分式方程(第一节)PPT课件

合集下载

《分式方程》_课件-完美版

《分式方程》_课件-完美版
小结:工程问题,若没有告诉总工作量,通常设总工作量为1;工程问题的等量关系通 常根据“各分工作量之和等于总工作量”来确定。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
巩固新知
1.解分式方程 x 2 3 ,去分母后的结果是( )
运用新知
例4 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一, 这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快? 追问1:工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少? 追问2:由题意可知,甲队的工作效率是多少?若设乙队独做x天完成,则乙队的工作 效率是多少? 追问3:此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗? 追问4:工程类问题常用的等量关系是什么?
x2
x2
A.x=2+3
B.x=2(x-2)+3
C.x(x-2)=2+3(x-2) D.x=3(x-2)+2
答案:B
2.解下列方程:(1)
x
1 5
10 x2 25
7
1
6
;(2)
x2
x x2
x x2
x。
答案:(1)无解;(2)x=3。
【获奖课件ppt】《分式方程》_课件- 完美版 1-课件 分析下 载
此方程中含有分式,即方程的分母中含有未知数,而整式方程的左右两边都是整式。 归纳:分式方程的概念:像这样 分母中含有未知数的方程 叫分式方程。
追问:分式方程与整式方程有何区别?
小结:分式方程中含有分式,即分母中含有未知数的方程;整式方程是指方程的左右 两边都是整式,不含有分式。

《分式方程》分式课件ppt(1)

《分式方程》分式课件ppt(1)
方程两边同时乘以x(x 2) 66x 60(x 2) 66x - 60x 120 解得 x 20
经检验:x=20 是原方程的解
答:乙队每天安装20台。
3.小明和爸爸练习跑步,爸爸跑3600米时,小明正好 跑2400米,爸爸每分钟比小明多跑100米,问小明每分 钟跑多少米?
解:设小明每分钟跑x米,爸爸每分钟跑(x+100)米
工效问题
1. 一项工程 , 甲单独做 a 小时完成, 乙单独做 b 小时完 成 .甲、乙两人一起完成这项工程,需要多长时间?
v甲 =
1 a

v乙 =
1 b

设 “甲、乙两人一起完成这项工程” 需要 x 小时
则:
1 a
1 b
x
=1 。
解得
x=
ab ab

2.甲、乙两人做某种零件,已知甲每小时比乙多做3个, 甲做45个零件的时间与乙做30个零件的时间相同问甲、乙 每小时各做多少个?
学习永远不晚。 JinTai College
3. 一台甲型拖拉机4天耕完一块耕地的一半,加一台乙型拖 拉机合耕,2天可以耕完这块地。乙型拖拉机单独耕这块地 需要几天?
分析:一块耕地是工作总量,可设为 1 .
1、若设乙型拖拉机单独耕块这地需要x天完成,那么它1天
耕地量是这块地的 1 .
x
2、一台甲型拖拉机4天耕完这块地的一半。那么1天耕地量
解:设原来参加人数为x, 增加后的人数为x+5
650 900 x x5
方程两边同时乘以x(x 5) 650(5 x) 900x 250x 3250 解得 x 13
经检验:x=13 是原方程的解 650÷13=50元
1. 一项工程 , 甲、乙两队合做需5天完成,若甲队单独 完成的天数是乙队的2倍,则甲、乙两队单独完成这项 任务各需多少天?

分式方程的ppt课件

分式方程的ppt课件
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.

《分式方程》PPT课件

《分式方程》PPT课件

(6)2x
x 1 10 5
(5)x 1 2 x
2x 1 3x 1 x
整式方程
分式方程
回顾:解整式方程:
x 3 4 1 x
2
3
方程两边同乘以6,得:
3(x 3) 24 2(1 x)
类比:如何解分式方程?
100 60 20 v 20 v
方程两边同乘以 (20+v)(20-v) ,得:
x+5=10
分式两边同乘了等于0的式子,所得整式方程的
解使分母为0,这个整式方程的解就不是原分式
方程的解.
2、怎样检验所得整式方程的解是否是 原分式方程的解?
将整式方程的解代入最简公分 母,如果最简公分母的值不为 0,则整式方程的解是原分式 方程的解,否则这个解就不是
原分式方程的解.
分式方程
解分式方程的思路是:
12.4 分式方程
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20 v 20 v
思考:所列方程和 以前学过的方程有 什么不同?
2 x2 1
【小结】
本节课学习了哪些知识?要注意什么? 在学习过程中,你有什么体会?
布置作业
1.p20练习,p21A组2 , B组(必做)
2.拓展与延伸:(选做)
※已知:
1 1 1 1 2 2
根据你发现的规律
(1)写出第n个式子

1 11 23 2 3
1 11 34 3 4
(2)利用规律计算: (3)利用规律解方程:

分式方程ppt课件

分式方程ppt课件
0时,分式方程无实根。
适用于分子、分母均为二次多项式的分 式方程。
因式分解法
将分式方程的分子或分母进行因式分解,从而简化方程。 因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03
分式方程应用举例
工程问题
工作总量 = 工作时间 × 工作 效率
工作时间 = 工作总量 ÷ 工作 效率
工作效率 = 工作总量 ÷ 工作 时间
举例:一项工程,甲单独做需 要20天完成,乙单独做需要30 天完成。如果两人合作,需要 多少天完成?
行程问题
速度 = 路程 ÷ 时间
举例:甲、乙两地相距360千米,一辆汽车从甲地开 往乙地,每小时行驶60千米。问这辆汽车需要多少小
方程的解。
04
对于第三个练习题,找到公共分母$x^2-1$,两边乘 以公共分母,得到整式方程$(x+1)(x-1)-4=x^2-1$, 解得$x=3$,经检验$x=3$是原方程的解。
THANKS
感谢观看
分式方程ppt课件
目 录
• 分式方程基本概念 • 分式方程解法 • 分式方程应用举例 • 分式方程与实际问题结合 • 分式方程求解技巧与注意事项 • 分式方程练习题与答案解析
01
分式方程基本概念
分式方程定义
分式方程是指分母里含有未知数 的有理方程。
分式方程是方程中的一种,且分 母里含有未知数的(有理)方程
之几?
经济问题
利润 = 售价 - 进价
利润率 = 利润 ÷ 进 价 × 100%
售价 = 进价 × (1 + 利润率)
进价 = 售价 ÷ (1 + 利润率)

《分式方程》分式PPT课件 (共18张PPT)

《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0

《分式方程》课件ppt1

《分式方程》课件ppt1

检验:当x=1时,(x+1)(x-1)=0,
所以x=1不是原分式方程的解,
则原分式方程无解.
学习目标
1.会列分式方程解决实际问题. 2.能根据题意找出正确的等量关系,列出分式方程并求 解,会根据实际意义验证结果是否合理.
课堂导入
两个工程队共同参与一项筑路工程,甲队单独施工1个 月完成总工程的 1 ,这时增加了乙队,两队又共同工作
已知玉兰树的单价是银杏树的倍,那么银杏树和玉兰树的单价分别是多少?
分析:根据题中等量关系“甲、乙两个工程队共同工 作9天的工作量+甲工程队单独工作5天的工作量=总工 作量(记为1)”列方程,再比较甲、乙两个工程队单 独完成任务所用的时间,然后做出决策.
解:设甲工程队单独完成工程需要x天.
根据题意,得
已知玉兰树的单价是银杏树的倍,那么银杏树和玉兰树的单价分别是多少?
800kg材料所用的时间相同. (1)审题时,先寻找题目中的关键词,然后借助列表、画图等方法准确找出相等关系.
现要从这两个工程队中选出一个工程队单独完成,从缩短工期的角度考虑,你认为应该选择哪个工程队?
(1)求A、B两种型号的机器人每小时分别搬运多少材 (2021·济南历下区期末)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用
D. 1000 - 1000 2
x - 30 x
2.(2020·柳州中考)甲、乙二人做某种机械零件, 已知每小时甲比乙多做6个,甲做90个所用的时间与 乙做60个所用的时间相等,设乙每小时做x个零件, 以下所列方程正确的是( C )
A.
90 x-6
60 x
B.
90 x
60 x6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各分母 的最简 公分母
解分式方程:
1 2 x1 (x1)(x1)
为什么会产生增根?
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分 母,化成整式方程.
2、解这个整式方程.
3、 把整式方程的根代入最简公分母,每结果 是不是为零,使最简公分母为零的根是原方程的 增根,必须舍去.
(1)x1x11, 32
(2) x2 x a2
(3) (x1)2 1 x1
(4) x2 1 x1 2
你敢应战吗?
100 60 20v 20v
将分式方程转化为 整式方程
两边同乘以 (2 0v)2 ( 0v)得:
1(0 2 0 0 v) 6(2 0 0 v)
解得: v=5
检验:将v=5代入原方程, 左边=4=右边,因些v=5是 分式方程的解.
16.3 分式方程(1)
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速航行60千米所用时间相等,江水的流 速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20v 20v
分母中含未知数的 方程叫做分式方程.
下列关于x的方程中,其中哪几个是分式方程?
x1 3x3
51 (3) x2xx2x0
思考题:
解关于x的方程
x-3 x-1
=
m x-1
产生增根,则常数m的值等于(
)
(A)-2 (B)-1 (C ) 1 (D) 2一化二解三来自验1、解分式方程的思路是:
分式方程
去分母
整式方程
2、解分式方程的一般步骤:
2020年10月2日
9
(1)作业本 (2)课本:
4、写出原方程的根.
例1
解方程 x x 1 1x2411
解:方程两边都乘以 (x+1) ( x – 1 ) , 约去分母,得
( x + 1 )2-4 = x2-1
解这个整式方程,得 x=1
经检验得: x = 1 是增根
∴原方程无解.
解方程:
随 堂
(1) 1 2
练 (2) x 2 1 习
2x x3
P38 习题16.3 第 1题中的 (1)~(4)
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
11
相关文档
最新文档