七年级数学平移练习题

合集下载

七年级数学下册《平移》练习题及答案

七年级数学下册《平移》练习题及答案

七年级数学下册《平移》练习题及答案一、单选题1.如图所示的图案,可以看作由“基本图案”经过平移得到的是()A.B. C.D.2.今年4月,被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是()A.对称B.旋转C.平移D.跳跃3.皮影戏是中国民间古老的传统艺术,2011年中国皮影戏入选人类非物质文化遗产代表作名录.平移如图所示的孙悟空皮影造型,能得到下列图中的()A.B.C.D.4.如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1 B.2 C.3 D.45.如图,△ABC经过平移后得到△DEF,下列说法:①AB//DE②AD=BE③∠ACB=∠DFE④△ABC和△DEF的面积相等⑤四边形ACFD和四边形BCFE的面积相等,其中正确的有()A.4个B.3个C.2个D.1个6.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为( )A.16cm B.18cm C.20cm D.22cm7.小红同学在某数学兴趣小组活动期间,用铁丝设计并制作了如图所示的三种不同的图形,请您观察甲、乙、丙三个图形,判断制作它们所用铁丝的长度关系是()A.制作甲种图形所用铁丝最长B.制作乙种图形所用铁丝最长C.制作丙种图形所用铁丝最长D.三种图形的制作所用铁丝一样长8.如图,一块长为a m,宽为b m的长方形草地上,有一条弯曲的小路,小路左边线向右平移t m就是它的边线.若a:b=5:3,b:t=6:1,则小路面积与绿地面积的比为()A.19B.110C.211D.2139.如图,△ABC沿直线BC向右平移得到△DEF,已知EC=2,BF=8,则CF的长为()A.3 B.4 C.5 D.610.如图,两个全等的直角三角形重叠在一起,将Rt△ABC沿着BC的方向平移到Rt△DEF的位置,已知AB=5,DO=2,平移距离为3,则阴影部分的面积为()A.12 B.24 C.21 D.20.5二、填空题11.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为_______.12.如图所示,将三角形ABC平移到△A′B′C′.在这两个平移中:(1)三角形A′B′C′与三角形ABC的________和_______完全相同.即平移不改变_______.平移改变_______.(2)观察平移前后的对应线段AB、A′B′等,对应角∠ABC、∠A′B′C′等的关系,可以发现_____.(3)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是_______;位置关系是________.13.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=___.14.如图,面积为4的正方形ABCD的边AB在数轴上,且点B表示的数为1.将正方形ABCD沿着数轴水平移动,移动后的正方形记为A′B′C′D′,点A,B,C,D的对应点分别为A′,B′,C′,D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=1时,数轴上点B′表示的数是__.15.将直角梯形ABCD平移得梯形EFGH,若HG=10,MC=2,MG=4,则图中阴影部分的面积为_________平方单位.三、解答题16.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中,点B与点B'对应,请画出平移后的△ A′B′C′;(2)直接回答,图中AC与 A′C′的数量关系和位置关系是什么?(3)记网格的边长为1,则△ A′B′C′的面积为多少?17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,点A平移到点D的位置,B、C点平移后的对应点分别是E、F.(1)画出平移后的△DEF;(2)线段BE、CF之间关系是___________.(3)过点A作BC的平行线l1.(4)作出△ABC在BC边上的高.(5)△DEF的面积是___________.18.在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,内角均为直角,△ABC的三个顶点均在“格点”处.(1)将△ABC平移,使得点B移到点B′的位置,画出平移后的△A′B′C′;(2)利用正方形网格画出△ABC的高AD;(3)连接BB′、CB′,利用全等三角形的知识证明BB′⊥AC.19.【知识介绍】苏科版数学七年级下:平移的意义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移,平移不改变图形的形状和大小.如图,直线l上有两条可以左右移动的线段AB和CD,线段AB在线段CD的左边,AB=8,CD=16,运动过程中,点M、N始终分别是线段AB、CD的中点.(1)线段AB与CD同时以每秒1个单位长度的速度也向右运动,MN的长度将______(变大、不变、变小).(2)若线段AB以每秒4个单位长度的速度向右运动,同时,线段CD以每秒1个单位长度的速度也向右运动,且线段AB运动6秒时,MN=4,求运动前点B、C之间的距离;(3)设BC=24,且线段CD不动,将线段AB以每秒4个单位长度的速度向右运动.在AB向右运动的某一个时间段内,是否存在MN+AD的值为定值?若存在,请直接写出这个定值,并直接写出这个时间段;若不存在,请说明理由.20.问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把n个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当n=1时,只需把金属片从1号针移到3号针,用符号(1,3)表示,共移动了1次.探究二:当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:(1,2),(1,3),(2,3).共移动了3次.探究三:当n=3时,把上面两个金属片作为一个整体,则归结为n=2的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:(1,3),(1,2),(3,2),(1,3),(2,1),(2,3),(1,3).共移动了7次.(1)探究四:请仿照前面步骤进行解答:当n=4时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当n=5时,需要移动________次.(3)探究六:把n个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把n个金属片从1号针移到3号针,最少移动的次数记为a n,当n≥2时如果我们把n−1个金属片从1号针移到3号针,最少移动的次数记为a n−1,那么a n与a n−1的关系是a n=__________.21.如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB,连接AE,∠B=∠E=75°.(1)请说明AE∥BC的理由.(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.①如图2,当DE⊥DQ时,求∠Q的度数;②在整个运动中,当∠Q=2∠EDQ时,求∠Q的度数.③在整个运动中,求∠E、∠Q、∠EDQ之间的的等量关系.参考答案:1.B2.C3.D4.C5.A6.C7.D8.A9.A10.A11.22cm12.大小形状图形的大小和形状图形的位置对应线段平行(共线)且相等,对应角相等相等平行(或共线)13.230°14.2.5或-0.515.3616.(1)解:△ A′B′C′如图所示:;(2)解:根据平移的性质得AC= A′C′,AC∥ A′C′;(3)解:△ A′B′C′的面积=4×4×12=8.17.(1)如图所示,△DEF即为所求;(2)由平移的性质知AD=CF、AD∥CF,故答案为:AD=CF、AD∥CF.(3)如图,直线l1即为所作;(4)如图,AG即为BC边上的高;(5)△DEF的面积为12×(2+4)×4−12×2×3−12×1×4=7,故答案为:7.18.(1)过点B′作B′C′∥BC,且B′C′=5,再沿着B′向右移动两个单位,再向上移动五个单位,就可得到点A′,连接A′B′,A′C′,即可得到△A′B′C′(2)设从点B的位置向右两个单位的点为D,连接AD,则AD就是所求的高(3)设AC交BB′于点J.在△ADC和△BCB′中,AD=BC,∠ADC=∠BCB′=90°,DC=CB′,∴△ADC≌△BCB′,∴∠DAC=∠CBB′,∵∠ACD+∠DAC=90°,∴∠CBB′+∠ACB=90°,∴∠BJC=90°,∴BB′⊥AC.19.(1)不变(2)运动前点B、C之间的距离为10或2;(3)当9≤t≤12时,MN+AD=12为定值.20.(1)当n=4时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)31,(3)2n−1,(4)2a n−1+1.21.(1)解:∵DE∥AB,∴∠BAE+∠E=180°,∵∠B=∠E,∴∠BAE+∠B=180°,∴AE∥BC;(2)①如图2,过D作DF∥AE交AB于F,∵线段AE沿着直线AC平移得到线段PQ,∴PQ∥AE,∴DF∥PQ,∴∠DPQ=∠FDP,∵∠E=75°,∴∠EDF=180°-∠E=105°,∵DE⊥DQ,∴∠EDQ=90°,∴∠FDQ=360°﹣105°﹣90°=165°,∴∠DPQ+∠QDP=∠FDP+∠QDP=∠FDQ=165°,∴∠Q=180°﹣165°=15°;②如图3,过D作DF∥AE交AB于F,∵PQ∥AE,∴DF∥PQ,∴∠QDF=180°﹣∠Q,∵∠Q=2∠EDQ,∠Q,∴∠EDQ=12∵∠E=75°,∴∠EDF=105°,∠Q=105°,∴180°﹣∠Q−12∴∠Q=50°;如图4,过D作DF∥AE交AB于F,∵PQ∥AE,∴DF∥PQ,∴∠QDF=180°﹣∠Q,∵∠Q=2∠EDQ,∴∠EDQ=1∠Q,2∵∠E=75°,∴∠EDF=105°,∠Q=105°,∴180°﹣∠Q+12∴∠Q=150°,综上所述,∠Q=50°或150°,③如图3,∵DF∥AE,DF∥PQ,∴∠EDG=∠E,∠GDQ=∠Q,∴∠EDQ=∠EDG-∠GDQ=∠E-∠Q,即∠EDQ=∠E-∠Q;如图4,∵DF∥AE,DF∥PQ,∴∠FDE=180°-∠E,∠FDQ=180°-∠Q,∴∠EDQ=∠FDE-∠FDQ=∠Q-∠E,即∠EDQ=∠Q-∠E;综上所述,∠EDQ=∠E﹣∠Q或∠EDQ=∠Q﹣∠E.。

七年级数学下册《图形的平移》单元测试卷(附答案解析)

七年级数学下册《图形的平移》单元测试卷(附答案解析)

七年级数学下册《图形的平移》单元测试卷(附答案解析)一.选择题(共8小题,满分24分)1.“冰墩墩”是2022年北京冬奥会吉祥物(如图).在如图的四个图中,能由如图经过平移得到的是()A.B.C.D.2.下列生活现象中,属于平移的是()A.升降电梯的上下移动B.荡秋千运动C.把打开的课本合上D.钟摆的摆动3.如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为2,CE=4,则BF=()A.4 B.6 C.8 D.104.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为()A.20cm B.22cm C.24cm D.26cm5.如图,△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中,错误的()A.EC=CF B.∠A=∠D C.AC∥DF D.∠DEF=90°6.如图所示,某公园里有一处长方形风景欣赏区ABCD,AB长50米,BC宽25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小明同学在假期沿着小路的中间行走(图中虚线),小路宽1米,则小明同学所走的路径长为()A.98米B.100米C.123米D.75米7.下列语句中正确的有()个①过一点有且只有一条直线与已知直线平行;②如果两个角的两边互相平行,则这两个角相等;③垂直于同一直线的两直线平行;④△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行且相等.A.0 B.1 C.2 D.38.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC =∠DFE;④∠DAE=∠AEB.其中正确的是()A.仅①②B.仅①②④C.仅①②③D.①②③④二.填空题(共10小题,满分30分)9.如图,△ABC沿BC所在直线向右平移得到△DEF,则△ABC平移的距离是图中线段的长度.10.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为.11.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是20元,台阶宽为3米,侧面如图所示,购买这种红地毯至少需要元.12.如图,△DEF是由△ABC先向右平移格,再向平移得到的.13.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=.14.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动,属于平移现象的有(只填序号).15.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为平方米.16.如图,直线a∥b,且a、b之间相距4cm,点P是直线a上一定点,点Q在直线b上运动,则在Q点的运动过程中,线段PQ的最小值是cm.17.把一副直角三角尺如图摆放,点C与点E重合,BC边与EF边都在直线l上,将△ABC向右平移得△A'B'C',当边A'C'经过点D时,∠EDC'=°.18.如图,已知长方形ABCD的长为a,宽为b,若将长方形ABCD向右平移,再向下平移,得到长方形A′B′C′D′,则阴影部分的面积为.(用含a、b的代数式表示)三.解答题(共6小题,满分46分)19.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题保留画图痕迹:(1)画出△A'B'C';(2)连接AA'、CC',那么AA'与CC'的关系是,线段AC扫过的图形的面积为;20.在如图所示4×4方格中,按下列要求作格点三角形(图形的顶点都在正方形格纸的格点上).(1)在图1中,将△ABC平移,得到△A′B′C′,使得△A′B′C′与△ABC无重合部分.(2)在图2中,线段AB与CD相交,产生∠α,请画一个△ABE,使得△ABE中的一个角等于∠α.21.如图,在Rt△ABC中,∠ACB=90°,∠E=55°,将△ABC沿AB方向向右平移得到△DEF.(1)求∠A的度数;(2)若AE=8cm,DB=2cm,请求出AD的长度.22.如图,△ABC中,BC=4cm,将△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,设运动时间为t秒.(1)若∠ADE=60°,求∠B的度数?(2)当t为何值时,EC=1cm?23.如图,已知直线CB∥OA,∠C=∠OAB=100°,点E、F在线段BC上,满足∠FOB=∠FBO=α,OE平分∠COF.(1)OC与AB是否平行?请说明理由.(2)用含有α的代数式表示∠COE的度数;(3)若左右平移线段AB,是否存在∠OEC=∠OBA的可能?若存在,求出此时α的值;若不存在,请说明理由.24.动手操作(1)如图1,在5×5的网格中,将线段AB向右平移,得到线段A'B',连接AA',BB'.①线段AB平移的距离是;②四边形ABB'A'的面积;(2)如图2,在5×5的网格中,将折线ACB向右平移3个单位长度,得到折线A'C'B'.③画出平移后的折线A'C'B';④连接AA',BB',多边形ACBB'C'A'的面积;拓展延伸(3)如图3,在一块长为a米,宽为b米的长方形草坪上,修建一条宽为m米的小路(小路宽度处处相同),直接写出剩下的草坪面积.参考答案与解析一.选择题(共8小题,满分24分)1.解:根据平移的性质可知:能由如图经过平移得到的是B,故选:B.2.解:A、升降电梯的运动,属于平移现象,故A符合题意;B、荡秋千运动,不属于平移现象,故B不符合题意;C、把打开的课本合上,不属于平移现象,故B不符合题意;D、钟摆的摆动,不属于平移现象,故D不符合题意;故选:A.3.解:∵将△ABC沿CB方向平移到△DEF的位置,点A,D之间的距离为2,∴BE=CF=2,∵CE=4,∴BF=CF+BE+CE=2+2+4=8,故选:C.4.解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,则四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm).故选:C.5.解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴AC∥DF,△ABC≌△DEF,∴∠ACB=∠DFE,∠DEF=∠ABC=90°,AC=DF,BC=EF,∠A=∠D,∴AC∥DF,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项B、C、D正确,不符合题意,但BE不一定与EC相等,故选项A错误,符合题意;故选:A.6.解:将所走的路线分段进行平移可得,小明同学所走的路径长为50+(25﹣1)×2=98(米),故选:A.7.解:过直线外一点有且只有一条直线与已知直线平行,所以①错误;如果两个角的两边互相平行,则这两个角相等或互补,所以②错误;在同一平面内,垂直于同一直线的两直线平行,所以③错误;△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行(或共线)且相等,所以④错误.故选:A.8.解:∵△ABC沿着某一方向平移一定的距离得到△DEF,∴①AD∥CF,正确;②AC=DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.二.填空题(共10小题,满分30分)9.解:∵△ABC沿BC所在直线向右平移得到△DEF,∴△ABC平移的距离是图中线段BE或CF的长度,故答案为:BE或CF.10.解:草坪的面积为:(24﹣2)×(13﹣2)=242(平方米).故答案为:242平方米.11.解:利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.2米,4.8米,∴地毯的长度为5.2+4.8=10(米),地毯的面积为10×3=30(平方米),∴购买这种红地毯至少需要30×20=600(元).故答案为:600.12.解:如图所示:△ABC可以先向右平移6格,再向下平移3格,得到△DEF.故答案为:6,下,3.13.解:作OC∥a,如图∵直线m向上平移直线a得到直线b,∴a∥b,∴OC∥b,∴∠1=∠AOC=180°,∠3+∠BOC=180°,∴∠1+∠AOC+∠3+∠BOC=360°,即∠1+∠2+∠3=360°,∠2+∠3=360°﹣∠1=360°﹣130°=230°.故答案为230°.14.解:①用打气筒打气时,气筒里活塞的运动符合平移的定义,故正确;②直线传送带上,瓶装饮料的移动符合平移的定义,故正确;③在平直的公路上行驶的汽车符合平移的定义,故正确;④随风摆动的旗帜不在同一条直线上,故错误;⑤钟表的摆动不在同一条直线上,故错误;故答案为:①②③.15.解:由题可得,草地的面积是(ab﹣2b)平方米.故答案为:(ab﹣2b).16.解:当PQ⊥b时,根据垂线段最短,可以知道此时线段PQ最短, ∵直线a∥b,且a、b之间相距4cm,∴线段PQ的最小值是4cm,故答案为:4.17.解:由题意得:∠A′C′B′=60°,∠DEC′=45°,∴∠EDC'=180°﹣45°﹣60°=75°,故答案为:75.18.解:由题意,空白部分是矩形,长为,宽为,∴阴影部分的面积=ab×2﹣2×=,故答案为:.三.解答题(共6小题,满分46分)19.解:(1)如图,△A'B'C'即为所求;(2)根据平移的性质知,AA'∥CC',AA'=CC',线段AC扫过的图形为四边形CAA'C',∴四边形CAA'C'的面积为10,故答案为:AA'∥CC',AA'=CC',10.20.解:(1)如图1,△A′B′C′为所作;(2)如图2,△ABE为所作.21.解:(1)∵BC∥EF,∴∠ABC=∠E=55°,∵∠ACB=90°,∴∠A=90°﹣55°=35°;(2)由平移得,AD=BE=CF,∵AE=8cm,DB=2cm,∴AD=BE=×(8﹣2)=3(cm).22.解:(1)∵△ABC沿BC所在直线向右平移,所得图形对应为△DEF,∴∠B=∠DEF,AD∥BF,∵AD∥BF,∴∠DEF=∠ADE=60°,∴∠B=60°;(2)∵△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,∴BE=0.2tcm,当E点在线段BC上,∵BE+CE=BC,∴0.2t+1=4,解得t=15,当E点在BC的延长线上时,∵BE=BC+CE,∴0.2t=4+1,解得t=25,,综上所述,当t=15或25时,EC=1cm.23.解:(1)OC∥AB,理由如下:∵BC∥OA,∴∠COA+∠C=180°,∵∠C=∠OAB,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠CFO=∠FOB+∠FBO,∠FOB=∠FBO=α,∴∠CFO=2α,∴∠COF=180°﹣2α﹣100°=80°﹣2α,∵OE平分∠COF,∴∠COE=∠COF=40°﹣α;(3)存在∠OEC=∠OBA,理由如下:∵∠COE=∠EOF=40°﹣α,∠FOB=∠FBO=α,∴∠EOB=40°,∵∠CEO=∠ABO,∴∠ABO=∠CEO=∠EOB+∠FBO=40°+α,∵AB∥OC,∴∠C+∠ABC=180°,∵∠C=100°,∴∠ABC=80°,∴40°+α+α=80°,∴α=20°.24.解:(1)①线段AB平移的距离是4;②四边形ABB'A'的面积=4×2=8;故答案为:4,8;(2)③如图所示,多边形ACBB'C'A'的面积=×+3×2=7,故答案为:7;(3)由题意可得:铺设小径后草坪(阴影部分)的面积=(a﹣m)•b=(ab﹣bm).答:铺设小径后草坪(阴影部分)的面积为(ab﹣bm)米2.故答案为:(ab﹣bm)米2.。

七年级数学下册平移练习题

七年级数学下册平移练习题

七年级数学下册平移练习题七年级数学下册平移练题回顾归纳1.平移的要素:(1)平移的方向;(2)平移的距离。

2.(1)平移:将一个图形沿某个方向移动叫平移。

(2)平移的性质:对应点的连结线段平行且等长。

3.平移作图方法:1)找出已知图形上的关键点;2)过这些点沿指定方向平移,使平移距离等于已知距离;3)依次作出各个对应点,连结所平移后的点得平移图形。

课堂测控知识点平移1.(1)将线段AB向北偏东方向平移5cm,A'则点A'平移方向向北偏东,平移距离为5cm。

(2)经过平移后的图形与原图形的形状和大小都不改变。

2.下列物体运动中平移的是3.汽车在笔直公路上运动。

3.如图1所示的“田”字格可以看成由平移得到的。

4.如图2所示,线段b向右平移3格,再向上平移2格,能与线段a重合。

5.如图3所示,三角形ABC向下(右)平移2格,再向右(下)平移1格得到三角形A'B'C',图形的面积相等,形状不变。

6.下列各组图形可以通过平移得到另一个图形的是B。

7.(经典题)如图4所示,长方形ABCD中,对角线AC,BD交于点O。

DE∥AC,CE⊥∥BC。

那么三角形EDC可以看成什么三角形平移得到的,指出平移方向,并求出平移距离?课后测控1.将正方形ABCD向XXX°方向平移4cm,对角线交点O向北偏东方向平移2√3 cm。

2.如图5所示,BC垂直于水平面,高5.196m,现要建造阶梯,每级台阶不超过20cm,则至少要建17级台阶(不足20cm,按一级台阶计算)。

3.在5×5方格纸中将图6(1)中的图形N平移后的位置如图6(2)中所示,那么正确的平移方法是B。

1.下列计算正确的是(C)解析:A中的等号应该是不等号,B中绝对值不能为负数,D中符号错误。

2.如果c为有理数,且c≠0,下列不等式中正确的是(B)解析:当c为正数时,B成立;当c为负数时,不等式左边为正数,右边为负数,不成立。

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题含答案

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题含答案

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,将点A向右平移几个单位长度可得到点BA.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度【答案】B长度,故选B.2.如图所示,将点A向下平移5个单位长度后,将重合于图中的A.点C B.点FC.点D D.点E【答案】D【解析】本题主要考查了用坐标表示平移.注意左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.因为点A的纵坐标是2,向下平移5个单位长度,即2–5=–3,所以与点E重合,故选D.3.如图所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A';将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B';则A'与B'相距A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【答案】A相距4个单位长度,故选A.4.如图所示,点G(–2,–2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为A.(6,5) B.(4,5)C.(6,3) D.(4,3)【答案】D5.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度【答案】B【解析】由点A,B的平移规律可知,此题规律是(x–1,y–1),照此规律可知线段AB向下平移了1个单位长度,向左平移了1个单位长度.故选B.6.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为A.(5,0),(4,2),(6,–1)B.(–1,0),(–2,2),(0,–1)C.(–1,2),(–2,4),(0,1)D.(5,2),(4,4),(6,1)【答案】B【解析】本题主要考查图形的平移及平移特征.分别将A、B、C三点的横坐标都减去3,纵坐标都减去1得(–1,0),(–2,2),(0,–1),故选B.二、填空题:请将答案填在题中横线上.7.将点(–3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点__________.【答案】(1,3)【解析】–3+4=1,1+2=3,∴点A′的坐标是(1,3).故答案为:(1,3).8.在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向__________(或向__________)平移__________个单位长度.【答案】右;左;a【解析】在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或都减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.9.已知三角形ABC,A(–3,2),B(1,1),C(–1,–2),现将三角形ABC平移,使点A到点(1,–2)的位置上,则点B,C的坐标分别为______,________.【答案】(5,–3);(3,–6)点C横坐标为:–1+4=3;纵坐标为:–2+(–4)=–6;∴B点的坐标为(5,–3),C点的坐标为(3,–6).10.已知点A(–4,–6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为__________.【答案】(0,0)【解析】由题中平移规律可知:A′的横坐标为–4+4=0;纵坐标为–6+6=0;∴A′的坐标为(0,0).故答案为:(0,0).11.如图所示,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(–4,2),(–2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__________.【答案】(5,4)【解析】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).12.如图,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.【答案】(9,12)【解析】根据题意建立如图所示的平面直角坐标系,题中机器人运动的过程,实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(–6,6)→A4(–6,–6)→A5(9,–6)→A6(9,12).因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12).故答案为(9,12).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,有一条小船.若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.【解析】平移后的小船如答图所示.14.如图所示,三角形A′B′C′是三角形ABC经过平移得到的,三角形ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).分别写出点A′,B′,C′的坐标.【解析】A′(2,3),B′(1,0),C′(5,1).15.坐标平面内有4个点A(0,2),B(–1,0),C(1,–1),D(3,1).(1)建立坐标系,描出这4个点;(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABC D的面积.【解析】(1)根据题意,直接描点;坐标系及4个点的位置,如图所示;(2)分别过A、C两点作x轴的平行线,过B、D两点作y轴的平行线,围成矩形,利用“割补法”求四边形ABCD的面积.如图,用矩形EFGH围住四边形ABCD,则S四边形ABCD=S矩形EFGH–S三角形ABE–S三角形BCF–S三角形CDG–S三角形ADH=3×4–12×1×2–12×1×2–12×2×2–12×1×3=6.5.16.三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG的三个顶点坐标;(2)求三角形EFG的面积.【解析】(1)如图所示:点E(4,1),点F(0,–2),点G(5,–3);(2)S三角形EFG=4×5–12×4×3–12×1×5–12×1×4=192.。

七年级数学下册相交线与平行线(平移)练习题

七年级数学下册相交线与平行线(平移)练习题

七年级数学下册相交线与平行线(平移)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列现象中,属于平移的是( )A .将一张纸沿它的中线折叠B .飞碟的快速转动C .翻开书中的每一页纸D .电梯的上下移动2.下列图案中,可由左侧图案平移得到的是( )A .B .C .D .3.下列图形都由若干个小图组成,其中可以由它的一个小图经过平移而得的图形是( )A .B .C .D .4.如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF = C .AC DF =D .ABC DEF △≌△5.如图,直线a 、b 都与直线l 垂直,垂足分别为E 、F ,EF =1,正方形ABCD ,对角线AC 在直线l 上,且点C 位于点E 处,将正方形ABCD 沿l 向右平移,直到点A 与点F 重合为止,记点C 平移的距离为x ,正方形ABCD 位于直线a 、b 之间部分(阴影部分)的面积为y ,则y 关于x 的函数图象大致为( )A.B.C.D.6.下列图形不能通过平移变换得到的是()A.B.C.D.7.如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC 经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位8.把直线a沿箭头方向水平平移2cm得直线b,这两条直线之间的距离是()A .0.75cmB .0.8 cmC .1cmD .1.5cm9.已知(1,3)A -,(2,1)B -,现将线段AB 平移至11A B .若点1(,1)A a ,1(3,)B b -,则a b +=( ). A .6 B .1- C .2 D .2-10.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:△//BH EF ;△AD BE =;△BD CH =:△C BHD ∠=∠;△阴影部分的面积为26cm .其中正确的是( )A .△△△△△B .△△△△C .△△△△D .△△△△二、解答题11.三角形ABC 与三角形A B C '''在平面直角坐标系中的位置如图所示:(1)分别写出下列各点的坐标:A _______,A '________,三角形ABC 的面积为_______;(2)三角形A B C '''是由三角形ABC 经过怎样的平移得到的?(3)若点(,)P x y 是三角形ABC 内部一点,则三角形A B C '''内部的对应点P '的坐标_______.12.如图在边长为1个单位长度的小正方形组成的网格中给出了格点△ABC 和格点线段DE (顶点或端点为网格线的交点),以及过格点的直线l .(1)画出△ABC 关于直线成轴对称的△A 1B 1C 1;(2)将线段DE 进行平移后,使点D 的对应点D 1与点B 1重合,画出平移后的线段D 1E 1;(3)填空:△C 1B 1E 1的度数是_____.13.在数学活动课上,老师要求同学们用一副三角板拼角,并探索角平分线的画法.小斌按照老师的要求,画出了30角的角平分线,画法如下:△先按照图1的方式摆放45︒角的三角板,画出AOD ∠;△去掉45︒角的三角板,在AOD ∠处,再按照图2的方式摆放30角的三角板,画出射线OB ;△将30角的三角板摆放到如图3的位置,画出射线OC 射线OC 就是AOB ∠的角平分线.(1)AOC ∠的度数为 º.明明、亮亮也按照老师的要求,分别用一副三角板如图4,图5的拼法得到了图6,图7中的EOF ∠和MON ∠.请回答下类问题:(2)EOF ∠的度数是 º,MON ∠的度数是 º;(3)若明明,亮亮也只能用一副三角板画出EOF ∠和MON ∠角平分线,请你仿照小斌的画法,在图6,图7中画出如何摆放三角板.14.已知,如图,AD BE ∥,C 为BE 上一点,CD 与AE 相交于点F ,连接AC .12∠=∠,34∠=∠.(1)求证:AB CD ∥;(2)已知12cm AE =,5cm AB =,13cm =BE ,求AC 的长度.三、填空题15.如图,线段AB是线段CD经过平移得到的,那么线段AC与BD的关系是_____16.如图,在长方形ABCD中,线段AC,BD相交于O,DE//AC,CE//BD,BC=2cm,那么三角形EDC可以看作由____平移得到的,连接OE,则OE=____cm.17.如图,△ABC沿BC所在直线向右平移得到△DEF,若EC=2,BF=10,则BE=___.18.如图,将周长为16的三角形ABC向右平移2个单位后得到三角形DEF,则四边形ABFD的周长等于________________.19.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要__________元.参考答案:1.D【分析】在同一个平面内,如果一个图形上的所有点都按照某个方向做相同距离的移动,那么这样的图形运动就叫做图形的平移运动,简称平移;在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;根据以上定义逐一判断即可得到答案.【详解】解:将一张纸沿它的中线折叠,属于轴对称,故A不符合题意;飞碟的快速转动,属于旋转,故B不符合题意;翻开书中的每一页纸,属于旋转,故C不符合题意;电梯的上下移动,属于平移,故D符合题意;故选D【点睛】本题考查的是轴对称,平移,旋转,掌握“轴对称,平移,旋转的定义”是解本题的关键.2.D【分析】根据平移的性质可直接进行排除选项.【详解】由平移的性质可得:由左侧图案平移得到的只有D选项符合;故选D.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.3.B【分析】由旋转和平移的基本概念进行求解.【详解】选项(A)由它的一个小图经过旋转而得的图形;选项(B)由它的一个小图经过平移而得的图形;选项(C)既不是由它的一个小图经过旋转也不是由它的一个小图经过平移得到;选项(D)由它的一个小图经过轴对称变换而得的图形.故选:B.【点睛】本题考查了平移,旋转和轴对称变换的基本概念,以上三种变换都不会改变图形的大小和形状,其中平移变换后的图形的与原图形的对应点的连线之间是平行等距的关系,牢记这一特征是解本题的关键.4.A【分析】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC△Rt△DEF,据此判断即可.【详解】解:△Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,△Rt△ABC△Rt△DEF,△BC=EF,AC=DF,BC-EC=EF-EC,即BE=CF,所以只有选项A是错误的,故选:A.【点睛】本题考查了平移变换,全等三角形的性质等知识,解题的关键是熟练掌握基本知识,熟练应用平移的基本性质.5.B【分析】由已知易得AC=2,△ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断【详解】解:△当0≤x≤1时,如图1,设平移后的正方形交直线a于点G、H,则EC=x,△GHC为等腰直角三角形,故GH=2x,则y=S△HGC12=⨯EC•GH12=•x•2x=x2,为开口向上的抛物线;△当1<x≤2时,如图2,设平移后的正方形交b于点M、N交a于点GH,则△A′GH、△MNC′均为等腰直角三角形,则y=S正方形ABCD﹣(S△A′GH+S△MNC′)212-[(2﹣x)(2﹣x)×2﹣2×(x﹣1)(x﹣1)]=﹣2x2+6x﹣3;该函数为开口向下的抛物线;△当2<x≤3时,同理可得:y=(3﹣x)×2(3﹣x)12⨯=x2﹣6x+9,该函数为开口向上的抛物线;故选:B.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质等,结合图形正确分类是解题的关键.6.B【分析】平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移不改变图形的形状和大小.【详解】解:根据平移的性质可知:不能用平移变换得到的是选项B,故选:B.【点睛】本题考查平移图形的识别,是基础考点,掌握相关知识是解题关键.7.D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.C【分析】作AC△a,垂足为C,根据含30°角直角三角形性质求出AC,问题得解.【详解】解:如图,作AC△a,垂足为C,由题意得AB=2cm,△ABC=30°,△AC=12AB=1cm,△直线a、b之间的距离是1cm.故选:C【点睛】本题考查了平移、平行线间的距离的定义、“在直角三角形中,30°角所对的直角边等于斜边的一半”等知识,熟知相关知识,并根据题意添加辅助线构造直角三角形是解题关键.9.B【分析】根据平移的性质,通过列方程并求解,即可得到a 和b 的值,并代入到代数式计算,即可得到答案.【详解】根据题意得:()()131b --=---,132a -=-△3b =-,2a =△()231a b +=+-=-故选:B .【点睛】本题考查了平移、一元一次方程、代数式的知识;解题的关键是熟练掌握平移的性质,从而完成求解.10.A【分析】根据平移的性质可直接判断△△△,根据平行线的性质可判断△,阴影部分的面积=S 梯形BEFH ,于是可判断△,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF△AC ,故△△正确;所以C BHD ∠=∠,故△正确;△AC△DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故△正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故△正确;综上,正确的结论是△△△△△.故选:A .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 11.(1)(1,3),(3,1)-,2;(2)先向左平移4个单位,再向下平移2个单位,或先向下平移2个单位,再向左平移4个单位;(3)(4,2)x y --;【分析】(1)根据点的位置写出坐标即可,利用长方形面积减去三个直角三角形面积即可;(2)根据A ',A 的坐标位置,确定平移方式即可;(3)根据坐标的平移规律:横坐标向左平移减,向右平移加;纵坐标向上平移加,向下平移减;计算求值即可;(1)解:(1,3)A ,(3,1)A '-,△ABC 面积=2×3-12×1×3-12×1×1-12×2×2=6-32-12-2=2; (2)解:△A 点先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位可以得到A ',△平移方式为:先向左平移4个单位,再向下平移2个单位,或先向下平移2个单位,再向左平移4个单位; (3)解:△(,)P x y 先向左平移4个单位,再向下平移2个单位得到P ',△P '横坐标为x -4,纵坐标为y -2,故P '(4,2)x y --;【点睛】本题考查了平移的性质:平移不改变图形的大小、形状,只改变图形的位置;图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离;掌握坐标的平移规律是解题关键.12.(1)画图见解析(2)画图见解析(3)45°【分析】(1)根据轴对称作出点A ,B ,C 的对应点111,,A B C ,连接可得.(2)由平移的性质作出点E 平移后的点1E ,连接D 1E 1(3)补出11E FB △,易知为等腰直角三角形,可求△C 1B 1E 1(1)解:如图,△A 1B 1C 1即为所求.(2)解:如图,线段D 1E 1即为所求(3)延长11B C 交于格点F ,连接1E F ,如图,易知11E FB △为等腰直角三角形11145C B E ∴∠=︒故答案为:45°【点睛】本题考查作图—轴对称变换,平移变换等知识,解题的关键是理解题意,正确作出图形. 13.(1)15°;(2)120°,150°;(3)见解析【分析】(1)根据图1可得△AOD 的度数,根据图2可得△AOB 的度数,由图3可知△DOC 的度数,从而可求出△AOC 的度数;(2)由图4和图5可知,根据角的和差可求出图6 和图7的度数;(3)根据题中所给的方法拼出图6 和图7 的平分线即可.【详解】解:(1)由图1知,△AOD=45°,由图2得,△AOB=30°,△△BOD=△AOD -△AOB=45°-30=15°;由图知,△DOC=△DOB+△BOC=30°△△AOC=△AOD -△DOC=45°-30°=15°故答案为:15°;(2)△EOF=30°+90°=120°;△MON=60°+90°=150°;故答案为:120°,150°;(3)a )先按照图△的方式摆放一副三角板,画出△EOF ,b )再按图△的方式摆放三角板,画出射线OC ,c )图△是去掉三角板的图形;同理可画出△MON 的平分线,【点睛】本题考查了利用三角形作图,角的和差,角平分线的定义,熟练掌握作图方法和相关定义是解答此题的关键.14.(1)证明见解析;(2)60.13AC【分析】(1)先证明13,EAC 再结合4,43,EAC ACD 证明1,ACD 从而可得结论; (2)先证明90,EAB DAC 再证明390, 从而利用等面积法可得AC 的长度. 【详解】解:(1) AD BE ∥,3,DAC 而2,DAC EAC12,∠=∠13,EAC 4,43,EAC ACD 1,EAC EAC ACD1,ACD .AB CD ∥(2) 12cm AE =,5cm AB =,13cm =BE ,22222125169,AE AB BE9012,EAB EAC EACDAC90,∥,AD BCDAC390,11,AE AB BE AC2251260AC.1313∠=︒【点睛】本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明390是解本题的关键.15.平行且相等【分析】根据平移的性质即可判断.【详解】△线段AB是线段CD经过平移得到的,△线段AC与BD平行且相等.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点.16.△OAB2【分析】根据平移的性质:平移前后的图形全等,且对应点所连线段平行或在一条直线上,由此可以猜想出三角形EDC可以看成是由三角形AOB向右平移得到的.【详解】解:在长方形ABCD中,AC与BD相交于点O,DE△AC,CE△BD,那么△EDC可以看作是△OAB 平移得到的,OE=平移的距离=BC=2cm.故答案为:△OAB,2.【点睛】本题考查平移的基本性质:△平移不改变图形的形状和大小;△经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.4【分析】根据平移的性质可得BE=CF,再由已知BF=2BE+EC=10,即可求得BE的长.【详解】由平移的性质可得:BE=CF△BF=2BE+EC=10,EC=2△BE=4故答案为:4.【点睛】本题考查了平移的性质,线段的和差关系等知识,关键是掌握平移的性质.18.20【分析】根据平移的基本性质,得出四边形ABFD 的周长22AD AB BF DF AB BC AC =+++=++++即可得出答案.【详解】解:根据题意,将周长为16的ABC ∆沿BC 方向向右平移2个单位得到DEF ∆,2AD ∴=,2BF BC CF BC =+=+,DF AC =;又16AB BC AC ++=,∴四边形ABFD 的周长2220AD AB BF DF AB BC AC =+++=++++=.故答案为:20.【点睛】本题考查平移的基本性质,解题的关键是掌握:△平移不改变图形的形状和大小;△经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.19.504【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个长方形,再求得其面积,则购买地毯的钱数可求.【详解】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,△地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米,△买地毯至少需要16.8×30=504元,故答案为:504.【点睛】本题考查了平移,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.。

人教版七年级下册数学平移课时练习题(含答案)

人教版七年级下册数学平移课时练习题(含答案)

人教版七年级下册数学5.4平移课时练习题(含答案)一、单选题1.“水是生命之源,滋润着世间万物”国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移节水标志得到的图形是()A.B.C.D.2.在下列现象中,属于平移的是()A.月亮绕地球运动B.翻开书中的每一页纸张C.教室可移动黑板的左右移动D.投掷出去的铅球3.下列几种运动中属于平移的有()①水平运输带上砖的运动;②笔直的铁路上行驶的动车(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.4种B.3种C.2种D.1种4.如图,在平面直角坐标系中,已知点A(2,1),B(3,-1),平移线段AB,使点B落在点B1(-1,-2)处,则点A的对应点A1的坐标为()A.(0,-2)B.(-2,0)C.(0,-4)D.(-4,0)5.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标()A.纵坐标不变,横坐标减2 B.纵坐标不变,横坐标先除以2,再均减2C.纵坐标不变,横坐标除以2 D.纵坐标不变,横坐标先减2,再均除以26.如图,ΔABC是直角三角形,它的直角边AB=6,BC=8,将ΔABC沿边BC的方向平移到ΔDEF 的位置,DE交AC于点G,BE=2,ΔCEG的面积为13.5,下列结论:①ΔABC平移的距离是4:②DG=1.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④7.如图所示,将三角形ABC平移得到三角形EFG,则图中共有平行线(含虚线)()A.3对B.4对C.5对D.6对8.如图,△ABC沿直线BC向右平移得到△DEF,已知EC=2,BF=8,则CF的长为()A.3B.4C.5D.69.如图,将△ABC向右平移8个单位长度得到△DEF,且点B,E,C,F在同一条直线上,若EC=4,则BC的长度是()A.11B.12C.13D.1410.如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)11.如图,在平面直角坐标系中,▱AOBC的顶点O与原点重合,顶点B在x轴正半轴上,顶点A 的坐标为(−1,2).按以下步骤作图:先以点O为圆心,适当长为半径作弧,分别交边OA,OB于点D,E;再分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠AOB内交于点F,作射线OF交AC边于点G.则点G的坐标为()A.(3−√5,2)B.(√5,2)C.(√5−2,2)D.(√5−1,2) 12.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动;第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于17,那么n的最小值是()A.9B.10C.11D.12二、填空题13.如图,将△ABC沿直线BC方向平移3个单位得到△DEF,若BC=5,则BF=.14.如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为.15.在平面直角坐标系中,将点A(9,-7)向左平移2个单位长度,则平移后对应的点A‘的坐标是。

七年级数学下册第7章 7.3 图形的平移 课时练习(含答案解析)

七年级数学下册第7章 7.3 图形的平移 课时练习(含答案解析)

7.3 图形的平移一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位4.(2017•铜仁)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S25.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm27.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.39.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.2010.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.814.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是.16.(2017•安丘市模拟)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.17.(2017•龙岩一模)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB 方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是;(3)试求出△ABC的面积.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.参考答案与解析一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【分析】根据平移的性质即可得出结论.【解答】解:平移后的图形与原来的图形的对应点连线平行或在同一条直线上且相等.故选C.【点评】本题考查了平移的性质,牢记“连接各组对应点的线段平行且相等”是解题的关键.2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.【点评】本题主要考查了平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了坐标与图形变化﹣平移,利用对应点的平移规律确定图形的平移规律是解题的关键.4.(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm2【分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2,∴△ABC纸片扫过的面积=6×(2+3)=30cm2,故选D.【点评】考查了平移的性质,本题的关键是得出四边形ACED的面积是三个△ABC 的面积.然后根据已知条件计算.7.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.3【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=6,∴BE=(14﹣6)=4.故选B.【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.9.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.20【分析】设点A到BC的距离为h,根据平移的性质可得AD=CF=2BC,然后求出CE=BC,再根据梯形的面积公式列式计算即可得解.【解答】解:设点A到BC的距离为h,=BC•h=5,则S△ABC∵△ABC沿BC方向平移的距离是边BC长的两倍,∴AD=CF=2BC,AD∥BF,∴CE=BC,∴四边形ACED的面积=(CE+AD)h=(BC+2BC)h=3×BC•h=3×5=15.故选C.【点评】本题考查了平移的性质,三角形的面积,熟记性质并确定出梯形的上、下底边的与BC的关系是解题的关键.10.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定【分析】根据平移的性质得到AA′∥BC,从而说明△A′CB的底边BC的长度不变,高不变,确定正确的选项.【解答】解:∵把△ABC沿BC方向平移,得到△A′B′C′,∴AA′∥BC,∴△A′CB的底边BC的长度不变,高不变,∴△A′CB的面积大小变化情况是不变,故选C.【点评】本题考查了平移的性质,解题的关键是了解平移前后对应点的连线平行且相等,难度不大.12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨【分析】根据平移的定义解答即可.【解答】解:根据题意可涂黑①和⑨,涂黑①时,可将左上和左下两个黑色正方形向右平移1个单位即可得;涂黑⑨时,可将左上和左下两个黑色正方形向右平移2个单位、再向下平移1个单位可得;故选:D.【点评】本题主要考查平移设计图案,熟练掌握平移的定义和性质是解题的关键.13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.8【分析】根据平移的性质可得DF=AC,AD=CF=1,再根据周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向向右平移1个单位得到△DEF,∴DF=AC,AD=CF=1,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+CF+AD=4+1+1=6.故选B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48【分析】根据平移的性质得S△ABC =S△DEF,BE=6,DE=AB=10,则可计算出OE=DE﹣DO=6,再利用S阴影部分+S△OEC=S梯形ABEO+S△OEC得到S阴影部分=S梯形ABEO,然后根据梯形的面积公式求解.【解答】解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC =S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=×(6+10)×6=48.故选D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是5.【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=4,∴BE=(14﹣4)=5.故答案为:5【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.16.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为2.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故答案为:2.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为3.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为24.【分析】运用平移的观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(5+7)=24.故答案为:24.【点评】本题考查了平移的性质,矩形性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是(a+3,b﹣2);(3)试求出△ABC的面积.【分析】(1)利用A点坐标得出x轴、y轴及原点O的位置;(2)利用平移的性质得出平移后的△A1B1C1,进而得出点P的对应点P1的坐标;(3)利用△ABC所在矩形面积减去周围三角形面积得出即可.【解答】解:(1)如图所示:O点即为所求;(2)如图所示:△A1B1C1,即为所求;P1(a+3,b﹣2);故答案为:(a+3,b﹣2);=4×5﹣×5×2﹣×2×3﹣×2×4=8.(3)S△ABC【点评】此题主要考查了平移变换以及三角形面积求法等知识,利用平移的性质得出对应点位置是解题关键.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【分析】(1)根据平行线的性质,以及等量代换证明∠ADC+∠C=180°,即可证得AD∥BC;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,又由∠DBE=∠ABC,即可求得∠DBE的度数.(3)首先设∠ABD=∠DBF=∠BDC=x°,由直线AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得∠BEC与∠ADB的度数,又由∠BEC=∠ADB,即可得方程:x°+40°=80°﹣x°,解此方程即可求得答案.【解答】证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.【点评】此题考查了平行线的性质与平行四边形的性质.此题难度适中,解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S 的值,根据图形可得出点B的位置.【解答】解:(1)如图所示;(2)由图可知,S=5×4﹣×4×1﹣×2×4﹣×2×5=20﹣2﹣4﹣5=9.根据图形可知,点B不在AE边上.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。

七年级下册数学同步练习题库:平移(选择题:较易)

七年级下册数学同步练习题库:平移(选择题:较易)

平移(选择题:较易)1、下列属于平移的是()A.电风扇风叶工作 B.电梯的升与降C.钟摆的摆动 D.方向盘的转动2、把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y ()A.是一个确定的值 B.有两个不同的值C.有三个不同的值 D.有三个以上不同的值3、将长度为3cm的线段向上平移20cm,所得线段的长度是()A.3cm B.23cm C.20cm D.17cm4、如图,线段AB经过平移得到线段A1B1,其中A,B的对应点分别为A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为( )A.(a-4,b+2) B.(a-4,b-2) C.(a+4,b+2) D.(a+4,b-2)5、如图,将线段AB沿箭头方向平移2 cm得到线段CD,若AB=3 cm,则四边形ABDC的周长为( )A.8 cm B.10 cm C.12 cm D.20 cm6、下列四幅图案在设计中用到平移变换方式的是().A. B. C. D.7、在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.8、下列图形中只能用其中一部分平移可以得到的是().A. B. C. D.9、下列现象是数学中的平移的是()A.树叶从树上落下 B.电梯从底楼升到顶楼C.碟片在光驱中运行 D.卫星绕地球运动10、定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()11、下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.同一平面内,过一点有且只有一条直线与已知直线垂直D.与同一条直线垂直的两条直线也垂直12、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C. D.13、如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()14、下列图形中,把△ABC平移后,能得到△DEF的是()A. B.C. D.15、如图,4根火柴棒形成象形“□”字,平移火柴棒后,原图形能变成的象形汉字是()16、在以下现象中,属于平移的是()①在荡秋千的小朋友;②打气筒打气时,活塞的运动;③自行车在行进中车轮的运动;④传送带上,瓶装饮料的移动.A.①② B.①③ C.②③ D.②④17、如图,分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是 ( )A. B. C. D.18、在如图五幅图案中,(2)、(3)、(4)、(5)中哪一幅图案可以通过平移图案(1)得到()A.(2) B.(3) C.(4) D.(5)19、如图,将左图中的福娃“欢欢”通过平移可得到的图为()20、在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()21、在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()22、在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.23、下列各式中,正确的是()A.一个图形平移后,形状和大小都改变B.一个图形平移后,形状和大小都不变C.一个图形平移后,形状改变但大小不变D.一个图形平移后,形状不变但大小改变24、下列图形中,把△ABC平移后,能得到△DEF的是()A. B.C. D.25、如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是()A.先向上移动1格,再向右移动1格B.先向上移动3格,再向右移动1格C.先向上移动1格,再向右移动3格D.先向上移动3格,再向右移动3格26、小芳和小明在手工课上各自制作楼梯模型,他们用的材料如图,则()A.一样多 B.小明多 C.小芳多 D.不能确定27、如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有()①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。

初一数学平移练习题

初一数学平移练习题

初一数学平移练习题
1. 已知点A的坐标为(2,3),将点A向右平移5个单位,求平移后点
A'的坐标。

2. 直线y=2x+1向右平移3个单位,求平移后直线的解析式。

3. 函数f(x)=x^2-4x+3,将该函数图像向上平移2个单位,求平移后
函数的解析式。

4. 已知矩形ABCD,其中A的坐标为(1,2),B的坐标为(4,2),C的坐
标为(4,5),D的坐标为(1,5)。

将矩形ABCD向左平移4个单位,求平
移后矩形A'B'C'D'各顶点的坐标。

5. 点P在坐标系中的位置为(-3,4),将点P向下平移6个单位,求平
移后点P'的坐标。

6. 直线y=-x+2向上平移4个单位,求平移后直线的解析式。

7. 函数g(x)=3x-2,将该函数图像向左平移1个单位,求平移后函数
的解析式。

8. 已知正方形EFGH,其中E的坐标为(-2,-3),F的坐标为(-2,0),G
的坐标为(1,0),H的坐标为(1,-3)。

将正方形EFGH向上平移5个单位,求平移后正方形E'F'G'H'各顶点的坐标。

9. 点M在坐标系中的位置为(5,-1),将点M向右平移7个单位,求平
移后点M'的坐标。

10. 直线y=3x-5向下平移2个单位,求平移后直线的解析式。

初一数学《平移》基础练习题

初一数学《平移》基础练习题

2018年平移基础练习题(一)一、选择题1.下列说法中,正确的是()(A)图形的平移是指把图形沿水平方向移动(B)“相等的角是对顶角”是一个真命题(C)平移前后图形的形状和大小都没有发生改变(D)“直角都相等”是一个假命题2.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位3.下列各组图形可以通过平移互相得到的是().方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形4.如图,在55乙拼成一个长方形,那么,下面的平移方法中,正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格5.下列图形中,不能..通过其中一个四边形平移得到的是()6.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为()A.30° B.40° C.60° D.80°7.下列图形中,哪个可以通过图1平移得到()8.在以下现象中,属于平移的是()①在荡秋千的小朋友;②打气筒打气时,活塞的运动;③自行车在行进中车轮的运动;④传送带上,瓶装饮料的移动.A.①② B.①③ C.②③ D.②④9.火柴棒摆成如图所示的象形“口”字,平移火柴棒,原图形可变成的象形文字是()A. B. C. D.10.在下列说法中:(1)△ABC在平移过程中,对应线段一定相等;(2)△ABC在平移过程中,对应线段一定平行;(3)△ABC在平移过程中,周长保持不变;(4)△ABC在平移过程中,对应边中点的连线段的长等于平移的距离;(5)△ABC在平移过程中,面积不变,其中正确的有()A.(1)(2)(3)(4) B.(1)(2)(3)(4)(5)C.(1)(2)(3)(5) D.(1)(3)(4)(5)11.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动12.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是A.BE=4 B.∠F=30° C.AB∥DE D.DF=513.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF 的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位14.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30° B.2,60° C.1,30° D.3,60°15.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.1216.如图,将边长为5cm的等边△ABC沿边BC向右平移4 cm得到△A/B/C/,则四边形AA/C/B的周长为()A.22cm B.23cm C.24cm D.25cm二、填空题17.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C= cm.18.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=19.如图,在直角坐标系中,已知点,点,平移线段AB,使点A落在,点B落在点B1.,则点B1.的坐标为.20._________和_________不改变图形的形状和大小.21.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为____ ____.22.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是 cm2.23.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则∠DEF= ,EF= .24.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于 cm.25.图形在平移时,下列特征中不发生改变的有________.(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.26.如图,在Rt△ABC,∠C=90°,BC=3厘米,AC=4厘米.将△ABC沿BC方向平移1厘米,得到△A′B′C′,则四边形ABC′A′的面积为平方厘米.27.如图,将边长为的等边△沿边向右平移得到△,则四边形的周长为E DC B A F28.将函数y x =-的图像向上平移1个单位长度后得到的图像所对应的函数关系式是_________.29.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B 落在45°的三角板的斜边DF 上,则两个三角板重叠部分(阴影部分)的面积为 .30.如图,长方形ABCD 中,AB=6,第1次平移将长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形A 1B 1C 1D 1,第2次平移将长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到长方形A 2B 2C 2D 2…,第n 次平移将长方形1111n n n n A B C D ----沿11n n A B --的方向平移5个单位,得到长方形n n n n A B C D (n >2),则n AB 长为_______________.31.如图,将面积为5的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为32.如图所示,方格中有一条美丽可爱的小鱼.(1)若每个小方格的边长为1,则小鱼的面积为________.(2)画出小鱼向左平移3格后的图形(不要求写出作图步骤和过程).三、解答题33.画图并填空:(1)画出图中△ABC的高AD(标注出点D的位置);(2)画出把△ABC沿射线AD方向平移3cm后得到的△A1B1C1;(3)根据“图形平移”的性质,得BB1= cm,AC与A1C1的位置关系是:34.如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(1)建立以点B为原点,AB边所在直线为x轴的直角坐标系.写出点A、B、C、D的坐标;(2)求出四边形ABCD的面积;(3)请画出将四边形ABCD向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.35.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.36.(本题4分)如图,在方格纸中,△ABC的三个顶点和点M都在小方格的顶点上.按要求作图,使△ABC 的顶点在方格的顶点上.(1)过点M 做直线AC 的平行线;(2)将△ABC 平移,使点M 落在平移后的三角形内部.37.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′,(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC 的面积.38.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 对应点A ',点B C 、分别对应点B C ''、.(1) 画出平移后的△A B C '''.(2) △A B C '''的面积是_ ;(3) 连接AA CC '',,则这两条线段之间的关系是__ __.39.(6分)如图, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)。

人教版初中七年级下册数学《平移》检测练习题

人教版初中七年级下册数学《平移》检测练习题

七年级下5.4《平移》检测题一、选择题1、在以下现象中:①温度计中液面上升或下降,②用打气筒打气时活塞的移动,③钟摆的摆动,④传送带带着瓶装饮料的移动。

其中平移的有( )A 、①②④B 、①③C 、②③D 、②④ 2、如图所示ABC ∆平移到C B A '''∆, 则图中平行相等的线段有_____对( ) A 、3对 B 、4对 C 、5对 D 、6对3、在平移过程中,对应线段( )A 、互相平行且相等B 、互相垂直且相等C 、互相平行(或在同一条直线上)且相等D 、相交且相等 4、如图,ABC ∆平移后得到FDE ∆,则和BD 对应的线段是( ) A 、DC B 、DE C 、CE D 、以上都不对(4题图) (5题图)5、DEF ∆经过平移后得到ABC ∆,则C ∠的对应角和ED 的对应边分别是( ) A 、F ∠、AC B 、BOD ∠、BA C 、F ∠、BA D 、BOD ∠、AC 二、填空题1、平移后,对应线段________________________________,对应角__________2、如图DEF ∆,ABC ∆是沿BC 方向平移后的图形,试判断FCGD 四边形S 与GAB S E 四边形的面积关系是______________BAC C 'B 'A 'BECAFDAB EC FD OABG ECF D(2题图) (3题图)3、如图,直角ABO ∆的周长为100,在其内部有4个小直角三角形,则这4个小直角三角形周长之和为( )A 、90B 、100C 、110D 、1204、在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为__________m 2,现为增加美感,把这条小路改为竖直方向的宽恒为1m 的弯曲小路,则此时余下草坪的面积为__________ m 25、如图,平移ABC ∆可得到DEF ∆,若A ∠=50°,C ∠=60°,则E ∠=__________,EDF ∠=__________,F ∠=__________,DOB ∠=__________(4题图) (5题图) (6题图)6、如图,是一块钜形ABCD 的场地,长AB =101米,宽AD =52米,从A 、B 两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为__________米2 三、解答题1、如图,将Rt ABC ∆沿AB 方向平移AD 距离得到Rt DEF ∆,已知BE =5,EF =8,CG =3,求ADBEFC O图中阴影部分面积。

人教版七年级数学第五章第4节《平移》单元训练题 (11)(含答案解析)

人教版七年级数学第五章第4节《平移》单元训练题 (11)(含答案解析)
第五章第4节《平移》单元训练题 (11)
一、单选题
1.下列现象属于数学中的平移的是()
A.树叶从树上随风飘落B.升降电梯由一楼升到顶楼
C.汽车方向盘的转动D.“神舟”号卫星绕地球运动
2.下列图形中,不能由“基本图案”(小四边形)经过平移得到的图形为()
A. B. C. D.
3.如图,下列图案中可以看成是由图案自身的一部分经平移后而得到的是( )
11.B
【解析】
利用平移的性质解决问题即可.
解:由平移的性质可知,AD=BE.
∵BC=CE,BC=2,
∴BE=4,
∴AD=4.
故选:B.
本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
12.A
【解析】
证明平行四边形是平移重合图形即可.
如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.
9.如图,将三角形ABC沿BC方向平移3cm得到三角形DEF,若三角形ABC的周长为16m,则四边形ABFD的周长为( )
A.19cmB.22cmC.25cmD.28cm
10.下列生活现象中,不是平移现象的是( )
A.人站在运行着的电梯上B.推拉窗左右推动
C.小明在荡秋千D.小明躺在直线行驶的火车上睡觉
(2)将三角形 向先右平移1个单位,再向上平移3个单位,得到三角形 ,请在图中画出平移后的三角形 ;
(3)三角形 的面积是.
21.如图,在边长为1个单位长度的小正方形组成的网格中,三角形 是三角形ABC向右平移5个单位长度后得到的.
(1)请画出三角形ABC;
(2)求出三角形 的面积.
22.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.

平移问题练习题

平移问题练习题

平移问题练习题在数学中,平移是一种将图形沿着直线路径移动的操作。

通过平移,我们可以将一个图形移动到另一个位置,而不改变其形状和大小。

平移问题是数学中常见的练习题之一,旨在帮助学生理解平移的概念和操作。

下面是一些平移问题练习题,通过这些题目,你可以提高平移图形的能力,并加深对平移的理解。

练习题一:1. 将一个正方形ABCD按照平移规则向右平移2个单位,求新的正方形的顶点坐标。

2. 将三角形ABC按照平移规则向左平移4个单位,求新的三角形的顶点坐标。

练习题二:1. 平移一个长方形ABCD,使得B点到达E点,D点到达F点。

已知BE=DF=5,求平移的方向向量。

2. 平移一个正方形ABCD,使得A点到达E点,C点到达F点。

已知AE=CF=6,求平移的方向向量。

练习题三:1. 平移一个梯形ABCD,使得B点到达E点,D点到达F点。

已知BE=DF=8,求平移的方向向量。

2. 平移一个菱形ABCD,使得A点到达E点,C点到达F点。

已知AE=CF=10,求平移的方向向量。

练习题四:1. 平移一个平行四边形ABCD,使得B点到达E点,D点到达F点。

已知BE=DF=7,求平移的方向向量。

2. 平移一个五边形ABCDE,使得A点到达E点,C点到达F点。

已知AE=CF=9,求平移的方向向量。

练习题五:1. 平移一个多边形PQRST,使得A点到达E点,C点到达F点。

已知AE=CF=12,求平移的方向向量。

2. 平移一个圆形O,使得O点到达E点。

已知OE=10,求平移的方向向量。

通过解答以上练习题,你可以熟悉平移的操作方法,掌握平移的方向向量的计算以及平移后图形顶点坐标的求解。

平移问题是数学中的基础知识,对于几何图形的变换和应用具有重要意义。

希望这些练习题能够帮助你更好地理解平移问题,提高数学能力。

如果你有任何疑问或需要更多练习,请随时提出。

祝你成功!。

七年级数学下册《平移》练习题及答案解析

七年级数学下册《平移》练习题及答案解析

七年级数学下册《平移》练习题及答案解析一、选择题(本大题共9小题)1. 下列现象是数学中的平移的是( )A. 树叶从树上落下B. 电梯从底楼升到顶楼C. 碟片在光驱中运行D. 卫星绕地球运动2. 北京成功举办了2022年冬奥会,吉祥物冰墩墩深受人们的喜爱,下面四个图案可以看作由“如图的冰墩墩”经过平移得到的是( )A. B. C. D.3. 在方格中,将图中的图形平移后位置如图所示,则图形的平移方法中,正确的是( )A. 向下移动格B. 向上移动格C. 向上移动格D. 向下移动格4. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是( )A. 8B. 10C. 12D. 165. 如图2是图1将__________平移__________所得到的( )A. △AOB,BC的长度B. △COD,BC的长度C. △AOD,AD的长度D. △BOC,BA的长度6. 如图,甲、乙两只蚂蚁以相同的速度沿两条不同的路径,同时从出发爬到,则( )A. 乙比甲先到B. 甲比乙先到C. 甲和乙同时到D. 无法确定7. 某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A. 甲方案最长B. 乙方案最长C. 丙方案最长D. 一样长8. 如图,两个大小一样的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到▵DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 24B. 40C. 42D. 489. 如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为( )A. 100米B. 99米C. 98米D. 74米二、填空题(本大题共6小题)10. 如图是我们常用的画平行线的方法,三角板的平移构造了平行线的判定依据:“,两直线平行.”11. 某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则地毯的长为______米,购买这种地毯至少需要______元.12. 如图,∠1=70∘,直线a平移后得到直线b,则∠2−∠3=___13. 如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为______.14. 如图,将长为6cm,宽为4cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A′B′C′D′,则阴影部分的面积为_________cm2.15. 将直角梯形ABCD平移得梯形EFGH,若HG=10,MC=2,MG=4,则图中阴影部分的面积为.三、解答题(本大题共5小题)16. 如图方格中,有两个图形(1)画出图形(1)向右平移7个单位的图形a;(2)画出图形a关于直线AB轴对称图形b;(3)将图形b与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数。

人教版七年级初一数学 平移 同步作业(含答案)

人教版七年级初一数学 平移 同步作业(含答案)

5.4 平移(一)◆典型例题【例1】如图5-123,△ABC沿射线XY的方向平移一定距离后成为△DEF,找出图中存在的平行且相等的线段和相等的角.图5-123【解析】根据平移的概念找出对应点,再由平移的性质找出对应的线段和角.【答案】点A、B、C的对应点分别为点D、E、F.所以AD∥CF∥BE,AD=CF=BE.∠CAB=∠FDE,∠ACB=∠DFE,∠CBA=∠FED.【例2】用平移的方法说明怎样得出平行四边形的面积公式计算S=ah.【解析】过A、D作平行四边形的高,由图可知将△DEF向右平移到△CDN处,即可将平行四边形转化为矩形.根据图形平移的性质:平移前后图形的形状和大小都不会改变,因而图形的而积不变.本例是平移方法在几何中的典型应用.【答案】如图5-124,过A作AM⊥BC于M,过D作DN⊥BC于N,将△ABM沿BC 方向向右平移a个单位到△CDN的位置,因△CDN和△ABM的形状和大小相同,因而图形的面积不变.所以S平行四边形=S矩形=ah,图5-124【例3】如图5-125,把正方形ABCD的对角线分成n段,以每一段为对角线作正方形.设正方形ABCD的周长为a,求这n个小正方形的周长之和.图5-125【解析】因为小正方形的个数和边长不确定,不能直接求出每个小正方形的周长,注意到小正方形的边与大正方形的边对应平行,因此可运用平移的知识,将每个小正方形的边平移到大正方形ABCD的边上,运用整体思想不难求出所有小正方形周长之和.【答案】如图5-125,将每个小正方形的边按箭头所示的方向平移到大正方形的边上,正好将大正方形的边没有缝隙的覆盖.因此,所有小正方形周长之和为a.◆课前热身1.在平面内,将一个图形沿某个方向___________一定的距离,这样的图形运动称为________平移,平移不改变图形的___________和___________.2.图形的平移是由___________和___________决定的.◆课上作业3.经过平移,___________、___________分别相等,对应点所连的线段___________.4.如图5-126,△ABC平移到△DEF,图中相等的线段有___________,相等的角有___________,平行的线段有___________图5-126 图5-1275.把一个三角形沿东南方向平移了 3 cm,则AB边上的中点P沿______方向平移了_______cm.6.如图5-127,△ABC是由四个形状大小一样的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________.◆课下作业一、填空题7.如图5-128,△EFG是由△ABC平移得到的,如果∠ABC=90°,AB=4 cm,BC=2 cm,则FG=___________,∠EFG=___________.图5-128.列现象:①火车在笔直的轨道上匀速行驶;②商场电梯上上下下地运动;③滑雪运动员在平坦的雪地上滑行;④健身时做呼啦圈运动;⑤急刹车时车在地面上的运动,其中不属于平移的是___________.9.如图5-129,将字母“V”向右平移___________格会得到字母“W”.图5-129 图5-13010.如图5-130,直角三角形AOB的周长为100,在其内部有五个小直角三角形,则这五个小直角三角形的周长之和为___________.二、选择题11.下列各组图形(图5-131),可以经过平移变换由一个图形得到另一个图形的是( )图5-13112.如图5-132,直角三角形ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )图5-132A.三角形AB C与三角形DEF重合B.∠DEF=90°C.AC=DFD.EC=CF三、解答题13.观察下面网格小的图形,解答下列问题:图5-132(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形参考答案◆课前热身1.在平面内,将一个图形沿某个方向___________一定的距离,这样的图形运动称为________平移,平移不改变图形的___________和___________.答案:平移;形状;大小2.图形的平移是由___________和___________决定的.答案:方向;距离◆课上作业3.经过平移,___________、___________分别相等,对应点所连的线段___________.答案:对应线段;对应角;平行(或在一条直线上)4.如图5-126,△ABC平移到△DEF,图中相等的线段有___________,相等的角有___________,平行的线段有___________图5-126答案:BA=ED,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠C=∠F;BA∥ED,BC∥EF,AC∥DF5.把一个三角形沿东南方向平移了 3 cm,则AB边上的中点P沿______方向平移了_______cm.答案:东南;36.如图5-127,△ABC是由四个形状大小一样的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________.图5-127答案:△DBE、△FEC◆课下作业一、填空题7.如图5-128,△EFG是由△ABC平移得到的,如果∠ABC=90°,AB=4 cm,BC=2 cm,则FG=___________,∠EFG=___________.图5-12答案:2cm;90°8.列现象:①火车在笔直的轨道上匀速行驶;②商场电梯上上下下地运动;③滑雪运动员在平坦的雪地上滑行;④健身时做呼啦圈运动;⑤急刹车时车在地面上的运动,其中不属于平移的是___________.答案:④9.如图5-129,将字母“V”向右平移___________格会得到字母“W”.图5-129答案:210.如图5-130,直角三角形AOB的周长为100,在其内部有五个小直角三角形,则这五个小直角三角形的周长之和为___________.图5-130答案:100二、选择题11.下列各组图形(图5-131),可以经过平移变换由一个图形得到另一个图形的是( )图5-131答案:A12.如图5-132,直角三角形ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )图5-132A.三角形AB C与三角形DEF重合B.∠DEF=90°C.AC=DFD.EC=CF答案:D三、解答题13.观察下面网格小的图形,解答下列问题:图5-132(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形答案:第13题图。

人教版数学七年级下册第五章《平移》小测与答案

人教版数学七年级下册第五章《平移》小测与答案

人教版数学七年级下册第五章《平移》小测测试时间:15分钟一、选择题1.下列现象中是平移的是( )A.将一张纸沿它的中线折叠B.飞碟的快速转动C.电梯的上下移动D.翻开书中的每一页纸张2.甲骨文是我国古代的一种文字,是汉字的早期形式,下列甲骨文中,能用平移来分析其形成过程的是( )3.如图,长方形ABCD的对角线AC=5,AB=3,BC=4,则图中五个小长方形的周长之和为( )A.7B.9C.14D.184.如图是两个有重叠的直角三角形,可以看作是将直角三角形ABC沿着BC方向平移5个单位长度得到了直角三角形DEF,其中AB=8,BE=5,DH=3,则下列结论正确的有( )①AC∥DF;②HE=5;③CF=5;④四边形DHCF的面积为32.5.A.1个B.2个C.3个D.4个二、填空题5.如图所示,在正方形网格中,为了把三角形ABC平移到三角形A'B'C',可以先将三角形ABC 向右平移格,再向上平移格.6.如图,将三角形ABO沿着射线AD的方向平移10 cm得到三角形DCE,连接OE,则OE= cm.7.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为平方米.8.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的路(阴影部分),余下部分绿化,小路的宽为2 m,则绿化的面积为m2.三、解答题9.某宾馆重新装修后,准备在大厅的楼梯上铺设一种红地毯,已知这种地毯每平方米售价为50元,楼梯宽2 m,楼梯侧面及相关数据如图所示,求买地毯需要多少元.10.如图,在直角三角形ABC中,∠ACB=90°,BC=3 cm,AC=4 cm,将三角形ABC沿BC方向平移1 cm得到三角形A'B'C'.求四边形ABC'A'的面积.11.如图,方格纸中每个小正方形的边长都是1,三角形ABC是格点三角形(三个顶点都在格点上).三角形ABC经过平移后得到三角形A'B'C',点B恰好落在点B'处,(1)请画出平移后得到的三角形A'B'C';(2)三角形A'B'C'的面积等于;(3)在线段PQ上是否存在格点M,使得△MA'C'的面积是△MA'B'面积的2倍?若存在,请画出所有这样的格点M1,M2,…,若不存在,请说明理由.人教版数学七年级下册第五章《平移》小测答案一、选择题1.答案 C A.将一张纸沿它的中线折叠,不是沿某一直线方向移动,不属于平移,不符合题意;B.飞碟的快速转动,不是沿某一直线方向移动,不属于平移,不符合题意;C.电梯的上下移动是平移,符合题意;D.翻开书中的每一页纸张,不是沿某一直线方向移动,不属于平移,不符合题意.故选C.2.答案 D 由图可知,D 可利用图形的平移得到.故选D.3.答案 C 图中五个小长方形的周长之和=AB+BC+CD+AD=3+4+3+4=14.故选C.4.答案 D 由平移的性质可得AC∥DF,AB=DE=8,CF=BE=5,S 三角形ABC =S 三角形DEF ,∵DH=3,∴HE=DE-DH=8-3=5,∴S 四边形DHCF =S 梯形ABEH =12(EH+AB)·BE=12×(5+8)×5=652=32.5, 故①②③④都正确,故选D.二、填空题5.答案 5;3解析 由题图可知,先将三角形ABC 向右平移5格,再向上平移3格,可以得到三角形A'B'C', 故答案为5;3.6.答案 10解析 ∵三角形ABO 沿着射线AD 的方向平移10 cm 得到三角形DCE,∴AD=OE=10 cm.故答案为10.7.答案 (ab-2b)解析 由题可得,平移之后如图:则草地的面积是(ab-2b)平方米.故答案为(ab-2b).8.答案 560解析 利用平移可得,绿化的面积为(30-2)×(22-2)=560(m 2).故答案为560.三、解答题9.解析 如图,利用平移线段,把楼梯的横、竖分别向上、向左平移,构成一个矩形,则该矩形的长,宽分别为6米,4米,∴地毯的长度为6+4=10(米),地毯的面积为10×2=20(平方米), ∴买地毯需要20×50=1 000(元).10.解析 ∵三角形ABC 沿BC 方向平移1 cm,得到三角形A'B'C',∴AA'=CC'=1 cm,AA'∥BC',∴BC'=BC+CC'=3+1=4 cm,∵∠ACB=90°,∴四边形ABC'A'是梯形且AC 是梯形的高,∴四边形ABC'A'的面积=12×(1+4)×4=10 cm 2. 11.解析 (1)画出平移后得到的三角形A'B'C'如图所示.(2)三角形A'B'C'的面积等于3×6-12×3×3-12×2×3-12×1×6=152,故答案为152. (3)如图所示,点M 1、M 2即为所求.。

人教版数学七年级下册-《平移》基础全练

人教版数学七年级下册-《平移》基础全练

《平移》基础全练基础题知识点1认识平移现象1.下列现象不属于平移的是(C)A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.(赵县期末)在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是(C)3.(北流市校级月考)如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=(A)A.40°B.50°C.90°D.140°4.(五峰县期中)如图所示,四幅汽车标志设计中,能通过平移得到的是(A),奥迪,A)),本田,B)),大众,C)),铃木,D)) 5.(咸丰县校级月考)如图所示,△FDE经过怎样的平移可得到△ABC(A)A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长6.将长度为5 cm的线段向上平移10 cm所得线段长度是(B)A.10 cm B.5 cmC.0 cm D.无法确定7.(台州中考)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.8.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C=1_cm.9.如图,三角形DEF是三角形ABC平移所得,观察图形:(1)点A的对应点是点D,点B的对应点是点E,点C的对应点是点F;(2)线段AD,BE,CF叫做对应点间的连线,这三条线段之间有什么关系呢?解:AD∥BE∥CF,AD=BE=CF.知识点2画平移图形10.(济南中考)如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)图1图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位11.请在如图所示的方格中,将“箭头”向右平移3个单位长度.解:如图所示.12.(甘肃模拟)如图所示,三角形ABC是通过平移三角形DEF得到的,已知ED和BA是对应线段,请在图中画出三角形DEF.解:如图所示.中档题13.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线(D) A.a户最长B.b户最长C.c户最长D.三户一样长14.(涞水县校级月考)如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有(D)A.0条B.1条C.2条D.3条15.(福州校级自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是(B)16.(海安县一模)如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.17.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16;(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).解:如图所示.18.如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).综合题19.(1)已知图1是将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.解:(1)如图.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)10×40-10×1=390(m2).。

平移(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

平移(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题5.18 平移(专项练习)一、单选题1.下列现象中,属于平移现象的是( )A .方向盘的转动B .行驶的自行车的车轮的运动C .电梯的升降D .钟摆的运动2.在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A .B .C .D .3.如图,ABC 沿直线m 向右平移2cm ,得到DEF ,下列说法错误的是( )A .//AC DFB .AB DE =C .2cm CF =D .2cm DE = 4.如图,ABC 沿射线BC 方向平移到DEF (点E 在线段BC 上),如果8cm BC =,5cm EC =,那么平移距离为( )A .3cmB .5cmC .8cmD .13cm5.有以下说法:①①ABC 在平移的过程中,对应线段一定相等;①①ABC 在平移过程中,对应线段一定平行;①①ABC 在平移过程中,周长保持不变;①①ABC 在平移过程中,对应角分别相等. 正确的是( )A.①①①①B.①①①C.①①①D.①①①6.如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的弯曲小路,则改造后草地部分的面积()A.变大B.不变C.变小D.无法确定7.下列平移作图不正确的是()A.B.C.D.8.定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()A.B.C.D.9.如图所示,将边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方'''',此时阴影部分的面积为()形A B C DA .224cmB .226cmC .218cmD .220cm10.小红同学在某数学兴趣小组活动期间,用铁丝设计并制作了如图所示的三种不同的图形,请您观察甲、乙、丙三个图形,判断制作它们所用铁丝的长度关系是( )A .制作甲种图形所用铁丝最长B .制作乙种图形所用铁丝最长C .制作丙种图形所用铁丝最长D .三种图形的制作所用铁丝一样长二、填空题11.下列生活中的物体的运动情况可以看成平移的是____.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).12.如图所示是一座楼房的楼梯,高1 m ,水平距离是2.8 m .如果要在台阶上铺一种地毯,那么至少要买这种地毯________13.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到①DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__14.如图,将ABC ∆沿着射线BC 的方向平移,得到DEF ∆,若13EF =,7EC =,则平移的距离为__.15.如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若△B=55°,△C=100°,则△AB’A’的度数为_____°.16.如图,在长方形ABCD中,线段AC,BD相交于O,DE//AC,CE//BD,BC=2cm,那么三角形EDC可以看作由____平移得到的,连接OE,则OE=____cm.17.如图,在长为9m,宽为7m的矩形场地上修建两条宽度都为1m且互相垂直的道路,剩余部分进行绿化,则绿化面积共有______2m.18.如图,公园里长为20米宽为10米的长方形草地内修建了宽为1米的道路,则草地面积是________平方米.三、解答题19.如图示,每个小方格的边长为1,把三角形ABC 先向右平移5个格再向下平移2个格得到三角形DNF .(1) 在方格中画出平移后的三角形DNF .(2) 计算平移后三角形DNF 的面积.20.如图所示的正方形网格中,每个小正方形的边长都为1个单位长度,三角形ABC 的顶点都在正方形网格的格点上,将三角形ABC 向上平移m 个单位,再向右平移n 个单位,平移后得到三角形A B C ''',其中图中直线l 上的点A '是点A 的对应点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.4 平移
(检测时间50分钟满分100分) 班级_______ 姓名_________ 得分
________
一、选择题:(每小题3分,共15分)
1.如图所示,△FDE经过怎样的平移可得到△ABC.( )
A.沿射线EC的方向移动DB长;
B.沿射线EC的方向移动CD长
C.沿射线BD的方向移动BD长;
D.沿射线BD的方向移动DC长
2.如图2所示,下列四组图形中,•有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )
A B C D
3.如图所示,△DEF经过平移可以得到△ABC,那么∠C
的对应角和ED的对应边分别是( )
A.∠F,AC
B.∠BOD,BA;
C.∠F,BA
D.∠BOD,AC
4.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( )
D
C
B
A
5.在平移过程中,对应线段( )
A.互相平行且相等;
B.互相垂直且相等
C.互相平行(或在同一
F
E
D C
B
A
O
F
E
C
B
A
D
条直线上)且相等
二、填空题:(每小题3分,共12分)
1.在平移过程中,平移后的图形与原来的图形________和_________都相同,•因此对应线段和对应角都________.
2.如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____度,∠EDF=_______度,∠F=______度,∠DOB=_______度.
3.如图所示,长方体中,平移后能得到棱AA 1的
棱有________.
4.小明的一本书一共有104页,在这104页的页码中有两个数码的,并且这两个数码经过平移其中一个能得到另一个,则这样的页共有________页.
三、训练平台:(每小题5分,共15分)
1.如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格
.
C
B
A
D C
B
A
(第1题) (第2题)
O F
E
C B A
D
D 1
C 1B 1A 1
C
B
A
D
(第3题)
2.如图所示,将△ABC 平移,可以得到△DEF,点B 的对应点为点E,请画出点A 的对应点D 、点C 的对应点F 的位置.
3.如图所示,画出平行四边形ABCD 向上平移1厘米后的图形. 四、提高训练:(每小题6分,共12分)
1.如图所示的是某商品包装盒上图案的一部分,•请分析这个图案的基本图形和形成过程
.
2.如图所示,四边形ABCD 中,AD ∥BC,AB=DC=AD,将DC 向左平移AD 长,•平移后你得到的两个图形是什么样的?
D
C
B A
五、探索发现:(共8分)
公路上同向而行的两辆汽车,•从后车车头与前车车尾“相遇”到原后车车尾离开原车车头这段时间为超车时间,如果原前、后两车车长分别为a,b,•那么在超车时间内两车行驶的路程与两车车长有何关系?
六、能力提高:(每小题9分,共18分)
1.如图所示,四边形ABCD 中,AD ∥BC,AB=DC,∠B=80°,求∠A,∠D,∠
C 的度数.
D
C
B
A
2.如图所示,大圆O 内有一小圆O 1,小圆O 1从现在的位置沿O 1O 的方向平移4•个单位后,得到小圆O 2,已知小圆半径为1. (1)求大圆的面积;(2)求小圆在平移过程中扫过的面积.
七、中考题与竞赛题:(每小题10分,共20分)
1.(2018.福建)如图14所示,点A,B,C,D 在同一条直线上,AB=CD,∠D=∠ECA,EC=•FD.试说明AE=BF.
F
E
D
C
B A
2.如图15所示的是用火柴杆摆的一只向左飞行的小鸟,你能只平移3根火柴杆就使它向右飞吗
?
答案:
一、1.A 2.D 3.C 4.C 5.C
二、1.形状 大小 相等 2.70 50 60 60 3.BB 1,CC 1,DD 1 4.9 三、1.提示:先画出主要点的对应点,然后再连线.
2.提示:过点E 作BA,BC 的平行线,再截取DE=AB,FE=CB.
3.略
四、1.提示:基本图形是
,由这个图形平移得到.
2.如图7所示,△ABC ′是等腰三角形,四边形AC ′CD 是菱形.
C 'D
C
B A
五、解:如图8所示,两车行驶的路程即平移的距离,从图中很容易看出:•在超车时间内两车的路程差等于a+b.
超车时间快车行进的路
b
a
a
b
慢车
快车
超车时间慢车行进的路程超车结束
超车开始
慢车
快车
六、1.解:将CD 沿DA 方向平移DA 长(如图9所示),显然BA=CD=EA,所以△ABE•是等腰三角形,∠AEB=∠B=80°,又AE ∥CD,∴∠C=∠
AEB=80°,又AD∥BC,∴∠D+∠C=•180°,∠D=100°,同理可得∠BAD=100°.
E D C
B
A
2.解:(1)根据平移知识可知MN=4(如图10所示),又∵小圆半径
为1,•∴大圆直径PN=大圆面积为 =
2
6
9
2
ππ
⎛⎫
⨯=

⎝⎭
;
(2)小圆平移时扫过的面积为长方形ABCD的面积+•小圆面积=2×4+218
ππ
⨯=+.
O
N M
P D
C B
A
七、1.提示:根据已知条件可知,将△AEC平移后可得到△BFD,•根据对应线段相等,可得AE=BF.
2.解:如图11所示.。

相关文档
最新文档