沉淀硬化
ASTM A693-1993沉淀硬化不锈钢和耐热钢厚板、薄板和钢带
ASTM A693-1993沉淀硬化不锈钢和耐热钢厚板、薄板和钢带创建时间:2008-12-29ASTM A693-1993 沉淀硬化不锈钢和耐热钢厚板、薄板和钢带沉淀硬化不锈钢和耐热钢厚板、薄板和钢带的力学性能是通过一般称作“沉淀硬化”的适当的低温热处理来得到。
这些钢用作要求耐腐蚀和在室温或在达315℃高温具有高强度的零件。
其中有些钢特别适于在固溶热处理状态进行中等的至严厉的拉拔和成形。
其他一些钢仅能进行轻度成形。
这些钢适于在固溶退火状态进行机加工。
在同溶退火后,这些钢可以被硬化到标准规定的力学性能。
而没有破裂或变形的危险。
制造方法钢应按下列种方法冶炼:a) 电炉(带有独立的脱气和精炼装置);b) 真空炉;c) 电炉或真空炉冶炼,随后在真空中或惰性气体中自耗重熔,或电渣重熔,或进行电子束精炼;d) 供需双方协商同意的其他常用的冶炼方法。
牌号和化学成分钢的牌号和化学成分见表1。
表1 牌号和化学成分1)1) 除非对范围另有说明或规定外,该成分界限为最大百分数值。
2) 按ASTME527和SAEJ1086方法规定的新代号。
3) Cb和Nb代表同一元素铌。
4) Nb+Ta为0.15%-0.45%。
5) 氮为0.07%-0.13%。
6) Nb+Ta为0.10%-0.50%。
7) 氮为0.01%。
8) Nb不小于8倍含碳量。
产品热处理除非需方在订货单中另有规定,产品应按表2规定的固溶退火状态供应。
表2 产品热处理1) 时间是指材料在该温度的时间。
2) 相等和较高的回火处理:774℃±25℃,保温不少于3h。
冷到室温,加热到579℃±15℃,保温不少于3h。
力学性能当试样按表2规定的沉淀硬化制度处理时,力学试样所代表的材料应符合表3规定的力学性能要求,并且能达到表4中的性能。
表3 固溶处理状态的力学性能1) 仅为固溶处理,相等和较高回火的厚板。
2) XM-25也提供下列性能(最低值):抗拉强度895MPa,屈服强度620MPa,伸长率4%,25RC,256HB。
不锈钢材料的分类
大家对于不锈钢十分熟悉,其中很多的厨房用具都使用304不锈钢制成。
但是除了304还有很多其他的型号和类别,它可以按组织状态分为奥氏体、铁素体、马氏体和沉淀硬化不锈钢这几种。
针对不同的型材这里为您详细介绍一下。
1、马氏体型不锈钢俗称420不锈钢,具有一定耐磨性及抗腐蚀性,硬度较高,其价格是不锈钢球中较低的一类,适用于对不锈钢普通要求的工作环境中。
标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元素。
马氏体型不锈钢的耐腐蚀性来自“铬”,其范围是从11.5至18%,铬含量愈高的钢材需碳含量愈高,以确保在热处理期间马氏体的形成。
2、铁素体型不锈钢俗称430不锈钢,含铬12%~30%。
其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。
因为含铬量高,耐腐蚀性能与抗氧化性能均比较好。
但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。
这类钢能抵抗大气、硝酸及盐水溶液的腐蚀,并具有高温抗氧化性能好、热膨胀系数小等特点,用于硝酸及食品工厂设备,也可制作在高温下工作的零件,如燃气轮机零件等。
3、奥氏体型不锈钢奥氏体型不锈钢俗称304不锈钢,奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢。
钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。
奥氏体铬镍不锈钢包括著名的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系统。
一般属于耐蚀钢,是应用最广泛的一类钢,其中以18-8型不锈钢最有代表性,它是有较好的力学性能,便于进行机械加工、冲压和焊接。
主要有:321 、304 、304L 、306 、316L 、Mo2Ti。
4、双相不锈钢双相不锈钢指铁素体与奥氏体各约占50%,一般较少相的含量最少也需要达到30%的不锈钢。
在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。
有些钢还含有Mo、Cu、Nb、Ti、N等合金元素。
不锈钢有多少种类
不锈钢有多少种类
不锈钢有五个基本的种类: 奥氏体,铁素体,马氏体,双相不锈钢,沉淀硬化型不锈钢。
奥氏体不锈钢没有磁性,具有代表性的钢种是加入18%的铬并含有一定的镍,以增加抗腐蚀性,它们是被广泛运用的钢种。
铁素体具有磁性,铬元素是其主要的含量,比例为17%,这种材料具有很好的抗氧化性。
马氏体不锈钢同样也具有磁性,铬的含量通常为13%,并含有适量比例的碳,它们可通过淬火和回火而被硬化。
双相体不锈钢具有铁素体和奥氏体的混合结构,铬的含量在18%到28%之间,镍的含量4.5%- 8%之间,它们对抗氯化物的侵蚀有很好的效果。
沉淀型不锈钢铬的常规含量为17,并加有一定量的镍,铜和铌,它们可通过析出和时效被硬化。
沉淀硬化不锈钢的热处理工艺
沉淀硬化不锈钢的热处理工艺1.固溶处理经固溶处理(1000~1050℃,1h,空冷)获得的组织是奥氏体加少量铁素体,在随后500~800℃进行调整处理时,由于原子在铁素体中扩散速度要比在奥氏体中快,且铁素体内含铬量高,碳化物(Cr23C6)易沿着α(δ)和r的相界面析出,又降低了奥氏体中碳及合金元素的含量,从而提高这类钢的Ms点,使之获得更多的马氏体。
α(δ)铁素体量不能过多,否则不利于热加工,也不参与马氏体转变,会降低钢的强度。
2.调整处理固溶处理后进行的中间处理,一般又称调整处理,目的是获得一定数量的马氏体,从而使钢强化,常用以下三种方法:(1)中间时效法(简称T处理法)固溶处理后再加热至(760±15)℃,保温90min,因有Cr23C6碳化物从奥氏体中析出,降低了奥氏体中的碳及合金元素含量,使Ms点升高到70℃,随后冷却到室温便得到马氏体+α铁素体+残余奥氏体组织,残余奥氏体在随后510℃时效才分解完。
(2)高温调整及深冷处理法(R处理法)固溶后,行先加热到950℃保温90min。
由于升高了Ms点,冷却到室温,可得到少量马氏体;之后再经-70℃冷处理,保温8h,就可获得一定数量的马氏体。
(3)冷变形法(C处理法)固溶处理后,在室温下冷变形,冷变形时形成马氏体的数量与变形量及不锈钢的成分有关。
一般变形量在15%~20%就能获得必要数量的马氏体,过大的变形量会使马氏体发生加工硬化,使塑性显著下降。
3.时效处理(H处理)调整处理后,均须进行时效处理。
时效处理是这类钢进行强化的另一途径。
当时效温度高于400℃,会从马氏体中析出金属间化合物(如Ni3Ti等),呈高度弥散分布,起沉淀硬化作用。
一般在约500℃进行时效,可获得高的强度及硬度。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的支持)。
沉淀硬化不锈钢
沉淀硬化不锈钢沉淀硬化不锈钢(Crecipitation hardening stainless steel)在不锈钢化学成分的基础上添加不同类型、数量的强化元素,通过沉淀硬化过程析出不同类型和数量的碳化物、氮化物、碳氮化物和金属间化合物,既提高钢的强度又保持足够的韧性的一类高强度不锈钢,简称PH钢。
分类根据钢的组织可分为3类:(1)马氏体沉淀硬化不锈钢,以中国0Cr17Ni7TiAl和0Cr17Ni4Cu4Nb 为代表。
(2)半奥氏体沉淀硬化不锈钢,以0Cr17Ni7Al、0Cr15Ni7Mo2Al为代表。
(3)奥氏体沉淀硬化不锈钢,它实际上为铁基高温合金,以0Cr15Ni20Ti2M0.B、1Cr17Ni10P为代表。
设计要点(1)马氏体沉淀硬化不锈钢。
钢中碳含量一般≤0.1%,但≥0.05%,目的是既有好的焊接性、耐蚀性,又具有较好的强韧性;铬含量一般在16%~17%以保证足够的不锈性和耐蚀性;合适的镍、铬当量,以便钢中δ-铁素体的含量处于最低水平(一般≤5%),以免损害横向性能和降低钢的强度。
各种合金元素的铁素体形成效果如下:0.1%N 0.1%C 1%Ni 1%Co 1%Cu-20 -18 -10 -6 -31%Mn 1%w 1%Si 1%Mo 1%Cr-1 +8 +8 +11 +151%V 1%Al+19 +38元素的配比应使马氏体相变开始温度(Ms点)在150℃以上马氏体相变基本完成温度,(Mf点)在50℃以上,下述经验公式可作计算Ms点时的参考:Ms={75(14.6-%Cr)+110(8.9-%Ni)+3000[0.068-%(C+N)]+60(1.33+%Mn+50(0.17-%Si)},℃添加适量沉淀硬化元素如铜和钛等以便形成ε富铜相和NiTi相等进行强化。
(2)半奥氏体沉淀硬化不锈钢。
碳含量一般在0.1%左右,为改进铸造性能铸造钢的碳含量大于0.1%;他点的控制是本钢设计的关键,这类钢在固溶处理后为奥氏体组织,在此状态下进行加工、成形、焊接。
沉淀硬化热处理工艺
沉淀硬化热处理工艺
沉淀硬化热处理工艺,也称为沉淀硬化工艺,是一种常用的金属材料热处理方法。
该方法适用于某些合金钢、不锈钢、铝合金等材料,可显著提高材料的硬度和强度。
沉淀硬化工艺的基本过程是:首先将材料加热至高温区域进行固溶处理,使合金元素溶解在基体中,然后将材料快速冷却至室温,形成固溶体;接下来通过固溶体在适当温度下保温,使合金元素重新沉淀出来形成细小的颗粒,这些颗粒阻碍了基体的位移,并增强了材料的硬度和强度。
该工艺中需要控制的参数包括加热温度、保温时间、冷却速率等,这些参数对最终材料的性能有着重要的影响。
此外,不同的合金元素也会对工艺的结果产生不同的影响,因此需要根据具体材料的组成和要求来选择适当的工艺参数和合金元素。
总的来说,沉淀硬化热处理工艺是一种有效的提高金属材料性能的方法,但需要根据具体材料的要求进行细致的控制和选择。
沉淀硬化不锈钢的热处理工艺规程
成飞集团电子公司
CAC GROUP ELECTRONICS TECHNOLOGY Co., Ltd.
沉淀硬化不锈钢旳热处理工艺规程
编号ITEM
版次ED
第1页共15页
CEC-JW.C-015
A
PAGE 1 OF 15
车间shop:
根据according to:BAC5619(H)
说
明
controls shall be set between1025°Fto1075°F), if the process temperature range is equal to the certified
equipment tolerance range, set the control at the mid-point of the required process range.
设备
EQUIPMENT
操作说明OPERATION DESCRIPTION
备注
REMARK
成分COMPOSITION
温度TEMP
时间TIME
其它要求
OTHER REQUIREMENT
shall be cleaned in accordance with BAC5625 prior toprecipitationhardening.
Parts that are contaminated with low melting point metals (e.g. lead, tin, bismuth, zinc, wood’s metal etc.)
CEC维表21-2
成飞集团电子公司
CAC GROUP ELECTRONICS TECHNOLOGY Co., Ltd.
沉淀硬化不锈钢的热处理工艺
沉淀硬化不锈钢的热处理工艺1. 什么是沉淀硬化不锈钢?嘿,大家好,今天咱们聊聊沉淀硬化不锈钢,听起来是不是有点高大上?其实呢,它就是一种通过特殊热处理工艺,让不锈钢的性能变得更好、更坚固的材料。
大家想象一下,一块平常的不锈钢,就像一块普通的豆腐,软软的,但经过沉淀硬化处理后,它就变成了块儿坚硬的石头,简直就是“豆腐变金刚”!这玩意儿可在航天、军工等领域大显身手,真是非同小可。
1.1 沉淀硬化的原理那么,沉淀硬化到底是咋回事呢?简单来说,就是通过加热和冷却的方式,让不锈钢内部的合金元素析出,形成一种强大的微观结构。
这个过程就像一场“变魔术”,把一些不易察觉的小粒子组合起来,让它们变得更加牢固。
想象一下,你把一堆小石子拼在一起,最后变成了坚固的石墙,毫无破绽!这个原理就是利用了材料中的析出相,增强了它的抗拉强度和耐腐蚀性能。
1.2 沉淀硬化的特点这种不锈钢还有个好处,就是它的硬度高、耐磨性强,虽然造价略高,但用久了,绝对是物超所值。
更重要的是,它在高温和腐蚀环境中也能保持很好的性能,真是个万金油的材料。
说到这儿,有点想给它打个广告了:“沉淀硬化不锈钢,耐磨又耐腐,简直就是钢铁侠的选择!”哈哈,开个玩笑,其实它真的是很多工业应用中的“超级英雄”呢。
2. 热处理工艺的步骤好了,咱们接下来聊聊沉淀硬化不锈钢的热处理工艺,听起来复杂,但其实就是几个简单的步骤,来吧,跟着我一起看看吧!2.1 预热阶段首先,得把不锈钢先预热,这一步就像给小朋友穿衣服,慢慢来,别急。
通常情况下,预热的温度在600℃到800℃之间,目的是为了让钢材的内部应力释放,避免后面热处理的时候出现裂纹。
这一环节可得小心翼翼,毕竟谁也不想让自己的“不锈钢宝宝”受伤,对吧?2.2 主热处理接下来就是主热处理了,也就是让不锈钢真正“升华”的时候。
这个过程一般在1000℃到1100℃之间进行,加热一段时间后,再迅速冷却。
这个冷却过程就像是过山车,快得让人心跳加速,既刺激又紧张!冷却的方式可以选择水冷、油冷,或者气冷,具体看需求和材料的性质而定。
沉淀硬化型不锈钢
沉淀硬化型不锈钢具有很好的成形性能和良好的焊接性,可作为超高强度的材料在核工业、航空和航天工业中应用。
按成分可分为Cr系(400系列)、Cr-Ni系(300系列)、Cr-Mn-Ni(200系列)、耐热铬合金钢(500系列)及析出硬化系(600系列)。
200系列:铬-锰-镍华业不锈钢201,202等:以锰代镍,耐腐蚀性比较差,国内广泛用作300系列的廉价替代品。
300系列:铬-镍奥氏体不锈钢301:延展性好,用于成型产品。
也可通过机械加工使其迅速硬化。
焊接性好。
抗磨性和疲劳强度优于304不锈钢。
302:耐腐蚀性同304,由于含碳相对要高因而强度更好。
303:通过添加少量的硫、磷使其较304更易切削加工。
304:通用型号;即18/8不锈钢。
产品如:耐蚀容器、餐具、家俱、栏杆、医疗器材。
标准成分是18 % 铬加8 % 镍。
为无磁性、无法借由热处理方法来改变其金相组织结构的不锈钢。
GB牌号为0Cr18Ni9。
304 L:与304 相同特性,但低碳故更耐蚀、易热处理,但机械性较差适用焊接及不易热处理之产品。
304 N:与304 相同特性,是一种含氮的不锈钢,加氮是为了提高钢的强度。
309:较之304有更好的耐温性,耐温高达980℃。
309 S:具多量铬、镍,故耐热、抗氧化性佳,产品如:热交换器、锅炉零组件、喷射引擎。
310:高温耐氧化性能优秀,最高使用温度1200℃。
316:继304之后,第二个得到最广泛应用的钢种,主要用于食品工业、钟表饰品、制药行业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。
由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。
SS316则通常用于核燃料回收装置。
18/10级不锈钢通常也符合这个应用级别。
316 L:低碳故更耐蚀、易热处理,产品如:化学加工设备、核能发电机、冷冻剂储糟。
321:除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外,其他性能类似304。
金属耐蚀材料第八讲沉淀硬化不锈钢
(6) 时效处理 ,用字母 H 表示 ,简称 H 处理 。 此处理是沉淀硬化不锈钢的最后热处理 ,目的是 利用时效作用产生细小且弥散分布的沉淀相 ,以获
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
徐增华 :金属耐蚀材料 第八讲 沉淀硬化不锈钢
得尽可能高的强度和良好的综合力学性能 。通常是 根据所要求的综合力学性能 ,特别是强度 ,来选择热 处理时间 、温度 。时效时间随钢种及工件不同而异 。 时效过程的沉淀硬化 ,还可采取分级时效 ,一般采用 多级时效 (简称 M H 处理) ,以达到更佳效果 。
1 沉淀硬化不锈钢的化学组成和类型
1. 1 沉淀硬化不锈钢的化学组成 沉淀硬化 ( PH) 不锈钢是通过热处理析出微细
的金属间化合物和某些少量碳化物以产生沉淀硬 化 ,而获得高强度和一定耐蚀性相结合的高强不锈 钢 ,它兼有铬镍奥氏体不锈钢耐蚀性好和马氏体铬 钢强度高的优点 。其化学成分除铬 、镍元素以外 ,还 含有直接或间接导致沉淀相形成的 Ti 、Nb 、Al 、Mo 、 Co 、Cu 等合金元素 ,且碳含量很低 ,一般为低碳或超 低碳 。高铬能使钢具有高耐蚀性和高淬透性 ,低碳 是为了避免与铬结合降低耐蚀性 ,并保证钢的可焊 性 。镍的作用是多方面的 ,但主要是使钢奥氏体化 , 并调整钢的相变点 ,特别是马氏体转变温度 M s ,以 及与其它元素形成沉淀硬化相 ,如 Ni3Mo 、Ni3Nb 、 Ni3Al 等 。钼 主 要 增 加 耐 蚀 性 和 形 成 硬 化 相 , 如 Fe2Mo 、Ni3Mo 及 x 相等 。钴不形成沉淀相 ,其主要 作用是强化基体和限制其他元素在基体中的溶解 度 ,以及调整马氏体点和促使其他元素较多较快地 形成沉淀相 。 1. 2 沉淀硬化不锈钢的发展及类型
2.沉淀硬化不锈钢和超马氏体不锈钢
第二章沉淀硬化不锈钢和超马氏体不锈钢引言不锈钢是20世纪重要发明之一,经过一百多年的研制和开发已形成一个有300多个牌号的系列化的钢种。
在特殊钢体系中不锈钢性能独特,应用范围广,起其他特殊钢无法代替的作用。
而不锈钢几乎可以涵盖其他任何一种特殊钢。
不锈钢合金含量高,价格比较高,属于钢铁行业的高档产品,但其使用寿命远远高于其他钢种,是维护费用少,使用成本最低的钢种。
不锈钢回收利用率高,对环境污染少,是改善环境、美化生活的绿色环保材料。
不锈钢的生产和使用在一定程度上反映出一个国家或地区经济发展水平和人民生活水平。
不锈钢的发展几乎不受某个特定行业发展的影响,而与国家和地区GDP(国民生产总值)的增长密切相关。
目前我国不锈的生产量已稳居世界第一,人均表观消费量居于世界中等水平。
近十多年来,我国不锈钢取得持续、突飞猛进的发展,当今世界最先进的冶炼设备,轧钢设备全在中国,毫不含糊地说,中国生产不锈钢的冶金装备是世界一流的。
目前我国不锈钢产品与国际先进水平的差别体现在质量、品种和使用三方面。
传统的不锈钢有:奥氏体不锈钢、马氏体不锈钢、铁素体不锈钢和双相不锈钢四大类型。
淀硬化不锈钢和超马氏体不锈钢是在传统不锈钢基础上发展起来的,具有特定物理、化学性能的钢,是不锈钢家族中后起之秀。
这两类钢通过合理调控化学成分获得预期的显微组织,通过选择不同的压力加工和热处理工艺,获得传统不锈钢无法得到的综合力学性能和物理性能,最后通过时效处理,在钢中析出沉淀硬化相和逆转奥氏体,进一步提高钢的强度和韧性。
时效处理或沉淀硬化是这类钢的特色和亮点。
本章节用“显微组织结构”作梳子,对两类最有发展前途的不锈钢——沉淀硬化不锈钢和超马氏体不锈钢进行了梳理和分析,推导出一套预测不锈钢临界点和特征值的经验公式。
按照化学成分→生产工艺→显微组织结构→使用性能的思路,介绍了这两类钢典型牌号的生产工艺与技术参数之间的对应关系,为这两类钢的研制、推广和应用提供有实用价值的参考资料。
不锈钢中的沉淀硬化相(第2版)
置、晶体点阵类型、原子直径、以及相对于铁的电负性有关。Ni、Mn、Co 在γ-Fe 中无限固溶,Cr、V 在α-Fe 中无限固溶;电负性与铁差别大的元素,如 Ti、Al、Nb、Si、P 在钢中溶解度有限,倾向与铁 形成金属化合物。尺寸因素对溶解度起重要影响,在 C 和 N 与铁形成的间隙固溶体中,面心立方体的 间隙比体心立方体大得多, 所以 C 和 N 在γ-Fe 中溶解度也比α-Fe 中溶解度大得多。 B 的原子半径(0.88 A ) 比 C(0.77 A )和 N(0.71 A )大,无论与铁形成间隙固溶体,还是置换固溶体,都会引起较大的畸变能,所 以 B 在γ-Fe 和α-Fe 中的溶解度都很小。合金元素和常存元素在铁中的溶解度如表 1。 表 1 合金元素和常存元素在铁中的溶解度
A3=910℃ A4=1390℃
α-Fe
γ-Fe
δ-Fe
钢中合金元素对α-Fe、γ-Fe 和δ-Fe 及多型转变温度 A3、和 A4 均有重大影响,对于那些在γ-Fe 中有较大溶解度, 并稳定γ-Fe 的合金元素, 称之为奥氏体形成元素; 对于那些在α-Fe 中有较大溶解度, 并稳定α-Fe 的合金元素,称之为铁素体形成元素。在形成铁的固溶体时,d 层电子是主要参与金属键 结合的电子,由钛到铜,3d 层电子由 2 个增加到 10 个:Ti 为 2 个、V 为 2 个、Cr 为 5 个、Mn 为 5 个、 Fe 为 6 个、Co 为 7 个、Ni 为 8 个、Cu 为 10 个;4d 层电子 Zr 为 2 个、Nb 为 4 个、Mo 为 5 个;5d 层 电子 Ta 为 3 个、W 为 4 个。看来 d 层电子<5 个的元素使 A3 点上升、A4 点下降,是缩小奥氏区的铁素 体形成元素。而 5d 层电子>5 个的元素使 A3 点下降、A4 点上升,是扩大奥氏区的奥氏体形成元素。介 于 V 和 Mn 之间的 Cr 和 Mo 具有过渡性,钢中 Cr<7.5%时使 A3 点下降,Cr≥7.5%时使 A3 点上升,但 由 Cr 使 A4 点强烈下降,和 Mo 一起属于铁素体形成元素。总之,在不锈钢中属于奥氏体形成元素有: C、N、Mn、Ni、Cu、Co;属于铁素体形成元素有:Cr、Mo、V、W、Al、Ti、Zr、Nb、Ta、Ce、B、 Si、P、S、As、Sn、Sb。 合金元素除 C、N、B 以外,都与铁形成置换固溶体,不同元素在铁中的溶解度与其在周期表中位
沉淀硬化 不锈钢
不锈钢的简要概述
二.不锈钢的分类
按金相组织分类 铁素体不锈钢 马氏体不锈钢 奥氏体不锈钢 沉淀硬化不锈钢 铁素体-奥氏体双相不锈钢等
按主要化学成分分类:铬不锈钢、镍铬不锈钢
按主要节约元素分类:节镍不锈钢、无镍不锈钢等
按化学成分分类
按特征组成元素分类:高硅不锈钢、高钼不锈钢等
按C、N和杂质元素的控制含量分类:普通不锈钢、 低碳不锈钢和超低碳不锈钢、高纯不锈钢
影响不锈钢的组织和性能的因素
4. 其它元素的作用 Mn是比较弱的奥氏体形成元素, 但具有强烈稳定奥氏体组织的作用。 为了节约镍,仅 靠加入Mn是无法获得单一的奥氏体组织,而需要Mn、 N复合加入才能克服这一缺点。 钛和铌是强碳化物形成元素,它们是作为形成稳定 的碳化物,从而防止晶界腐蚀而加入不锈钢中的。 钼能提高不锈钢的钝化能力,扩大其钝化介质范围, 如在热硫酸、稀盐酸、和有机酸中,含钼不锈钢可以形 成含钼钝化膜。这种含钼钝化膜在许多强腐蚀介质中具 有很高的稳定性,不易溶解。Cl‐半径很小,它可以穿 过许多致密度不够高的钝化膜,形成可溶性的腐蚀产物, 而在钢的表面造成点腐蚀。由于钼钝化膜致密而稳定, 可防止Cl‐对膜的破坏,所以含钼不锈钢具有较好的抗 点腐蚀的能力。
2008年,我国发布了不锈钢的新牌号标准。新牌号与旧牌 号在标识上基本没有太大的变动,主要的化学元素标识都没 有变动,只有碳含量标识和个别钢种里面的化学元素发生了 变动。 A. 旧牌号 含碳量以千分之几表示。如果Wc≤0.08﹪为低碳, 标识为“0”,如0Cr18Ni9;Wc≤0.03﹪为超低碳,表示 为“00”,如Cr17Ni14Mo2。 B. 新牌号 含碳量以万分之几表示。022Cr17Ni12Mo2钢中 的碳质量分数为0.022﹪,其它标识基本不变。
不锈钢中的沉淀硬化相
不锈钢中的沉淀硬化相东北特钢集团大连特殊钢丝有限公司徐效谦摘要:钢的种类繁多、性能迥异,但有一个共同点:都是在Fe中加入各种合金元素形成的固溶体。
不同合金元素加入钢中会形不同的沉淀硬化相,使钢具备了各种特定性能。
研究沉淀硬化相的类型、结构、形态、尺寸、分布、交互作用和演变规律,可为金属材材料工作者改进生产工艺,优化钢的性能,研发更理想的钢种提供有力的技术支撑。
因为不锈钢中所用的合金元素种类最多,含量较高,本文从分析不锈钢中的沉淀硬化相着手,研究沉淀硬化相的基本特性、析出过程和形态演变规律。
关锈词:碳化物、氮化物、硼化物、金属间化合物、沉淀硬化相。
沉淀硬化的机理是共格理论:在特定条件下,溶质原子在特定晶面上偏聚,形成薄层并与基体点阵共格,两种晶格相互协调,点阵间距差引发基体应变,产生硬化效果。
沉淀硬化在有些合金钢中又称为时效硬化或时效强化。
在特定温度区间进行沉淀硬化处理,析出沉淀硬化质点;温度继续升高,质点长大,共格应变随之增大,达到临界值时导致滑移和剪切应变,共格应力得到释放,硬化效果减小,称为过时效。
获得沉淀硬化相的基本条件是:钢中至少应含有一种在基体中溶解度可变,或可引发显微组织结构变化的合金元素,通过适当的热处理,使该元素以碳化物、氮化物或金属间化合物的形式析出,这些合金元素称为沉淀强化元素。
目前广泛应用的沉淀强化元素有:Al、Ti、Nb、V、Zr、Cu、W、Mo、Si、N、B等。
可能形成的沉淀硬化相分为两类:一类是Al、Ti、V、Nb、Zr、Cr、Mo、W的碳、氮、硼化合物;另一类是金属间化合物。
沉淀硬化不锈钢和超马氏体不锈钢的碳含量一般比较低,主要依靠析出金属间化合物来强化。
不锈钢全部为铁基合金,铁在加热和冷却过程会产生如下同素异型转变:A3=910℃A4=1390℃α-Fe γ-Fe δ-Fe钢中合金元素对α-Fe、γ-Fe和δ-Fe及多型转变温度A3、和A4均有重大影响,对于那些在γ-Fe 中有较大溶解度,并稳定γ-Fe的合金元素,称之为奥氏体形成元素;对于那些在α-Fe中有较大溶解度,并稳定α-Fe的合金元素,称之为铁素体形成元素。
沉淀硬化不锈钢介绍
沉淀硬化不锈钢介绍该钢是一种马氏体沉淀硬化不锈钢它的强度是通过马氏体相变和时效处理的沉淀硬化来达到的。
由于此钢低碳,高铬,且含铜,故其耐蚀性较Cr13型及9Cr18,1Cr17Ni2等马氏体钢为好。
但较难进行深度的冷成型。
多用作既要求有不锈性及耐弱酸,碱,盐腐蚀又要求高强度的部件。
化学成分:0Cr17Ni4Cu4Nb钢的化学成分:力学性能:该钢的室温力学性能见下表(1)------摘自GB1220(2)------实际检验值耐腐蚀性:见下表0Cr17Ni4Cu4Nb钢的耐蚀性能[腐蚀速率g/(m²h)]工艺性能:此钢一般不进行冷加工。
热加工温度为1000~1170°C。
对大于76mm或形状复杂的部件,热加工后应及时回炉加热到原热加工的温度,随后缓慢冷却。
该钢的热处理制度如下:固溶处理:1040±15°C 30min,冷至30°C或低于30°C,获得A状态(马氏体)---------〉过时效处理:630~650°C1~4h,空冷--------〉重复固溶处理获得A状态---------〉沉淀硬化:480~630°C 1h空冷获得H900,H925,H1025,H1150状态。
(都是沉淀硬化马氏体)------------------------------------------------------------〉该钢可用任何焊接不锈钢的方法焊接。
在固溶,时效或过时效状态都可焊接。
焊前不需要预热,当要求焊缝强度为时效后强度的90%时,则焊后需要重新固溶和时效处理。
此钢也可进行钎焊,适宜的钎焊温度为此钢的固溶处理温度。
物理性能:密度:7780 kg/m²线膨胀系数:(H900热处理态)20~100°C时,0.0000108 /K; 20~200°C时,0.00001016 /K; 20~300°C时,0.00001136 /K热导率:100°C时,17W/(m*K); 300°C时,20W/(m*K); 500°C时,23W/(m*K)弹性模量:20°C 时,191000 MPa; 100°C时,191000 MPa; 320°C时,181000 MPa。
冶金效应名词解释
冶金效应名词解释
1.冶金效应:指金属在加热、冷却、变形等工艺过程中,由于物理、化学等因素的影响,发生的各种现象和变化。
2. 固溶体:指两种或两种以上金属在一定温度下,形成的互相溶解的合金物质。
3. 相变:指物质在一定条件下由一种状态转变为另一种状态的现象,如固态向液态或气态的转变等。
4. 晶粒尺寸:指晶体中晶粒的大小,通常用平均晶粒直径来表示。
5. 晶格畸变:指晶体中晶格结构的失衡和变形,通常是由于加热、冷却、变形等因素引起的。
6. 热处理:指通过加热、保温和冷却等工艺步骤,改变金属的物理和机械性能的一种技术。
7. 固溶度:指在一定温度下,合金中溶解度达到平衡的最大值。
8. 弥散硬化:指在金属中加入微小的均匀分布的颗粒,使其变硬和强化的现象。
9. 淬火:指将金属加热到一定温度,然后迅速冷却到室温,以使金属产生硬化和强化的工艺。
10. 沉淀硬化:指在金属中加入一些元素,在加热后形成均匀分布的微小颗粒,以强化和硬化金属的现象。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、沉淀硬化沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。
如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。
即某些合金的过饱和固溶体在室温下放置或者将它加热到一定温度,溶质原子会在固溶点阵的一定区域内聚集或组成第二相,从而导致合金的硬度升高的现象。
产业过程中都需要将空气作为直接或间接的冷却媒介。
空调是一种常用的空气处理过程,用于一间房屋或是整栋建筑中,可以冷却空气以便使居住者处于舒适的环境中。
通常空气用急冷水或盐水冷却,然后以媒介将热量传到室外,通常用风扇驱动的水气换热器将热排放到大气中。
身边也有常见的例子,如部分高塔式建筑发电站就大规模地使用了风冷技术。
3、固溶退火固溶退火亦即碳化物固溶退火, 一种将成品件加热至1850 deg F(摄氏1010度)以上而脱除碳化物沉淀(即从不锈钢固体溶液中逃逸的碳)的工艺, 此后将其迅速降温,通常是用水淬火, 所含碳化物返回不锈钢固体溶液中.固溶退火处理可应用于一系列的合金钢与不锈钢成分中. 对于300系列不锈钢铸件的固溶处理能产生一种没有碳化物杂质的均一的显微结构. 对于沉淀硬化合金铸件及锻件的固溶退火能产生较软的显微结构,更适于精密公差的机加工.这些合金在以最小畸变的精密公差机加工之后,有着时效硬化的潜在倾向.这些材料及工艺对有中等强度要求的车削或螺旋机件上有着普遍的应用. 这种热处理可以依照部件所需的尺寸,几何形状与表面条件,成批的在大气炉,非常压炉或真空炉中进行.小型部件也可以在连续氢气带式炉中热加工.固溶退火与时效硬化也可用于铝合金的冲压件和铸件. 通常是在非常压批式炉进行热处理,在固溶退火之后用水对部件淬火.时效硬化则在大气中用电炉或燃气炉成批操作.4、固溶处理固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
5、不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。
6、淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。
淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织。
7、固溶处理与时效处理固溶热处理将合金加热至高温单相区恒温保持,使过剩相充分溶于固溶体中,再快速冷却,以得到过饱和固溶体的热处理工艺。
时效处理时效处理可分为自然时效和人工时效两种。
自然时效是将铸件置于露天场地半年以上,使其缓缓地发生形变,从而使残余应力消除或减少;人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。
根据合金本性和用途确定采用何种时效方法。
高温下工作的铝合金适宜用人工时效,室温下工作的铝合金有些采用自然时效,有些必须人工时效。
从合金强化相上来分析,含有S相和CuAl2等相的合金,一般采用自然时效,而需要在高温下使用或为了提高合金的屈服强度时,就需要采用人工时效来强化。
比如LY11和LY12,40度以下自然时效可以得到高的强度和耐蚀性,对于150度以上工作的LY12和125-250度工作的LY6铆钉用合金则需要人时效。
含有主要强化相为MgSi,MgZn2的T相的合金,只有采用人工时效强化,才能达到它的最高强度。
对于一般铝合金,自然时效时,屈服强度稍低而耐蚀性较好,采用人时效时,合金屈服强度较高而伸长率和耐蚀性都降低。
对于铝-锌-镁-铜系合金入LC4则相反,当采用人工时效时,合金耐蚀性比自然时效好。
选用不同品种钢材作塑料模具,其化学成分和力学性能各不相同,因此制造工艺路线不同;同样,不同类型塑料模具钢采用的热处理工艺也是不同的。
本节主要介绍塑料模具的制造工艺路线和热处理工艺的特点。
编辑本段模具的热处理特点8、渗碳钢塑料模的热处理特点1.对于有高硬度、高耐磨性和高韧性要求的塑料模具,要选用渗碳钢来制造,并把渗碳、淬火和低温回火作为最终热处理。
2.对渗碳层的要求,一般渗碳层的厚度为0.8~1.5mm,当压制含硬质填料的塑料时模具渗碳层厚度要求为1.3~1.5mm,压制软性塑料时渗碳层厚度为0.8~1.2mm。
渗碳层的含碳量为0.7%~1.0%为佳。
若采用碳、氮共渗,则耐磨性、耐腐蚀性、抗氧化、防粘性就更好。
3.渗碳温度一般在900~920℃,复杂型腔的小型模具可取840~860℃中温碳氮共渗。
渗碳保温时间为5~10h,具体应根据对渗层厚度的要求来选择。
渗碳工艺以采用分级渗碳工艺为宜,即高温阶段(900~920℃)以快速将碳渗入零件表层为主;中温阶段(820~840℃)以增加渗碳层厚度为主,这样在渗碳层内建立均匀合理的碳浓度梯度分布,便于直接淬火。
4.渗碳后的淬火工艺按钢种不同,渗碳后可分别采用:重新加热淬火;分级渗碳后直接淬火(如合金渗碳钢);中温碳氮共渗后直接淬火(如用工业纯铁或低碳钢冷挤压成形的小型精密模具);渗碳后空冷淬火(如高合金渗碳钢制造的大、中型模具)。
9、淬硬钢塑料模的热处理1.形状比较复杂的模具,在粗加工以后即进行热处理,然后进行精加工,才能保证热处理时变形最小,对于精密模具,变形应小于0.05%。
2.塑料模型腔表面要求十分严格,因此在淬火加热过程中要确保型腔表面不氧化、不脱碳、不侵蚀、不过热等。
应在保护气氛炉中或在严格脱氧后的盐浴炉中加热,若采用普通箱式电阻炉加热,应在模腔面上涂保护剂,同时要控制加热速度,冷却时应选择比较缓和的冷却介质,控制冷却速度,以避免在淬火过程中产生变形、开裂而报废。
一般以热浴淬火为佳,也可采用预冷淬火的方式。
3.淬火后应及时回火,回火温度要高于模具的工作温度,回火时间应充分,长短视模具材料和断面尺寸而定,但至少要在40~60min以上。
10、预硬钢塑料模的热处理1.预硬钢是以预硬态供货的,一般不需热处理,但有时需进行改锻,改锻后的模坯必须进行热处理。
2.预硬钢的预先热处理通常采用球化退火,目的是消除锻造应力,获得均匀的球状珠光体组织,降低硬度,提高塑性,改善模坯的切削加工性能或冷挤压成形性能。
3.预硬钢的预硬处理工艺简单,多数采用调质处理,调质后获得回火索氏体组织。
高温回火的温度范围很宽能够满足模具的各种工作硬度要求。
由于这类钢淬透性良好,淬火时可采用油冷、空冷或硝盐分级淬火。
表3-27为部分预硬钢的预硬处理工艺,供参考。
表3-27 部分预硬钢的预硬处理工艺钢号加热温度/℃冷却方式回火温度/℃预硬硬度HRC3Cr2Mo 830~840 油冷或160~180℃硝盐分级580~650 28~365NiSCa 880~930 油冷550~680 30~458Cr2MnWMoVS 860~900 油或空冷550~620 42~48P4410 830~860 油冷或硝盐分级550~650 35~41SM1 830~850 油冷620~660 36~4211、时效硬化钢塑料模的热处理1.时效硬化钢的热处理工艺分两步基本工序。
首先进行固溶处理,即把钢加热到高温,使各种合金元素溶入奥氏体中,完成奥氏体后淬火获得马氏体组织。
第二步进行时效处理,利用时效强化达到最后要求的力学性能。
2.固溶处理加热一般在盐浴炉、箱式炉中进行,加热时间分别可取:1min/mm、2~2.5min/mm,淬火采用油冷,淬透性好的钢种也可空冷。
如果锻造模坯时能准确控制终锻温度,锻造后可直接进行固溶淬火。
3.时效处理最好在真空炉中进行,若在箱式炉中进行,为防模腔表面氧化,炉内须通入保护气氛,或者用氧化铝粉、石墨粉、铸铁屑,在装箱保护条件下进行时效。
装箱保护加热要适当延长保温时间,否则难以达到时效效果。
部分时效硬化型塑料模具钢的热处理规范可参照表3-28。
表3-28 部分时效硬化钢的热处理规范钢号固溶处理工艺时效处理工艺时效硬度HRC06Ni6CrMoVTiAl 800~850℃油冷510~530℃×(6~8)h 43~48PMS 800~850℃空冷510~530℃×(3~5)h 41~4325CrNi3MoAl 880℃水淬或空冷520~540℃×(6~8)h 39~42SM2 900℃×2h油冷+700℃×2h 510℃×10h 39~40PCR 1050℃固溶空冷460~480℃×4h 42~4412、塑料模的表面处理为了提高塑料模表面耐磨性和耐蚀性,常对其进行适当的表面处理。