.1《花边有多宽》教案一. 教材分析《花边有多宽》是北师大版数学九年级上册第2章《相似多边形》的第1节内容。
本节课主要通过探究梯形的相似性质,让学生掌握相似多边形的判定方法,并能够运用相似性质解决实际问题。
此内容是学生在学习了七年级和八年级的相关知识基础上进行的,对学生空间想象能力和逻辑思维能力的培养具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于多边形的性质和图形的变换有一定的了解。
但是,对于相似多边形的判定和应用可能还比较模糊。
因此,在教学过程中,需要注重引导学生从直观到抽象的认识过程,让学生在探究中理解相似多边形的性质,提高他们的空间想象能力和解决问题的能力。
三. 教学目标1.理解相似多边形的概念,掌握相似多边形的性质。
2.能够运用相似性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:相似多边形的概念和性质。
2.难点:相似多边形的判定方法和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似多边形的性质。
2.利用多媒体辅助教学,展示图形的变化,帮助学生直观理解相似性质。
3.运用实例讲解,让学生在实际问题中运用相似性质解决问题。
4.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.梯形图形的相关教具。
3.练习题和学习资料。
七. 教学过程1.导入(5分钟)利用多媒体展示一些梯形图形,引导学生观察并提出问题:“这些梯形有什么共同的特点?”让学生思考并回答,从而引出相似多边形的概念。
2.呈现(10分钟)通过展示梯形的相似性质,让学生观察并总结出相似多边形的性质。
引导学生从直观到抽象的认识过程,让学生在探究中理解相似多边形的性质。
3.操练(10分钟)让学生分组合作,利用相似性质对给定的梯形进行变换,并观察变换后的梯形与原梯形的关系。
九年级数学2.1.2花边有多宽教案北师大版.doc
山东省枣庄市第四十二中学九年级数学2.1.2花边有多宽教案北师大版课时Q 第-章第一节第2课时二课题心花辺有多宽(二)卩课型存新授谍卩时间3 节海第二节心授课人匸3教学3 1.探索一元二次方程的解或近似解・a目标3 2.培养学生的估算意识和能力.重点& 探索一元二次方程的解或近似解4难点Q 培养学生的估算意识和能力.3教法、学法指导P米用“启迪诱导一-自主探究一一合作交流”教学模式,引导学生经历方程的解的探索过程,増进对方程解的认识,发展学生的估算意识和能力・3课刖4 准备:教、学貝:计算器、多媒体投彫;知识储备:一元二次方程的定义、3—般形式、一元二次方程解的定义及计算能力2教学过程一、创设情境•,导入新课师:前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,人家回忆一下。
1.让学生回答下列问题:什么叫一元二次方程?它的一般形式是什么?牛:把只含有一个未知数X的整式方程,并卫.都可以化为d+bx+c=Og、b、c为常数,臼HO)的形式,这样方程叫做一元二次方程.生:一元二次方程的一般形式是川+bx+c=Q(a、b、c为常数,日HO)其屮站■'称为二次项,勿r称为一•次项,c为常数项;$和b分别称为二次项系数和一次项系数.2.指出下列方程的二次项系数,一次项系数及常数项。
(1)2 /—丹1二0 (2)—/+1=0 (3)X—(4)—3 ・/二0生:(学生口答)师:很好,现在我们来看上节课的问题:花边有多宽?(再次思考)一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如果地毯小央长方形图案的面积为18 那么花边有多宽?(1)师:你怎么解决这个问题?师:这节课我们继续来探讨“花边有多宽”.(引出新课)二、探究新知估算一元二次方程的解探究(一):花边宽度的问题师:我们设花边的宽度为xm,那么地毯中央长方形图案的长为(8-2影m,宽为(5-2^) m.根据题意, 就得到方程(8-2 x)(5-2 0 = 18.即:2 13卅11 二0・那么如何求出上面方程x的解呢?如何估算x的解吗?(学生思考)(1)x可能小于0吗?说说你的理山.(2)x可能人于4吗?可能大于2. 5吗?说说你的理由,并与同伴进行交流.(3)完成下表:X 00. 51 1.52 2. 52/-13^+11(4)你知道地毯花边的宽*ni)是多少吗?还冇其他求解方法吗?与同伴进行交流.生:(1)因为/表示地毯的宽度,所以不可能取小于0的数.(2)/既不可能大于4,也不可能大于2. 5.因为如果/大于4,那么地毯的长度8-2;1就小于0,如果无大于2. 5 lit,那么地毯的宽度同样是小于0.(3)x的值应选在0和2. 5之间.(4)表中的值为:X00. 51 1. 52 2. 52/-13 卅1111 4. 750-4-7-9生:山上而的讨论可以知道:当尸1吋,2#-13时11 = 0,正好与右边的值相等.所以由此可知:/ =1是方程2,-13屮11二0的解,从而得知;地毯花边的宽为1加.(其他方法)学生交流后M答:地毯花边1米,另,因8-2%比5-2/多3,将18分解为6X3,8 —2尸6, A=1探究(二):生活中的数学---- 求梯子底端滑动的距离如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地而的垂直距离为8 ni,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?8(1)(2)师:上节课我们通过设未知数得到满足条件的方程,即梯了底端滑动的距离x(m)满足方程匕⑹牛72 = 102把这个方程化为一般形式为#+.12 旷15 = 0.(1)小明认为底端也滑动了1 m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2 m吗?町能是3 m吗?为什么?(3)你能猜出滑动距离x(m)的大致范围吗?(4)/的整数部分是儿?十分位是儿?分组讨论,动手计算总结答案。
北师大版数学九年级上册2.1.2《花边有多宽》说课稿
北师大版数学九年级上册2.1.2《花边有多宽》说课稿一. 教材分析《花边有多宽》是北师大版数学九年级上册第2.1.2节的内容。
这一节的主要内容是让学生掌握圆的周长和直径的关系,并能够运用这个关系解决实际问题。
教材通过引入花边的宽度问题,引导学生探究圆的周长和直径的关系,进而得出圆的周长公式。
这个内容在数学学习中非常重要,因为它不仅涉及到圆的基本性质,还涉及到数学的探究方法和解决问题的策略。
二. 学情分析九年级的学生已经掌握了圆的基本知识,对圆的周长和直径有一定的了解。
他们在学习这一节内容时,已经有了一定的数学基础和探究能力。
但是,他们对圆的周长和直径的关系的理解可能还比较浅显,需要通过实际问题来深化他们的理解。
此外,他们可能对数学的探究方法还不够熟悉,需要通过实践活动来培养他们的探究能力。
三. 说教学目标1.知识与技能:让学生掌握圆的周长和直径的关系,能够运用这个关系解决实际问题。
2.过程与方法:通过实践活动,培养学生的探究能力和合作能力。
3.情感态度与价值观:让学生体验数学的乐趣,增强他们对数学的兴趣和自信心。
四. 说教学重难点重点:圆的周长和直径的关系,圆的周长公式的应用。
难点:圆的周长公式的推导过程,对圆的周长和直径的关系的理解。
五. 说教学方法与手段在这一节课中,我将采用问题驱动的教学方法,引导学生通过实践活动探究圆的周长和直径的关系。
我会使用多媒体手段,如PPT和网络资源,来辅助我的教学。
六. 说教学过程1.导入:通过展示一些实际问题,如花边的宽度,引起学生对圆的周长和直径的关系的兴趣。
2.探究:让学生分组进行实践活动,通过测量和计算得出圆的周长和直径的关系。
3.讲解:根据学生的探究结果,讲解圆的周长公式的推导过程。
4.练习:让学生进行一些相关的练习题,巩固他们对圆的周长和直径的关系的理解。
5.总结:让学生总结他们在实践活动中的发现和体验,加强对圆的周长和直径的关系的理解。
七. 说板书设计板书设计将包括以下内容:1.圆的周长和直径的关系公式2.圆的周长公式的推导过程3.实际问题解决策略八. 说教学评价教学评价将包括以下几个方面:1.对圆的周长和直径的关系的理解程度2.运用圆的周长公式解决实际问题的能力3.实践活动中的参与度和合作能力九. 说教学反思在课后,我将对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了圆的周长和直径的关系,以及他们在实践活动中的表现。
2.1《花边有多宽》教案 (北师大版九年级上)(8套)-花边有多宽 教案 (2)doc
§2.1 花边有多宽课时安排2课时从容说课方程是刻画现实世界的一个有效数学模型,随着数学应用的日趋广泛,方程的工具作用显得愈发重要.一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.本节“花边有多宽”是一元二次方程的基础,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念,进而通过夹逼思想估算方程的解.本节的重、难点是一元二次方程的概念及其近似解.第一课时课题§2.1.1 花边有多宽(一)教学目标(一)教学知识点1.一元二次方程的概念2.一元二次方程的有关概念.(二)能力训练要求1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念(三)情感与价值观要求从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.教学重点一元二次方程的概念a≠0教学难点一元二次方程的概念:a≠0教学方法启发诱导式教具准备投影片四张第一张:花边有多宽(记作投影片§2.1.1 A)第二张:数学问题(记作投影片§2.1.1 B)第三张:实际问题(记作投影片§2.1.1 C)第四张:想一想(记作投影片§2.1.1 D)教学过程Ⅰ.创设现实情景、引入新课[师]前面我们学过黄金分割,知道黄金比是多少吗?[生]黄金比是0.618.[师]很好,你知道黄金比为什么是0.618吗?……[师]好,经济时代的今天,你能根据商品的销售利润作出一定的决策吗?你能为一个矩形花园提供多种设计方案吗?……从今天开始,我们来学习能解决这些问题的知识:第二章:一元二次方程.与一次方程和分式方程一样,一元二次方程也是刻画现实问题的有效数学模型.下面我们来学习第一节:花边有多宽.Ⅱ.讲授新课[师]我们来看一个实际问题(出示投影片§2.1.1 A);大家来讨论讨论.一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5 m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?[生]我们可以利用列方程来求解.[师]很好,那如何列方程来求解实际问题呢?想一想,前面我们学习的列一元一次方程的思路和方法.[生]要从题中,找出已知量、未知量及问题中所涉及的等量关系.这个题已知:这块地毯的长为8 m,宽为5 m,它中央长方形图案的面积为18m2.这个题所要求的是;地毯的花边有多宽.本题是以面积为等量关系.[师]这位同学分析得很好,下面我们共同来利用这些数量关系列出方程.[师生共析]如果设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程(8-2x)(5-2x)=18注意:1.利用列方程解实际问题时,关键是要找到等量关系,如本题中的面积等于长乘以宽. 2.用一个含有未知数的代数式表示一个量,并且这个量有单位时,需要把这个代数式用括号括起来,如本题中的地毯中央长方形图案的长、宽等.[师]好,下面我们来看一个数学问题(出示投影片§ 2.1.1 B):观察下面等式102+112+122=132+142.你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?[生]这个题我们也可以利用数量关系列方程.[师]很好,如果设五个连续整数中的第一个数为x,那么后面的四个数该如何表示呢? [生甲]因为任何两个连续整数的差为1.所以,如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1,x+2,x+3,x+4.[生乙]根据题意,则可得到方程x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.[生丙]老师,我觉得这个题也可以设中间的那个数为x,那么其余四个数依次为x-2,x-1,x+1,x+2,由此也可得方程(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2.这样行吗?[师]丙同学的思路很好,这个问题可以有不同的设未知数的方法,同学们可灵活设未知数,即可设这五个数中的任意一个,其他四个数可随之变化.下面我们来看一个实际问题(出示投影片§2.1.1 C):如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?[师]同学们分组讨论,列出方程.[生甲]墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知梯子的长为10 m,梯子的顶端距地面的垂直距离为8 m,所以由勾股定理可知,滑动前梯子底端距墙有6 m.[生乙]设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程.(x+6)2+(8-1)2=102,即(x+6)2+72=102.[师]同学们讨论得很完整,接下来想一想,议一议(出示投影片§ 2.1.1 D):由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x+6)2+72=102.这三个方程有什么共同特点?[生甲]这三个方程的每个方程的左、右两边都是整式.[生乙]我把这三个方程进行了化简,即(1)(8-2x)(5-2x)=18,40-26x+4x2=18,4x2-26x+22=0.(2)x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,x2+x2+2x+1+x2+4x+4=x2+6x+9+x2+8x+16,x2-8x-20=0.(3)(x+6)2+72=102,x2+12x+36+49=100,x2+12x-15=0.由此可以知道:这三个方程可以化简为三项的和.[生丙]把这三个方程经过化简后,最高次数是二次.[生丁]这三个方程的每一个方程中只含有一个未知数.[师]同学们总结得很好.上面的三个方程都是只含有一个未知数x的整式方程,等号两边都是关于未知数的整式的方程,称为整式方程,如:我们学习过的一元一次方程,二元一次方程等都是整式方程.这三个方程还都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程我们叫做一元二次方程(quadratic equatton with one unknown),即只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.注意:1.一元二次方程必须同时满足以下三点;(1)方程是整式方程.(2)它只含有一个未知数.(3)未知数的最高次数是2,即化简为ax2+bx+c=0时,a≠0.2.任何一个关于x的一元二次方程都可以化为ax2+bx++c=0(a≠0)的形式,其中a≠0是定义的一部分,不可漏掉,否则就不是一元二次方程了.因为任何一个关于x的一元二次方程都可以化为ax2+bx+c=0《a≠0》的形式,所以我们把ax2+bx+c=O(a、b、c为常数,a≠0)称为一元二次方程的一般形式,其中ax2、bx、c分别称为二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.注意:(1)当a=0,b≠0时,方程就是一元一次方程,当一个方程是一元二次方程时,则隐含了条件:a≠0.(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.Ⅲ.应用、深化课本P43随堂练习1.从前有一天,二个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.解:设竹竿长为x尺,则门框宽为(x-4)尺,门框高为(x-2)尺,根据题意,得x2=(x-4)2+(x-2)2,即x2-12x+20=02.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.解:方程(3x+2)2=4(x-3)2的一般形式是5x2+36x-32=0.方程的二次项系数是5,一次项系数是36,常数项是-32.Ⅳ.课时小结本节课我们由讨论“花边有多宽”得出一元二次方程的概念.1.一元二次方程属于“整式方程”,其次,它只含有一个未知数,并且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式.2.一元二次方程的一般形式为ax2+bx+c=O(a≠0),一元二次方程的项及系数都是根据它的一般形式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.Ⅴ.课后作业(一)课本P44习题2.1 1、2(二)1.预习内容:P44-P462.预习提纲探索一元二次方程的解或近似解,Ⅵ.活动与探究1.当d、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当a、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?[过程]让学生通过讨论、总结,知道:对于方程ax2+bx+c=0,当a≠0时.是一元二次方程;当a=0且b≠0时,方程为bx+c=0,是一元一次方程.[结果]当a≠1时,方程(a-1)x2-bx+c=0是一元二次方程,这时,方程的二次项系数是a-1,一次项系数是-b.当a=1且b≠0时,方程是一元一次方程.板书设计§2.1.1 花边有多宽(一)一、1.设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m.根据题意,可得(8-2x)(5-2x)=18.2.设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1、x+2、x+3、x+4.根据题意,可得x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.3.设梯子底端滑动x m,那么滑动后梯子底端距墙(x+6)m.根据题意,可得(x+6)2+72=102.二、议一议三个方程的共同特点:(1)只含有一个未知数.(2)整式方程.(3)可化为ax2+bx+c=0.三、1.一元二次方程的定义.2.一元二次方程的一般形式;ax2+bx+c=0(a≠0)ax2是二次项,a是系数bx是一次项,b是系数c是常数项四、练习五、小结六、课后作业。
最新初中数九年级上册《花边有多宽》
初中数九年级上册《花边有多宽》
北师大版初中数九年级上册《花边有多宽》精品教案
课题名称:第二章第一节:花边有多宽
课题出处:北师大版九年级上册教材所在页:42页--45页
课题类型:新授课
授课教师基本信息:肖红燕青岛61中
一、教学目标:
1、经历探索-发现-归纳一元二次方程的建模过程,体会方程的模型思想。
2、会识别一元二次方程及各部分名称。
3、培养学生提出问题、分析问题、解决问题的能力。
三、教学重点和难点:
本节课的教学重点是把实际问题抽象成数学问题,通过方程模型来解决并会识别一元二次方程。
本节课的难点是如何把实际问题抽象成数学问题。
四、教法及学法:
自主探究。
引导学生发现问题、提出问题并解决问题。
五、教学过程设计:。
北师大版数学九年级上册2.1.2《花边有多宽》教案
北师大版数学九年级上册2.1.2《花边有多宽》教案一. 教材分析《花边有多宽》这一节是北师大版数学九年级上册第2.1.2节的内容,主要是让学生通过实际问题,掌握用代数方法解决几何问题的思路和方法。
本节课的内容与生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的实际问题解决能力。
二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对于解决实际问题也有一定的经验。
但是,他们在解决实际问题时,往往缺乏条理性和逻辑性,不能很好地将实际问题转化为数学问题。
因此,在教学过程中,需要引导学生学会将实际问题转化为数学问题,并运用代数方法解决。
三. 教学目标1.理解并掌握用代数方法解决几何问题的基本思路和方法。
2.能够将实际问题转化为数学问题,并运用代数方法解决。
3.培养学生的逻辑思维能力和实际问题解决能力。
四. 教学重难点1.教学重点:用代数方法解决几何问题的基本思路和方法。
2.教学难点:如何将实际问题转化为数学问题,并运用代数方法解决。
五. 教学方法采用问题驱动法,引导学生通过实际问题,发现并总结用代数方法解决几何问题的思路和方法。
同时,采用小组合作学习的方式,培养学生的团队协作能力和实际问题解决能力。
六. 教学准备1.准备相关的实际问题,用于引导学生思考和讨论。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如“花边的宽度是多少?”、“一块长方形铁皮的面积是多少?”等,引导学生思考如何用代数方法解决这些问题。
2.呈现(10分钟)教师引导学生通过观察和分析实际问题,发现并总结用代数方法解决几何问题的思路和方法。
教师在这个过程中,对学生进行引导和启发,帮助学生理解和掌握。
3.操练(10分钟)教师给出一些具体的实际问题,让学生独立或小组合作地进行解决。
教师在这个过程中,对学生进行指导,帮助学生解决遇到的问题。
4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容。
北师大版数学九年级上册2.1《花边有多宽》教案1
北师大版数学九年级上册2.1《花边有多宽》教案1一. 教材分析《花边有多宽》这一节是人教版九年级上册第二单元《几何图形》中的一节内容。
本节课主要让学生通过观察、操作、思考、交流等活动,掌握花边的宽度,发展学生的空间观念和几何思维能力。
教材通过生活中的实例,引出花边的宽度,然后让学生通过实际操作,探索求解花边宽度的方法,从而培养学生的实践能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对几何图形有一定的认识。
同时,学生的空间想象能力和动手操作能力也在逐步发展。
但是,对于一些复杂的花边图案,学生可能还比较难以理解和计算。
因此,在教学过程中,教师需要关注学生的个体差异,引导学生通过实际操作,逐步理解和掌握花边的宽度求解方法。
三. 教学目标1.知识与技能目标:让学生掌握花边的宽度求解方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:花边的宽度求解方法。
2.难点:对于复杂花边图案的理解和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,探索花边的宽度求解方法。
2.运用多媒体辅助教学,展示花边图案,提高学生的空间想象力。
3.分组合作学习,培养学生的团队合作意识。
六. 教学准备1.多媒体教学设备。
2.花边图案实物或图片。
3.剪刀、直尺、彩笔等动手操作工具。
七. 教学过程1.导入(5分钟)教师展示一些花边图案实物或图片,引导学生观察并思考:如何才能知道这些花边的宽度呢?通过这个问题,激发学生的学习兴趣,引出本节课的主题。
2.呈现(10分钟)教师提出具体的问题:给定一个花边图案,如何求解其宽度?然后引导学生分组讨论,共同探索求解方法。
3.操练(10分钟)每组学生选取一个花边图案,使用剪刀、直尺、彩笔等工具,进行实际操作,尝试求解花边的宽度。
北师大版数学九年级上册2.1《花边有多宽》教学设计1
北师大版数学九年级上册2.1《花边有多宽》教学设计1一. 教材分析《花边有多宽》这一节是北师大版数学九年级上册第二章《相似》的第一课时。
本节课主要通过探究花边的宽度,让学生理解相似图形的性质,掌握相似比的计算方法,并能够运用相似比解决实际问题。
教材通过生活中的实例引入相似的概念,激发学生的学习兴趣,培养学生运用数学解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似图形的概念,对图形的变换也有了一定的了解。
但学生在计算相似比时,可能还不太熟练,需要通过大量的练习来提高。
此外,学生解决实际问题的能力有待提高,需要教师在教学中进行引导和培养。
三. 教学目标1.知识与技能:理解相似图形的性质,掌握相似比的计算方法,能够运用相似比解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的动手操作能力和推理能力。
3.情感态度价值观:培养学生运用数学解决实际问题的意识,提高学生对数学的兴趣。
四. 教学重难点1.重点:理解相似图形的性质,掌握相似比的计算方法。
2.难点:运用相似比解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例引入相似的概念,激发学生的学习兴趣。
2.引导发现法:教师引导学生观察、操作、猜想、验证,培养学生独立思考的能力。
3.实践操作法:让学生通过实际操作,加深对相似图形性质的理解。
4.合作学习法:学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示花边的图片和相关的数学知识。
2.练习题:准备一些关于相似比计算和实际问题的练习题,用于课堂练习和巩固。
3.教学道具:准备一些花边的实物,用于展示和操作。
七. 教学过程1.导入(5分钟)教师通过展示一些花边的图片,引导学生观察花边的形状和宽度,激发学生的学习兴趣。
2.呈现(10分钟)教师介绍相似图形的概念,解释相似比的含义,并通过举例让学生理解相似比的应用。
3.操练(15分钟)教师引导学生分组讨论,每组选择一幅花边的图片,计算花边的相似比,并解释原因。
北师大版数学九年级上册2.1《花边有多宽》教学设计2
北师大版数学九年级上册2.1《花边有多宽》教学设计2一. 教材分析《花边有多宽》这一节是北师大版数学九年级上册第二章《相似》的第一课时,是在学生已经学习了相似三角形的性质,相似多边形的性质,成比例线段的基础上进行学习的。
本节课主要是通过实例让学生理解并掌握相似多边形的性质,能够运用相似多边形的性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对相似多边形的性质有一定的了解。
但是,对于如何运用相似多边形的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的实例,引导学生理解和运用相似多边形的性质,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:让学生理解并掌握相似多边形的性质,能够运用相似多边形的性质解决实际问题。
2.过程与方法:通过实例,培养学生观察、分析、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神。
四. 教学重难点1.重点:让学生理解和掌握相似多边形的性质。
2.难点:如何引导学生运用相似多边形的性质解决实际问题。
五. 教学方法1.情境教学法:通过具体的实例,引导学生理解和运用相似多边形的性质。
2.问题驱动法:通过提问,激发学生的思考,引导学生探究相似多边形的性质。
3.小组合作法:在解决实际问题的过程中,鼓励学生进行小组合作,共同解决问题。
六. 教学准备1.准备相关的实例,用于引导学生理解和运用相似多边形的性质。
2.准备一些实际问题,用于巩固学生对相似多边形的性质的理解。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生观察并思考:这些问题可以通过相似多边形的性质来解决吗?从而引出本节课的主题——相似多边形的性质。
2.呈现(10分钟)教师通过具体的实例,引导学生理解和掌握相似多边形的性质。
例如,可以通过展示两张相似的图形,让学生观察并回答:这两张图形的对应边是否成比例?对应角是否相等?3.操练(10分钟)教师提出一些实际问题,让学生运用相似多边形的性质进行解决。
北师大九年级上册数学课件2.1花边有多宽(2)
化成一般式,得
x2 2x 120 0
列表:
x
8
9
10 11 12
x2 2x 120 -40 -21 0 23 48
x=10
所以苗圃宽为10m,长为12m。
巩固练习
1、五个连续整数,前三个数的平方和等于后两 个数的平方和,你能求出这五个连续整数分别是 多少吗?
巩固练习
1.1m<x<1.2m。
-5.9 0.84 2.29 3.76
新知归纳 估算法求一元二次方程的近似解: (1)猜想未知数的取值范围; (2)通过列表,用“夹逼”法求出方程的近似解。
范例讲解
例1、一个面积为120m2的矩形苗圃,它的长比 宽多2m,苗圃的长和宽各是多少?
解: 设苗圃的宽为xm,则长为(x+2)m,根据题意,得
2、有一条长为16m的绳子,你能否用它围出一 个面积为15m2的矩形?若能,则矩形的长、宽 各是多少?
巩固练习
3、一名跳水运动员进行10m跳台跳水训练,在正 常情况下,运动员必须在距水面5m以前完成规定 的翻腾动作,并且调整好如水 姿势,否则就容易出现失误。 假设运动员起跳后的运动时间 t(s)和运动员跳离水面的高度 h(m)满足关系式h=10+2.5t-5t2, 那么他最多有多长时间完成规 定动作?
3
x2 12x 15 -15 -2 13 30
(1) 你能猜出滑动距离x (m)的大致范围吗?
在1m和2m之间。
(2) 求解过程整理如下:
夹
x
0
0.5
1
1.5
2
逼
x2 12x 15 -15 -8.75 -2 5.25 13
法
北师大版-数学-九年级上册-2.1 花边有多宽 教学设计
(x+6)2+72=102
上述三个方程有什么共同特点?
表述:上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a不等于0)的形式,这样的方程叫做一元二次方程。
一元二次方程的一般形式:ax2+bx+c=0(a,b,c为常数,a不等于0)
一元二次方程的二次项、一次项、常数项分别为:ax2、bx、c
二次项系数为:a一次项系数为:b
1、随堂练习 2、习题2
收获与困惑
习题1 目标 预习
3、先观察下面等式:
102+112+122=132+142
你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?(问:怎样设法找?)
如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为,,,。根据题意,可得方程。
由上面三个问题,我们可以得到三个方程:
(8-2x)(5-2x)=18
教学流程
(内容要)
师生互动(问题创设、情景创设)
复习回顾
问题情境
方程的概念 分类
一元一次方程的概念
1、一块四周有宽度相等的花边的地毯如图所示,它的长为8米,宽为5米。如果地毯中央长方形图案的面积为18平方米,那么花边有多宽?
如果设花边的宽为x米,那么地
毯中央长方形图案的长为5m
米,宽为米。根据题意,
可得方程。
8m
教学流程
(内容概要)
师生互动(问题创设、情景创设)
归纳总结
练一练
小结
作业
2、如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?
北师大版数学九年级上册2.1《花边有多宽》教案2
北师大版数学九年级上册2.1《花边有多宽》教案2一. 教材分析《花边有多宽》这一节内容是北师大版数学九年级上册第二章的第一课时,主要学习了用坐标表示点、直线和圆的位置关系,以及函数的性质。
通过这一节内容的学习,学生能够理解坐标与图形之间的关系,掌握用坐标表示点的方法,了解直线和圆的方程,以及理解函数的概念。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对于图形的认识和坐标的学习已经有了一定的基础。
但是,对于坐标与图形之间的关系,以及直线和圆的方程的理解还需要加强。
此外,学生对于函数的概念可能还比较陌生,需要通过实例来帮助理解。
三. 教学目标1.知识与技能:学生能够理解坐标与图形之间的关系,掌握用坐标表示点的方法,了解直线和圆的方程,以及理解函数的概念。
2.过程与方法:学生通过观察、实践和思考,培养数形结合的思维方式,提高解决问题的能力。
3.情感态度价值观:学生能够积极参与数学学习,体验数学的乐趣,培养对数学的热爱。
四. 教学重难点1.教学重点:学生能够理解坐标与图形之间的关系,掌握用坐标表示点的方法,了解直线和圆的方程。
2.教学难点:学生对于函数的概念的理解,以及如何应用坐标解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过问题驱动引导学生思考,通过案例教学让学生深入了解坐标与图形之间的关系,通过小组合作学习培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教师准备:准备好相关的教学案例和实例,制作好PPT,准备好黑板和粉笔。
2.学生准备:学生需要预习相关的内容,了解坐标与图形之间的关系,以及直线和圆的方程。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如地图上的位置、商场里的商品摆放等,引导学生思考坐标与图形之间的关系。
提问:你们知道这些实例中坐标的作用吗?通过这个问题,激发学生的兴趣,引出本节课的主题。
2.呈现(15分钟)教师通过PPT展示直线和圆的方程,以及函数的概念。
21花边有多宽2北师大版九年级上
三、梯子底端滑动的距离x(m)满足方程
2 2 2
(x+6) +7 =10 也就是x2+i2x —15=0
(1)你能猜出滑动距离x(m)的大致范围吗?
(2)x的整数部分是几?十分位是几?
倡使用计算器。
四、课堂练习
课本P46随堂练习
1 •五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗?
五、课时小结
本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想一一“夹逼”思想.
六、课后作业
(一)课本P46习题2. 2 I、2
(二)1.预习内容:P47—P48
板书设计:
一、地毯花边的宽x(m),满足方程(8—
2x)(5 —2x)=18
二、梯子底端滑动的距离x(m)满足方
程(x+6) 2+72=102
三、练习
四、小结
进一步计算
注意:(1)估算的精度不适过高。
(2)计算时提
因此x的整数部分是1,十分位是1。
北师大版-数学-九年级上册-2.1花边有多宽(二课时) 精品教案
教学目标:知识与技能目标:1.一元二次方程的概念2.一元二次方程的有关概念.过程与方法目标:1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念情感态度与价值观目标:从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.重点、难点、关键:1.重点:(1)掌握一元二次方程的解法,特别是公式法。
(2)培养学生的数学意识及解决简单的实际问题的能力。
2.难点:(1)用配方法解一元二次方程。
(2)一元二次方程教学过程:生活实例1观察:挂图显示出生活中丰富多彩的花边图案:有长方形,有圆形,有正方形,有椭圆形等(课前收集);在课本图2一二的长方形花边上.问:这块四周建有宽度相等的底边的地毯,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?通过上述丰富的实例,为学生归纳出一元二次方程的概念提供帮助。
问:连续整数,使前三个数的平方和等于后两个数的平方和?问:上述三个生活实例、数学问题得出下列三个方程:1.(8一2x)(5一2x)=182.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)23.(x+6)2+72=102议一议:上述三个方程有什么共同特点?问:有大小两个圆形花坛,小四花坛面积比大花坛面积少10m,小圆花坛的周长比大花坛的周长短10m,设大花坛周长为x,借你列出关于x的方程。
随堂练习:随堂练习1、2课堂小结:本节课首先通过丰富的实例。
观察、归纳出一元二次方程的有关概念,体会方程的模型思想。
要掌握的概念(二)一元二次方程定义(2)一元二次方程一般式:(3)二次项、一次项、常数项的有关概念。
注意:任何一个关于x的一元二次方程都可以化为一般式。
作业:课本习题2.11、2知识与技能目标:1.经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
北师大版-数学-九年级上册-2.1花边有多宽 课时2 教案
北师大版九年级上第二章第一节花边有多宽(二) 教案一、教学目标:(一)知识与技能1、探索一元二次方程的解或近似解2、培养学生的估算意识和能力(二)过程与方法经历方程解的探索过程,增进对解的认识,发展估算意识和能力.(三)情感态度与价值观通过师生的共同活动,激发学生探求知识的欲望二、教学重点:探索一元二次方程的解或近似解教学难点:培养学生的估算意识和能力三、教学方法:分组讨论法四、教学过程:(一)、创设现实情境,引入新课前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家回忆一下。
回答下列问题:1、什么叫一元二次方程?它的一般形式是什么?一般形式:ax2+bx+c-0(a≠0)2、指出下列方程的二次项系数,一次项系数及常数项。
(1)2x2―x+1=0 (2)―x2+1=0 (3)x2―x=0 (4)― 3 x2=0(二)、地毯花边的宽x(m)满足方程估算地毯花边的宽地毯花边的宽x(m),满足方程(8―2x)(5―2x)=18也就是:2x2―13x+11=0你能求出x吗?(1)x可能小于0吗?说说你的理由;(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表(4)你知道地毯花边的宽x(m)是多少流。
答案:(1)x不可能小于0,因为x表示地毯的宽度。
(2)(8—2x)(5—2x)=18,即-2x2一13x十22=0.注:x>o,8—2x>o,5—2x>0.(3)从左至右分别11,4.75,0,―4,―7,―9(4)地毯花边1米,另,因8―2x 比5―2x 多3,将18分解为6×3,8―2x=6,x=1(x 十6)2十72=102,即x 2十12x 一15=0.所以1<x <2.x 的整数部分是1,所以x 的整数部分是l ,十分位是1.三、梯子底端滑动的距离x(m)满足方程(x+6)2+72=102也就是x 2+12x ―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x 的整数部分是几?十分位是几?注意:(1)估算的精度不适过高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8 - 2x) (5 - 2x) = 18.
8
x
x
x
数学化
(8-2x)
5
18m2
x
你能化简这个方程吗?
生活中的数学
做一做
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的 垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动 多少米?
解:由勾股定理可知, 滑动前梯子底端距墙
m. 6
数学化 1m
北师大版 九年级上册 一元二次方程
回顾与思考1
你知道黄金比为什么是
如图4-5,点C把线段AB分成两0条.6线1段8吗AC?和BC,
如果 AC BC ,那么称线段AB被点C黄金分割 AB AC
(golden section),点C叫做线段AB的黄金分割
点,AC与AB的比称为黄金比. A
CB
其实,黄金分割就是三条能构成比例线段的特殊
与一次方程和分式方程一样,一元二次方程也是刻画现实 的有效数学模型
花边有多宽
做一做
一块四周镶有宽度相等的花边的地毯如下图,它的 长为8m,宽为5m.如果地毯中央长方形图案的面 积为18m2 ,则花边多宽?
你怎么解决这个问题?
做一做
挑战自我
解:如果设花边的宽为xm ,那么地毯中央长方形图案 的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程:
即 x2 +2x-8 0=0.
独立 作业
知识的升华
2.把下列方程化为一元二次方程的形式,并写出它的二次项 系数、一次项系数和常数项:
方程
一般形式
二次项 一次项 常数 系 数系 数 项
3x2=5x-1 3x2-5x+1=0
3 -5 1
(x+2)(x -1)=6 1x2 +1x-8=0
1
4-7x2=0
-7x2 +4=0 或-7x2 +0 x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
• 运用方程(方程组)解答相关 的实际问题是一种重要的数学 思想——方程的思想.
• 一元二次方程也是刻画现实世 界的有效数学模型.
(3)2x2--31x -1 =0 (4) -y22 =0
(5)x2+2x-3=1+x2
解: (1)、 (4)
想一想:
内涵与外延
1.关于x的方程(k-3)x2 + 2x-1=0,当k ≠3
时,是一元二次方程.
2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当
k ≠±1 时,是一元二次方程.,当k =-1 时,
为(x+2) m,依题意得方程:
x
5
(x+5) (x+2) =54
即
x
54m2
x2 + 7x-44 =0
2
X+5
独立 作业
知识的升华
(2)三个连续整数两两相乘,再求和,结果为242,这三个 数分别是多少?
解:设第一个数为x,则另两个数分别为x+1, x+2,依题意 得方程:
x (x+1) + x(x+2) + (x+1) (x+2) =242.
2尺 x
数学化 x-2
(x-4)2+ (x
-2)2= x2
即 x2-12 x +=x-0 4
4尺
想一想
培养能力之阵地
2.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般 形式,并写出它的二次项系数、一次项系数和常数项. 解:将原方程化简为:
9x2+12x+4=4(x2-6x+9) 9x2+12x+4= 4 x2 -24x +36
是一元一次方程.
随堂练习
培养能力之源泉
1.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去, 横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着 门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去 了.你知道竹竿有多长吗?请根据这一问题列出方程.
解:设竹竿的长
为x尺,则门的宽 度为(x-4)尺,长 为 (x-2)尺,依题 意得方程:
如果设梯子底端滑动 X m,那么滑动后梯子
底端距墙 X+6 m;
8m 7m
根据题意,可得方程:
72+(X+6)2=102
6m xm
你能化简这个方程吗?
想一想
你能行吗
观察下面等式:
102+112+122=132+142
后你两还个能数找的到平其方他和的吗五?个连续整数,一般使前三个数的平方和等于 化
如果设五个连续整数中的第一个数为x,那么后面四个数依
x2+x+1)2+(x+2)2=(x+3)2+(x+4)2 即 x2 - 8x - 20=0.
( x+6)2+72=102
即 x2 +12 x -15 =0.
上述三个方程有什么共同特点?
上面的方程都是只含有 一个未知数x 的 整式方程,并且都可
以化为 ax2+bx+c=0(a,b,c为常数, a≠0) 的形式,
次可表示为: X+1 , X+2 , X+3 , X+4 .
根据题意,可得方程:
X2+ (X+1)2 + (X+ 2)2 =(X+3)2 + (X+4)2 .
你能化简这个方程吗?
回顾与思考
一元二次方程的概念
由上面三个问题,我们可以得到三个方程:
(8-2x)(5-2x)=18;
即 2x2 - 13x + 11 = 0 .
9x2 - 4 x2 + 12x + 24x + 4 - 36=0 5x2 + 36 x - 32=0
二次项系数为5,一次项系数为36,常数项为- 32 .
小结 拓展
回味无穷
• 本节课你又学会了哪些新知识呢? • 1.学习了什么是一元二次方程,以及
它的一般形式ax2+bx+c=0(a,b,c
为常数,a≠0)和有关概念,如二次项
这样的方程叫做一元二次方程.
把ax2+bx+c=0(a,b,c为常数,a≠0)称
为一元二次方程的一般形式,其中ax2 , bx ,
c分别称为二次项、一次项和常数项,a, b分别
称为二次项系数和一次项系数.
探索思考
“行家”看“门
下列方程哪些是一元二次方程? (1)7x2-6x=0
道”
(2)2x2-5xy+6y=0
线段AB,AC和BC.其中线段AC是线段AB和线段
BC的比例中项,也可写成AC2=AB·BC.
学习一元二次方程之后, 我们可以求得
5 1 AC BC 2 0.618. AB AC 1
回顾与思考
数学与生活
你能为一个矩形花园提供多种设计方案吗?
回顾与思考
“知识” 知多少
你能根据商品的销售利润作出一定决策吗?
、一次项、常数项、二次项系数、一次
项系数.
• 2.会用一元二次方程表示实际生活中 的数量关系
• 你准备如何去求方程中的未知数呢?
独立 作业
知识的升华
1.根据题意,列出方程:
(1)有一面积为54m2的长方形,将它的一边剪短5m,另一 边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?
解:设正方形的边长为xm,则原长方形的长为(x+5) m,宽